$ make check RUNTESTFLAGS="--target_board=native-gdbserver/-m32 clone-thread_db.exp"
gdb.log shows:
Running target native-gdbserver/-m32
...
clone-thread_db: src/gdb/testsuite/gdb.threads/clone-thread_db.c:57: thread_fn: Assertion `res != -1' failed.
...
(gdb) FAIL: gdb.threads/clone-thread_db.exp: continue to end
That was waitpid returning -1 / EINTR. We don't see that when testing
with unix/-m32 (native debugging). Turns out to be that when
debugging a 32-bit inferior, a 64-bit GDBserver is reading/writing
$orig_eax from/to the wrong ptrace register buffer offset. When
gdbserver is 64-bit, the ptrace register buffer is in 64-bit layout,
so the register is found at "ORIG_EAX * 8", not at "ORIG_EAX * 4".
Fixes these with --target_board=native-gdbserver/-m32 on x86_64 Fedora 20:
-FAIL: gdb.threads/clone-thread_db.exp: continue to end
+PASS: gdb.threads/clone-thread_db.exp: continue to end
-FAIL: gdb.threads/hand-call-in-threads.exp: all dummies popped
+PASS: gdb.threads/hand-call-in-threads.exp: all dummies popped
PASS: gdb.threads/hand-call-in-threads.exp: breakpoint on all_threads_running
PASS: gdb.threads/hand-call-in-threads.exp: breakpoint on hand_call
PASS: gdb.threads/hand-call-in-threads.exp: disable scheduler locking
@@ -29339,15 +29331,15 @@ PASS: gdb.threads/hand-call-in-threads.e
PASS: gdb.threads/hand-call-in-threads.exp: discard hand call, thread 4
PASS: gdb.threads/hand-call-in-threads.exp: discard hand call, thread 5
PASS: gdb.threads/hand-call-in-threads.exp: dummy stack frame number, thread 1
-FAIL: gdb.threads/hand-call-in-threads.exp: dummy stack frame number, thread 2
-FAIL: gdb.threads/hand-call-in-threads.exp: dummy stack frame number, thread 3
-FAIL: gdb.threads/hand-call-in-threads.exp: dummy stack frame number, thread 4
+PASS: gdb.threads/hand-call-in-threads.exp: dummy stack frame number, thread 2
+PASS: gdb.threads/hand-call-in-threads.exp: dummy stack frame number, thread 3
+PASS: gdb.threads/hand-call-in-threads.exp: dummy stack frame number, thread 4
PASS: gdb.threads/hand-call-in-threads.exp: dummy stack frame number, thread 5
PASS: gdb.threads/hand-call-in-threads.exp: enable scheduler locking
PASS: gdb.threads/hand-call-in-threads.exp: hand call, thread 1
-FAIL: gdb.threads/hand-call-in-threads.exp: hand call, thread 2
-FAIL: gdb.threads/hand-call-in-threads.exp: hand call, thread 3
-FAIL: gdb.threads/hand-call-in-threads.exp: hand call, thread 4
+PASS: gdb.threads/hand-call-in-threads.exp: hand call, thread 2
+PASS: gdb.threads/hand-call-in-threads.exp: hand call, thread 3
+PASS: gdb.threads/hand-call-in-threads.exp: hand call, thread 4
PASS: gdb.threads/hand-call-in-threads.exp: hand call, thread 5
PASS: gdb.threads/hand-call-in-threads.exp: prepare to discard hand call, thread 1
PASS: gdb.threads/hand-call-in-threads.exp: prepare to discard hand call, thread 2
gdb/gdbserver/ChangeLog
2015-02-23 Pedro Alves <palves@redhat.com>
* linux-x86-low.c (REGSIZE): Define in both 32-bit and 64-bit
modes.
(x86_fill_gregset, x86_store_gregset): Use it when handling
$orig_eax.
TL;DR - GDB can hang if something refreshes the thread list out of the
target while the target is running. GDB hangs inside td_ta_thr_iter.
