Commit dd7e64d45b may optimize out
i386/x86-64 JUMP_SLOT relocation. If there is no JUMP_SLOT relocation
left, we don't need to the first .plt entry. This patch allocates
space for the first .plt entry only if we also reserve space for a PLT
slot for JUMP_SLOT relocation.
bfd/
* elf32-i386.c (elf_i386_allocate_dynrelocs): Allocate space
for the first .plt entry only if needed.
* elf64-x86-64.c (elf_x86_64_allocate_dynrelocs): Likewise.
ld/testsuite/
* ld-i386/i386.exp: Run pltgot-1 for Linux targets.
* ld-x86-64/x86-64.exp: Likewise.
* ld-i386/pltgot-1.d: New file.
* ld-i386/pltgot-1.s: Likewise.
* ld-x86-64/pltgot-1.d: Likewise.
* ld-x86-64/pltgot-1.s: Likewise.
This patch sets the default ELF output format of assembler and linker to
EM_IAMCU when binutils is configured to i?86-*-elfiamcu target.
gas/
* configure.tgt (arch): Set to iamcu for i386-*-elfiamcu target.
* config/tc-i386.c (i386_mach): Support iamcu.
(i386_target_format): Likewise.
ld/
* configure.tgt: Support i[3-7]86-*-elfiamcu target.
ld/testsuite/
* ld-i386/i386.exp (iamcu_tests): Run iamcu-4.
* ld-i386/iamcu-4.d: New file.
Link the last zlibnormal gnunormal and gabinormal against libfoozlib.so
so that their only differences are DWARF debug sections.
PR ld/18354
* ld-elf/compress.exp (run_tests): Link the last zlibnormal,
gnunormal and gabinormal against libfoozlib.so.
Since we changed the default arch for objdump to zarch the following
testcase needs to check for the real instruction mnemonics instead of
just bytes.
This fixes the following testsuite fail on s390x:
FAIL: GOT: symbol address load from got to larl
Taking them out showed a bug in the powerpc64 backend with .branch_lt
being removed from output_bfd but not from previously set up segment
section maps. Removing the bfd sections meant their sh_flags (and
practically everything else) remaining zero, ie. not SHF_ALLOC,
triggering complaints about "`.branch_lt' can't be allocated in
segment".
include/elf/
* internal.h (ELF_SECTION_IN_SEGMENT_1): Ensure PT_LOAD and
similar segments only contain alloc sections.
ld/
* emultempl/ppc64elf.em (gld${EMULATION_NAME}_after_allocation):
Call gld${EMULATION_NAME}_map_segments regardless of need_laying_out.
ld/testsuite/
* ld-powerpc/tocnovar.d: Revert last change.
When we set up st_name for output section name in elf_fake_sections, we
don't know if the compressed DWARF debug section will be smaller. We may
end up with compressed DWARF debug sections which are bigger than the
uncompressed ones. This patch delays setting up st_name for output DWARF
debug section to _bfd_elf_assign_file_positions_for_non_load which will
compress the output debug section. We also postpone placement of shstrtab
section after DWARF debug sections have been compressed. The net effect
is .shstrtab section is now placed after .symtab and .strtab sections.
bfd/
PR ld/18277
* compress.c (bfd_compress_section_contents): Remove the
write_compress argument.
(bfd_init_section_compress_status): Updated.
(bfd_compress_section): Likewise.
* elf.c (_bfd_elf_set_reloc_sh_name): New.
(_bfd_elf_init_reloc_shdr): Add delay_st_name_p. Set sh_name
to (unsigned int) -1 if delay_st_name_p is TRUE. Use
_bfd_elf_set_reloc_sh_name.
(elf_fake_sections): Don't rename DWARF debug section for
linker output if it will be compressed. Instead, set
delay_st_name_p to TRUE and pass it to _bfd_elf_init_reloc_shdr.
(assign_section_numbers): Call _bfd_elf_strtab_addref only if
sh_name != (unsigned int) -1. Don't finalize nor assign
shstrtab section here. Delay setting output section names to
_bfd_elf_write_object_contents.
(_bfd_elf_compute_section_file_positions): Update comments on
sh_offset for shstrtab section.
(assign_file_positions_for_non_load_sections): Set sh_offset to
-1 for shstrtab section.
(assign_file_positions_except_relocs): Likewise.
(_bfd_elf_assign_file_positions_for_non_load): Set up sh_name
when compressing DWARF debug sections. Place shstrtab section
after DWARF debug sections have been compressed.
(_bfd_elf_write_object_contents): Setting sh_name for output
sections.
ld/testsuite/
PR ld/18277
* ld-elf/compressed1d.d: New.
* ld-elf/compressed1e.d: Likewise.
I didn't commit this with the relro and powerpc .TOC. changes,
thinking that something should be done about the odd result of
.shstrtab appearing in PT_GNU_RELRO. On looking at it further,
I think that changing readelf would be wrong, so let's just
accept the results. Real binaries will always have other sections
past .got, so PT_GNU_RELRO won't finish past the end of loaded
sections.
* ld-powerpc/tocnovar.d: Adjust.
The linker tries to put the end of the last section in the relro
segment exactly on a page boundary, because the relro segment itself
must end on a page boundary. If for any reason this can't be done,
padding is inserted. Since the end of the relro segment is typically
between .got and .got.plt, padding effectively increases the size of
the GOT. This isn't nice for targets and code models with limited GOT
addressing.
The problem with the current code is that it doesn't cope very well
with aligned sections in the relro segment. When making .got aligned
to a 256 byte boundary for PowerPC64, I found that often the initial
alignment attempt failed and the fallback attempt to be less than
adequate. This is a particular problem for PowerPC64 since the
distance between .got and .plt affects the size of plt call stubs,
leading to "stubs don't match calculated size" errors.
So this rewrite takes a direct approach to calculating a new relro
base. Starting from the last section in the segment, we calculate
where it must start to position its end on the boundary, or as near as
possible considering alignment requirements. The new start then
becomes the goal for the previous section to end, and so on for all
sections. This of course ignores the possibility that user scripts
will place . = ALIGN(xxx); in the relro segment, or provide section
address expressions. In those cases we might fail, but the old code
probably did too, and a fallback is provided.
ld/
* ldexp.h (struct ldexp_control): Delete dataseg.min_base. Add
data_seg.relro_offset.
* ldexp.c (fold_binary <DATA_SEGMENT_ALIGN>): Don't set min_base.
(fold_binary <DATA_SEGMENT_RELRO_END>): Do set relro_offset.
* ldlang.c (lang_size_sections): Rewrite code adjusting relro
segment base to line up last section on page boundary.
ld/testsuite/
* ld-x86-64/pr18176.d: Update.
This patch adds --compress-debug-sections=[none|zlib|zlib-gnu|zlib-gabi]
to ld for ELF targets to support generating compressed DWARF debug
sections. We always generate .zdebug_* section since section names have
been finalized and they can't be changed easily when compression is
being performed.
bfd/
* bfd-in.h (compressed_debug_section_type): New.
* compress.c (bfd_compress_section_contents): Add an argument
for linker write compression and always generate .zdebug_*
section when linking.
(bfd_init_section_compress_status): Pass FALSE to
bfd_compress_section_contents.
(bfd_compress_section): New function.
* elf.c (elf_fake_sections): For linking, set SEC_ELF_COMPRESS
on DWARF debug sections if COMPRESS_DEBUG is set and rename
section if COMPRESS_DEBUG_GABI_ZLIB isn't set.
(assign_file_positions_for_non_load_sections): Set sh_offset
to -1 if SEC_ELF_COMPRESS is set.
(assign_file_positions_except_relocs): Likwise.
(_bfd_elf_assign_file_positions_for_relocs): Renamed to ...
(_bfd_elf_assign_file_positions_for_non_load): This. Change
return time to bfd_boolean. Compress the section if
SEC_ELF_COMPRESS is set.
(_bfd_elf_write_object_contents): Updated.
(_bfd_elf_set_section_contents): Write section contents to
the buffer if SEC_ELF_COMPRESS is set.
* merge.c: Include "elf-bfd.h".
(sec_merge_emit): Add arguments for contents and offset. Write
to contents with offset if contents isn't NULL.
(_bfd_write_merged_section): Write section contents to the
buffer if SEC_ELF_COMPRESS is set. Pass contents and
output_offset to sec_merge_emit.
* elflink.c (bfd_elf_final_link): Allocate the buffer for
output section contents if SEC_ELF_COMPRESS is set.
* section.c (SEC_ELF_COMPRESS): New.
* bfd-in2.h: Regenerated.
gas/
* as.h (compressed_debug_section_type): Removed.
include/
* bfdlink.h (bfd_link_info): Add compress_debug.
ld/
* ld.texinfo: Document --compress-debug-sections=.
* ldmain.c (main): Set BFD_COMPRESS on output_bfd if
COMPRESS_DEBUG is set. Set BFD_COMPRESS_GABI on output_bfd
for COMPRESS_DEBUG_GABI_ZLIB.
* lexsup.c (elf_static_list_options): Add
--compress-debug-sections=.
* emultempl/elf32.em (OPTION_COMPRESS_DEBUG): New.
(xtra_long): Add "compress-debug-sections".
(gld${EMULATION_NAME}_handle_option): Handle
OPTION_COMPRESS_DEBUG.
ld/testsuite/
* ld-elf/compress.exp (build_tests): Add tests for
--compress-debug-sections=.
(run_tests): Likewise.
Add additonal tests for --compress-debug-sections=.
* ld-elf/gabiend.rt: New file.
* ld-elf/gabinormal.rt: Likewise.
* ld-elf/gnubegin.rS: Likewise.
* ld-elf/gnunormal.rS: Likewise.
* ld-elf/zlibbegin.rS: Likewise.
* ld-elf/zlibnormal.rS: Likewise.
Address of protected data defined in the shared library may be external,
i.e., due to copy relocation. By default, linker backend checks if
relocations against protected data symbols are valid for building shared
library and issues an error if relocation isn't allowed. The new option
override linker backend default. When -z noextern-protected-data is used,
updates on protected data symbols by another module won't be visibile
to the resulting shared library. This option is specific to ELF/i386
and ELF/x86-64.
bfd/
PR ld/pr17709
* elflink.c (_bfd_elf_adjust_dynamic_copy): Check
info->extern_protected_data when warning copy relocs against
protected symbols.
(_bfd_elf_symbol_refs_local_p): Check info->extern_protected_data
when checking protected non-function symbols.
include/
PR ld/pr17709
* bfdlink.h (bfd_link_info): Add extern_protected_data.
ld/
PR ld/pr17709
* ld.texinfo: Document "-z noextern-protected-data".
* ldmain.c (main): Initialize link_info.extern_protected_data
to -1.
* lexsup.c (elf_shlib_list_options): Add
"-z [no]extern-protected-data".
* emulparams/elf32_x86_64.sh: Source extern_protected_data.sh.
* emulparams/elf_i386.sh: Likewise.
* emulparams/elf_i386_be.sh: Likewise.
* emulparams/elf_i386_chaos.sh: Likewise.
* emulparams/elf_i386_ldso.sh: Likewise.
* emulparams/elf_i386_vxworks.sh: Likewise.
* emulparams/elf_k1om.sh: Likewise.
* emulparams/elf_l1om.sh: Likewise.
* emulparams/elf_x86_64.sh: Source extern_protected_data.sh.
(PARSE_AND_LIST_OPTIONS): Renamed to ...
(PARSE_AND_LIST_OPTIONS_BNDPLT): This.
(PARSE_AND_LIST_ARGS_CASE_Z): Renamed to ...
(PARSE_AND_LIST_ARGS_CASE_Z_BNDPLT): This.
(PARSE_AND_LIST_OPTIONS): Append $PARSE_AND_LIST_OPTIONS_BNDPLT.
(PARSE_AND_LIST_ARGS_CASE_Z): Append
$PARSE_AND_LIST_ARGS_CASE_Z_BNDPLT.
* emulparams/extern_protected_data.sh: New file.
ld/testsuite/
PR ld/pr17709
* ld-i386/i386.exp: Run protected6b.
* ld-i386/protected6b.d: New file.
* ld-x86-64/protected6b.d: Likewise.
* ld-x86-64/x86-64.exp: Run protected6b.
When checking R_386_GOTOFF/R_X86_64_GOTOFF64 for building shared library,
we should check SYMBOL_REFERENCES_LOCAL instead of SYMBOLIC_BIND to cover
more cases.
bfd/
* elf32-i386.c (elf_i386_relocate_section): Replace SYMBOLIC_BIND
with SYMBOL_REFERENCES_LOCAL when checking R_386_GOTOFF against
protected data symbol when building shared library.
* elf64-x86-64.c (elf_x86_64_relocate_section): Check
R_X86_64_GOTOFF64 against undefined symbol and replace
SYMBOLIC_BIND with SYMBOL_REFERENCES_LOCAL when checking
R_X86_64_GOTOFF64 against protected data symbol when building
shared library.
ld/testsuite/
* ld-i386/i386.exp: Run protected6a.
* ld-i386/protected6.d: Renamed to ...
* ld-i386/protected6a.d: This.
* ld-x86-64/hidden4.d: New file.
* ld-x86-64/hidden4.s: Likewise.
* ld-x86-64/hidden5.d: Likewise.
* ld-x86-64/hidden5.s: Likewise.
* ld-x86-64/protected6.d: Renamed to ...
* ld-x86-64/protected6a.d: This.
* ld-x86-64/x86-64.exp: Run hidden4, hidden5, protected6a,
protected7a and protected7b.
R_386_GOTOFF/R_X86_64_GOTOFF64 relocation shouldn't be used against
protected data symbol on x86 since with copy relocation, address of
protected data defined in the shared library may be external.
This patch will break building shared libraries with protected data
symbols using GCCs older than GCC 5 without the bug fix for
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=65248
GCC backport request should be made in the GCC bug report above.
bfd/
PR ld/pr17709
* elf32-i386.c (elf_i386_relocate_section): Also check R_386_GOTOFF
against protected data symbol when building shared library.
* elf64-x86-64.c (elf_x86_64_relocate_section): Also check
R_X86_64_GOTOFF64 against protected data symbol when building
shared library.
ld/testsuite/
PR ld/pr17709
* ld-i386/protected6.d: New file.
* ld-i386/protected6.s: Likewise.
* ld-x86-64/protected6.d: Likewise.
* ld-x86-64/protected6.s: Likewise.
* ld-x86-64/protected7.d: Likewise.
* ld-x86-64/protected7.s: Likewise.
* ld-x86-64/protected7a.d: Likewise.
* ld-x86-64/protected7b.d: Likewise.
Re-apply: commit ca3fe95e46
With copy relocation, address of protected data defined in the shared
library may be external. This patch adds extern_protected_data and
changes _bfd_elf_symbol_refs_local_p to return false for protected data
if extern_protected_data is true.
This patch will break building shared libraries with protected data
symbols using GCCs older than GCC 5 without the bug fix for
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=65248
GCC backport request should be made in the GCC bug report above.
