Commit graph

81617 commits

Author SHA1 Message Date
Kwok Cheung Yeung
bd286a290b Fix the gdb.dwarf2/dw2-dir-file-name.exp test on MIPS
This patch fixes the failures that occur with the
gdb.dwarf2/dw2-dir-file-name.exp test on 64-bit MIPS and compressed
MIPS ISAs (i.e. MIPS16 and microMIPS).

The failures on 64-bit occur because the generated DWARF address
information is always 32-bit, which causes the upper 32-bits of
addresses to be truncated and causes breakpoints to be set on the
wrong address if any of the upper 32-bits are non-zero.  I suspect
that other 64-bit architectures get away with it because they
place all their instructions at a VMA lower than 2^32 by default.
This patch causes 64-bit addresses to be generated if a 64-bit
target is detected.

The failures on MIPS16 and microMIPS occur because the breakpoint
address needs to have the LSB set to 1 (used to indicate that the
code is compressed). However, the function name is interpreted as
a data label, causing GDB to set breakpoints at even addresses.
This is fixed by explicitly adding a '.insn' directive (see
https://sourceware.org/binutils/docs/as/MIPS-insn.html) after the
label on MIPS only.

gdb/testsuite/

2014-10-18  Kwok Cheung Yeung  <kcy@codesourcery.com>

	* gdb.dwarf2/dw2-dir-file-name.exp (addr_len): New.
	(out_cu): Use addr_len for the size of addresses.
	(out_line): Likewise.  Size DW_LNE_set_address instruction
	according to addr_len.
	* gdb.dwarf2/dw2-dir-file-name.c (START_INSNS): New.
	(FUNC): Add START_INSNS to definition.
2014-10-18 21:53:15 +01:00
Yao Qi
673dc4a054 Skip testing argv[0] on target argv[0] isn't available
I see the following two fails on arm-none-eabi target, because argv[0]
isn't available.

print argv[0]^M
$1 = 0x1f78 "/dev/null"^M
(gdb) FAIL: gdb.base/argv0-symlink.exp: kept file symbolic link name

print argv[0]^M
$1 = 0x1f78 "/dev/null"^M
(gdb) FAIL: gdb.base/argv0-symlink.exp: kept directory symbolic link name

My first thought is to check [target_info exists noargs], and skip the
test if it returns true.  However, noargs is set in gdbserver board
files, so argv0-symlink.exp will be skipped on gdbserver board file.
The change is too aggressive.

When the program is running with gdbserver, argv[1] to argv[N] aren't
available, but argv[0] is.  Fortunately, argv0-symlink.exp only
requires argv[0].  argv0-symlink.exp can be run with gdbserver board
file, as what we do now.

What we need to check is whether argv[0] is available, so I add a new
proc gdb_has_argv0 to do so by starting a program, and check
argc/argv[0] to see whether argv[0] is available.

Dan fixed the similar problem by checking noargs, which is too strong.
https://sourceware.org/ml/gdb-patches/2010-02/msg00398.html as a
result, the test is skipped on gdbserver.  This patch fixed it too.

gdb/testsuite:

2014-10-18  Yao Qi  <yao@codesourcery.com>

	* gdb.base/argv0-symlink.exp: Check argv[0] value if
	gdb_has_argv0 return true.
	* gdb.guile/scm-value.exp (test_value_in_inferior): Don't
	check [target_info exists noargs], check [gdb_has_argv0]
	instead.
	* gdb.python/py-value.exp (test_value_in_inferior): Likewise.
	* lib/gdb.exp (gdb_has_argv0, gdb_has_argv0_1): New
	procedures.
2014-10-18 20:58:06 +08:00
Alan Modra
b53dfeb26e PowerPC64 ELFv1 function symbol definition vs LTO and discarded sections
When functions are emitted in comdat groups, global symbols defined in
duplicates of the group are treated as if they were undefined.  That
prevents the symbols in the discarded sections from affecting the
linker's global symbol hash table or causing duplicate symbol errors.
Annoyingly, when gcc emits a function to a comdat group, it does not
put *all* of a function's code and data in the comdat group.
Typically, constant tables, exception handling info, and debug info
are emitted to normal sections outside of the group, which is a
perennial source of linker problems due to the special handling needed
to deal with the extra-group pieces that ought to be discarded.  In
the case of powerpc64-gcc, the OPD entry for a function is not put in
the group.  Since the function symbol is defined on the OPD entry this
means we need to handle symbols in .opd specially.

To see how this affects LTO in particular, consider the linker
testcase PR ld/12942 (1).  This testcase links an LTO object file
pr12942a.o with a normal (non-LTO) object pr12942b.o.  Both objects
contain a definition for _Z4testv in a comdat group.  On loading
pr12942a.o, the linker sees a comdat group (actually linkonce section)
for _Z4testv and a weak _Z4testv defined in the IR.  On loading
pr12942b.o, the linker sees the same comdat group, and thus discards
it.  However, _Z4testv is a weak symbol defined in .opd, not part of
the group, so this weak symbol overrides the weak IR symbol.  On
(re)loading the LTO version of pr12942a.o, the linker sees another
weak _Z4testv, but this one does not override the value we have from
pr12942b.o.  The result is a linker complaint about "`_Z4testv'
... defined in discarded section `.group' of tmpdir/pr12942b.o".

	* elf64-ppc.c (ppc64_elf_add_symbol_hook): If function code
	section for function symbols defined in .opd is discarded, let
	the symbol appear to be undefined.
	(opd_entry_value): Ensure the result section is that for the
	function code section in the same object as the OPD entry.
2014-10-18 23:07:08 +10:30
Alan Modra
a841bdf5d3 Fix PR17493, attempted output of *GAS `reg' section* symbol
The write.c change is to make gas report an error if reg_section
symbols should leak in future.  The tc-i386.c change is the real fix.

Note that the error isn't the most helpful, "redefined symbol cannot
be used on reloc", but I'm not inclined to improve what is really an
internal gas error.  reg_section symbols shouldn't leak..

gas/
	PR 17493
	* write.c (adjust_reloc_syms): Don't allow symbols in reg_section
	to be reduced to reg_section section symbol.
	* gas/config/tc-i386.c (i386_finalize_immediate): Reject all
	reg_section immediates.
gas/testsuite/
	* gas/i386/inval-equ-2.l: Adjust.
2014-10-18 23:07:07 +10:30
Andreas Schwab
998a69f46a * configure.tgt (targ_extra_obj) [aarch64*-*]: Define. 2014-10-18 10:31:31 +02:00
Cary Coutant
aed56ec5f2 Add "typename" keyword to satisfy GCC 4.2.
gold/
	* aarch64.cc (AArch64_relocate_functions::maybe_apply_stub):
	Add "typename" keyword.
2014-10-17 16:24:20 -07:00
Alan Modra
bf97b6dd05 daily update 2014-10-18 09:30:32 +10:30
Jose E. Marchesi
0b6be41550 opcodes, elf: annotate instructions with HWCAP2_VIS3B.
This patch annotates the following SPARC instructions as VIS3B
instructions: ldx *, %efsr, fpadd64, fpsub64, fpcmpule8, fpcmpune8,
fpcmpugt8, fpcmpueq8.  It also improves the documentation of the VIS3B
capability in several headers.

Tested in sparc64-unknown-linux-gnu and sparc-unknown-linux-gnu.
No visible regressions.

opcodes/ChangeLog:

  2014-10-17  Jose E. Marchesi  <jose.marchesi@oracle.com>

	* sparc-opc.c (sparc-opcodes): Annotate several instructions with
	the HWCAP2_VIS3B hwcap.

include/opcodes/ChangeLog:

  2014-10-17  Jose E. Marchesi  <jose.marchesi@oracle.com>

	* sparc.h (HWCAP2_VIS3B): Documentation improved.

include/elf/ChangeLog:

  2014-10-17  Jose E. Marchesi  <jose.marchesi@oracle.com>

	* sparc.h (ELF_SPARC_HWCAP2_VIS3B): Documentation improved.
2014-10-17 22:00:02 +02:00
Jose E. Marchesi
d9490cd487 opcodes: fix several misplaced hwcap entries.
This patch fixes the hwcap entries in `sparc-opcodes' (which were
incorrectly located in the flags field) for the following
instructions:

  wr r,r,%sys_tick
  wr r,i,%sys_tick
  wr r,r,%sys_tick_cmpr
  wr r,i,%sys_tick_cmpr
  edge8n edge8ln edge16n edge16ln edge32n edge32ln
  bmask bshuffle siam

Tested in sparc-unknown-linux-gnu and sparc64-unknown-linux-gnu.
No visible regressions.

opcodes/ChangeLog:

  2014-10-17  Jose E. Marchesi  <jose.marchesi@oracle.com>

	* sparc-opc.c (sparc-opcodes): Fix several misplaced hwcap
	entries.
2014-10-17 21:59:56 +02:00
Matthew Fortune
8bd9785878 Fix bad @value references in MIPS documentation
gas/

	* doc/c-mips.texi: Fix bad @value references.
2014-10-17 20:25:53 +01:00
Doug Evans
4ffbba72f3 New python event "clear_objfiles".
If one is watching new_objfile events in python, it helps to know
when the list of objfiles is cleared.  This patch adds a new
clear_objfiles event to support this.