The fix is to not use that libthread_db function anymore.
Long version:
Running the testsuite against my all-stop-on-top-of-non-stop series is
still exposing latent non-stop bugs.
I was originally seeing this with the multi-create.exp test, back when
we were still using libthread_db thread event breakpoints. The
all-stop-on-top-of-non-stop series forces a thread list refresh each
time GDB needs to start stepping over a breakpoint (to pause all
threads). That test hits the thread event breakpoint often, resulting
in a bunch of step-over operations, thus a bunch of thread list
refreshes while some threads in the target are running.
The commit adds a real non-stop mode test that triggers the issue,
based on multi-create.exp, that does an explicit "info threads" when a
breakpoint is hit. IOW, it does the same things the as-ns series was
doing when testing multi-create.exp.
The bug is a race, so it unfortunately takes several runs for the test
to trigger it. In fact, even when setting the test running in a loop,
it sometimes takes several minutes for it to trigger for me.
The race is related to libthread_db's td_ta_thr_iter. This is
libthread_db's entry point for walking the thread list of the
inferior.
Sometimes, when GDB refreshes the thread list from the target,
libthread_db's td_ta_thr_iter can somehow see glibc's thread list as a
cycle, and get stuck in an infinite loop.
The issue is that when a thread exits, its thread control structure in
glibc is moved from a "used" list to a "cache" list. These lists are
simply circular linked lists where the "next/prev" pointers are
embedded in the thread control structure itself. The "next" pointer
of the last element of the list points back to the list's sentinel
"head". There's only one set of "next/prev" pointers for both lists;
thus a thread can only be in one of the lists at a time, not in both
simultaneously.
So when thread C exits, simplifying, the following happens. A-C are
threads. stack_used and stack_cache are the list's heads.
Before:
stack_used -> A -> B -> C -> (&stack_used)
stack_cache -> (&stack_cache)
After:
stack_used -> A -> B -> (&stack_used)
stack_cache -> C -> (&stack_cache)
td_ta_thr_iter starts by iterating at the list's head's next, and
iterates until it sees a thread whose next pointer points to the
list's head again. Thus in the before case above, C's next points to
stack_used, indicating end of list. In the same case, the stack_cache
list is empty.
For each thread being iterated, td_ta_thr_iter reads the whole thread
object out of the inferior. This includes the thread's "next"
pointer.
In the scenario above, it may happen that td_ta_thr_iter is iterating
thread B and has already read B's thread structure just before thread
C exits and its control structure moves to the cached list.
Now, recall that td_ta_thr_iter is running in the context of GDB, and
there's no locking between GDB and the inferior. From it's local copy
of B, td_ta_thr_iter believes that the next thread after B is thread
C, so it happilly continues iterating to C, a thread that has already
exited, and is now in the stack cache list.
After iterating C, td_ta_thr_iter finds the stack_cache head, which
because it is not stack_used, td_ta_thr_iter assumes it's just another
thread. After this, unless the reverse race triggers, GDB gets stuck
in td_ta_thr_iter forever walking the stack_cache list, as no thread
in thatlist has a next pointer that points back to stack_used (the
terminating condition).
Before fully understanding the issue, I tried adding cycle detection
to GDB's td_ta_thr_iter callback. However, td_ta_thr_iter skips
calling the callback in some cases, which means that it's possible
that the callback isn't called at all, making it impossible for GDB to
break the loop. I did manage to get GDB stuck in that state more than
once.
Fortunately, we can avoid the issue altogether. We don't really need
td_ta_thr_iter for live debugging nowadays, given PTRACE_EVENT_CLONE.
We already know how to map and lwp id to a thread id without iterating
(thread_from_lwp), so use that more.
gdb/ChangeLog:
2015-02-20 Pedro Alves <palves@redhat.com>
* linux-nat.c (linux_handle_extended_wait): Call
thread_db_notice_clone whenever a new clone LWP is detected.