To get correct run-time behavior on Linux, glibc 2.22 or above are
required, which have the bug fix for
https://sourceware.org/bugzilla/show_bug.cgi?id=17711
Backports for glibc 2.21, 2.20, 2.19 and 2.18 are on hjl/pr17711/2.21,
hjl/pr17711/2.20, hjl/pr17711/2.19 and hjl/pr17711/2.18 branches,
respectively, at
https://sourceware.org/git/?p=glibc.git;a=summary
bfd/
PR ld/pr15228
PR ld/pr17709
* elf-bfd.h (elf_backend_data): Add extern_protected_data.
* elf32-i386.c (elf_backend_extern_protected_data): New.
Defined to 1.
* elf64-x86-64.c (elf_backend_extern_protected_data): Likewise.
* elflink.c (_bfd_elf_adjust_dynamic_copy): Don't error on
copy relocs against protected symbols if extern_protected_data
is true.
(_bfd_elf_symbol_refs_local_p): Don't return true on protected
non-function symbols if extern_protected_data is true.
* elfxx-target.h (elf_backend_extern_protected_data): New.
Default to 0.
(elfNN_bed): Initialize extern_protected_data with
elf_backend_extern_protected_data.
ld/testsuite/
PR ld/pr15228
PR ld/pr17709
* ld-i386/i386.exp (i386tests): Add a test for PR ld/17709.
* ld-i386/pr17709-nacl.rd: New file.
* ld-i386/pr17709.rd: Likewise.
* ld-i386/pr17709a.s: Likewise.
* ld-i386/pr17709b.s: Likewise.
* ld-i386/protected3.d: Updated.
* ld-i386/protected3.s: Likewise.
* ld-x86-64/pr17709-nacl.rd: New file.
* ld-x86-64/pr17709.rd: Likewise.
* ld-x86-64/pr17709a.s: Likewise.
* ld-x86-64/pr17709b.s: Likewise.
* ld-x86-64/protected3.d: Updated.
* ld-x86-64/protected3.s: Likewise.
* ld-x86-64/x86-64.exp (x86_64tests): Add a test for PR ld/17709.
This patch adds --compress-debug-sections={none|zlib|zlib-gnu|zlib-gabi}
options to gas and objcopy for ELF files. They control how DWARF debug
sections are compressed. --compress-debug-sections=none is equivalent to
--nocompress-debug-sections. --compress-debug-sections=zlib and
--compress-debug-sections=zlib-gnu are equivalent to
--compress-debug-sections. --compress-debug-sections=zlib-gabi compresses
DWARF debug sections with SHF_COMPRESSED from the ELF ABI. No linker
changes are required to support SHF_COMPRESSED.
bfd/
* archive.c (_bfd_get_elt_at_filepos): Also copy BFD_COMPRESS_GABI
bit.
* bfd.c (bfd::flags): Increase size to 18 bits.
(BFD_COMPRESS_GABI): New.
(BFD_FLAGS_SAVED): Add BFD_COMPRESS_GABI.
(BFD_FLAGS_FOR_BFD_USE_MASK): Likewise.
(bfd_update_compression_header): New fuction.
(bfd_check_compression_header): Likewise.
(bfd_get_compression_header_size): Likewise.
(bfd_is_section_compressed_with_header): Likewise.
* compress.c (MAX_COMPRESSION_HEADER_SIZE): New.
(bfd_compress_section_contents): Return the uncompressed size if
the full section contents is compressed successfully. Support
converting from/to .zdebug* sections.
(bfd_get_full_section_contents): Call
bfd_get_compression_header_size to get compression header size.
(bfd_is_section_compressed): Renamed to ...
(bfd_is_section_compressed_with_header): This. Add a pointer
argument to return compression header size.
(bfd_is_section_compressed): Use it.
(bfd_init_section_decompress_status): Call
bfd_get_compression_header_size to get compression header size.
Return FALSE if uncompressed section size is 0.
* elf.c (_bfd_elf_make_section_from_shdr): Support converting
from/to .zdebug* sections.
* bfd-in2.h: Regenerated.
binutils/
* objcopy.c (do_debug_sections): Add compress_zlib,
compress_gnu_zlib and compress_gabi_zlib.
(copy_options): Use optional_argument on compress-debug-sections.
(copy_usage): Update --compress-debug-sections.
(copy_file): Handle compress_zlib, compress_gnu_zlib and
compress_gabi_zlib.
(copy_main): Handle
--compress-debug-sections={none|zlib|zlib-gnu|zlib-gabi}.
* doc/binutils.texi: Document
--compress-debug-sections={none|zlib|zlib-gnu|zlib-gabi}.
binutils/testsuite/
* compress.exp: Add tests for
--compress-debug-sections={none|zlib|zlib-gnu|zlib-gabi}.
* binutils-all/dw2-3.rS: New file.
* binutils-all/dw2-3.rt: Likewise.
* binutils-all/libdw2-compressedgabi.out: Likewise.
gas/
* as.c (show_usage): Update --compress-debug-sections.
(std_longopts): Use optional_argument on compress-debug-sections.
(parse_args): Handle
--compress-debug-sections={none|zlib|zlib-gnu|zlib-gabi}.
* as.h (compressed_debug_section_type): New.
(flag_compress_debug): Change type to compressed_debug_section_type.
--compress-debug-sections={none|zlib|zlib-gnu|zlib-gabi}.
* write.c (compress_debug): Set BFD_COMPRESS_GABI for
--compress-debug-sections=zlib-gabi. Call
bfd_get_compression_header_size to get compression header size.
Don't rename section name for --compress-debug-sections=zlib-gabi.
* config/tc-i386.c (compressed_debug_section_type): Set to
COMPRESS_DEBUG_ZLIB.
* doc/as.texinfo: Document
--compress-debug-sections={none|zlib|zlib-gnu|zlib-gabi}.
gas/testsuite/
* gas/i386/dw2-compressed-1.d: New file.
* gas/i386/dw2-compressed-2.d: Likewise.
* gas/i386/dw2-compressed-3.d: Likewise.
* gas/i386/x86-64-dw2-compressed-2.d: Likewise.
* gas/i386/i386.exp: Run dw2-compressed-2, dw2-compressed-1,
dw2-compressed-3 and x86-64-dw2-compressed-2.
ld/testsuite/
* ld-elf/compress.exp: Add a test for
--compress-debug-sections=zlib-gabi.
(build_tests): Add 2 tests for --compress-debug-sections=zlib-gabi.
(run_tests): Likewise.
Verify linker output with zlib-gabi compressed debug input.
* ld-elf/compressed1a.d: New file.
* ld-elf/compressed1b.d: Likewise.
* ld-elf/compressed1c.d: Likewise.
ld * ld.h (struct ld_config_type): Add new field: warn_orphan.
* ldlex.h (enum option_values): Add OPTION_WARN_ORPHAN and
OPTION_NO_WARN_ORPHAN.
* lexsup.c (ld_options): Add --warn-orphan and --no-warn-orphan.
(parse_args): Handle the new options.
* ldemul.c (ldemul_place_orphan): If requested, generate a warning
message when an orphan section is placed in the output file.
* ld.texinfo: Document the new option.
* NEWS: Mention the new feature.
tests * ld-elf/orphan-5.l: New test - checks the linker's output with
--warn-orphan enabled.
* ld-elf/elf.exp: Run the new test.
Fixes tic6x testsuite failures due to .rela.plt having a zero sh_info.
I considered passing link_info to get_reloc_section so we could
directly return the .got.plt output section, but we need the fallback
to name lookup anyway for objcopy.
bfd/
* elf.c (_bfd_elf_get_reloc_section): Allow for .got.plt being
mapped to output .got section.
ld/testsuite/
* ld-arm/tls-gdesc-nlazy.g: Adjust for readelf note.
* ld-tic6x/shlib-1.rd: Expect corrected .rela.plt sh_info.
* ld-tic6x/shlib-1b.rd: Likewise.
* ld-tic6x/shlib-1r.rd: Likewise.
* ld-tic6x/shlib-1rb.rd: Likewise.
* ld-tic6x/shlib-app-1.rd: Likewise.
* ld-tic6x/shlib-app-1b.rd: Likewise.
* ld-tic6x/shlib-app-1r.rd: Likewise.
* ld-tic6x/shlib-app-1rb.rd: Likewise.
* ld-tic6x/shlib-noindex.rd: Likewise.
Some early revisions of the Cortex-A53 have an erratum (843419). The
details of the erratum are quite complex and involve dynamic
conditions. For the purposes of the workaround we have simplified the
static conditions to an ADRP in the last two instructions of a 4KByte
page, followed within four instructions by a load/store dependent on
the ADRP.
This patch adds support to conservatively scan for and workaround
Cortex A53 erratum 843419. There are two different workaround
strategies used. The first is to rewrite ADRP instructions which form
part of an erratum sequence with an ADR instruction. In situations
where the ADR provides insufficient offset the dependent load or store
instruction from the sequence is moved to a stub section and branches
are inserted from the original sequence to the relocated instruction
and back again.
Stub section sizes are rounded up to a multiple of 4096 in order to
ensure that the act of inserting work around stubs does not create
more errata sequences.
Workaround stubs are always inserted into the stub section associated
with the input section containing the erratum sequence. This ensures
that the fully relocated form of the veneered load store instruction
is available at the point in time when the stub section is written.
Since .rela.plt/rel.plt section may contain relocations against .got.plt
section, we set sh_info for .rela.plt/rel.plt section to .got.plt section
index if target has .got.plt section.
bfd/
PR ld/18169
* elf-bfd.h (elf_backend_data): Add get_reloc_section.
(_bfd_elf_get_reloc_section): New.
* elf.c (_bfd_elf_get_reloc_section): Likewise.
(assign_section_numbers): Call get_reloc_section to look up the
section the relocs apply.
* elfxx-target.h (elf_backend_get_reloc_section): Likewise.
(elfNN_bed): Initialize get_reloc_section with
elf_backend_get_reloc_section.
ld/testsuite/
PR ld/18169
* ld-elf/linkinfo1a.d: Updated.
* ld-elf/linkinfo1b.d: Likewise.
Ensure that injection of a stub section does not break a link where
there is an xpectation that flow of control can pass from one input
section to another simply by linking the input sections in series.
The solution here is to allow stub sections to be inserted after any
input section (existing behaviour), but inject an additional branch at
the start of each stub section such that control flow falling into the
stub section will branch over the stub section.
I noticed that _bfd_elf_gc_mark_extra_sections attempts to unmark
related debug sections when it finds an unmarked code section.
When it finds .text.foo is unmarked, for example, it removes
.debug_line.text.foo as well (using the section name as a suffix
match check.
However, it bails out after finding one such section.
bfd/
* elflink.c (_bfd_elf_gc_mark_extra_sections): Don't break on
first matching debug section.
ld/testsuite/
* ld-gc/all-debug-sections.d: New file.
* ld-gc/all-debug-sections.s: Likewise.
* ld-gc/gc.exp: Execute new testcase.
With copy relocation, address of protected data defined in the shared
library may be external. This patch adds extern_protected_data and
changes _bfd_elf_symbol_refs_local_p to return false for protected data
if extern_protected_data is true.
bfd/
PR ld/pr15228
PR ld/pr17709
* elf-bfd.h (elf_backend_data): Add extern_protected_data.
* elf32-i386.c (elf_backend_extern_protected_data): New.
Defined to 1.
* elf64-x86-64.c (elf_backend_extern_protected_data): Likewise.
* elflink.c (_bfd_elf_adjust_dynamic_copy): Don't error on
copy relocs against protected symbols if extern_protected_data
is true.
(_bfd_elf_symbol_refs_local_p): Don't return true on protected
non-function symbols if extern_protected_data is true.
* elfxx-target.h (elf_backend_extern_protected_data): New.
Default to 0.
(elfNN_bed): Initialize extern_protected_data with
elf_backend_extern_protected_data.
ld/testsuite/
PR ld/pr15228
PR ld/pr17709
* ld-i386/i386.exp (i386tests): Add a test for PR ld/17709.
* ld-i386/pr17709-nacl.rd: New file.
* ld-i386/pr17709.rd: Likewise.
* ld-i386/pr17709a.s: Likewise.
* ld-i386/pr17709b.s: Likewise.
* ld-i386/protected3.d: Updated.
* ld-i386/protected3.s: Likewise.
* ld-x86-64/pr17709-nacl.rd: New file.
* ld-x86-64/pr17709.rd: Likewise.
* ld-x86-64/pr17709a.s: Likewise.
* ld-x86-64/pr17709b.s: Likewise.
* ld-x86-64/protected3.d: Updated.
* ld-x86-64/protected3.s: Likewise.
* ld-x86-64/x86-64.exp (x86_64tests): Add a test for PR ld/17709.
bfd/
PR gas/17843
* elfxx-aarch64.c (_bfd_aarch64_elf_put_addend): Expect
R_AARCH64_TLSLE_MOVW_TPREL_G0_NC and R_AARCH64_TLSLE_MOVW_TPREL_G1_NC
to be used with MOVK rather than MOVZ.
gas/
PR gas/17843
* config/tc-aarch64.c (process_movw_reloc_info): Allow
R_AARCH64_TLSLE_MOVW_TPREL_G0_NC and R_AARCH64_TLSLE_MOVW_TPREL_G1_NC
for MOVK.
gas/testsuite/
PR gas/17843
* gas/aarch64/tls.s, gas/aarch64/tls.d: Add test for
R_AARCH64_TLSLE_MOVW_TPREL_G0/R_AARCH64_TLSLE_MOVW_TPREL_G1_NC
sequence.
ld/testsuite/
PR gas/17843
* ld-aarch64/tlsle.s, ld-aarch64/tlsle.d: New test.
* ld-aarch64/aarch64-elf.exp: Run it.
gas/
* write.c (SUB_SEGMENT_ALIGN): Don't pad non-code sections at
end to their alignment.
gas/testsuite/
* gas/sparc/pcrel.d: Update for changed padding in data sections.
* gas/sparc/pcrel64.d: Likewise.
ld/testsuite/
* ld-sparc/gotop32.rd: Update for changed padding in data sections.
* ld-sparc/gotop32.td: Likewise.
* ld-sparc/gotop64.rd: Likewise.
* ld-sparc/gotop64.td: Likewise.
* ld-tilegx/external.s: Align .data.
* ld-tilepro/external.s: Likewise.
Make use of the data held within the .avr.prop section during linker
relaxation in order to maintain the properties of the .org and .align
directives.
In relation to the .align directives, if enough bytes are deleted before
a .align directive then the alignment can be moved while still
maintaining the alignment requirement.
bfd/ChangeLog:
* elf32-avr.c (struct elf_avr_section_data): New structure.
(struct avr_relax_info): New structure.
(elf_avr_new_section_hook): New function.
(struct elf_avr_section_data): Add relax_info.
(get_avr_relax_info): New function.
(init_avr_relax_info): New function.
(elf32_avr_relax_delete_bytes): Find next property record before
deleting bytes. When deleting don't move bytes beyond the next
property record.
(avr_elf32_assign_records_to_section): New function.
(avr_property_record_compare): New function.
(avr_load_all_property_sections): New function.
(elf32_avr_relax_section): Load property data. After relaxing the
section, move any .align directives that have enough deleted bytes
before them.
(bfd_elf32_new_section_hook): Define.
ld/testsuite/ChangeLog:
* ld-avr/avr-prop-1.d: New file.