This patch is all just cut-n-paste-n-tweak derived from
the new_objfiles event.

gdb/ChangeLog:

	* NEWS: Mention new event gdb.clear_objfiles.
	* python/py-event.h (emit_clear_objfiles_event): Clear
	* python/py-events.h (events_object): New member clear_objfiles.
	* python/py-evts.c (gdbpy_initialize_py_events): Add clear_objfiles
	event.
	* python/py-inferior.c (python_new_objfile): If objfile is NULL,
	emit clear_objfiles event.
	* python/py-newobjfileevent.c (create_clear_objfiles_event_object): New
	function.
	(emit_clear_objfiles_event): New function.
	(clear_objfiles): New event.
	* python/python-internal.h (gdbpy_initialize_clear_objfiles_event):
	Declare.
	* python/python.c (_initialize_python): Call
	gdbpy_initialize_clear_objfiles_event.

gdb/doc/ChangeLog:

	* python.texi (Events In Python): Document clear_objfiles event.

gdb/testsuite/ChangeLog:

	* gdb.python/py-events.exp: Update expected output for clear_objfiles
	event.
	* gdb.python/py-events.py: Add clear_objfiles event.
2014-10-17 11:12:17 -07:00
Doug Evans
d096d8c11e Add gdb.Objfile.progspace attribute.
gdb/ChangeLog:

	* NEWS: Mention new gdb.Objfile.progspace attribute.
	* python/py-objfile.c (objfpy_get_progspace): New function.
	(objfile_getset): New entry for "progspace".

gdb/doc/ChangeLog:

	* python.texi (Objfiles In Python): Document new progspace attribute.

gdb/testsuite/ChangeLog:

	* gdb.python/py-objfile.exp: Test progspace attribute.
2014-10-17 10:57:26 -07:00
Luis Machado
a80db0157c Fix mingw32 failures due to incorrect directory separator in pattern
Some testcases, mostly gdb.reverse ones, assume the presence of a
'/' directory separator before the source file name. This is
incorrect for mingw32 hosts, generating false failures for those
tests.

I attempted to catch most of the occurrences of the pattern
".*/$srcfile" and replaced them with ".*$srcfile". The latter
is used elsewhere in the testsuite. The resulting patch is attached.

I also see other occurrences of the same assumption throughout the
testsuite, but usually they are arguments for function calls and i
seem to recall either the test harness or GDB deals with those
paths properly.

gdb/testsuite:

2014-10-17  Luis Machado  <lgustavo@codesourcery.com>

	* gdb.guile/scm-breakpoint.exp: Do not assume any
	directory separators when matching source file paths.
	* gdb.python/py-breakpoint.exp: Likewise.
	* gdb.reverse/break-precsave.exp: Likewise.
	* gdb.reverse/break-reverse.exp: Likewise.
	* gdb.reverse/consecutive-precsave.exp: Likewise.
	* gdb.reverse/finish-precsave.exp: Likewise.
	* gdb.reverse/finish-reverse-bkpt.exp: Likewise.
	* gdb.reverse/finish-reverse.exp: Likewise.
	* gdb.reverse/i386-precsave.exp: Likewise.
	* gdb.reverse/i387-env-reverse.exp: Likewise.
	* gdb.reverse/i387-stack-reverse.exp: Likewise.
	* gdb.reverse/machinestate-precsave.exp: Likewise.
	* gdb.reverse/machinestate.exp: Likewise.
	* gdb.reverse/sigall-precsave.exp: Likewise.
	* gdb.reverse/solib-precsave.exp: Likewise.
	* gdb.reverse/step-precsave.exp: Likewise.
	* gdb.reverse/until-precsave.exp: Likewise.
	* gdb.reverse/watch-precsave.exp: Likewise.
	* gdb.reverse/watch-reverse.exp: Likewise.
2014-10-17 11:28:17 -03:00
Yao Qi
b22089abcb Copy xml files to host
When I run test with board file local-remote-host-native.exp, I see
the following warning,

$ make check RUNTESTFLAGS="--host_board=local-remote-host-native
--target_board=local-remote-host-native tdesc-arch.exp
HOST_DIR=/tmp/foo/"

(gdb) set tdesc filename ../../../../git/gdb/testsuite/gdb.xml/trivial.xml^M
warning: Could not open "../../../../git/gdb/testsuite/gdb.xml/trivial.xml"
(gdb) quit^

because "${srcdir}/gdb.xml/trivial.xml" doesn't exist on host.  This
patch is to copy trivial.xml to host and the warning goes away.

(gdb) set tdesc filename /tmp/foo/trivial.xml^M
(gdb) quit^

tdesc-regs.exp has the similar problem that single-reg.xml may not
exist on host at all, and it should be copied to host too.

gdb/testsuite:

2014-10-17  Yao Qi  <yao@codesourcery.com>

	* lib/gdb.exp (gdb_skip_xml_test): Copy trivial.xml to host.
	* gdb.xml/tdesc-regs.exp: Copy single-reg.xml to host.
2014-10-17 21:22:55 +08:00
Pedro Alves
6c4486e63f PR gdb/17471: Repeating a background command makes it foreground
When we repeat a command, by just pressing <ret>, the input from the
previous command is reused for the new command invocation.

When an execution command strips the "&" out of its incoming argument
string, to detect background execution, we poke a '\0' directly to the
incoming argument string.

Combine both, and a repeat of a background command loses the "&".

This is actually only visible if args other than "&" are specified
(e.g., "c 1&" or "next 2&" or "c -a&"), as in the special case of "&"
alone (e.g. "c&") doesn't actually clobber the incoming string.

Fix this by making strip_bg_char return a new string instead of poking
a hole in the input string.

New test included.

Tested on x86_64 Fedora 20, native and gdbserver.

gdb/
2014-10-17  Pedro Alves  <palves@redhat.com>

	PR gdb/17471
	* infcmd.c (strip_bg_char): Change prototype and rewrite.  Now
	returns a copy of the input.
	(run_command_1, continue_command, step_1, jump_command)
	(signal_command, until_command, advance_command, finish_command)
	(attach_command): Adjust and install a cleanup to free the
	stripped args.

gdb/testsuite/
2014-10-17  Pedro Alves  <palves@redhat.com>

	PR gdb/17471
	* gdb.base/bg-execution-repeat.c: New file.
	* gdb.base/bg-execution-repeat.exp: New file.
2014-10-17 13:34:16 +01:00
Pedro Alves
0ff33695ee PR gdb/17300: Input after "c -a" crashes readline/GDB
If all threads in the target were already running when the user does
"c -a", nothing puts the inferior's terminal settings in effect and
removes stdin from the event loop, which we must when running a
foreground command.  The result is that user input afterwards crashes
readline/gdb:

 (gdb) start
 Temporary breakpoint 1 at 0x4005d4: file continue-all-already-running.c, line 23.
 Starting program: continue-all-already-running

 Temporary breakpoint 1, main () at continue-all-already-running.c:23
 23        sleep (10);
 (gdb) c -a&
 Continuing.
 (gdb) c -a
 Continuing.
 p 1
 readline: readline_callback_read_char() called with no handler!
 Aborted (core dumped)
 $

Backtrace:

 Program received signal SIGABRT, Aborted.
 0x0000003b36a35877 in __GI_raise (sig=sig@entry=6) at ../nptl/sysdeps/unix/sysv/linux/raise.c:56
 56        return INLINE_SYSCALL (tgkill, 3, pid, selftid, sig);
 (top-gdb) p 1
 $1 = 1
 (top-gdb) bt
 #0  0x0000003b36a35877 in __GI_raise (sig=sig@entry=6) at ../nptl/sysdeps/unix/sysv/linux/raise.c:56
 #1  0x0000003b36a36f68 in __GI_abort () at abort.c:89
 #2  0x0000000000784aa9 in rl_callback_read_char () at readline/callback.c:116
 #3  0x0000000000619181 in rl_callback_read_char_wrapper (client_data=0x0) at gdb/event-top.c:167
 #4  0x0000000000619557 in stdin_event_handler (error=0, client_data=0x0) at gdb/event-top.c:373
 #5  0x000000000061814a in handle_file_event (data=...) at gdb/event-loop.c:763
 #6  0x0000000000617631 in process_event () at gdb/event-loop.c:340
 #7  0x00000000006176f8 in gdb_do_one_event () at gdb/event-loop.c:404
 #8  0x0000000000617748 in start_event_loop () at gdb/event-loop.c:429
 #9  0x00000000006191b3 in cli_command_loop (data=0x0) at gdb/event-top.c:182
 #10 0x000000000060f538 in current_interp_command_loop () at gdb/interps.c:318
 #11 0x0000000000610701 in captured_command_loop (data=0x0) at gdb/main.c:323
 #12 0x000000000060c3f5 in catch_errors (func=0x6106e6 <captured_command_loop>, func_args=0x0, errstring=0x9002c1 "", mask=RETURN_MASK_ALL)
     at gdb/exceptions.c:237
 #13 0x0000000000611bff in captured_main (data=0x7fffffffd780) at gdb/main.c:1151
 #14 0x000000000060c3f5 in catch_errors (func=0x610afe <captured_main>, func_args=0x7fffffffd780, errstring=0x9002c1 "", mask=RETURN_MASK_ALL)
     at gdb/exceptions.c:237
 #15 0x0000000000611c28 in gdb_main (args=0x7fffffffd780) at gdb/main.c:1159
 #16 0x000000000045ef97 in main (argc=5, argv=0x7fffffffd888) at gdb/gdb.c:32
 (top-gdb)