(linux_stop_and_wait_all_lwps, linux_unstop_all_lwps): New
functions.
* linux-nat.h (thread_db_attach_lwp): Delete declaration.
(thread_db_notice_clone, linux_stop_and_wait_all_lwps)
(linux_unstop_all_lwps): Declare.
* linux-thread-db.c (struct thread_get_info_inout): Delete.
(thread_get_info_callback): Delete.
(thread_from_lwp): Use td_thr_get_info and record_thread.
(thread_db_attach_lwp): Delete.
(thread_db_notice_clone): New function.
(try_thread_db_load_1): If /proc is mounted and shows the
process'es task list, walk over all LWPs and call thread_from_lwp
instead of relying on td_ta_thr_iter.
(attach_thread): Don't call check_thread_signals here. Split the
tail part of the function (which adds the thread to the core GDB
thread list) to ...
(record_thread): ... this function. Call check_thread_signals
here.
(thread_db_wait): Don't call thread_db_find_new_threads_1. Always
call thread_from_lwp.
(thread_db_update_thread_list): Rename to ...
(thread_db_update_thread_list_org): ... this.
(thread_db_update_thread_list): New function.
(thread_db_find_thread_from_tid): Delete.
(thread_db_get_ada_task_ptid): Simplify.
* nat/linux-procfs.c: Include <sys/stat.h>.
(linux_proc_task_list_dir_exists): New function.
* nat/linux-procfs.h (linux_proc_task_list_dir_exists): Declare.
gdb/gdbserver/ChangeLog:
2015-02-20 Pedro Alves <palves@redhat.com>
* thread-db.c: Include "nat/linux-procfs.h".
(thread_db_init): Skip listing new threads if the kernel supports
PTRACE_EVENT_CLONE and /proc/PID/task/ is accessible.
gdb/testsuite/ChangeLog:
2015-02-20 Pedro Alves <palves@redhat.com>
* gdb.threads/multi-create-ns-info-thr.exp: New file.
Another fix I'm working made schedlock.exp fail with gdbserver
frequently. Looking deeper, it turns out to be a pre-existing bug.
status_pending_p_callback is filtering out LWPs incorrectly. The
result is that that sometimes status_pending_p_callback returns a
pending event for an LWP that isn't expected, and then GDBserver gets
very confused.
E.g,. when doing a step-over, linux_wait_for_event is called with a
particular LWP's ptid, meaning events for all other LWPs should be
left pending, but here we see it retuning an event for some other LWP:
linux_wait_1: [<all threads>]
step_over_bkpt set [LWP 29577.29577], doing a blocking wait <--------
my_waitpid (-1, 0x40000001)
my_waitpid (-1, 0x80000001): status(57f), 0
LWFE: waitpid(-1, ...) returned 0, ERRNO-OK
pc is 0x4007a0
src/gdb/gdbserver/linux-low.c:2587: A problem internal to GDBserver has been detected.
linux_wait_1: got event for 29581 <--------
Remote connection closed
(gdb) FAIL: gdb.threads/schedlock.exp: continue to breakpoint: return to loop (initial)
delete breakpoints
Tested on x86_64 Fedora 20.
gdb/gdbserver/ChangeLog:
2015-02-20 Pedro Alves <palves@redhat.com>
* linux-low.c (status_pending_p_callback): Use ptid_match.
When gdb creates a dummy frame to execute a function in the inferior,
the process may generate a SIGSEGV, SIGTRAP or SIGILL because the stack
is non executable. If the signal handler set in gdb has option print
or stop enabled for these signals gdb handles this correctly.
However, in the case of noprint and nostop the signal is short-circuited
and the inferior process is sent the signal directly. This causes the
inferior to crash because of gdb.
This patch adds a check for SIGSEGV, SIGTRAP or SIGILL so that these
signals are sent to gdb rather than short-circuited in the inferior.
gdb then handles them properly and the inferior process does not
crash.
This patch also fixes the same behavior in gdbserver.