* ld-avr/avr-prop-1.s: New file.
* ld-avr/avr-prop-2.d: New file.
* ld-avr/avr-prop-2.s: New file.
* ld-avr/avr-prop-3.d: New file.
* ld-avr/avr-prop-3.s: New file.
* ld-avr/avr-prop-4.d: New file.
* ld-avr/avr-prop-4.s: New file.
bfd * elf32-v850.c (v850_set_note): New function. Creates a Renesas
style note entry.
(v850_elf_make_note_section): New function. Creates a note
section.
(v850_elf_create_sections): New function. Create a note section
if one is not already present.
(v850_elf_set_note): New function. Adds a note to a bfd.
(v850_elf_copy_private_bfd_data): New function. Copies V850
notes.
(v850_elf_merge_notes): New function. Merges V850 notes.
(print_v850_note): New function. Displays a V850 note.
(v850_elf_print_notes): New function. Displays all notes attached
to a bfd.
(v850_elf_merge_private_bfd_data): Call v850_elf_merge_notes.
(v850_elf_print_private_bfd_data): Call v850_elf_print_notes.
(v850_elf_fake_sections): Set the type of the V850 note section.
* bfd-in.h (v850_elf_create_sections): Add prototype.
(v850_elf_set_note): Add prototype.
* bfd-in2.h: Regenerate.
binutils* readelf.c (get_machine_flags): Remove deprecated V850 machine
flags.
(get_v850_section_type_name): New function. Handles V850 special
sections.
(get_section_type_name): Add support for V850.
(get_v850_elf_note_type): New function. Returns the name of a
V850 note.
(print_v850_note): New function. Prints a V850 note.
(process_v850_notes): New function. Prints V850 notes.
(process_note_sections): Add support for V850.
binutils/testsute
* binutils-all/objcopy.exp: Skip the strip-10 test for the V850.
gas * config/tc-v850.c (soft_float): New variable.
(v850_data_8): New variable.
(md_show_usage): Add -msoft-float/-mhard-float.
(md_parse_option): Likewise.
(md_begin): Set the default value of soft_float.
(v850_md_end): New function. Creates a note section.
* config/tc-v850.h (md_end): Define.
* doc/c-v850.texi: Document -msoft-float/-mhard-float.
gas/testsuite
* gas/elf/elf.exp: Add special version of the section2 test for
the V850.
* gas/elf/section2.e-v850: New file.
include/elf
* v850.h (EF_RH850_SIMD): Delete deprecated flag.
(EF_RH850_CACHE): Likewise.
(EF_RH850_MMU): Likewise.
(EF_RH850_DATA_ALIGN8): Likewise.
(SHT_RENESAS_IOP): Fix typo in name.
(SHT_RENESAS_INFO): Define.
(V850_NOTE_SECNAME): Define.
(SIZEOF_V850_NOTE): Define.
(V850_NOTE_NAME): Define.
(enum v850_notes): New enum.
(NUM_V850_NOTES): Define.
ld/ChangeLog
2015-02-24 Nick Clifton <nickc@redhat.com>
* Makefile.am (ev850.c): Add dependency upon
$(srcdir)/emultempl/v850elf.em.
(ev850_rh850.c): Likewise.
* Makefile.in: Regenerate.
* emultempl/v850elf.em: New file.
* emulparams/v850.sh (EXTRA_EM_FILE): Define.
* emulparams/v850_rh850.sh (EXTRA_EM_FILE): Define.
* scripttempl/v850.sc: Add .note.renesas section.
* scripttempl/v850_rh850.sc: Likewise.
ld/testsuite
* ld-elf/extract-symbol-1sec.d: Expect to fail on the V850.
ld * scripttempl/avr.sc: Add new user_signatures region. Define and Use
symbols for all region lengths.
* scripttempl/avrtiny.sc: Define and use symbols for all region lengths.
testsuite * ld-avr/region_overflow.d: New test.
* ld-avr/region_overflow.s: Likewise.
I was having a little closer look at what is going on here and noticed
that HJ unconditionally emits a NULL STT_FILE symbol before emitting
forced local symbols. That means we really don't need a second pass
over forced local symbols. The only reason for two passes is when
some forced local symbol can be emitted before the NULL STT_FILE. So
I set about removing the second pass, updating the testsuite all over
again. It's also unnecessary to emit the NULL STT_FILE when no
previous file symbol has been emitted.
bfd/
PR ld/17975
* elflink.c (struct elf_outext_info): Remove need_second_pass
and second_pass.
(elf_link_output_extsym): Delete code handling second forced
local pass. Move code emitting NULL STT_FILE symbol later, so
that it can be omitted if forced local is stripped. Don't
emit the NULL STT_FILE if no file symbols have been output.
(bfd_elf_final_link): Remove second forced local pass.
* elf32-ppc.c (add_stub_sym): Set linker_def on linker syms.
(ppc_elf_size_dynamic_sections): Likewise.
* elf64-ppc.c (ppc_build_one_stub): Likewise.
(build_global_entry_stubs): Likewise.
(ppc64_elf_build_stubs): Likewise.
ld/testsuite/
PR ld/17975
* ld-aarch64/gc-tls-relocs.d, * ld-alpha/tlspic.rd,
* ld-cris/libdso-2.d, * ld-i386/tlsdesc-nacl.rd, * ld-i386/tlsdesc.rd,
* ld-i386/tlsnopic-nacl.rd, * ld-i386/tlsnopic.rd,
* ld-i386/tlspic-nacl.rd, * ld-i386/tlspic.rd, * ld-ia64/tlspic.rd,
* ld-powerpc/tlsexe.r, * ld-powerpc/tlsexetoc.r,
* ld-powerpc/tlsso.r, * ld-powerpc/tlstocso.r,
* ld-s390/tlspic.rd, * ld-s390/tlspic_64.rd,
* ld-sparc/tlssunnopic32.rd, * ld-sparc/tlssunnopic64.rd,
* ld-sparc/tlssunpic32.rd, * ld-sparc/tlssunpic64.rd,
* ld-tic6x/shlib-1.rd, * ld-tic6x/shlib-1b.rd, * ld-tic6x/shlib-1r.rd,
* ld-tic6x/shlib-1rb.rd, * ld-tic6x/shlib-noindex.rd,
* ld-x86-64/tlsdesc-nacl.rd, * ld-x86-64/tlsdesc.rd,
* ld-x86-64/tlspic-nacl.rd, * ld-x86-64/tlspic.rd: Update.
We output a NULL STT_FILE symbol for forced local symbols so that they
are not associated with the STT_FILE symbol for real local symbols. This
patch makes sure that the NULL STT_FILE symbol is placed before forced
local symbols.
bfd/
PR ld/17975
* elflink.c (elf_link_output_extsym): Only check filesym_count
when outputting a NULL FILE symbol. Set second_pass_sym to
h->forced_local && !h->root.linker_def.
ld/testsuite/
PR ld/17975
* ld-i386/tlsbin-nacl.rd: Likewise.
* ld-i386/tlsbin.rd: Likewise.
* ld-i386/tlsbindesc-nacl.rd: Likewise.
* ld-i386/tlsbindesc.rd: Likewise.
* ld-i386/tlsdesc-nacl.rd: Likewise.
* ld-i386/tlsdesc.rd: Likewise.
* ld-i386/tlsnopic-nacl.rd: Likewise.
* ld-i386/tlsnopic.rd: Likewise.
* ld-i386/tlspic-nacl.rd: Likewise.
* ld-i386/tlspic.rd: Likewise.
* ld-x86-64/tlsbin-nacl.rd: Likewise.
* ld-x86-64/tlsbin.rd: Likewise.
* ld-x86-64/tlsbindesc-nacl.rd: Likewise.
* ld-x86-64/tlsbindesc.rd: Likewise.
* ld-x86-64/tlsdesc-nacl.rd: Likewise.
* ld-x86-64/tlsdesc.rd: Likewise.
* ld-x86-64/tlspic-nacl.rd: Likewise.
* ld-x86-64/tlspic.rd: Likewise.
Mark the unused plugin defined symbol in elf_link_input_bfd instead of
_bfd_elf_fix_symbol_flags. Limit the PR ld/12365 test to x86 targets.
bfd/
PR ld/12365
PR ld/14272
* elflink.c (_bfd_elf_fix_symbol_flags): Revert the last change.
(elf_link_input_bfd): Mark the plugin symbol undefined if it is
referenced from a non-IR file.
ld/testsuite/
PR ld/12365
PR ld/14272
* ld-plugin/lto.exp: Run the PR ld/12365 test only for x86 targets.
* ld-plugin/plugin-7.d: Updated.
* ld-plugin/plugin-8.d: Likewise.
LTO may optimize out a plugin symbol, which is also referenced by a
non-IR file. When that happens, we should mark the plugin symbol
undefined. It isn't the problem since LTO already determined the
symbols in the non-IR file aren't used.
bfd/
PR ld/12365
PR ld/14272
* elflink.c (_bfd_elf_fix_symbol_flags): Mark the plugin symbol
undefined if it is referenced from a non-IR file.
ld/testsuite/
PR ld/12365
* ld-plugin/pr12365a.c: New file.
* ld-plugin/pr12365b.c: Likewise.
* ld-plugin/pr12365c.c: Likewise.
* ld-plugin/lto.exp (lto_link_tests): Prepare for the PR ld/12365
test.
Run the PR ld/12365 test.
The linker hardcoded r3 into a local-dynamic to local-exec TLS
optimization sequence. This is normally the case since r3 is required
as a parameter to (the optimized out) __tls_get_addr call. However,
it is possible for a compiler, LLVM in this case, to set up the
parameter value in another register then copy it to r3 before the
call.
When fixing this problem, I noticed that ppc32 had another bug when
optimizing away one of the TLS insns to a nop.
The patch also tidies a mask used by global-dynamic to initial-exec
TLS optimization, to just select the fields needed. Leaving the
offset in the instruction wasn't a bug since it will be overwritten
anyway.
bfd/
* elf64-ppc.c (ppc64_elf_relocate_section): Correct GOT_TLSLD
optimization. Tidy mask for GOT_TLSGD optimization.
* elf32-ppc.c (ppc_elf_relocate_section): Likewise. Correct
location of nop zapping high insn too.
ld/testsuite/
* ld-powerpc/tlsld.d, * ld-powerpc/tlsld.s: New test.
* ld-powerpc/tlsld32.d, * ld-powerpc/tlsld32.s: New test.
* ld-powerpc/powerpc.exp: Run them. Move tocvar and tocnovar.
"f1" is a register name on ia64, and hence gets warned upon when used
as expression value:
.../binutils/2.25/ld/testsuite/ld-elf/pr16322.s: Assembler messages:
.../binutils/2.25/ld/testsuite/ld-elf/pr16322.s:6: Warning: register value used as expression
Change the name (and "p1" at once, which is a register name too, albeit
not currently causing any immediate problem).
ld/testsuite/
2015-01-28 Jan Beulich <jbeulich@suse.com>
* ld-elf/pr16322.s (p1): Rename to px1.
(f1): Rename to fx1.
The changes to reorder sections for better relro protection on powerpc64,
3e2b0f31, 23283c1b, and 5ad18f16, run into a problem with xlc.
xlc -qdatalocal puts global variables into .toc, which means that .toc
must be writable. The simplest way to accomplish this is to edit the
linker script to remove .toc sections from .got on detecting xlc object
files.
bfd/
* elf64-ppc.h (struct ppc64_elf_params): Add "object_in_toc".
* elf64-ppc.c (ppc64_elf_add_symbol_hook): Assume that global symbols
in .toc indicate xlc compiled code that might require a rw .toc.
ld/
* emulparams/elf64ppc.sh (INITIAL_READWRITE_SECTIONS): Define.
* emultempl/ppc64elf.em (params): Init new field.
(ppc_after_open): New function.
(LDEMUL_AFTER_OPEN): Define.
* ldlang.c (lang_final): Whitespace fix.
ld/testsuite/
* ld-powerpc/tocvar.d, * ld-powerpc/tocvar.s: New test.
* ld-powerpc/tocnovar.d, * ld-powerpc/tocnovar.s: New test.
* ld-powerpc/powerpc.exp: Run tocvar and tocnovar.
This patch fixes PR 4643 by allowing symbols in the LENGTH and ORIGIN
fields of MEMORY regions. Previously, only constants and constant
expressions are allowed.
For the AVR target, this helps define memory constraints more
accurately (per device), without having to create a ton of device
specific linker scripts.
ld/
PR 4643
* ldexp.c (fold_name): Fold LENGTH only after
lang_first_phase_enum.
* ldgram.y (memory_spec): Don't evaluate ORIGIN and LENGTH
rightaway.
* ldlang.h (struct memory_region_struct): Add origin_exp and
length_exp fields.
* ldlang.c (lang_do_memory_regions): New.
(lang_memory_region_lookup): Initialize origin_exp and
length_exp fields.
(lang_process): Call lang_do_memory_regions.
ld/testsuite/
* ld-scripts/memory.t: Define new symbol tred.
* ld-scripts/memory_sym.t: New.
* ld-scripts/script.exp: Perform MEMORY with symbols test, and
conditionally check values of linker symbols.
Tests that I added in commit c05b575a8d
fails on 32-bit hosts due to differences in whitespace.
This patch updates the expected output patterns to be more accepting of
differences in whitespace, the tests should now pass.
ld/testsuite/ChangeLog:
* ld-scripts/provide-4-map.d: Update expected output.
* ld-scripts/provide-5-map.d: Likewise.
When creating a linker mapfile (using -Map=MAPFILE), we previously would
always try to evaluate the expression from a PROVIDE statement.
However, this is not always safe, consider:
PROVIDE (foo = 0x10);
PROVIDE (bar = foo);
In this example, if neither 'foo' or 'bar' is needed, then while
generating the linker mapfile evaluating the expression for 'foo' is
harmless (just the value 0x10). However, evaluating the expression for
'bar' requires the symbol 'foo', which is undefined. This used to cause
a fatal error.
This patch changes the behaviour, so that when the destination of the
PROVIDE is not defined (that is the PROVIDE is not going to provide
anything) the expression is not evaluated, and instead a special string
is displayed to indicate that the linker is discarding the PROVIDE
statement.
This change not only fixes the spurious undefined symbol error, but also
means that a user can now tell if a PROVIDE statement has provided
anything by inspecting the linker mapfile, something that could not be
done before.
ld/ChangeLog:
* ldlang.c (print_assignment): Only evaluate the expression for a
PROVIDE'd assignment when the destination is being defined.
Display a special message for PROVIDE'd symbols that are not being
provided.
ld/testsuite/ChangeLog:
* ld-scripts/provide-4.d: New file.
* ld-scripts/provide-4-map.d: New file.
* ld-scripts/provide-4.t: New file.
* ld-scripts/provide-5.d: New file.
* ld-scripts/provide-5.s: New file.
* ld-scripts/provide-5-map.d: New file.
* ld-scripts/provide-5.t: New file.
* ld-scripts/provide.exp: Run the provide-4.d and provide-5.d
tests.
Add a new option 'map' to the ld run_dump_test mechanism. When the
'map' option is given run_dump_test will ensure that there is a
-Map=MAPFILE present in the linker command line, adding one if needed.