Tested on x86_64 Fedora 20, native and gdbserver.

gdb/
2014-10-17  Pedro Alves  <palves@redhat.com>

	PR gdb/17300
	* infcmd.c (continue_1): If continuing all threads in the
	foreground, make sure the inferior's terminal settings are put in
	effect.

gdb/testsuite/
2014-10-17  Pedro Alves  <palves@redhat.com>

	PR gdb/17300
	* gdb.base/continue-all-already-running.c: New file.
	* gdb.base/continue-all-already-running.exp: New file.
2014-10-17 13:33:30 +01:00
Pedro Alves
6fdebc3d1c PR gdb/17472: With annotations, input while executing in the foreground crashes readline/GDB
Jan caught an intermittent GDB crash with the annota1.exp test:

 Starting program: .../gdb/testsuite/gdb.base/annota1 ^M
 [...]
 FAIL: gdb.base/annota1.exp: run until main breakpoint (timeout)
 [...]
 readline: readline_callback_read_char() called with no handler!^M
 ERROR: Process no longer exists

All we need to is to continue the inferior in the foreground, and type
a command while the inferior is running.  E.g.:

 (gdb) set annotate 2

 ▒▒pre-prompt
 (gdb)
 ▒▒prompt
 c

 ▒▒post-prompt
 Continuing.

 ▒▒starting

 ▒▒frames-invalid

 *inferior is running now*

 p 1<ret>

 readline: readline_callback_read_char() called with no handler!
 Aborted (core dumped)
 $


When we run a foreground execution command we call
target_terminal_inferior to stop GDB from processing input, and to put
the inferior's terminal settings in effect.  Then we tell readline to
hide the prompt with display_gdb_prompt, which clears readline's input
callback too.  When the target stops, we call target_terminal_ours,
which re-installs stdin in the event loop, and then we redisplay the
prompt, reinstalling the readline callbacks.

However, when annotations are in effect, the "frames-invalid"
annotation code calls target_terminal_ours after 'resume' had already
called target_terminal_inferior:

 (top-gdb) bt
 #0  0x000000000056b82f in annotate_frames_invalid () at gdb/annotate.c:219
 #1  0x000000000072e6cc in reinit_frame_cache () at gdb/frame.c:1705
 #2  0x0000000000594bb9 in registers_changed_ptid (ptid=...) at gdb/regcache.c:612
 #3  0x000000000064cca1 in target_resume (ptid=..., step=1, signal=GDB_SIGNAL_0) at gdb/target.c:2136
 #4  0x00000000005f57af in resume (step=1, sig=GDB_SIGNAL_0) at gdb/infrun.c:2263
 #5  0x00000000005f6051 in proceed (addr=18446744073709551615, siggnal=GDB_SIGNAL_DEFAULT, step=1) at gdb/infrun.c:2613

And then once we hide the prompt and remove readline's input handler
callback, we're in a bad state.  We end up with the target running
supposedly in the foreground, but with stdin still installed on the
event loop.  Any input then calls into readline, which aborts because
no rl_linefunc callback handler is installed:

 Program received signal SIGABRT, Aborted.
 0x0000003b36a35877 in __GI_raise (sig=sig@entry=6) at ../nptl/sysdeps/unix/sysv/linux/raise.c:56
 56        return INLINE_SYSCALL (tgkill, 3, pid, selftid, sig);

 (top-gdb) bt
 #0  0x0000003b36a35877 in __GI_raise (sig=sig@entry=6) at ../nptl/sysdeps/unix/sysv/linux/raise.c:56
 #1  0x0000003b36a36f68 in __GI_abort () at abort.c:89
 During symbol reading, debug info gives source 9 included from file at zero line 0.
 During symbol reading, debug info gives command-line macro definition with non-zero line 19: _STDC_PREDEF_H 1.
 #2  0x0000000000784a25 in rl_callback_read_char () at src/readline/callback.c:116
 #3  0x0000000000619111 in rl_callback_read_char_wrapper (client_data=0x0) at src/gdb/event-top.c:167
 #4  0x00000000006194e7 in stdin_event_handler (error=0, client_data=0x0) at src/gdb/event-top.c:373
 #5  0x00000000006180da in handle_file_event (data=...) at src/gdb/event-loop.c:763
 #6  0x00000000006175c1 in process_event () at src/gdb/event-loop.c:340
 #7  0x0000000000617688 in gdb_do_one_event () at src/gdb/event-loop.c:404
 #8  0x00000000006176d8 in start_event_loop () at src/gdb/event-loop.c:429
 #9  0x0000000000619143 in cli_command_loop (data=0x0) at src/gdb/event-top.c:182
 #10 0x000000000060f4c8 in current_interp_command_loop () at src/gdb/interps.c:318
 #11 0x0000000000610691 in captured_command_loop (data=0x0) at src/gdb/main.c:323
 #12 0x000000000060c385 in catch_errors (func=0x610676 <captured_command_loop>, func_args=0x0, errstring=0x900241 "", mask=RETURN_MASK_ALL)
     at src/gdb/exceptions.c:237
 #13 0x0000000000611b8f in captured_main (data=0x7fffffffd7b0) at src/gdb/main.c:1151
 #14 0x000000000060c385 in catch_errors (func=0x610a8e <captured_main>, func_args=0x7fffffffd7b0, errstring=0x900241 "", mask=RETURN_MASK_ALL)
     at src/gdb/exceptions.c:237
 #15 0x0000000000611bb8 in gdb_main (args=0x7fffffffd7b0) at src/gdb/main.c:1159
 #16 0x000000000045ef57 in main (argc=3, argv=0x7fffffffd8b8) at src/gdb/gdb.c:32

The fix is to make the annotation code call target_terminal_inferior
again after printing, if the inferior's settings were in effect.

While at it, when we're doing output only, instead of
target_terminal_ours, we should call target_terminal_ours_for_output.
The latter doesn't actually remove stdin from the event loop, and also
leaves SIGINT forwarded to the target.

New test included.

Tested on x86_64 Fedora 20, native and gdbserver.

gdb/
2014-10-17  Pedro Alves  <palves@redhat.com>

	PR gdb/17472
	* annotate.c (annotate_breakpoints_invalid): Use
	target_terminal_our_for_output instead of target_terminal_ours.
	Give back the terminal to the target.
	(annotate_frames_invalid): Likewise.

gdb/testsuite/
2014-10-17  Pedro Alves  <palves@redhat.com>

	PR gdb/17472
	* gdb.base/annota-input-while-running.c: New file.
	* gdb.base/annota-input-while-running.exp: New file.
2014-10-17 13:32:26 +01:00
Pedro Alves
5842f62aad Make common code handle target_terminal_* idempotency
I found a place that should be giving back the terminal to the target,
but only if the target was already owning it.  So I need to add a
getter for who owns the terminal.

The trouble is that several places/target have their own globals to
track this state:

 - inflow.c:terminal_is_ours
 - remote.c:remote_async_terminal_ours_p
 - linux-nat.c:async_terminal_is_ours
 - go32-nat.c:terminal_is_ours

While one might think of adding a new target_ops method to query this,
conceptually, this state isn't really part of a particular target_ops.
Considering multi-target, the core shouldn't have to ask all targets
to know whether it's GDB that owns the terminal.  There's only one GDB
(or rather, only one top level interpreter).

So what this comment does is add a new global that is tracked by the
core instead.  A subsequent pass may later remove the other globals.

Tested on x86_64 Fedora 20, native and gdbserver.

gdb/
2014-10-17  Pedro Alves  <palves@redhat.com>

	* target.c (enum terminal_state): New enum.
	(terminal_state): New global.
	(target_terminal_init): New function.
	(target_terminal_inferior): Skip if inferior already owns the
	terminal.
	(target_terminal_ours, target_terminal_ours_for_output): New
	functions.
	* target.h (target_terminal_init): Convert to function prototype.
	(target_terminal_ours_for_output): Convert to function prototype
	and tweak comment.
	(target_terminal_ours): Convert to function prototype and tweak
	comment.
	* windows-nat.c (do_initial_windows_stuff): Call
	target_terminal_init instead of child_terminal_init_with_pgrp.
2014-10-17 13:31:25 +01:00
Hans-Peter Nilsson
3f7308212c Fix ld tests with sysroot=/ and --enable-targets=all and test --print-sysroot
* ld-scripts/sysroot-prefix.exp: Log $ld_sysroot.  Handle sysroot
	== "/" as a separate sysroot-configuration with separable
	test-types.
	(sysroot_prefix_tests): Include all existing sysroot tests in
	sysroot == "/" tests except exclude those where a --sysroot option
	is not specified.
	* lib/ld-lib.exp (check_sysroot_available): Rewrite to use
	--print-sysroot instead of relying on error code from using
	--sysroot=...  Also, set $ld_sysroot.