The MAPFILE is then compared with the file passed to the new 'map'
option using the regexp_diff function. This should make it slightly
easier to write tests that check the linker mapfile output.
The only test I found that already compares mapfile content is updated
to use the new mechanism.
ld/testsuite/ChangeLog:
* ld-scripts/overlay-size.d: Add 'map' option.
* ld-scripts/overlay-size.exp: Remove manual check of mapfile.
* lib/ld-lib.exp (run_dump_test): Add support for new 'map'
option, checking linker mapfile output.
This moves .got too, which requires .sdata and .sbss to move with it,
because these sections share addressing via the toc pointer and with
small-model code must be within a 16-bit signed offset. .plt, .iplt
and .branch_lt must also be moved since they are addressed via a
32-bit offset from the toc pointer, and we might have a very large
.data section.
This change means we may have some bss style sections before the data
segment, necessitating another PT_LOAD header. Also, since _edata is
defined at the end of the data segment it's possible with an empty
.data to have _edata at the end of .plt which looks a little unusual
since .plt is a bss style section. That should only happen rarely in
real world binaries, but does occur in the ld testsuite.
ld/
* emulparams/elf64ppc.sh (BSS_PLT): Don't define.
(OTHER_READWRITE_SECTIONS): Move .branch_lt to..
(OTHER_RELRO_SECTIONS_2): ..here.
(DATA_GOT, SEPARATE_GOTPLT, DATA_SDATA, DATA_PLT,
PLT_BEFORE_GOT): Define.
* scripttempl/elf.sc: Handle DATA_SDATA and DATA_GOT/DATA_PLT/
PLT_BEFORE_GOT combination.
(DATA_GOT, SDATA_GOT): Don't define if either is already defined.
ld/testsuite/
* ld-powerpc/ambiguousv1.d,
* ld-powerpc/ambiguousv1b.d,
* ld-powerpc/ambiguousv2.d,
* ld-powerpc/ambiguousv2b.d,
* ld-powerpc/elfv2exe.d,
* ld-powerpc/elfv2so.d,
* ld-powerpc/tlsexe.r,
* ld-powerpc/tlsexetoc.r,
* ld-powerpc/tlsso.r,
* ld-powerpc/tlstocso.r: Update.
Running lang_common before garbage collection means slightly less work
in garbage collection code, since common symbols should no longer
appear there. It does have the side effect of keeping linker script
symbols (at least those defined outside of sections) global too,
hence some testsuite churn.
bfd/
PR 17165
* elf-bfd.h (ELF_COMMON_DEF): Note that this might be true for
linker script assignments too.
* elflink.c (elf_gc_sweep_symbol): Don't drop ELF_COMMON_DEF syms.
(bfd_elf_gc_mark_dynamic_ref_symbol): Similarly.
ld/
PR 17165
* ldlang.c (lang_process): Run lang_common before lang_gc_sections.
ld/testsuite/
* ld-gc/pr14265.d,
* ld-cris/tls-gc-68.d,
* ld-cris/tls-gc-69.d,
* ld-cris/tls-gc-70.d,
* ld-cris/tls-gc-71.d,
* ld-cris/tls-gc-75.d,
* ld-cris/tls-gc-76.d,
* ld-cris/tls-gc-79.d,
* ld-mmix/bpo-10.d,
* ld-mmix/bpo-11.d: Update.
- 32 128 bit vector registers (overlapping with the existing 16 64 bit
floating point registers)
- vector double instructions
- vector integer instructions
- scalar vector instructions (allowing to have more floating point
registers for scalar operations)
- vector string instructions
gas/ChangeLog:
* config/tc-s390.c (struct pd_reg): Remove.
(pre_defined_registers): Remove.
(REG_NAME_CNT): Remove.
(reg_name_search): Calculate the register number instead of doing
a lookup.
(register_name, tc_s390_regname_to_dw2regnum): Adopt to the new
reg_name_search signature.
(s390_parse_cpu): Support the new arch string z13.
(s390_insert_operand): Support for vector registers with the extra
field for the fifth bit of each vector register operand.
(md_gather_operand): Adjust to the new handling of optional
parameters.
* doc/as.texinfo: Document the z13 cpu string.
gas/testsuite/ChangeLog:
* gas/s390/esa-g5.d: Add a variant without the optional operand.
* gas/s390/esa-g5.s: Likewise.
* gas/s390/esa-z9-109.d: Likewise.
* gas/s390/esa-z9-109.s: Likewise.
* gas/s390/zarch-z9-109.d: Likewise.
* gas/s390/zarch-z9-109.s: Likewise.
* gas/s390/zarch-z10.d: For variants with a zero optional argument
it is not dumped by objdump anymore.
* gas/s390/zarch-zEC12.d: Likewise.
* gas/s390/zarch-z13.d: New file.
* gas/s390/zarch-z13.s: New file.
* gas/s390/s390.exp: Run the test for the z13 files.
include/opcode/ChangeLog:
* s390.h (s390_opcode_cpu_val): Add S390_OPCODE_Z13.
ld/testsuite/ChangeLog:
* ld-s390/tlsbin.dd: The nopr register operand is optional and not
printed if 0 anymore.
opcodes/ChangeLog:
* s390-dis.c (s390_extract_operand): Support vector register
operands.
(s390_print_insn_with_opcode): Support new operands types and add
new handling of optional operands.
* s390-mkopc.c (s390_opcode_mode_val, s390_opcode_cpu_val): Remove
and include opcode/s390.h instead.
(struct op_struct): New field `flags'.
(insertOpcode, insertExpandedMnemonic): New parameter `flags'.
(dumpTable): Dump flags.
(main): Parse flags from the s390-opc.txt file. Add z13 as cpu
string.
* s390-opc.c: Add new operands types, instruction formats, and
instruction masks.
(s390_opformats): Add new formats for .insn.
* s390-opc.txt: Add new instructions.
When building executable, undefined symbol is a fatal error. We don't
complain about -fPIC if the symbol is undefined.
bfd/
PR ld/17847
* elf64-x86-64.c (elf_x86_64_relocate_section): Don't complain
about -fPIC if the symbol is undefined when building executable.
ld/testsuite/
PR ld/17847
* ld-x86-64/pie1.d: New file.
* ld-x86-64/pie1.s: Likwise.
* ld-x86-64/x86-64.exp: Run pie1.
bfd/ChangeLog
2015-01-13 Thomas Preud'homme <thomas.preudhomme@arm.com>
* elfnn-aarch64.c (elfNN_aarch64_final_link_relocate): Use
SYMBOLIC_BIND to check if a symbol should be bound symbolically.
ld/testsuite/ChangeLog
2015-01-13 Thomas Preud'homme <thomas.preudhomme@arm.com>
* ld-aarch64/aarch64-elf.exp: Added relocs-257-symbolic-func test.
* ld-aarch64/relocs-257-symbolic-func.d: New file.
* ld-aarch64/relocs-257-symbolic-func.s: Likewise.
bfd/
* elfnn-aarch64.c: (elfNN_aarch64_howto_table): Enable overflow check for
TLSLE_MOVW_TPREL_G2.
ld/testsuite/
* ld-aarch64/tprel_g2_overflow.s: New testcase.
* ld-aarch64/tprel_g2_overflow.d: New expectation file.
* ld-aarch64/aarch64-elf.exp: Run new testcase.
bfd/
PR ld/17415
* elfnn-aarch64.c (elfNN_aarch64_howto_table): Mark
R_AARCH64_TLSLE_ADD_TPREL_HI12 as complain_overflow_unsigned.
* elfxx-aarch64.c (_bfd_aarch64_elf_resolve_relocation): Correct the bit
mask.
ld/testsuite/
PR ld/17415
* ld-aarch64/pr17415.s: Source file for new test.
* ld-aarch64/pr17415.d: Expect file for new test.
* ld-aarch64/aarch64-elf.exp: Run the new test.
When building PIE, we should only discard space for pc-relative relocs
symbols which turn out to need copy relocs.
bfd/
PR ld/17827
* elf64-x86-64.c (elf_x86_64_allocate_dynrelocs): For PIE,
only discard space for pc-relative relocs symbols which turn
out to need copy relocs.
ld/testsuite/
PR ld/17827
* ld-x86-64/pr17689.out: Updated.
* ld-x86-64/pr17689b.S: Likewise.
* ld-x86-64/pr17827.rd: New file.
* ld-x86-64/x86-64.exp: Run PR ld/17827 test.
The original test output expectations cause it to fail when configure
determines enable_initfini_array=no (which was observed on a cross
build on an old 32-bit host, pointing out that taking into account host
properties in such a case is bogus anyway).
ld/testsuite/
2015-01-08 Jan Beulich <jbeulich@suse.com>
* ld-x86-64/pr14207.d: Adjust expecations to cover the
enable_initfini_array=no case.
Mention that readelf can be used as a test program in the comment of
run_dump_test.
ld/testsuite/ChangeLog:
* lib/ld-lib.exp (run_dump_test): Extend comment to mention
readelf.
bfd/
PR ld/17773
* elflink.c (bfd_elf_final_link): Assign the file position for
the symbol string table only there are symbols to be emitted.
ld/testsuite/
PR ld/17773
* ld-elf/binutils.exp (binutils_test): Add an optional
readelf_options. Replace -l with $readelf_options. Add a
gap test.
* ld/testsuite/ld-elf/gap.s: New file.
At some stage someone fixed a bug in ld -r output, preserving
SHF_INFO_LINK from input objects. These two tests expected the old
wrong output.
* ld-sh/sh64/crangerel1.rd: Update.
* ld-sh/sh64/crangerel2.rd: Update.
*** bfd/ChangeLog ***
2014-12-25 Thomas Preud'homme <thomas.preudhomme@arm.com>
* elf32-arm.c (elf32_arm_merge_eabi_attributes): Handle new
Tag_ABI_VFP_args value and replace hardcoded values by enum
values.
(elf32_arm_post_process_headers): Set e_flags in ELF header
as hard float only when Tag_ABI_VFP_args is 1, using new enum
value AEABI_VFP_args_vfp to check that.
*** binutils/ChangeLog ***
2014-12-25 Thomas Preud'homme <thomas.preudhomme@arm.com>
* readelf.c (arm_attr_tag_ABI_VFP_args): Add "compatible".
*** gdb/ChangeLog ***
2014-12-25 Thomas Preud'homme <thomas.preudhomme@arm.com>
* arm-tdep.c (arm_gdbarch_init): Explicitely handle value 3 of
Tag_ABI_VFP_args. Also replace hardcoded values by enum values
in the switch handling the different values of Tag_ABI_VFP_args.
*** gold/ChangeLog ***
2014-12-25 Thomas Preud'homme <thomas.preudhomme@arm.com>
* arm.cc (Target_arm::do_adjust_elf_header): Set e_flags in ELF
header as hard float only when Tag_ABI_VFP_args is 1, using new
enum value AEABI_VFP_args_vfp to check that.
(Target_arm::merge_object_attributes): Handle new Tag_ABI_VFP_args
value and replace hardcoded values by enum values.
*** include/elf/ChangeLog ***
2014-12-25 Thomas Preud'homme <thomas.preudhomme@arm.com>
* arm.h: New AEABI_FP_number_model_* and AEABI_VFP_args_* enum
values.
*** ld/testsuite/ChangeLog ***
2014-12-25 Thomas Preud'homme <thomas.preudhomme@arm.com>
* ld-arm/attr-merge-2a.s: Add Tag_ABI_VFP_args.
* ld-arm/attr-merge-2b.s: Likewise.
* ld-arm/attr-merge-2.attr: Likewise.
* ld-arm/attr-merge-4a.s: Add Tag_ABI_FP_number_model and
Tag_ABI_VFP_args.
* ld-arm/attr-merge-4b.s: Likewise.
* ld-arm/attr-merge-4.attr: Likewise.
* ld-arm/attr-merge-6a.s: Likewise.
* ld-arm/attr-merge-6b.s: Likewise.
* ld-arm/attr-merge-6.attr: Add Tag_ABI_FP_number_model.
Have the assembler prepare for linker relaxation by default. This
means that users will be able to make use of linker relaxation without
having to adjust the assembler flags, this can make life easier when
compiling libraries.
Having this on by default in the assembler should make no difference to
the assembler code produced, however, some of the debug information will
be slightly less compressed.
A few tests needed to be updated as a result of this change as they
relied on linker relaxation support being off by default.
I've tightened up the definition of which sections can be relaxed on AVR
as part of this commit, the assembler used to think that all
non-debugging sections could be relaxed, when in reality only code
sections can be relaxed for AVR. The previous definition was not
dangerous, just over cautious. The new tighter definition allows an
extra test (gas/testsuite/gas/all/forward.d) to continue to pass.
gas/ChangeLog:
* config/tc-avr.c (struct avr_opt_s): Change link_relax to
no_link_relax, extend comment.
(enum options): Add new OPTION_NO_LINK_RELAX.
(md_longopts): Add entry for -mno-link-relax.
(md_parse_option): Handle OPTION_NO_LINK_RELAX, and update
OPTION_LINK_RELAX.
(md_begin): Initialise linkrelax from no_link_relax.
(md_show_usage): Include -mno-link-relax option.
(relaxable_section): Only allocatable code sections can be
relaxed.
* config/tc-avr.h (TC_LINKRELAX_FIXUP): Define.
gas/testsuite/ChangeLog:
* gas/all/gas.exp: Test will not pass on AVR due to linker
relaxation support.
* gas/avr/noreloc_withoutrelax.d: Add -mno-link-relax option.
* gas/avr/link-relax-elf-flag-clear.d: Likewise.
ld/testsuite/ChangeLog:
* ld/testsuite/ld-avr/relax-elf-flags-02.d: Add -mno-link-relax
option.
* ld/testsuite/ld-avr/relax-elf-flags-03.d: Likewise.
* ld/testsuite/ld-avr/relax-elf-flags-04.d: Likewise.
* ld/testsuite/ld-avr/relax-elf-flags-05.d: Likewise.
* ld/testsuite/ld-avr/relax-elf-flags-06.d: Likewise.
The AVR target has an elf header flag to indicate if an object was
assembler ready for linker relaxation. If a partial link is performed
then it is important that the link-relax flag in the output object is
set correctly, otherwise, during the final link, we might try to perform
linker relaxation on code that was not assembled suitably.
As the link-relax elf header covers the entire object file we must be
conservative when setting the flag in the output object, so, for a
partial link, any input object that does not have the link-relax flag
set will cause the output object to also not have the link-relax flag
set.
This conservative approach could be softened in future, we only need to
disable the link relax flag if an input file is not marked link-relax
ready, and the input file contains a relaxable section. However, I've
left this optimisation for a later day.
For the final link I've overloaded the use of the link-relax elf header
flag, in a final executable, the flag now indicates if the executable
was built with linker relaxation on or not.
ld/ChangeLog:
* emultempl/avrelf.em: Add include of elf/avr.h.
(avr_finish): New function.
(LDEMUL_FINISH): Added.
ld/testsuite/ChangeLog:
* ld-avr/relax-elf-flags-01.d: New file.
* ld-avr/relax-elf-flags-02.d: New file.
* ld-avr/relax-elf-flags-03.d: New file.
* ld-avr/relax-elf-flags-04.d: New file.
* ld-avr/relax-elf-flags-05.d: New file.
* ld-avr/relax-elf-flags-06.d: New file.
* ld-avr/relax-elf-flags-07.d: New file.
* ld-avr/relax-elf-flags-08.d: New file.
* ld-avr/relax-elf-flags-a.s: New file.
* ld-avr/relax-elf-flags-b.s: New file.
Trying to use the SEC_LINKER_CREATED section flag to determine whether
a symbol is linker defined fails to work on targets like alpha that
define special SEC_COMMON sections. These might contain symbols that
originated in an object file.
include/
* bfdlink.h (struct bfd_link_hash_entry): Comment non_ir_ref. Add
linker_def.
bfd/
* elflink.c (_bfd_elf_define_linkage_sym): Set linker_def.
* linker.c (_bfd_generic_link_add_one_symbol): Clear linker_def
for CDEF, DEF, DEFW, COM.
ld/
* ldexp.c (exp_fold_tree_1 <etree_provide>): Test linker_def.
ld/testsuite/
* ld-powerpc/sdabase.s,
* ld-powerpc/sdabase.t,
* ld-powerpc/sdabase.d: New test.
* ld-powerpc/sdabase2.t,
* ld-powerpc/sdabase2.d: New test.
* ld-powerpc/powerpc.exp: Run them.
When there is a weak symbol with a real definition, the processor
independent code will have arranged for us to see the real definition
first. We need to copy the needs_copy bit from the real definition and
check it when allowing copy reloc in PIE.
bfd/
PR ld/17689
* elf64-x86-64.c (elf_x86_64_link_hash_entry): Add needs_copy.
Change has_bnd_reloc to bit field.
(elf_x86_64_link_hash_newfunc): Initialize needs_copy and
has_bnd_reloc to 0.
(elf_x86_64_check_relocs): Set has_bnd_reloc to 1 instead
of TRUE.
(elf_x86_64_adjust_dynamic_symbol): Copy needs_copy from the
real definition to a weak symbol.
(elf_x86_64_allocate_dynrelocs): Also check needs_copy of a
weak symbol for PIE when discarding space for relocs against
symbols which turn out to need copy relocs.
(elf_x86_64_relocate_section): Also check needs_copy of a
weak symbol for PIE with copy reloc.
ld/testsuite/
PR ld/17689
* ld-x86-64/pr17689.out: New file.
* ld-x86-64/pr17689.rd: Likewise.
* ld-x86-64/pr17689a.c: Likewise.
* ld-x86-64/pr17689b.S: Likewise.
* ld-x86-64/x86-64.exp: Run PR ld/17689 tests.
This patch allows copy relocs for non-GOT pc-relative relocation in PIE.
bfd/
* elf64-x86-64.c (elf_x86_64_create_dynamic_sections): Always
allow copy relocs for building executables.
(elf_x86_64_check_relocs): Allow copy relocs for non-GOT
pc-relative relocation in shared object.
(elf_x86_64_adjust_dynamic_symbol): Allocate copy relocs for
PIE.
(elf_x86_64_relocate_section): Don't copy a pc-relative
relocation into the output file if the symbol needs copy reloc.
ld/testsuite/
* ld-x86-64/copyreloc-lib.c: New file.
* ld-x86-64/copyreloc-main.c: Likewise.
* ld-x86-64/copyreloc-main.out: Likewise.
* ld-x86-64/copyreloc-main1.rd: Likewise.
* ld-x86-64/copyreloc-main2.rd: Likewise.
* ld-x86-64/x86-64.exp: Run copyreloc tests.
In MIPS the relocation calculation only ignores the overflow checks for undefined
weak symbols on relocations associated with j/jal. This patch extends this to
the relocations used by the: b* instructions; pc/gp relative symbol offsets; and the
lwpc/ldpc MIPS r6 instructions.
bfd/
* elfxx-mips.c (mips_elf_calculate_relocation): Only check for overflow
on non-weak undefined symbols.
ld/testsuite/
* ld-mips-elf/mips-elf.exp: Add in undefined weak overflow tests for
o32, n32 and n64.
* ld-mips-elf/undefweak-overflow.s: New test.
* ld-mips-elf/undefweak-overflow.d: New test.
* ld-mips-elf/undefweak-overflow-n32.d: New test.
* ld-mips-elf/undefweak-overflow-n64.d: New test.
Both readelf/objdump know how to get symbol version string for dynamic
symbols. This patch extracts this functionality into a separate
function and uses it to add symbol version string to versioned symbol
names when dumping dynamic relocations.
bfd/
PR binutils/16496
* elf-bfd.h (bfd_elf_get_symbol_version_string): New.
* elf.c (bfd_elf_get_symbol_version_string): New. Extracted
from bfd_elf_print_symbol.
(bfd_elf_print_symbol): Use it.
binutils/
PR binutils/16496
* objdump.c (objdump_print_symname): Call
bfd_elf_get_symbol_version_string to get ELF symbol version
string. Append version string if needed.
* readelf.c (versioned_symbol_info): New enum.
(get_symbol_version_string): New. Extracted from
process_symbol_table.
(dump_relocations): Add a new argument to indicate if dynamic
symbol table is used. Use get_symbol_version_string to get
symbol version string for dynamic symbol. Append version string
if needed.
(process_relocs): Updated dump_relocations call.
(process_symbol_table): Use get_symbol_version_string.
ld/testsuite/
PR binutils/16496
* ld-cris/weakref3.d: Add symbol version string to versioned
symbol names in dynamic relocation.
* ld-cris/weakref4.d: Likewise.
* ld-elfvers/vers24.rd: Likewise.
* ld-elf/pr16496a.c: New file.
* ld-elf/pr16496a.map: Likewise.
* ld-elf/pr16496b.c: Likewise.
* ld-elf/pr16496b.od: Likewise.
* ld-elf/shared.exp (build_tests): Add libpr16496a.so and
libpr16496b.so tests.
When there are both PLT and GOT references to the same function symbol,
linker will create a GOTPLT slot for PLT entry and a GOT slot for GOT
reference. A run-time JUMP_SLOT relocation is created to update the
GOTPLT slot and a run-time GLOB_DAT relocation is created to update the
GOT slot. Both JUMP_SLOT and GLOB_DAT relocations will apply the same
symbol value to GOTPLT and GOT slots, respectively, at run-time.
This optimization combines GOTPLT and GOT slots into a single GOT slot
and removes the run-time JUMP_SLOT relocation. It replaces the regular
PLT entry:
indirect jump [GOTPLT slot]
push relocation index
jump PLT0
with an GOT PLT entry with an indirect jump via the GOT slot:
indirect jump [GOT slot]
nop
and resolves PLT reference to the GOT PLT entry.
We must avoid this optimization if pointer equality is needed since
we don't clear symbol value in this case and the dynamic linker won't
update the GOT slot. Otherwise, the resulting binary will get into an
infinite loop at run-time.
bfd/
* elf32-i386.c (elf_i386_got_plt_entry): New.
(elf_i386_pic_got_plt_entry): Likewise.
(elf_i386_link_hash_entry): Add plt_got.
(elf_i386_link_hash_table): Likewise.
(elf_i386_link_hash_newfunc): Initialize plt_got.offset to -1.
(elf_i386_get_local_sym_hash): Likewise.
(elf_i386_check_relocs): Create the GOT PLT if there are both
PLT and GOT references when the regular PLT is used.
(elf_i386_allocate_dynrelocs): Use the GOT PLT if there are
both PLT and GOT references unless pointer equality is needed.
(elf_i386_relocate_section): Also check the GOT PLT when
resolving R_386_PLT32.
(elf_i386_finish_dynamic_symbol): Use the GOT PLT if it is
available.
* elf64-x86-64.c (elf_x86_64_link_hash_entry): Add plt_got.
(elf_x86_64_link_hash_table): Likewise.
(elf_x86_64_link_hash_newfunc): Initialize plt_got.offset to -1.
(elf_x86_64_get_local_sym_hash): Likewise.
(elf_x86_64_check_relocs): Create the GOT PLT if there are both
PLT and GOT references when the regular PLT is used.
(elf_x86_64_allocate_dynrelocs): Use the GOT PLT if there are
both PLT and GOT references unless pointer equality is needed.
(elf_x86_64_relocate_section): Also check the GOT PLT when
resolving R_X86_64_PLT32.
(elf_x86_64_finish_dynamic_symbol): Use the GOT PLT if it is
available.
ld/
* emulparams/elf_i386.sh (TINY_READONLY_SECTION): New.
* emulparams/elf_x86_64.sh (TINY_READONLY_SECTION): Add .plt.got.
ld/testsuite/
* ld-i386/i386.exp: Add run-time relocation tests for plt-main.
* ld-i386/plt-main.rd: New file.
* ld-x86-64/plt-main-bnd.dd: Likewise.
* ld-x86-64/plt-main.rd: Likewise.
* ld-x86-64/x86-64.exp: Add run-time relocation tests for
plt-main.
gas/
2014-11-21 Terry Guo <terry.guo@arm.com>
* config/tc-arm.c (md_assemble): Do not consider relaxation.
(md_convert_frag): Test and set target arch attribute accordingly.
(aeabi_set_attribute_string): Turn it into a global function.
* config/tc-arm.h (md_post_relax_hook): Enable it for ARM target.
(aeabi_set_public_attributes): Declare it.
gas/testsuite/
2014-11-21 Terry Guo <terry.guo@arm.com>
* gas/arm/attr-arch-assumption.d: New file.
* gas/arm/attr-arch-assumption.s: Likewise.
ld/testsuite/
2014-11-21 Terry Guo <terry.guo@arm.com>
* ld-arm/tls-longplt-lib.s: Require ARMv6T2.
* ld-arm/tls-longplt.s: Likewise.
* ld-arm/tls-longplt-lib.d: Updated.
* ld-arm/tls-longplt.d: Likewise.
This patch makes sure that compiler won't optimize out loading function
into a stack variable.
* ld-ifunc/ifunc-main.c (get_bar): New function.
(main): Use it.
Structions with R_X86_64_GOTTPOFF relocation must be encoded with REX
prefix even if it isn't required by destination register. Otherwise
linker can't safely perform IE -> LE optimization.
bfd/
PR ld/17482
* elf64-x86-64.c (elf_x86_64_relocate_section): Update comments
for IE->LE transition.
gas/
PR ld/17482
* config/tc-i386.c (output_insn): Add a dummy REX_OPCODE prefix
for structions with R_X86_64_GOTTPOFF relocation for x32 if needed.
gas/testsuite/
PR ld/17482
* gas/i386/ilp32/x32-tls.d: New file.
* gas/i386/ilp32/x32-tls.s: Likewise.
ld/testsuite/
PR ld/17482
* ld-x86-64/tlsie4.dd: Updated.
bfd/
* elfxx-mips.c (update_mips_abiflags_isa): Add E_MIPS_ARCH_32R6
and E_MIPS_ARCH_64R6 support.
ld/testsuite/
* ld-mips-elf/abiflags-strip10-ph.d: New file.
* ld-mips-elf/mips-eld.exp: Run the new test.
gas/
* config/tc-mips.c (mips_elf_final_processing): Add INSN_ISA32R6
and INSN_ISA64R6 support.
gas/testsuite/
* gas/mips/elf_arch_mips32r6.d: New file.
* gas/mips/elf_arch_mips64r6.d: New file.
* gas/mips/mips.exp: Run the new tests.
When performing linker relaxation, reduce the size of symbols that span
the deleted bytes. This ensures that, for example, function symbols
will have the correct size.
bfd/ChangeLog:
* elf32-avr.c (elf32_avr_relax_delete_bytes): During linker
relaxation, reduce the size of symbols that span the deleted
bytes.
ld/ChangeLog:
* testsuite/ld-avr/relax-02.d: Update to check size of symbols has
changed.
* testsuite/ld-avr/relax-03.d: Likewise.
Symbols at the very end of a section were not being updated correctly
when linker relaxation takes place due to the use of '<' instead of
'<='. Added a couple of tests to cover this behaviour.
bfd/ChangeLog:
* elf32-avr.c (elf32_avr_relax_delete_bytes): Modify symbols
located at the very end of the section.
ld/ChangeLog:
* ld/testsuite/ld-avr/relax-02.d: New file.
* ld/testsuite/ld-avr/relax-02.s: New file.
* ld/testsuite/ld-avr/relax-03.d: New file.
* ld/testsuite/ld-avr/relax-03.s: New file.
The @ character is a comment character on ARM, so use % instead. Also
use a wider glob for matching ARM targets to make sure the test gets
run.
ld/testsuite/ChangeLog:
2014-10-30 Will Newton <will.newton@linaro.org>
* ld-unique/unique.exp: Use a wider glob for matching ARM
targets.
* ld-unique/unique.s: Use % instead of @ in .type directive.
* ld-unique/unique_shared.s: Likewise.
2014-10-22 Tejas Belagod <tejas.belagod@arm.com>
bfd/
* bfd-in.h (bfd_elf64_aarch64_set_options): Add a parameter.
* bfd-in2.h (bfd_elf64_aarch64_set_options): Likewise.
* elfnn-aarch64.c (aarch64_erratum_835769_stub): New.
(elf_aarch64_stub_type): Add new type
aarch64_stub_erratum_835769_veneer.
(elf_aarch64_stub_hash_entry): New fields for erratum 835769.
(aarch64_erratum_835769_fix): New data struct to record erratum
835769.
(elf_aarch64_link_hash_table: Global flags for 835769.
(aarch64_build_one_stub): Add case for 835769.
(aarch64_size_one_stub): Likewise.
(aarch64_mem_op_p, aarch64_mlxl_p,
aarch64_erratum_sequence,erratum_835769_scan):
New. Decode and scan functions for erratum 835769.
(elf_aarch64_create_or_find_stub_sec): New.
(elfNN_aarch64_size_stubs): Look for erratum 835769 and record
them.
(bfd_elfNN_aarch64_set_options: Set global flag for 835769.
(erratum_835769_branch_to_stub_data,
make_branch_to_erratum_835769_stub):New. Connect up all the
erratum stubs to occurances by branches.
(elfNN_aarch64_write_section): New hook.
(aarch64_map_one_stub): Output erratum stub symbol.
(elfNN_aarch64_size_dynamic_sections): Init mapping symbol
information for erratum 835769.
(elf_backend_write_section): Define.
ld/
* emultempl/aarch64elf.em: Add command-line option for erratum
835769.
ld/testsuite/
* ld-aarch64/aarch64-elf.exp (aarch64elftests): Drive erratum
835769 tests.
* ld-aarch64/erratum835769.d: New.
* ld-aarch64/erratum835769.s: New.
* ld-scripts/sysroot-prefix.exp: Log $ld_sysroot. Handle sysroot
== "/" as a separate sysroot-configuration with separable
test-types.
(sysroot_prefix_tests): Include all existing sysroot tests in
sysroot == "/" tests except exclude those where a --sysroot option
is not specified.
* lib/ld-lib.exp (check_sysroot_available): Rewrite to use
--print-sysroot instead of relying on error code from using
--sysroot=... Also, set $ld_sysroot.