The reason we exclude not just the failing "full-path =-prefixed
without" but also the passing "plain =-prefixed without but -Lpath"
for sysroot == "/" is that for the latter to succeed, we have to make
assumptions about the system not having a /sysroot directory or
assumptions about its contents etc.

When passing --enable-targets=all --enable-64-bit-bfd (the
latter not required for a "64-bit-host" of course) the ld --help
output got too much to handle for poor tcl (or maybe dejagnu is
to blame) and remote_exec exited with an error, so the
configuration being tested was mishandled as being a
sysroot-less configuration.  Using --version instead of --help
would work too, but the new --print-sysroot option calls for
nominal coverage, so why not use that instead.
2014-10-17 13:11:42 +02:00
Hans-Peter Nilsson
c1e29d6622 Implement --print-sysroot in ld.
* ldlex.h (enum option_values): Add entry OPTION_PRINT_SYSROOT.
	* lexsup.c (ld_options): Add entry for --print-sysroot.
	(parse_args) <OPTION_PRINT_SYSROOT>: Print sysroot and exit early.
2014-10-17 13:07:09 +02:00
Hans-Peter Nilsson
cb9322a80e Implement --print-sysroot in ld.
* ldlex.h (enum option_values): Add entry OPTION_PRINT_SYSROOT.
	* lexsup.c (ld_options): Add entry for --print-sysroot.
	(parse_args) <OPTION_PRINT_SYSROOT>: Print sysroot and exit early.
2014-10-17 13:06:56 +02:00
Pedro Alves
32a8097ba5 Delete Tru64 support
This commit does most of the mechanical removal.  IOW, the easy part.

procfs.c isn't touched beyond removing a couple obvious bits that are
guarded by a couple macros defined in config/alpha/nm-osf3.h.  Going
beyond that for procfs.c & co would be a harder excision that
potentially affects Solaris.

Some comments in the generic alpha code ABIs that may still be
relevant and I wouldn't know what to do with them.  That can always be
done on a separate pass, preferably by someone who can test on alpha.

A couple other spots have references to OSF/Tru64 and related files
being removed, but it felt like removing them would make things worse,
not better.  We can revisit those when we next need to touch that
code.

I didn't remove a reference to osf in testsuite/lib/future.exp, as I
believe that code is imported from DejaGNU.

Built and tested on x86_64 Fedora 20, with --enable-targets=all.

Tested that building for --target=alpha-osf3 on x86_64 Fedora 20
fails with:

 checking for default auto-load directory... $debugdir:$datadir/auto-load
 checking for default auto-load safe-path... $debugdir:$datadir/auto-load
 *** Configuration alpha-unknown-osf3 is obsolete.
 *** Support has been REMOVED.
 make[1]: *** [configure-gdb] Error 1
 make[1]: Leaving directory `build-osf'
 make: *** [all] Error 2

gdb/
2014-10-17  Pedro Alves  <palves@redhat.com>

	* Makefile.in (ALL_64_TARGET_OBS): Remove alpha-osf1-tdep.o.
	(HFILES_NO_SRCDIR): Remove config/alpha/nm-osf3.h.
	(ALLDEPFILES): Remove alpha-nat.c, alpha-osf1-tdep.c and
	solib-osf.c.
	* NEWS: Mention that support for alpha*-*-osf* has been removed.
	* ada-lang.h [__alpha__ && __osf__]
	(ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS): Delete.
	* alpha-nat.c, alpha-osf1-tdep.c: Delete files.
	* alpha-tdep.c (alpha_gdbarch_init): Remove reference to
	GDB_OSABI_OSF1.
	* config/alpha/alpha-osf3.mh, config/alpha/nm-osf3.h: Delete
	files.
	* config/djgpp/fnchange.lst (config/alpha/alpha-osf1.mh)
	(config/alpha/alpha-osf2.mh, config/alpha/alpha-osf3.mh): Delete.
	* configure: Regenerate.
	* configure.ac: Remove references to osf.
	* configure.host: Handle alpha*-*-osf* in the obsolete hosts
	section.  Remove all other references to osf.
	* configure.tgt: Add alpha*-*-osf* to the obsolete targets section.
	Remove all other references to osf.
	* dec-thread.c: Delete file.
	* defs.h (GDB_OSABI_OSF1): Delete.
	* inferior.h (START_INFERIOR_TRAPS_EXPECTED): New unconditionally
	defined.
	* osabi.c (gdb_osabi_names): Delete "OSF/1".
	* procfs.c (procfs_debug_inferior) [PROCFS_DONT_TRACE_FAULTS]:
	Delete code.
	(unconditionally_kill_inferior)
	[PROCFS_NEED_CLEAR_CURSIG_FOR_KILL]: Delete code.
	* solib-osf.c: Delete file.

gdb/testsuite/
2014-10-17  Pedro Alves  <palves@redhat.com>

	* gdb.base/callfuncs.exp: emove references to osf.
	* gdb.base/sigall.exp: Likewise.
	* gdb.gdb/selftest.exp: Likewise.
	* gdb.hp/gdb.base-hp/callfwmall.exp: Likewise.
	* gdb.mi/non-stop.c: Likewise.
	* gdb.mi/pthreads.c: Likewise.
	* gdb.reverse/sigall-precsave.exp: Likewise.
	* gdb.reverse/sigall-reverse.exp: Likewise.
	* gdb.threads/pthreads.c: Likewise.
	* gdb.threads/pthreads.exp: Likewise.

gdb/doc/
2014-10-17  Pedro Alves  <palves@redhat.com>

	* gdb.texinfo (Ada Tasks and Core Files): Delete mention of Tru64.
	(SVR4 Process Information): Delete mention of OSF/1.
2014-10-17 11:18:59 +01:00
Pedro Alves
80134cf5b3 Fix build without libexpat
clear_threads_listing_context is used for thread listing methods other
than the xml based, but it's only defined when HAVE_LIBEXPAT is defined.

gdb/
2014-10-17  Pedro Alves  <palves@redhat.com>

	* remote.c (clear_threads_listing_context): Move higher up, out of
	the HAVE_LIBEXPAT guard.
2014-10-17 11:05:06 +01:00
Yao Qi
7a3517ffeb Don't check target_info exists noargs in commands.exp
I am confused by the noargs checking at each proc in commands.exp,

    if [target_info exists noargs] {
        verbose "Skipping progvar_simple_while_test because of noargs."
        return
    }
    gdb_test_no_output "set args 5" "set args in progvar_simple_while_test"
    if { ![runto factorial] } then { gdb_suppress_tests }
    # Don't depend upon argument passing, since most simulators don't
    # currently support it.  Bash value variable to be what we want.
    gdb_test "p value=5" ".*" "set value to 5 in progvar_simple_if_test #2"

They are conflicting to me.  If the argument passing can't be done on
the target, we skip this test, why do we still have to set value below?
On the other hand, the test case is compiled with -DFAKEARGV, it doesn't
get anything from argv[1], why do we need to skip it if noargs is true?

I don't find any useful clues from the git log, as the code is quite
old, predating import to sourceware cvs.  However, I find something
useful from the ChangeLog.

Thu Jul 20 13:28:36 1995  Jeffrey A. Law  <law@rtl.cygnus.com>

        .....
        * gdb.base/commands.exp: Protect tests which need arguments with
        $noargs conditionals.

Mon Apr 21 13:38:58 1997  Fred Fish  <fnf@cygnus.com>

        * gdb.base/run.c: Use FAKEARGV to build test executable that
        does not require a command line arg, since most simulators
        don't currently support passing such an arg into the simulated
        program.
        * gdb.base/commands.exp: Change tests to insert the proper
        value as the arg to the first recursive factorial call.  Change
        compilation line to define FAKEARGV at compile time.

Jeff added noargs checking as argument is passed to the inferior.  Then,
I presume Fred wanted to run this test on simulators which don't support
argument passing, and change the code not get input from argv.  (I guess)
noargs wasn't set in simulator board files at that moment.

Since Fred changed test to set input by gdb, instead of getting input
from argv, the test should be able to run on target doesn't support
argument passing, such as simulator and gdbserver.