The reason we exclude not just the failing "full-path =-prefixed
without" but also the passing "plain =-prefixed without but -Lpath"
for sysroot == "/" is that for the latter to succeed, we have to make
assumptions about the system not having a /sysroot directory or
assumptions about its contents etc.
When passing --enable-targets=all --enable-64-bit-bfd (the
latter not required for a "64-bit-host" of course) the ld --help
output got too much to handle for poor tcl (or maybe dejagnu is
to blame) and remote_exec exited with an error, so the
configuration being tested was mishandled as being a
sysroot-less configuration. Using --version instead of --help
would work too, but the new --print-sysroot option calls for
nominal coverage, so why not use that instead.
* ld-scripts/sysroot-prefix.exp, ld-scripts/sysroot-prefix-x.s,
ld-scripts/sysroot-prefix-y.s: New files.
N.B: full coverage is only possible with complementary use of
--with-sysroot when configuring.
These are useless because they can't match any address. In fact,
worse than useless because the .eh_frame_hdr lookup table matching
addresses to FDEs does not contain information about the FDE range.
The table is sorted by address; Range is inferred by the address
delta from one entry to the next. So if a zero address range FDE is
followed by a normal non-zero range FDE for the same address,
everything is good. However, the qsort could just as easily sort the
FDEs in the other order, in which case the normal FDE would
effectively be seen to have a zero range.
bfd/
PR 17447
* elf-bfd.h (struct eh_cie_fde): Comment re NULL u.fde.cie_inf.
* elf-eh-frame.c (_bfd_elf_parse_eh_frame): Mark zero address
range FDEs for discarding.
(vma_compare): Sort on range after address.
(_bfd_elf_gc_mark_fdes): Test for NULL u.fde.cie_inf.
(_bfd_elf_discard_section_eh_frame): Likewise. Write "FDE" in
error message rather than "fde".
(_bfd_elf_write_section_eh_frame_hdr): Write "PC" and "FDE" in
error message.
ld/testsuite/
* ld-elf/eh1.s: Don't create FDEs with zero address ranges.
* ld-elf/eh3.s: Likewise.
* ld-elf/eh1.d, * ld-elf/eh2.d, * ld-elf/eh3.d: Adjust.
* ld-mips-elf/eh-frame1-n32.d: Warning match update.
* ld-mips-elf/eh-frame1-n64.d: Likewise.
* ld-mips-elf/eh-frame2-n32.d: Likewise.
* ld-mips-elf/eh-frame2-n64.d: Likewise.
I originally had this as --print-prog-name and changed back to
--print-file-name to suit older gcc, neglecting to check whether
gcc-5.0 --print-file-name finds the lto plugin. It doesn't.
* ld-plugin/lto.exp: Use both --print-file-name and --print-prog-name
when looking for lto plugin.
different architecture tags. Add a test case to make sure that this works,
and update readelf so that it will not seg-fault when trying to display the
attributes of binaries with invalid architecture tags.
* elf32-arm.c (elf32_arm_merge_eabi_attributes): Return false if
failed to merge.
* ld-arm/attr-merge-arch-2.d: New test case.
* ld-arm/attr-merge-arch-2a.s: New test case source file.
* ld-arm/attr-merge-arch-2b.s: Likewise.
* ld-arm/arm-elf.exp: Run new test case.
* readelf.c (display_arm_attribute): Use unsigned int type for
tag, val and type variables.
2014-08-26 Jiong Wang <jiong.wang@arm.com>
bfd/
* elfnn-aarch64.c (elfNN_aarch64_check_relocs): Initialize non_got_ref
properly for MOVW_G0/1/2_NC and MOVW_G3. Reject them when linking
shared library.
(elfNN_aarch64_gc_sweep_hook): Add check on these relocs.
ld/testsuite/
* ld-aarch64/copy-relocs-so.s: New test file.
* ld-aarch64/copy-relocs-exe.s: Likewise.
* ld-aarch64/copy-relocs.d: New expectation file.
* ld-aarch64/emit-relocs-264-bad.d: New test file.
* ld-aarch64/emit-relocs-266-bad.d: Likewise.
* ld-aarch64/emit-relocs-268-bad.d: Likewise.
* ld-aarch64/emit-relocs-269-bad.d: Likewise.
* ld-aarch64/aarch64-elf.exp: Run new added test.
Resolves PR 17312
* ld-aarch64/eh-frame-foo.s: Use 8-byte offset for X30.
* ld-aarch64/eh-frame-bar.s: Likewise.
* ld-aarch64/eh-frame.d: Updated to match current readelf output.
* ld-elf/eh5.d: Allow any register names.
Only set the VLE flag if the instruction has been pulled via the VLE
instruction set. This way the flag is guaranteed to be set for VLE-only
instructions or for VLE-only processors, however it'll remain clear for
dual-mode instructions on dual-mode and, more importantly, standard-mode
processors.
gas/
* config/tc-ppc.c (md_assemble): Only set the PPC_APUINFO_VLE
flag if both the processor and opcode flags match.
ld/testsuite/
* ld-powerpc/apuinfo-vle.rd: New test.
* ld-powerpc/apuinfo-vle.s: New test source.
* ld-powerpc/apuinfo.rd: Adjust according to GAS PPC_APUINFO_VLE
handling change.
* ld-powerpc/powerpc.exp: Run the new test.
2014-08-21 Tony Wang <tony.wang@arm.com>
* elf32-arm.c (elf32_arm_final_link_relocate): Implement
the veneer routine for R_ARM_THM_JUMP19.
(arm_type_of_stub): Add conditional clause for R_ARM_THM_JUMP19
(elf32_arm_size_stub): Ditto.
ld/testsuite/ChangeLog
2014-08-21 Tony Wang <tony.wang@arm.com>
* ld-arm/jump-reloc-veneers-cond.s: New test.
* ld-arm/farcall-cond-thumb-arm.s: Ditto.
* ld-arm/jump-reloc-veneers-cond-short.d: Expected output
for target without a veneer generation.
* ld-arm/jump-reloc-veneers-cond-long.d: Expected output
for target with a veneer generation.
* ld-arm/farcall-cond-thumb-arm.d: Expected output for
inter working veneer generation.
* ld-arm/arm-elf.exp: Add tests for conditional branch veneer.
bfd/
PR ld/17277
* elf32-arm.c (elf32_arm_check_relocs): Increment P->pc_count for
all reloc types with pc_relative set in the howto, not just for
R_ARM_REL32 and R_ARM_REL32_NOI.
(allocate_dynrelocs_for_symbol): Update comment.
(elf32_arm_gc_sweep_hook): For all reloc types with pc_relative
set in the howto, set call_reloc_p and may_need_local_target_p but
not may_become_dynamic_p; not only for R_ARM_REL32 and R_ARM_REL32_NOI.
(elf32_arm_check_relocs): Likewise.
ld/testsuite/
PR ld/17277
* ld-arm/pcrel-shared.s: New file.
* ld-arm/pcrel-shared.rd: New file.
* ld-arm/arm-elf.exp (armelftests_common): Add it.
PR 17287
bfd/
* elflink.c (on_needed_list): Only consider libraries that have
been loaded.
ld/
* ld.texinfo (--as-needed): Clarify that references from libraries
must be from needed libraries.
ld/testsuite/
* ld-plugin/needed3.c: New file.
* ld-elf/shared.exp: Add needed3 test.
* lib/ld-lib.exp (check_lto_fat_available): New.
(check_lto_available): Remove -ffat-lto-objects test.
* ld-plugin/lto.exp: Use [list ] rather than { } to set up list
variables, allowing substition of vars. Set lto_fat and plug_opt
and add to various tests.
Relocations against .got.plt section may not be in the same order as
entries in PLT section. It is incorrect to assume that the Ith reloction
index against .got.plt section always maps to the (I + 1)th entry in PLT
section. This patch matches the .got.plt relocation offset/index in PLT
entry against the index in .got.plt relocation table. It only checks
R_*_JUMP_SLOT and R_*_IRELATIVE relocations. It ignores R_*_TLS_DESC
and R_*_TLSDESC relocations since they have different PLT entries.
bfd/
PR binutils/17154
* elf32-i386.c (elf_i386_plt_sym_val): Only match R_*_JUMP_SLOT
and R_*_IRELATIVE relocation offset with PLT entry.
* elf64-x86-64.c (elf_x86_64_plt_sym_val): Likewise.
(elf_x86_64_plt_sym_val_offset_plt_bnd): New.
(elf_x86_64_get_synthetic_symtab): Use it.
ld/testsuite/
PR binutils/17154
* ld-ifunc/pr17154-i386.d: New file.
* ld-ifunc/pr17154-x86-64.d: Likewise.
* ld-ifunc/pr17154-x86.s: Likewise.
* ld-x86-64/bnd-ifunc-2.d: Likewise.
* ld-x86-64/bnd-ifunc-2.s: Likewise.
* ld-x86-64/mpx.exp: Run bnd-ifunc-2.
* ld-x86-64/tlsdesc-nacl.pd: Updated.
* ld-x86-64/tlsdesc.pd: Likewise.
Commit e1f987424b changed how
next_tls_desc_index was set up. This patch updates
elf_i386_compute_jump_table_size to use elf.srelplt->reloc_count
instead of next_tls_desc_index.
bfd/
PR ld/17057
* elf32-i386.c (elf_i386_compute_jump_table_size): Replace
next_tls_desc_index with elf.srelplt->reloc_count.
ld/testsuite/
PR ld/17057
* ld-i386/i386.exp: Run pr17057.
* ld-i386/pr17057.d: New file.
* ld-i386/pr17057.s: Likewise.
Specify -T relocs.ld for emit-relocs-local-addend.d to be consistent
will all other emit-relocs* testcases
ld/testsuite/
* ld-aarch64/emit-relocs-local-addend.d: Use target linker script.
With this change all gas and most ld tests pass when configured for
arm-linux. It doesn't look like these configurations have been
tested in a long time but this attempts to stem the bit-rot slightly.
gas/testsuite/ChangeLog:
2014-07-10 Will Newton <will.newton@linaro.org>
* gas/arm/bl-local-2.d: Only enable the test on EABI and
NaCl configurations.
* gas/arm/bl-local-v4t.d: Likewise.
* gas/arm/blx-local.d: Likewise.
* gas/arm/branch-reloc.d: Likewise.
ld/testsuite/ChangeLog:
2014-07-10 Will Newton <will.newton@linaro.org>
* ld-arm/arm-elf.exp (armelftests_nonacl): Move Cortex-A8 fix
tests, IFUNC tests and other EABI requiring tests to...
(armeabitests_nonacl): ...here.
* ld-arm/arm-app-abs32.d: Loosen regex for architecture type
to allow test to pass on configurations without an attributes
section.
* ld-arm/arm-app.d: Likewise.
* ld-arm/arm-lib-plt32.d: Likewise.
* ld-arm/arm-lib.d: Likewise.
* ld-arm/arm-static-app.d: Likewise.
* ld-arm/armthumb-lib.d: Likewise.
* ld-arm/cortex-a8-far.d: Likewise.
* ld-arm/farcall-mixed-app.d: Likewise.
* ld-arm/farcall-mixed-lib-v4t.d: Likewise.
* ld-arm/farcall-mixed-lib.d: Likewise.
* ld-arm/mixed-app-v5.d: Likewise.
* ld-arm/mixed-app.d: Likewise.
* ld-arm/mixed-lib.d: Likewise.
* ld-arm/tls-app.d: Likewise.
* ld-arm/tls-descrelax-be32.d: Likewise.
* ld-arm/tls-descrelax.d: Likewise.
* ld-arm/tls-descseq.d: Likewise.
* ld-arm/tls-gdesc-got.d: Likewise.
* ld-arm/tls-gdesc.d: Likewise.
* ld-arm/tls-gdierelax.d: Likewise.
* ld-arm/tls-gdierelax2.d: Likewise.
* ld-arm/tls-gdlerelax.d: Likewise.
* ld-arm/tls-lib-loc.d: Likewise.
* ld-arm/tls-lib.d: Likewise.
* ld-arm/tls-thumb1.d: Likewise.
ARM doesn't support non-PIC shared libraries so don't run those
tests.
ld/testsuite/ChangeLog:
2014-07-10 Will Newton <will.newton@linaro.org>
* ld-elfvers/vers.exp: Set pic to yes for ARM targets.
Increase the maximum page size to 64kB and align the TEXT_START_ADDR
to a 64kB boundary. This brings AArch32 in line with AArch64 and
improves compatability under certain conditions.
bfd/ChangeLog:
2014-07-08 Will Newton <will.newton@linaro.org>
* elf32-arm.c (ELF_MAXPAGESIZE): Increase the default
value to 64kB and remove custom setting for NaCl.
ld/ChangeLog:
2014-07-08 Will Newton <will.newton@linaro.org>
* emulparams/armelf_linux.sh (TEXT_START_ADDR): Increase
alignment to 64kB boundary.
ld/testsuite/ChangeLog:
2014-07-08 Will Newton <will.newton@linaro.org>
* ld-arm/arm-lib.ld: Increase MAXPAGESIZE value to
match bfd.
* ld-arm/cortex-a8-fix-bl-rel-plt.d: Update offsets to
take into account increased segment alignment.
* ld-arm/ifunc-gdesc.r: Likewise.
* ld-arm/tls-lib.d: Likewise.
This fixes a problem seen on powerpc64le ELFv2 when creating a
function symbol alias with ld --defsym. st_other needs to be copied
from the source symbol to the alias in order to set up the local entry
offset for the alias. I decided to make this change in the generic
ELF code rather than in elf64-ppc.c since it looks like other targets
that use st_other bits might benefit too.
bfd/
* elflink.c (_bfd_elf_copy_link_hash_symbol_type): Copy st_other
bits from source to dest.
* linker.c (_bfd_generic_copy_link_hash_symbol_type): Update comment.
* targets.c (struct bfd_target <_bfd_copy_link_hash_symbol_type>):
Likewise.
* bfd-in2.h: Regenerate.
ld/testsuite/
* ld-powerpc/defsym.s, * ld-powerpc/defsym.d: New test.
* ld-powerpc/powerpc.exp: Run it.
Objects built with -fno-fat-lto-objects (the default for gcc-4.9) have
no normal symbols, except things like __gnu_lto_slim. These useless
symbols are the ones put into the archive index, and of course nothing
references them so no objects are extracted by the linker. Running
ar with --plugin changes ar behaviour to put the lto symbols into the
archive index.
PR 17112
* ld-plugin/lto.exp: When building liblti-11.a, pass
--plugin path_to_gcc/liblto_plugin.so to ar.
toolchain that just contains the binutils - ie without a compiler.
* lib/ld-lib.exp (check_lto_available): Check that a compiler is
available before testing for LTO support.
Various ld-elf/shared.exp and ld-plugin/lto.exp tests simply appended
the testsuite -B options intended to force gcc use the linker under test.
This fails if $CC itself has -B options, as when setting CC to run gcc
out of a build directory. Net result is that tests were run using
the gcc build dir collect-ld.
* config/default.exp: Don't make tmpdir/gas. Put as symlink into
tmpdir/ld.
(gcc_gas_flag, gcc_ld_flag): Delete.