This patch is to remove these checks to noargs and "set args".  I run
commands.exp with these board files, and no fail is found

 - unix and native-gdbserver
 - arm-none-eabi with qemu
 - gdbserver on arm-linux-gnueabi with qemu

gdb/testsuite:

2014-10-17  Yao Qi  <yao@codesourcery.com>

	* gdb.base/commands.exp (gdbvar_complex_if_while_test): Don't check
	'target_info exists noargs'.
	(test_command_prompt_position): Likewise.
	(progvar_simple_if_test): Don't check 'target_info exists noargs'.
	 Remove "set args".
	(progvar_simple_while_test): Likewise.
	(progvar_complex_if_while_test): Likewise.
	(if_while_breakpoint_command_test): Likewise.
	(infrun_breakpoint_command_test): Likewise.
	(breakpoint_command_test): Likewise.
	(watchpoint_command_test): Likewise.
	(bp_deleted_in_command_test): Likewise.
	(temporary_breakpoint_commands): Likewise.
2014-10-17 13:04:34 +08:00
Alan Modra
48cfaa5c1d daily update 2014-10-17 09:31:12 +10:30
Joel Brobecker
5af04e20f6 Use strtod instead of strtold in libiberty/d-demangle.c
strtold is currently used to decode templates which have a floating-point
value encoded inside; but this routine is not available on some systems,
such as Solaris 2.9 for instance.

This patch fixes the issue by replace the use of strtold by strtod.
It reduces a bit the precision, but it should still remain acceptable
in most cases.

libiberty/ChangeLog:

        * d-demangle.c: Replace strtold with strtod in global comment.
        (strtold): Remove declaration.
        (strtod): New declaration.
        (dlang_parse_real): Declare value as double instead of long
        double.  Replace call to strtold by call to strtod.
        Update format in call to snprintf.
2014-10-16 14:52:17 -07:00
Tristan Gingold
89c7137fad Darwin: sanitize %gs and %fs values.
Some Darwin kernels return values out of bounds for gs and fs segments.
With this commit, they are masked to avoid garbage.

gdb/ChangeLog:
	* i386-darwin-nat.c (i386_darwin_fetch_inferior_registers)
	(i386_darwin_store_inferior_registers): Sanitize gs and fs values
	on amd64.
2014-10-16 13:52:24 +02:00
Alan Modra
f1885d1e59 Fix 17492, ld segfault with --oformat=binary
PR 17492
	* elf32-arm.c (elf32_arm_add_symbol_hook): Only set has_gnu_symbols
	on ELF output bfd.
	* elf32-i386.c (elf_i386_add_symbol_hook): Likewise.
	* elf32-m68k.c (elf_m68k_add_symbol_hook): Likewise.
	* elf32-ppc.c (ppc_elf_add_symbol_hook): Likewise.
	* elf32-sparc.c (elf32_sparc_add_symbol_hook): Likewise.
	* elf64-ppc.c (ppc64_elf_add_symbol_hook): Likewise.
	* elf64-sparc.c (elf64_sparc_add_symbol_hook): Likewise.
	* elf64-x86-64.c (elf_x86_64_add_symbol_hook): Likewise.
	* elfxx-aarch64.c (_bfd_aarch64_elf_add_symbol_hook): Likewise.
	* elf-s390-common.c (elf_s390_add_symbol_hook): Likewise.  Handle
	STB_GNU_UNIQUE too.
2014-10-16 21:18:16 +10:30
Yao Qi
bb99c4726c Don't check noargs in remotetimeout.exp
The condition [target_info exists noargs] is checked when
remotetimeout.exp was added
https://sourceware.org/ml/gdb-patches/2005-02/msg00052.html

noargs means GDB does not support argument passing for inferior,
rather than doesn't support argument passing to GDB.  remotetimeout.exp
passes -l to GDB only, doesn't pass any arguments to the inferior.

This patch is to remove such unnecessary checking, and
remotetimeout.exp then can be run with native-gdbserver board file.

gdb/testsuite:

2014-10-16  Yao Qi  <yao@codesourcery.com>

	* gdb.base/remotetimeout.exp: Remove noargs checking.
2014-10-16 12:55:01 +08:00
Alan Modra
459609d6f8 PR17488, powerpc64-linux-ld segfault
For binary ouput, we don't have an ELF bfd output so can't access
elf_elfheader.  The elf64-ppc.c changes are really just a tidy,
triggered by looking at all places where the abiversion bits are
accessed.

bfd/
	* elf64-ppc.c (ppc64_elf_before_check_relocs): Do .opd processing
	even when output is not ppc64 ELF.  Remove redundant tests on
	type of input bfd.
ld/
	PR 17488
	* emultempl/ppc64elf.em (gld${EMULATION_NAME}_finish): Don't attempt
	to access ELF header e_flags when not ppc64 ELF output.
2014-10-16 11:22:14 +10:30
Alan Modra
983037647b daily update 2014-10-16 09:31:12 +10:30
Han Shen
83a0195717 Here we have the patch for gold aarch64 backend to support relaxation.
In short relaxation is the linker's generation of stubs that fixes the
out-of-range jumps/branches in the original object file.

With this implementation, we are able to link a 456MB aarch64 application.

Tested:
1) Build natively on x86_64 and aarch64 machines.
2) Pass unit tests regarding relaxation.
2014-10-15 15:23:01 -07:00
Pedro Alves
44ee4a526d DEC threads: Simplify updating the thread list
Seems to me that we can simplify DEC thread's
target_update_thread_list implementation, avoiding the need to build
the array of GDB threads.

I have no way to test this, but then again support for Tru64 is about
to be removed.

Pushing anyway to have the last version in git be the cleanest one
should start from, if this file turns out to be resurrected in the
future.

gdb/
2014-10-15  Pedro Alves  <palves@redhat.com>

	* dec-thread.c (dec_thread_count_gdb_threads)
	(dec_thread_add_gdb_thread): Delete.
	(dec_thread_update_thread_list): Delete.
	(dec_thread_find_new_threads): Rename to ...
	(dec_thread_update_thread_list): ... this.  Delete GDB-size
	threads that are no longer found in dec_thread_list.
	(resync_thread_list): Delete.
	(dec_thread_wait): Call dec_thread_update_thread_list instead of
	resync_thread_list.
2014-10-15 22:56:21 +01:00
Pedro Alves
ab970af197 remote: get rid of all the T packets when syncing the thread list
This commit avoids the prune_threads call in the remote target's
target_update_thread_list's implementation, eliminating all the "thread
alive" RSP traffic (one packet per thread) whenever we fetch the
thread list.

IOW, this:

 Sending packet: $Tp2141.2150#82...Packet received: OK
 Sending packet: $Tp2141.214f#b7...Packet received: OK
 Sending packet: $Tp2141.2141#82...Packet received: OK
 ... more T packets; it's one per previously known live thread ...
 Sending packet: $qXfer:threads:read::0,fff#03...Packet received: l<threads>\n<thread id="p2141.2141" core="2"/>\n<thread id="p2141.214f" core="1"/>\n<thread id="p2141.2150" core="2"/>\n</threads>\n

Becomes:

 Sending packet: $qXfer:threads:read::0,fff#03...Packet received: l<threads>\n<thread id="p2141.2141" core="2"/>\n<thread id="p2141.214f" core="1"/>\n<thread id="p2141.2150" core="2"/>\n</threads>\n

Tested on x86_64 Fedora 20, native gdbserver:
  - tests the qXfer:threads:read method.

Tested on x86_64 Fedora 20, native gdbserver with qXfer:threads:read
force-disabled in gdbserver:
  - So that GDB falls back to the qfThreadInfo/qsThreadInfo method.

And also manually smoked tested force disabling both
qXfer:threads:read and qfThreadInfo/qsThreadInfo in gdbserver.

gdb/
2014-10-15  Pedro Alves  <palves@redhat.com>

	* gdbthread.h (ALL_NON_EXITED_THREADS_SAFE): New macro.
	* remote.c (remote_update_thread_list): Skip calling prune_threads
	if any thread listing method is supported, and instead walk over
	the set of remote threads listed, deleting those that are not
	found in GDB's thread list.
2014-10-15 22:55:14 +01:00
Pedro Alves
e8032dde10 Push pruning old threads down to the target
When GDB wants to sync the thread list with the target's (e.g., due to
"info threads"), it calls update_thread_list:

 update_thread_list (void)
 {
   prune_threads ();
   target_find_new_threads ();
   update_threads_executing ();
 }

And then prune_threads does:

 prune_threads (void)
 {
   struct thread_info *tp, *next;

   for (tp = thread_list; tp; tp = next)
     {
       next = tp->next;
       if (!thread_alive (tp))
	 delete_thread (tp->ptid);
     }
 }

Calling thread_live on each thread one by one is expensive.

E.g., on Linux, it ends up doing kill(SIG0) once for each thread.  Not
a big deal, but still a bunch of syscalls...

With the remote target, it's cumbersome.  That thread_alive call ends
up generating one T packet per thread:

 Sending packet: $Tp2141.2150#82...Packet received: OK
 Sending packet: $Tp2141.214f#b7...Packet received: OK
 Sending packet: $Tp2141.2141#82...Packet received: OK
 Sending packet: $qXfer:threads:read::0,fff#03...Packet received: l<threads>\n<thread id="p2141.2141" core="2"/>\n<thread id="p2141.214f" core="1"/>\n<thread id="p2141.2150" core="2"/>\n</threads>\n

That seems a bit silly when target_find_new_threads method
implementations will always fetch the whole current set of target
threads, and then add those that are not in GDB's thread list, to
GDB's thread list.

This patch thus pushes down the responsibility of pruning dead threads
to the target_find_new_threads method instead, so a target may
implement pruning dead threads however it wants.

Once we do that, target_find_new_threads becomes a misnomer, so the
patch renames it to target_update_thread_list.

The patch doesn't attempt to do any optimization to any target yet.
It simply exports prune_threads, and makes all implementations of
target_update_thread_list call that.  It's meant to be a no-op.

gdb/
2014-10-15  Pedro Alves  <palves@redhat.com>

	* ada-tasks.c (print_ada_task_info, task_command_1): Adjust.
	* bsd-uthread.c (bsd_uthread_find_new_threads): Rename to ...
	(bsd_uthread_update_thread_list): ... this.  Call prune_threads.
	(bsd_uthread_target): Adjust.
	* corelow.c (core_open): Adjust.
	* dec-thread.c (dec_thread_find_new_threads): Update comment.
	(dec_thread_update_thread_list): New function.
	(init_dec_thread_ops): Adjust.
	* gdbthread.h (prune_threads): New declaration.
	* linux-thread-db.c (thread_db_find_new_threads): Rename to ...
	(thread_db_update_thread_list): ... this.  Call prune_threads.
	(init_thread_db_ops): Adjust.
	* nto-procfs.c (procfs_find_new_threads): Rename to ...
	(procfs_update_thread_list): ... this.  Call prune_threads.
	(procfs_attach, procfs_create_inferior, init_procfs_targets):
	Adjust.
	* obsd-nat.c (obsd_find_new_threads): Rename to ...
	(obsd_update_thread_list): ... this.  Call prune_threads.
	(obsd_add_target): Adjust.
	* procfs.c (procfs_target): Adjust.
	(procfs_notice_thread): Update comment.
	(procfs_find_new_threads): Rename to ...
	(procfs_update_thread_list): ... this.  Call prune_threads.
	* ravenscar-thread.c (ravenscar_update_inferior_ptid): Update
	comment.
	(ravenscar_wait): Adjust.
	(ravenscar_find_new_threads): Rename to ...
	(ravenscar_update_thread_list): ... this.  Call prune_threads.
	(init_ravenscar_thread_ops): Adjust.
	* record-btrace.c (record_btrace_find_new_threads): Rename to ...
	(record_btrace_update_thread_list): ... this.  Adjust comment.
	(init_record_btrace_ops): Adjust.
	* remote.c (remote_threads_info): Rename to ...
	(remote_update_thread_list): ... this.  Call prune_threads.
	(remote_start_remote, extended_remote_attach_1, init_remote_ops):
	Adjust.
	* sol-thread.c (check_for_thread_db): Adjust.
	(sol_find_new_threads_callback): Rename to ...
	(sol_update_thread_list_callback): ... this.
	(sol_find_new_threads): Rename to ...
	(sol_update_thread_list): ... this.  Call prune_threads.  Adjust.
	(sol_get_ada_task_ptid, init_sol_thread_ops): Adjust.
	* target-delegates.c: Regenerate.
	* target.c (target_find_new_threads): Rename to ...
	(target_update_thread_list): ... this.
	* target.h (struct target_ops): Rename to_find_new_threads field
	to to_update_thread_list.
	(target_find_new_threads): Rename to ...
	(target_update_thread_list): ... this.
	* thread.c (prune_threads): Make extern.
	(update_thread_list): Adjust.
2014-10-15 22:54:13 +01:00
Pedro Alves
6dc54d9124 Merge remote thread listing methods
We have three methods to list the current remote thread list:

1. The qXfer:threads:read method (the preferred one nowadays), builds a
remote thread list while parsing the XML, and then after the XML
parsing is done, goes over the built list and adds threads GDB doesn't
know about yet to GDB's list.

2. If the qXfer method isn't available, we fallback to using the
qfThreadInfo/qsThreadInfo packets.  When we do this, we adds threads
to GDB's list immediately as we parse the qfThreadInfo/qsThreadInfo
packet replies.

3. And then if the previous method isn't available either, we try the
old deprecated qL packet.  This path is already looking somewhat
broken for not using remote_notice_new_inferior to add threads to
GDB's list.

This patch makes all variants work in two passes, like the qXfer
method, and then makes all variants share the code path that adds
threads to GDB's list.

Tested on x86_64 Fedora 20 with native gdbserver.

gdb/
2014-10-15  Pedro Alves  <palves@redhat.com>

	* remote.c (remote_get_threadlist, remote_threadlist_iterator):
	Add describing comment.  Return -1 if the qL packet is not
	supported.
	(struct thread_item, thread_item_t): Move higher up in
	the file.  Add comments.
	(struct threads_parsing_context): Move higher up in
	the file, add comments, and remote to ...
	(struct threads_listing_context): ... this.
	(remote_newthread_step): Don't add the thread to GDB's thread
	database here.  Instead push it to the thread_listing_context
	list.
	(remote_find_new_threads): Rename to ...
	(remote_get_threads_with_ql): ... this.  Add target_ops and
	targets_listing_context parameters.  Pass down context.
	(start_thread): Adjust.
	(clear_threads_parsing_context): Rename to ...
	(clear_threads_listing_context): ... this.
	(remote_get_threads_with_qxfer): New, with parts salvaged from old
	remote_threads_info.
	(remote_get_threads_with_qthreadinfo): Ditto.
	(remote_threads_info): Reimplement.
2014-10-15 22:43:59 +01:00
Pedro Alves
36728e82bd Non-stop + software single-step archs: don't force displaced-stepping for all single-steps
This finally reverts this bit of commit 929dfd4f:

  2009-07-31  Pedro Alves  <pedro@codesourcery.com>
	      Julian Brown  <julian@codesourcery.com>

	 ...
	 (resume): If this is a software single-stepping arch, and
	 displaced-stepping is enabled, use it for all single-step
	 requests.
	 ...

That means that in non-stop (or really displaced-stepping) mode, on
software single-step archs - even those that only use sss breakpoints
to deal with atomic sequences, like PPC - if we have more than one
thread single-stepping, we'll always serialize the threads'
single-steps, as only one thread may be displaced stepping at a given
time, because there's only one scratch pad.

We originally did that because GDB didn't support having multiple
threads software-single-stepping simultaneously.  The previous patches
fixed that limitation, so we can now finally revert this too.

Tested on:

  - x86_64 Fedora 20, on top of the 'software single-step on x86'
    series.

gdb/
2014-10-15  Pedro Alves  <palves@redhat.com>

	* infrun.c (resume): Don't force displaced-stepping for all
	single-steps on software single-stepping archs.
2014-10-15 20:18:32 +01:00
Pedro Alves
34b7e8a6ad Make single-step breakpoints be per-thread
This patch finally makes each thread have its own set of single-step
breakpoints.  This paves the way to have multiple threads software
single-stepping, though this patch doesn't flip that switch on yet.
That'll be done on a subsequent patch.

gdb/
2014-10-15  Pedro Alves  <palves@redhat.com>

	* breakpoint.c (single_step_breakpoints): Delete global.
	(insert_single_step_breakpoint): Adjust to store the breakpoint
	pointer in the current thread.
	(single_step_breakpoints_inserted, remove_single_step_breakpoints)
	(cancel_single_step_breakpoints): Delete functions.
	(breakpoint_has_location_inserted_here): Make extern.
	(single_step_breakpoint_inserted_here_p): Adjust to walk the
	breakpoint list.
	* breakpoint.h (breakpoint_has_location_inserted_here): New
	declaration.
	(single_step_breakpoints_inserted, remove_single_step_breakpoints)
	(cancel_single_step_breakpoints): Remove declarations.
	* gdbthread.h (struct thread_control_state)
	<single_step_breakpoints>: New field.
	(delete_single_step_breakpoints)
	(thread_has_single_step_breakpoints_set)
	(thread_has_single_step_breakpoint_here): New declarations.
	* infrun.c (follow_exec): Also clear the single-step breakpoints.
	(singlestep_breakpoints_inserted_p, singlestep_ptid)
	(singlestep_pc): Delete globals.
	(infrun_thread_ptid_changed): Remove references to removed
	globals.
	(resume_cleanups): Delete the current thread's single-step
	breakpoints.
	(maybe_software_singlestep): Remove references to removed globals.
	(resume): Adjust to use thread_has_single_step_breakpoints_set and
	delete_single_step_breakpoints.
	(init_wait_for_inferior): Remove references to removed globals.
	(delete_thread_infrun_breakpoints): Delete the thread's
	single-step breakpoints too.
	(delete_just_stopped_threads_infrun_breakpoints): Don't delete
	single-step breakpoints here.
	(delete_stopped_threads_single_step_breakpoints): New function.
	(adjust_pc_after_break): Adjust to use
	thread_has_single_step_breakpoints_set.
	(handle_inferior_event): Remove references to removed globals.
	Use delete_stopped_threads_single_step_breakpoints.
	(handle_signal_stop): Adjust to per-thread single-step
	breakpoints.  Swap test order to do cheaper tests first.
	(switch_back_to_stepped_thread): Extend debug output.  Remove
	references to removed globals.
	* record-full.c (record_full_wait_1): Adjust to per-thread
	single-step breakpoints.
	* thread.c (delete_single_step_breakpoints)
	(thread_has_single_step_breakpoints_set)
	(thread_has_single_step_breakpoint_here): New functions.
	(clear_thread_inferior_resources): Also delete the thread's
	single-step breakpoints.
2014-10-15 20:18:32 +01:00
Pedro Alves
5b834a0a5d thread.c: cleanup breakpoint deletion
A little refactoring to reduce duplicate code.