(gcc_B_opt, ld_L_opt): New globals.
ld-elf/shared.exp: Remove all refs to gcc_gas_flag and gcc_ld_flag.
ld-plugin/lto.exp: Likewise.
lib/ld-lib.exp (run_host_cmd): Add gcc_B_opt and ld_L_opt here.
(ld_simple_link): Remove -B handling now that this is done in
run_host_cmd. Simplify.
(default_ld_compile): Simplify.
(check_lto_available): Use run_host_cmd_yesno.
(check_lto_shared_available): Likewise.
libdummy.a is used to make run_cc_link_tests compile objects and
archive them. libdummy.a isn't used. What we're really doing is
preventing a final link. So do that directly.
* lib/ld-lib.exp (run_ld_link_tests): Stop after assembling objects
if binfile is empty.
(run_ld_link_exec_tests, run_cc_link_tests): Likewise. Tidy
status checks.
* ld-plugin/lto.exp: Don't use libdummy.a trick to compile objects.
Instead use an empty output file.
When a shared library appears within --start-group/--end-group ld may
only discover a need for loading the library on the second or
subsequent pass over archive libraries, as more objects are extracted.
ld/
PR 17068
* ldlang.c (load_symbols): Always check flags.reload.
(open_input_bfds): Always reload --as-needed shared libraries,
not just when rescanning.
* ldlang.h (struct lang_input_statement_flags): Update reload comment.
* plugin.c (plugin_should_reload): Assume shared library arg.
* plugin.h (plugin_should_reload): Update comment.
ld/testsuite
* ld-elf/pr17068.s: New.
* ld-elf/pr17068a.s: New.
* ld-elf/pr17068b.s: New.
* ld-elf/pr17068c.s: New.
* ld-elf/pr17068d.s: New.
* ld-elf/pr17068e.s: New.
* ld-elf/pr17068ez.s: New.
* ld-elf/elf.exp: Run new test.
doesn't always mean you need to define a function symbol on plt code.
If all references are in read-write sections, then using dynamic relocs
is OK.
bfd/
* elf32-ppc.c (ppc_elf_adjust_dynamic_symbol): Clear
pointer_equality_needed when !readonly_dynrelocs.
* elf64-ppc.c (ppc64_elf_adjust_dynamic_symbol): Likewise.
ld/testsuite/
* ld-powerpc/ambiguousv1.d: Match symbol table too.
* ld-powerpc/ambiguousv2.d: Likewise.
* ld-powerpc/ambiguousv1b.d: New.
* ld-powerpc/ambiguousv2b.d: New.
* ld-powerpc/powerpc.exp: Run new tests.
Addition of DF_STATIC_TLS in eea6dad2 results in the addition of
flags to the dynamic section, which in turn changes these addresses.
Fix them up to match their new positions.
ld/testsuite/Changelog:
2014-06-24 Kyle McMartin <kyle@redhat.com>
* ld-arm/tls-gdierelax2.d: Fix expected offsets.
Combining TLS descriptors and GNU indirect functions in the same
object could lead to assertions or multiple dynamic relocations
for the same GOT slot. Fix the bookkeeping so this doesn't happen.
This allows building and make checking glibc with -mtls-dialect=gnu2.
bfd/ChangeLog:
2014-06-16 Will Newton <will.newton@linaro.org>
* elf32-arm.c (elf32_arm_allocate_plt_entry): Increment
htab->next_tls_desc_index in the non-IPLT case.
Calculate GOT offset correctly for the non-IPLT case.
(allocate_dynrelocs_for_symbol): Don't increment
htab->next_tls_desc_index here.
ld/testsuite/ChangeLog:
2014-06-16 Will Newton <will.newton@linaro.org>
* ld-arm/arm-elf.exp: Add ifunc-gdesc test.
* ld-arm/ifunc-gdesc.r: New file.
* ld-arm/ifunc-gdesc.s: Likewise.
* ld-arm/ifunc-gdesc.ver: Likewise.
Power8 fuses addis,addi and addis,ld sequences when the target of the
addis is the same as the addi/ld. Thus
addis r12,r2,xxx@ha
addi r12,r12,xxx@l / ld r12,xxx@l(r12)
is faster than
addis r11,r2,xxx@ha
addi r12,r11,xxx@l / ld r12,xxx@l(r11)
So use the form that allows fusion in plt call and branch stubs.
bfd/
* elf64-ppc.c (ADDIS_R12_R2): Define.
(build_plt_stub): Support fusion on ELFv2 stub.
(ppc_build_one_stub): Likewise for plt branch stubs.
gold/
* powerpc.cc (addis_12_2): Define.
(Stub_table::do_write): Support fusion on ELFv2 stubs.
ld/testsuite/
* ld-powerpc/elfv2exe.d: Update for changed plt call stubs.
gdb/
* ppc64-tdep.c (ppc64_standard_linkage8): New.
(ppc64_skip_trampoline_code): Recognise ELFv2 stub supporting fusion.
ld/testsuite/
* lib/ld-lib.exp: Add objcopy_objects command to run_dump_test.
This allows each input object to be optionally run through
objcopy before linking.
aarch64 does not support building non-PIC shared objects, so mark
tests for these as xfail.
ld/testsuite/ChangeLog:
2014-05-20 Will Newton <will.newton@linaro.org>
* ld-shared/shared.exp: Mark non-PIC shared object tests
as xfail on aarch64.
* ld-elf/shared.exp: Introduce the extralibs variable to control
the libraries to be linked. Don't link -ldl on *-*-freebsd*.
* ld-bootstrap/bootstrap.exp: Do not add -ldl to the extralibs on
*-*-freebsd*.
ld:
* ldlang.c (lang_finish): Don't call bfd_link_hash_table_free here.
(output_bfd_hash_table_free_fn): New variable.
(open_output): Save the _bfd_link_hash_table_free function for the
output_bfd into output_bfd_hash_table_free_fn.
* ldmain.c (ld_cleanup): If set, call output_bfd_hash_table_free_fn
on link_info.hash.
* ldlang.h (output_bfd_hash_table_free_fn): Declare.
ld/testsuite:
* ld-mmix/wrap1.d, ld-mmix/wrap1a.s, ld-mmix/wrap1b.s,
ld-mmix/wrap1c.s, ld-mmix/wrap2.d, ld-mmix/wrap3.d,
ld-mmix/wrap3a.s, ld-mmix/wrap3b.s, ld-mmix/wrap4.d: New
tests.
R_XTENSA_DIFF relocation offsets are in fact signed. Treat them as such.
Add testcase that examines ld behaviour on R_XTENSA_DIFF relocation
changing sign during relaxation.
2014-05-02 Volodymyr Arbatov <arbatov@cadence.com>
David Weatherford <weath@cadence.com>
Max Filippov <jcmvbkbc@gmail.com>
bfd/
* elf32-xtensa.c (relax_section): treat R_XTENSA_DIFF* relocations as
signed.
gas/
* config/tc-xtensa.c (md_apply_fix): mark BFD_RELOC_XTENSA_DIFF*
fixups as signed.
ld/testsuite/
* ld-xtensa/diff_overflow.exp, * ld-xtensa/diff_overflow1.s,
* ld-xtensa/diff_overflow2.s: Add test for DIFF* relocation
signedness and overflow checking.
be placed towards the front of local GOT space, while entries addressed
via a 32-bit index are placed towards the rear.
Provided that there are fewer than ~16K local GOT entries addressed via
a 16-bit index in total, this should eliminate any relocation overflows
caused by such GOT entries being allocated beyond the addressable range.
bfd/
* elfxx-mips.c (struct mips_got_info): Delete assigned_gotno
field. Add assigned_low_gotno and assigned_high_gotno fields.
(mips_elf_create_local_got_entry): Update out-of-space condition.
Set index of new GOT entry to assigned_low_gotno if required by
the current relocation, else set it to assigned_high_gotno.
(mips_elf_set_global_gotidx): Replace uses of assigned_gotno
with assigned_low_gotno.
(mips_elf_multi_got): Initialize assigned_low_gotno and
assigned_high_gotno in secondary GOTs. Use assigned_low_gotno
in place of assigned_gotno when handling global GOT entries.
(mips_elf_lay_out_got): Initialize assigned_low_gotno and
assigned_high_gotno.
(_bfd_mips_elf_finish_dynamic_sections): Account for a possible
gap in the middle of local GOT space.
ld/testsuite/
* ld-mips-elf/elf-rel-xgot-n32.d: Update for new GOT layout.
* ld-mips-elf/elf-rel-xgot-n32-embed.d: Likewise.
* ld-mips-elf/elf-rel-xgot-n64.d: Likewise.
* ld-mips-elf/elf-rel-xgot-n64-embed.d: Likewise.
* ld-mips-elf/elf-rel-xgot-n64-linux.d: Likewise.
The AArch64 TLSDESC to IE relaxation code uses a bit mask intended to
ensure that destination register in a relaxed ldr instruction is
always X0. The mask has an off by one error resulting in the most
significant bit of the destination register being retained in the
relaxed instruction. The issue generally appears when the compiler
emits TLS accesses code under high register pressure resulting in a
broken code sequence.
When aligning input sections, we are supposed to take the fill pattern
from a FILL statement, if there is one in the output section statement.
ld/
* ldlang.c (lang_size_sections_1 <lang_input_section_enum>): Use
current "fill", not "output_section_statement->fill".
ld/testsuite/
* ld-scripts/fill.d, * ld-scripts/fill.t, * ld-scripts/fill_0.s,
* ld-scripts/fill_1.s, * ld-scripts/fill_2.s: New test.
* ld-scripts/data.exp: Run it.
This patch scans all input files for symbol reference warning if the
symbol reference doesn't exist in the current input file.
ld/
PR ld/16756
* ldmain.c (symbol_warning): New function.
(warning_callback): Use it. Scan all input files for a reference
to SYMBOL.
ld/testsuite/
PR ld/16756
* ld-plugin/lto.exp: Expect filename and line number for PR
ld/12760 test.
ELFv2 needs to create plt entries in a non-PIC executable for an
address reference to a function defined in a shared object. It's
possible that an object file has no features that distinguish it as
ELFv1 or ELFv2, eg. an object only containing data. Such files need
to be handled like those that are known to be ELFv2.
However, this unnecessarily creates plt entries for the analogous
ELFv1 case, so arrange to set output abi version earlier, and use the
output abi version to further distinguish ambiguous input files.
bfd/
* elf64-ppc.c (ppc64_elf_check_relocs): Account for possibly
needed plt entries when taking the address of functions for
abiversion == 0 (ie. unknown) as well as abiversion == 2.
Move opd setup and abiversion checks to..
(ppc64_elf_before_check_relocs): ..here. Renamed from
ppc64_elf_process_dot_syms. Set output abiversion from input and
input abiversion from output, if either is not set.
(ppc64_elf_merge_private_bfd_data): Don't merge flags here.
(elf_backend_check_directives): Update.
ld/testsuite/
* ld-powerpc/startv1.s, * ld-powerpc/startv2.s, * ld-powerpc/funref.s,
* ld-powerpc/funv1.s, * ld-powerpc/funv2.s,
* ld-powerpc/ambiguousv1.d, * ld-powerpc/ambiguousv2.d: New test files.
* ld-powerpc/powerpc.exp: Run new tests.
The current code subtracts the size of the output section containing
relplt from RELASZ. In some cases this will be the same output
section as the dynamic relocs causing a value of zero to be output.
Calculating the size from input sections seems to make more sense.
bfd/ChangeLog:
2014-03-25 Will Newton <will.newton@linaro.org>
* elfnn-aarch64.c (elfNN_aarch64_finish_dynamic_sections):
Set value of DT_PLTRELSZ and DT_RELASZ based on the size
of input sections rather than output sections.
ld/testsuite/ChangeLog:
2014-03-25 Will Newton <will.newton@linaro.org>
* ld-aarch64/aarch64-elf.exp: Add relasz dump test.
* ld-aarch64/relasz.d: New file.
* ld-aarch64/relasz.s: Likewise.
Unless pointer_equality_needed is set then set st_value to be zero
for undefined symbols.
bfd/ChangeLog:
2014-03-20 Will Newton <will.newton@linaro.org>
PR ld/16715
* elf32-arm.c (elf32_arm_check_relocs): Set
pointer_equality_needed for absolute references within
executable links.
(elf32_arm_finish_dynamic_symbol): Set st_value to zero
unless pointer_equality_needed is set.
ld/testsuite/ChangeLog:
2014-03-20 Will Newton <will.newton@linaro.org>
* ld-arm/ifunc-14.rd: Update symbol values.
ld/testsuite/
* ld-arm/gc-hidden-1.d: Remove target, add not-target to match
other ELF-only tests in this directory. Loosen regexps so they
don't care what the exact addresses are.
This adds support for "func@localentry", an expression that returns the
ELFv2 local entry point address of function "func". I've excluded
dynamic relocation support because that obviously would require glibc
changes.
include/elf/
* ppc64.h (R_PPC64_REL24_NOTOC, R_PPC64_ADDR64_LOCAL): Define.
bfd/
* elf64-ppc.c (ppc64_elf_howto_raw): Add R_PPC64_ADDR64_LOCAL entry.
(ppc64_elf_reloc_type_lookup): Support R_PPC64_ADDR64_LOCAL.
(ppc64_elf_check_relocs): Likewise.
(ppc64_elf_relocate_section): Likewise.
* Add BFD_RELOC_PPC64_ADDR64_LOCAL.
* bfd-in2.h: Regenerate.
* libbfd.h: Regenerate.
gas/
* config/tc-ppc.c (ppc_elf_suffix): Support @localentry.
(md_apply_fix): Support R_PPC64_ADDR64_LOCAL.
ld/testsuite/
* ld-powerpc/elfv2-2a.s, ld-powerpc/elfv2-2b.s: New files.
* ld-powerpc/elfv2-2exe.d, ld-powerpc/elfv2-2so.d: New files.
* ld-powerpc/powerpc.exp: Run new test.
elfcpp/
* powerpc.h (R_PPC64_REL24_NOTOC, R_PPC64_ADDR64_LOCAL): Define.
gold/
* powerpc.cc (Target_powerpc::Scan::local, global): Support
R_PPC64_ADDR64_LOCAL.
(Target_powerpc::Relocate::relocate): Likewise.
Enabled via the use of a new linker command line option: --long-plt.
* bfd-in.h: Add export of bfd_elf32_arm_use_long_plt.
* bfd-in2.h: Regenerate.
* elf32-arm.c (elf32_arm_plt_entry_long): New array.
(elf32_arm_link_hash_table_create): Set plt_entry_size to 16 if
using long PLT entries.
(bfd_elf32_arm_use_long_plt): New function.
(elf32_arm_populate_plt_entry): Add support for long PLT entries.
* emultempl/armelf.em (OPTION_LONG_PLT): Define.
(PARSE_AND_LIST_LONGOPTS): Add long-plt.
(PARSE_AND_LIST_OPTIONS): Likewise.
(PARSE_AND_LIST_ARGS_CASES): Handle long-plt.
* ld.texinfo: Document --long-plt.
* ld-arm/long-plt-format.s: New test case.
* ld-arm/long-plt-format.d: Expected disassembly.
* ld-arm/arm-elf.exp: Run the new test.
The manifest is necessary in order for the linked binaries to be executed in a Windows 8 environment.