gdb/
2014-10-15  Pedro Alves  <palves@redhat.com>

	* thread.c (delete_thread_breakpoint): New function.
	(delete_step_resume_breakpoint)
	(delete_exception_resume_breakpoint): Use it.
	(delete_at_next_stop): New function.
	(clear_thread_inferior_resources): Use delete_at_next_stop.
2014-10-15 20:18:32 +01:00
Pedro Alves
a1fd2fa599 Remove deprecated_insert_raw_breakpoint and friends
There are no users of deprecated_{insert,remove}_raw_breakpoint left.

gdb/
2014-10-15  Pedro Alves  <palves@redhat.com>

	* breakpoint.c (regular_breakpoint_inserted_here_p): Inline ...
	(breakpoint_inserted_here_p): ... here.  Remove special case for
	software single-step breakpoints.
	(find_non_raw_software_breakpoint_inserted_here): Inline ...
	(software_breakpoint_inserted_here_p): ... here.  Remove special
	case for software single-step breakpoints.
	(bp_target_info_copy_insertion_state)
	(deprecated_insert_raw_breakpoint)
	(deprecated_remove_raw_breakpoint): Delete functions.
	* breakpoint.h (deprecated_insert_raw_breakpoint)
	(deprecated_remove_raw_breakpoint): Remove declarations.
2014-10-15 20:18:31 +01:00
Pedro Alves
7c16b83e05 Put single-step breakpoints on the bp_location chain
This patch makes single-step breakpoints "real" breakpoints on the
global location list.

There are several benefits to this:

- It removes the currently limitation that only 2 single-step
  breakpoints can be inserted.  See an example here of a discussion
  around a case that wants more than 2, possibly unbounded:

  https://sourceware.org/ml/gdb-patches/2014-03/msg00663.html

- makes software single-step work on read-only code regions.

  The logic to convert a software breakpoint to a hardware breakpoint
  if the memory map says the breakpoint address is in read only memory
  is in insert_bp_location.  Because software single-step breakpoints
  bypass all that go and straight to target_insert_breakpoint, we
  can't software single-step over read only memory.  This patch
  removes that limitation, and adds a test that makes sure that works,
  by forcing a code region to read-only with "mem LOW HIGH ro" and
  then stepping through that.

- Fixes PR breakpoints/9649

  This is an assertion failure in insert_single_step_breakpoint in
  breakpoint.c, because we may leave stale single-step breakpoints
  behind on error.

  The tests for stepping through read-only regions exercise the root
  cause of the bug, which is that we leave single-step breakpoints
  behind if we fail to insert any single-step breakpoint.  Deleting
  the single-step breakpoints in resume_cleanups,
  delete_just_stopped_threads_infrun_breakpoints, and
  fetch_inferior_event fixes this.  Without that, we'd no longer hit
  the assertion, as that code is deleted, but we'd instead run into
  errors/warnings trying to insert/remove the stale breakpoints on
  next resume.

- Paves the way to have multiple threads software single-stepping at
  the same time, leaving update_global_location_list to worry about
  duplicate locations.

- Makes the moribund location machinery aware of software single-step
  breakpoints, paving the way to enable software single-step on
  non-stop, instead of forcing serialized displaced stepping for all
  single steps.

- It's generaly cleaner.

  We no longer have to play games with single-step breakpoints
  inserted at the same address as regular breakpoints, like we
  recently had to do for 7.8.  See this discussion:

  https://sourceware.org/ml/gdb-patches/2014-06/msg00052.html.

Tested on x86_64 Fedora 20, on top of my 'single-step breakpoints on
x86' series.

gdb/
2014-10-15  Pedro Alves  <palves@redhat.com>

	PR breakpoints/9649
	* breakpoint.c (single_step_breakpoints, single_step_gdbarch):
	Delete array globals.
	(single_step_breakpoints): New global.
	(breakpoint_xfer_memory): Remove special handling for single-step
	breakpoints.
	(update_breakpoints_after_exec): Delete bp_single_step
	breakpoints.
	(detach_breakpoints): Remove special handling for single-step
	breakpoints.
	(breakpoint_init_inferior): Delete bp_single_step breakpoints.
	(bpstat_stop_status): Add comment.
	(bpstat_what, bptype_string, print_one_breakpoint_location)
	(adjust_breakpoint_address, init_bp_location): Handle
	bp_single_step.
	(new_single_step_breakpoint): New function.
	(set_momentary_breakpoint, bkpt_remove_location): Remove special
	handling for single-step breakpoints.
	(insert_single_step_breakpoint, single_step_breakpoints_inserted)
	(remove_single_step_breakpoints, cancel_single_step_breakpoints):
	Rewrite.
	(detach_single_step_breakpoints, find_single_step_breakpoint):
	Delete functions.
	(breakpoint_has_location_inserted_here): New function.
	(single_step_breakpoint_inserted_here_p): Rewrite.
	* breakpoint.h: Remove FIXME.
	(enum bptype) <bp_single_step>: New enum value.
	(insert_single_step_breakpoint): Update comment.
	* infrun.c (resume_cleanups)
	(delete_step_thread_step_resume_breakpoint): Remove single-step
	breakpoints.
	(fetch_inferior_event): Install a cleanup that removes infrun
	breakpoints.
	(switch_back_to_stepped_thread) <expect thread advanced also>:
	Clear step-over info.

gdb/testsuite/
2014-10-15  Pedro Alves  <palves@redhat.com>

	PR breakpoints/9649
	* gdb.base/breakpoint-in-ro-region.c (main): Add more instructions.
	* gdb.base/breakpoint-in-ro-region.exp
	(probe_target_hardware_step): New procedure.
	(top level): Probe hardware stepping and hardware breakpoint
	support.  Test stepping through a read-only region, with both
	"breakpoint auto-hw" on and off and both "always-inserted" on and
	off.
2014-10-15 20:18:31 +01:00
Pedro Alves
0cbcdb96ea infrun.c: add for_each_just_stopped_thread
This is a preparatory/cleanup patch that does two things:

- Renames 'delete_step_thread_step_resume_breakpoint'.  The
  "step_resume" part is misnomer these days, as the function deletes
  other kinds of breakpoints, not just the step-resume breakpoint.  A
  following patch will want to make it delete yet another kind of
  breakpoint, even.

- Splits out the logic of which threads get those breakpoints deleted
  to a separate "for_each"-style function, so that the same following
  patch may use it with a different callback.

Tested on x86_64 Fedora 20.

gdb/
2014-10-15  Pedro Alves  <palves@redhat.com>

	* infrun.c (delete_step_resume_breakpoint_callback): Delete.
	(delete_thread_infrun_breakpoints): New function, with parts
	salvaged from delete_step_resume_breakpoint_callback.
	(delete_step_thread_step_resume_breakpoint): Delete.
	(for_each_just_stopped_thread_callback_func): New typedef.
	(for_each_just_stopped_thread): New function.
	(delete_just_stopped_threads_infrun_breakpoints): New function.
	(delete_step_thread_step_resume_breakpoint_cleanup): Rename to ...
	(delete_just_stopped_threads_infrun_breakpoints_cleanup):
	... this.  Adjust.
	(wait_for_inferior, fetch_inferior_event): Adjust to renames.
2014-10-15 20:18:30 +01:00
Pedro Alves
963f9c80cb Rewrite non-continuable watchpoints handling
When GDB finds out the target triggered a watchpoint, and the target
has non-continuable watchpoints, GDB sets things up to step past the
instruction that triggered the watchpoint.  This is just like stepping
past a breakpoint, but goes through a different mechanism - it resumes
only the thread that needs to step past the watchpoint, but also
switches a "infwait state" global, that has the effect that the next
target_wait only wait for events only from that thread.

This forcing of a ptid to pass to target_wait obviously becomes a
bottleneck if we ever support stepping past different watchpoints
simultaneously (in separate processes).

It's also unnecessary -- the target should only return events for
threads that have been resumed; if no other thread than the one we're
stepping past the watchpoint has been resumed, then those other
threads should not report events.  If we couldn't assume that, then
stepping past regular breakpoints would be broken for not likewise
forcing a similar infwait_state.

So this patch eliminates infwait_state, and instead teaches keep_going
to mark step_over_info in a way that has the breakpoints module skip
inserting watchpoints (because we're stepping past one), like it skips
breakpoints when we're stepping past one.

Tested on:

 - x86_64 Fedora 20 (continuable watchpoints)
 - PPC64 Fedora 18  (non-steppable watchpoints)

gdb/
2014-10-15  Pedro Alves  <palves@redhat.com>

	* breakpoint.c (should_be_inserted): Don't insert watchpoints if
	trying to step past a non-steppable watchpoint.
	* gdbthread.h (struct thread_info) <stepping_over_watchpoint>: New
	field.
	* infrun.c (struct step_over_info): Add new field
	'nonsteppable_watchpoint_p' and adjust comments.
	(set_step_over_info): New 'nonsteppable_watchpoint_p' parameter.
	Adjust.
	(clear_step_over_info): Clear nonsteppable_watchpoint_p as well.
	(stepping_past_nonsteppable_watchpoint): New function.
	(step_over_info_valid_p): Also return true if stepping past a
	nonsteppable watchpoint.
	(proceed): Adjust call to set_step_over_info.  Remove reference to
	init_infwait_state.
	(init_wait_for_inferior): Remove reference to init_infwait_state.
	(waiton_ptid): Delete global.
	(struct execution_control_state)
	<stepped_after_stopped_by_watchpoint>: Delete field.
	(wait_for_inferior, fetch_inferior_event): Always pass
	minus_one_ptid to target_wait.
	(init_thread_stepping_state): Clear 'stepping_over_watchpoint'
	field.
	(init_infwait_state): Delete function.
	(handle_inferior_event): Remove infwait_state handling.
	(handle_signal_stop) <watchpoints handling>: Adjust after
	stepped_after_stopped_by_watchpoint removal.  Don't remove
	breakpoints here nor set infwait_state.  Set the thread's
	stepping_over_watchpoint flag, and call keep_going instead.
	(keep_going): Handle stepping_over_watchpoint.  Adjust
	set_step_over_info calls.
	* infrun.h (stepping_past_nonsteppable_watchpoint): Declare
	function.
2014-10-15 20:18:30 +01:00
Pedro Alves
6cc83d2a40 Decide whether we may have removed breakpoints based on step_over_info
... instead of trap_expected.

Gets rid of one singlestep_breakpoints_inserted_p reference, and is
generally more to the point.

gdb/
2014-10-15  Pedro Alves  <palves@redhat.com>

	* infrun.c (step_over_info_valid_p): New function.
	(resume): Use step_over_info_valid_p instead of checking the
	threads's trap_expected flag.
2014-10-15 20:18:29 +01:00
Pedro Alves
a2abc7de68 gdbserver/win32: Rewrite debug registers handling
Don't use debug_reg_state for both:

 * "intent" - what we want the debug registers to look like

 * "reality" - what/which were the contents of the DR registers when
   the event triggered

Reserve it for the former only, like in the GNU/Linux port.

Otherwise the core x86 debug registers code can get confused if the
inferior itself changes the debug registers since GDB last set them.

This is also a requirement for being able to set watchpoints while the
target is running, if/when we get to it on Windows.  See the big
comment in x86_dr_stopped_data_address.

Seems to me this may also fixes propagating watchpoints to all threads
-- continue_one_thread only calls win32_set_thread_context (what
copies the DR registers to the thread), if something already fetched
the thread's context before.  Something else may be masking this
issue, I haven't checked.

Smoke tested by running gdbserver under Wine, connecting to it from
GNU/Linux, and checking that I could trigger a watchpoint as expected.

Joel tested it on x86-windows using AdaCore's testsuite.

gdb/gdbserver/
2014-10-15  Pedro Alves  <palves@redhat.com>

	PR server/17487
	* win32-arm-low.c (arm_set_thread_context): Remove current_event
	parameter.
	(arm_set_thread_context): Delete.
	(the_low_target): Adjust.
	* win32-i386-low.c (debug_registers_changed)
	(debug_registers_used): Delete.
	(update_debug_registers_callback): New function.
	(x86_dr_low_set_addr, x86_dr_low_set_control): Mark all threads as
	needing to update their debug registers.
	(win32_get_current_dr): New function.
	(x86_dr_low_get_addr, x86_dr_low_get_control)
	(x86_dr_low_get_status): Fetch the debug register from the thread
	record's context.
	(i386_initial_stuff): Adjust.
	(i386_get_thread_context): Remove current_event parameter.  Don't
	clear debug_registers_changed nor copy DR values to
	debug_reg_state.
	(i386_set_thread_context): Delete.
	(i386_prepare_to_resume): New function.
	(i386_thread_added): Mark the thread as needing to update irs
	debug registers.
	(the_low_target): Remove i386_set_thread_context and install
	i386_prepare_to_resume.
	* win32-low.c (win32_get_thread_context): Adjust.
	(win32_set_thread_context): Use SetThreadContext
	directly.
	(win32_prepare_to_resume): New function.
	(win32_require_context): New function, factored out from ...
	(thread_rec): ... this.
	(continue_one_thread): Call win32_prepare_to_resume on each thread
	we're about to continue.
	(win32_resume): Call win32_prepare_to_resume on the event thread.
	* win32-low.h (struct win32_thread_info)
	<debug_registers_changed>: New field.
	(struct win32_target_ops): Change prototype of set_thread_context,
	delete set_thread_context and add prepare_to_resume.
	(win32_require_context): New declaration.
2014-10-15 19:55:50 +01:00
Doug Evans
6979730b1b PR python/17364
gdb/ChangeLog:

	* python/lib/gdb/__init__.py (packages): Add "printer".
	* python/lib/gdb/command/bound_registers.py: Moved to ...
	* python/lib/gdb/printer/bound_registers.py: ... here.
	Add printer to global set of builtin printers.  Rename printer from
	"bound" to "mpx_bound128".
	* python/lib/gdb/printing.py (_builtin_pretty_printers): New global,
	registered as global "builtin" printer.
	(add_builtin_pretty_printer): New function.
	* data-directory/Makefile.in (PYTHON_FILE_LIST): Update, and add
	gdb/printer/__init__.py.
2014-10-15 11:43:49 -07:00
Iain Buclaw
35a49624e2 Remove d-support.c and use gdb_demangle for demangling D symbols.
gdb/ChangeLog

	* Makefile.in (SFILES): Remove d-support.c.
	(COMMON_OBS): Remove d-support.o.
	* d-lang.h (d_parse_symbol): Remove declaration.
	* d-lang.c (d_demangle): Use gdb_demangle to demangle D symbols.
	* d-support.c: Remove file.

gdb/testsuite/ChangeLog

	* gdb.dlang/demangle.exp: Update for demangling changes.
2014-10-15 19:28:19 +01:00
Andreas Arnez
8fa0c4f8ed Remove non-address bits for longjmp resume breakpoint
On 32-bit S390 targets the longjmp target address "naturally" has the
most significant bit set.  That bit indicates the addressing mode and
is not part of the address itself.  Thus, in analogy with similar
cases (like when computing the caller PC in
insert_step_resume_breakpoint_at_caller), this change removes
non-address bits from the longjmp target address before using it as a
breakpoint address.

Note that there are two ways for determining the longjmp target
address: via a probe or via a gdbarch method.  This change only
affects the probe method, because it is assumed that the address
returned by the gdbarch method is usable as-is.

This change was tested together with a patch that enables longjmp
probes in glibc for S/390:

  https://sourceware.org/ml/libc-alpha/2014-10/msg00277.html

gdb/ChangeLog:

	* gdb/infrun.c (process_event_stop_test): Apply
	gdbarch_addr_bits_remove to longjmp resume address.
2014-10-15 17:32:38 +02:00
Pedro Alves
3666da817e Delete gdb/regformats/microblaze.dat
This file:

 - Isn't used by GDBserver currently.

 - Isn't included in the WHICH list in features/Makefile, so hasn't
   been regenerated to pick the latest microblaze or generic fixes.

Just delete it.

gdb/
2014-10-15  Pedro Alves  <palves@redhat.com>

	* regformats/microblaze.dat: Delete file.
2014-10-15 16:21:59 +01:00
Ajit Kumar Agarwal
449aa9dfd1 Microblaze: Replace microblaze-expedite from pc to rpc
The Microblaze PC register is called "rpc", not "pc", as can be seen
in microblaze-core.xml.  Fix this, so GDBserver can find the register in
the regcache.

gdb/
2014-10-15  Ajit Agarwal  <ajitkum@xilinx.com>

	* features/Makefile (microblaze-expedite): Replace pc with rpc.
	* regformats/microblaze-with-stack-protect.dat: Regenerate.
2014-10-15 15:21:39 +01:00