The manifest is added using a linker script so that this feature will be compiler-neutral. The resource
merging code in the linker means that if an application provides its own manifest then the default
manifest will be ignored.
* configure.in (all_emul_extra_binaries): New variable. Populated
by invoking configure.tgt.
(EMUL_EXTRA_BINARIES): New substitution.
* configure: Regenerate.
* configure.tgt (target_extra_binaries): New variable. Set to
default-manifest.o for Cygwin and MinGW targets.
* Makefile.am (EMUL_EXTRA_BINARIES): New variable. Initialised
by the configure script.
(ALL_EMUL_EXTRA_BINARIES): New variable.
(default-manifest.o): New rule to build the default manifest.
(ld_new_DEPENDENCIES): Add EMUL_EXTRA_BINARIES.
(install-data-local): Add EMUL_EXTRA_BINARIES.
* Makefile.in: Regenerate.
* ld.texinfo: Document default manifest support.
* emulparams/i386pe.sh (DEFAULT_MANIFEST): Define.
* emulparams/i386pep.sh (DEFAULT_MANIFEST): Define.
* emultempl/default-manifest.rc: New file.
* scripttempl/pe.sc (R_RSRC): Include DEFAULT_MANIFEST, if defined.
* scripttempl/pep.sc (R_RSRC): Likewise.
* ld-pe/longsecn-1.d: Allow for extra sections.
* ld-pe/longsecn-2.d: Likewise.
* ld-pe/longsecn.d: Likewise.
* ld-pe/secrel.d: Likewise.
I was running this by hand to test out --ppc476-workaround. Another
bootstrap test doesn't take all that long, so let's add it to the
testsuite.
* ld-bootstrap/bootstrap.exp: Add ppc476 workaround test.
* ld-bootstrap/ppc476.t: New file.
Intel MPX introduces 4 bound registers, which will be used for parameter
passing in x86-64. Bound registers are cleared by branch instructions.
Branch instructions with BND prefix will keep bound register contents.
This leads to 2 requirements to 64-bit MPX run-time:
1. Dynamic linker (ld.so) should save and restore bound registers during
symbol lookup.
2. Change the current 16-byte PLT0:
ff 35 08 00 00 00 pushq GOT+8(%rip)
ff 25 00 10 00 jmpq *GOT+16(%rip)
0f 1f 40 00 nopl 0x0(%rax)
and 16-byte PLT1:
ff 25 00 00 00 00 jmpq *name@GOTPCREL(%rip)
68 00 00 00 00 pushq $index
e9 00 00 00 00 jmpq PLT0
which clear bound registers, to preserve bound registers.
We use 2 new relocations:
to mark branch instructions with BND prefix.
When linker sees any R_X86_64_PC32_BND or R_X86_64_PLT32_BND relocations,
it switches to a different PLT0:
ff 35 08 00 00 00 pushq GOT+8(%rip)
f2 ff 25 00 10 00 bnd jmpq *GOT+16(%rip)
0f 1f 00 nopl (%rax)
to preserve bound registers for symbol lookup and it also creates an
external PLT section, .pl.bnd. Linker will create a BND PLT1 entry
in .plt:
68 00 00 00 00 pushq $index
f2 e9 00 00 00 00 bnd jmpq PLT0
0f 1f 44 00 00 nopl 0(%rax,%rax,1)
and a 8-byte BND PLT entry in .plt.bnd:
f2 ff 25 00 00 00 00 bnd jmpq *name@GOTPCREL(%rip)
90 nop
Otherwise, linker will create a legacy PLT1 entry in .plt:
68 00 00 00 00 pushq $index
e9 00 00 00 00 jmpq PLT0
66 0f 1f 44 00 00 nopw 0(%rax,%rax,1)
and a 8-byte legacy PLT in .plt.bnd:
ff 25 00 00 00 00 jmpq *name@GOTPCREL(%rip)
66 90 xchg %ax,%ax
The initial value of the GOT entry for "name" will be set to the the
"pushq" instruction in the corresponding entry in .plt. Linker will
resolve reference of symbol "name" to the entry in the second PLT,
.plt.bnd.
Prelink stores the offset of pushq of PLT1 (plt_base + 0x10) in GOT[1]
and GOT[1] is stored in GOT[3]. We can undo prelink in GOT by computing
the corresponding the pushq offset with
GOT[1] + (GOT offset - &GOT[3]) * 2
Since for each entry in .plt except for PLT0 we create a 8-byte entry in
.plt.bnd, there is extra 8-byte per PLT symbol.
We also investigated the 16-byte entry for .plt.bnd. We compared the
8-byte entry vs the the 16-byte entry for .plt.bnd on Sandy Bridge.
There are no performance differences in SPEC CPU 2000/2006 as well as
micro benchmarks.
Pros:
No change to undo prelink in dynamic linker.
Only 8-byte memory overhead for each PLT symbol.
Cons:
Extra .plt.bnd section is needed.
Extra 8 byte for legacy branches to PLT.
GDB is unware of the new layout of .plt and .plt.bnd.
bfd/
* elf64-x86-64.c (elf_x86_64_bnd_plt0_entry): New.
(elf_x86_64_legacy_plt_entry): Likewise.
(elf_x86_64_bnd_plt_entry): Likewise.
(elf_x86_64_legacy_plt2_entry): Likewise.
(elf_x86_64_bnd_plt2_entry): Likewise.
(elf_x86_64_bnd_arch_bed): Likewise.
(elf_x86_64_link_hash_entry): Add has_bnd_reloc and plt_bnd.
(elf_x86_64_link_hash_table): Add plt_bnd.
(elf_x86_64_link_hash_newfunc): Initialize has_bnd_reloc and
plt_bnd.
(elf_x86_64_copy_indirect_symbol): Also copy has_bnd_reloc.
(elf_x86_64_check_relocs): Create the second PLT for Intel MPX
in 64-bit mode.
(elf_x86_64_allocate_dynrelocs): Handle the second PLT for IFUNC
symbols. Resolve call to the second PLT if it is created.
(elf_x86_64_size_dynamic_sections): Keep the second PLT section.
(elf_x86_64_relocate_section): Resolve PLT references to the
second PLT if it is created.
(elf_x86_64_finish_dynamic_symbol): Use BND PLT0 and fill the
second PLT entry for BND relocation.
(elf_x86_64_finish_dynamic_sections): Use MPX backend data if
the second PLT is created.
(elf_x86_64_get_synthetic_symtab): New.
(bfd_elf64_get_synthetic_symtab): Likewise. Undefine for NaCl.
ld/
* emulparams/elf_x86_64.sh (TINY_READONLY_SECTION): New.
ld/testsuite/
* ld-x86-64/mpx.exp: Run bnd-ifunc-1 and bnd-plt-1.
* ld-x86-64/bnd-ifunc-1.d: New file.
* ld-x86-64/bnd-ifunc-1.s: Likewise.
* ld-x86-64/bnd-plt-1.d: Likewise.
execute permission regardless of the underlying PT_LOAD segment permissions.
Deleting this code allows the default linker behavior which is to set the
dynamic segment to the same permissions as the sections that make it up.
This change alters one existing test case to check the segment flags for
PT_DYNAMIC.
bfd/ChangeLog
* elfxx-mips.c(_bfd_mips_elf_modify_segment_map): Deleted hard coding of
PT_DYNAMIC segment flags.
ld/testsuite/ChangeLog
* ld-mips-elf/pic-and-nonpic-3a.sd: Check DYNAMIC segment flags.
It is added for
commit 409ff343a4
Author: Alan Modra <amodra@gmail.com>
Date: Tue Nov 8 13:49:11 2011 +0000
* elflink.c (bfd_elf_gc_mark_dynamic_ref_symbol): Mark syms in
executables when export_dynamic.
* ld-elf/rdynamic-1.c: New file.
* ld-elf/rdynamic-1.rd: Likewise.
* ld-elf/shared.exp (build_tests): Add rdynamic-1.
An assignment to dot in an output section that allocates space of
course keeps the output section. Here, I'm changing the behaviour for
assignments that don't allocate space. The idea is not so much to
allow people to force output of an empty section with ". = .", but
to fix cases where an otherwise empty section has padding added by an
alignment expression that changes with relaxation or .eh_frame
editing. Such a section might have zero size before relaxation and so
be stripped incorrectly.
ld/
* ld.texinfo (Output Section Discarding): Mention assigning to dot
as a way of keeping otherwise empty sections.
* ldexp.c (is_dot, is_value, is_sym_value, is_dot_ne_0,
is_dot_plus_0, is_align_conditional): New predicates.
(exp_fold_tree_1): Set SEC_KEEP when assigning to dot inside an
output section, except for some special cases.
* scripttempl/elfmicroblaze.sc: Use canonical form to align at
end of .heap and .stack.
ld/testsuite/
* ld-shared/elf-offset.ld: Align end of .bss with canonical form
of ALIGN that allows an empty .bss to be removed.
* ld-arm/arm-dyn.ld: Likewise.
* ld-arm/arm-lib.ld: Likewise.
* ld-elfvsb/elf-offset.ld: Likewise.
* ld-mips-elf/mips-dyn.ld: Likewise.
* ld-mips-elf/mips-lib.ld: Likewise.
* ld-arm/arm-no-rel-plt.ld: Remove duplicate ALIGN.
* ld-powerpc/vle-multiseg-1.ld: Remove ALIGN at start of section.
ALIGN address of section instead.
* ld-powerpc/vle-multiseg-2.ld: Likewise.
* ld-powerpc/vle-multiseg-3.ld: Likewise.
* ld-powerpc/vle-multiseg-4.ld: Likewise.
* ld-powerpc/vle-multiseg-6.ld: Likewise.
* ld-scripts/empty-aligned.d: Check section headers not program
headers. Remove xfail and notarget.
* ld-scripts/empty-aligned.t: Use canonical ALIGN for end of .text2.
After resolving a versioned reference, foo@VER1, to a default versioned
definition, foo@@VER1, from a shared object, we also merge it with
the existing regular default symbol definition, foo. When foo is IFUNC
and foo@@VER1 aren't, we will merge 2 incompatible definitions. This
patch avoids merging foo@@VER1 definition with foo definition if
one is IFUNC and the other isn't.
There is nothing linker can do when a type mismatched default definition
are made dynamic by info->shared, info->export_dynamic or h->ref_dynamic.
But we do want to avoid exporting it when building PIE. Let's remove
those checks.
bfd/
PR ld/2404
* elflink.c (_bfd_elf_merge_symbol): Don't check info->shared,
info->export_dynamic, nor !h->ref_dynamic for type mismatch when
adding the default version.
ld/testsuite/
PR ld/2404
* ld-elf/shared.exp: Add a PIE test for PR ld/2404.
PR ld/2404 was fixed without a testcase. This patch to add one.
PR ld/2404
* ld-elf/pr2404.out: New file.
* ld-elf/pr2404a.c: Likewise.
* ld-elf/pr2404b.c: Likewise.
* ld-elf/shared.exp (build_tests): Build libpr2404a.so and
libpr2404b.a.
(run_tests): Run pr2404.
Modifies ld machinery tracking linker script assignments to notice all
assignments, not just those symbols mentioned in DEFINED().
ld/
PR ld/14962
* ldlang.h (struct lang_definedness_hash_entry): Add by_object and
by_script. Make iteration a single bit field.
(lang_track_definedness, lang_symbol_definition_iteration): Delete.
(lang_symbol_defined): Declare.
* ldlang.c (lang_statement_iteration): Expand comment a little.
(lang_init <lang_definedness_table>): Make it bigger.
(lang_track_definedness, lang_symbol_definition): Delete.
(lang_definedness_newfunc): Update.
(lang_symbol_defined): New function.
(lang_update_definedness): Create entries here. Do track whether
script definition of symbol is valid, even when also defined in
an object file.
* ldexp.c (fold_name <DEFINED>): Update.
(fold_name <NAME>): Allow self-assignment for absolute symbols
defined in a linker script.
ld/testsuite/
* ld-scripts/pr14962-2.d,
* ld-scripts/pr14962-2.t: New test.
* ld-scripts/expr.exp: Run it.
Rather than hacking every backend to not discard dynamic relocations
against an undefined hidden __ehdr_start, make it appear to be defined
early. We want __ehdr_start hidden before size_dynamic_sections so
that it isn't put in .dynsym, but we do need the dynamic relocations
for a PIE or shared library with a non-PIC reference. Defining it
early is wrong if we don't actually define the symbol later to its
proper value. (In some cases we want to leave the symbol undefined,
for example, when the ELF header isn't loaded, and we don't have this
infomation available in before_allocation.)
ld/
* emultempl/elf32.em (gld${EMULATION_NAME}_before_allocation): Define
__ehdr_start before size_dynamic_sections and restore afterwards.
ld/testsuite/
* ld-elf/ehdr_start-shared.d: New.
* ld-elf/ehdr_start-userdef.d: xfail frv.
* ld-elf/ehdr_start-weak.d: Likewise.
* ld-elf/ehdr_start.d: Likewise.
This patch fixes 2 GNU_RELRO segment bugs:
1. lang_size_sections didn't properly align base to the maximum
alignment power of sections between DATA_SEGMENT_ALIGN and
DATA_SEGMENT_RELRO_END.
2. ld failed to adjust LOAD segment to generate GNU_RELRO segment
when LOAD segment doesn't fit GNU_RELRO segment. This is
https://sourceware.org/bugzilla/show_bug.cgi?id=14207
We "fixed" ld by not generating GNU_RELRO segment. This patch
adjusts LOAD segment to generate GNU_RELRO segment. It fixes
PR ld/16322 and at the same time it also fixes PR binutils/16323
since now we can adjust LOAD segment if it is too small.
bfd/
PR ld/14207
PR ld/16322
PR binutils/16323
* elf.c (_bfd_elf_map_sections_to_segments): Don't check section
size for PT_GNU_RELRO segment.
(assign_file_positions_for_load_sections): If PT_LOAD segment
doesn't fit PT_GNU_RELRO segment, adjust its p_filesz and p_memsz.
ld/
PR ld/14207
PR ld/16322
PR binutils/16323
* ldlang.c (lang_size_sections): Properly align RELRO base.
ld/testsuite/
PR ld/14207
PR ld/16322
PR binutils/16323
* ld-elf/pr16322.d: New file.
* ld-elf/pr16322.s: Likewise.
* ld-x86-64/pr14207.d: Expect PT_GNU_RELRO segment.
It is a good pratice to set the SHF_INFO_LINK bit when the sh_info field
represents a section header index.
bfd/
PR binutils/16317
* elf.c (assign_section_numbers): Set the SHF_INFO_LINK bit for
SHT_REL/SHT_RELA sections when setting the sh_info field.
binutils/testsuite/
PR binutils/16317
* binutils-all/readelf.s: Updated.
* binutils-all/readelf.s-64: Likewise.
ld/testsuite/
PR binutils/16317
* ld-elf/linkinfo1.s: New file.
* ld-elf/linkinfo1a.d: Likewise.
* ld-elf/linkinfo1b.d: Likewise.
2013-12-18 Vidya Praveen <vidyapraveen@arm.com>
* lib/ld-lib.exp (check_lto_available): Support cflags, ldflags and
test by compiling for an executable rather than shared library.