Also added a small testcase to test the issue called catch-gdb-caused-signals.
This applies to Linux only, tested on Linux.
gdb/ChangeLog:
PR breakpoints/16812
* linux-nat.c (linux_nat_filter_event): Report SIGTRAP,SIGILL,SIGSEGV.
* nat/linux-ptrace.c (linux_wstatus_maybe_breakpoint): Add.
* nat/linux-ptrace.h: Add linux_wstatus_maybe_breakpoint.
gdb/gdbserver/ChangeLog:
PR breakpoints/16812
* linux-low.c (wstatus_maybe_breakpoint): Remove.
(linux_low_filter_event): Update wstatus_maybe_breakpoint name.
(linux_wait_1): Report SIGTRAP,SIGILL,SIGSEGV.
gdb/testsuite/ChangeLog:
PR breakpoints/16812
* gdb.base/catch-gdb-caused-signals.c: New file.
* gdb.base/catch-gdb-caused-signals.exp: New file.
When gdbserver is called with --multi and attach has not been called yet
and tstart is called on the gdb client, gdbserver would crash.
This patch fixes gdbserver so that it returns E01 to the gdb client.
Also this patch adds a testcase to verify this bug named no-attach-trace.exp
gdb/gdbserver/ChangeLog:
PR breakpoints/15956
* tracepoint.c (cmd_qtinit): Add check for current_thread.
gdb/testsuite/ChangeLog:
* gdb.trace/no-attach-trace.c: New file.
* gdb.trace/no-attach-trace.exp: New file.
Allow the size of the branch trace ring buffer to be defined by the
user. The specified buffer size will be used when BTS tracing is
enabled for new threads.
The obtained buffer size may differ from the requested size. The
actual buffer size for the current thread is shown in the "info record"
command.
Bigger buffers mean longer traces, but also longer processing time.
2015-02-09 Markus Metzger <markus.t.metzger@intel.com>
* btrace.c (parse_xml_btrace_conf_bts): Add size.
(btrace_conf_bts_attributes): New.
(btrace_conf_children): Add attributes.
* common/btrace-common.h (btrace_config_bts): New.
(btrace_config)<bts>: New.
(btrace_config): Update comment.
* nat/linux-btrace.c (linux_enable_btrace, linux_enable_bts):
Use config.
* features/btrace-conf.dtd: Increment version. Add size
attribute to bts element.
* record-btrace.c (set_record_btrace_bts_cmdlist,
show_record_btrace_bts_cmdlist): New.
(record_btrace_adjust_size, record_btrace_print_bts_conf,
record_btrace_print_conf, cmd_set_record_btrace_bts,
cmd_show_record_btrace_bts): New.
(record_btrace_info): Call record_btrace_print_conf.
(_initialize_record_btrace): Add commands.
* remote.c: Add PACKET_Qbtrace_conf_bts_size enum.
(remote_protocol_features): Add Qbtrace-conf:bts:size packet.
(btrace_sync_conf): Synchronize bts size.
(_initialize_remote): Add Qbtrace-conf:bts:size packet.
* NEWS: Announce new commands and new packets.
doc/
* gdb.texinfo (Branch Trace Configuration Format): Add size.
(Process Record and Replay): Describe new set|show commands.
(General Query Packets): Describe Qbtrace-conf:bts:size packet.
testsuite/
* gdb.btrace/buffer-size: New.
gdbserver/
* linux-low.c (linux_low_btrace_conf): Print size.
* server.c (handle_btrace_conf_general_set): New.
(hanle_general_set): Call handle_btrace_conf_general_set.
(handle_query): Report Qbtrace-conf:bts:size as supported.
Add a struct to describe the branch trace configuration and use it for
enabling branch tracing.
The user will be able to set configuration fields for each tracing format
to be used for new threads.
The actual configuration that is active for a given thread will be shown
in the "info record" command.
At the moment, the configuration struct only contains a format field
that is set to the only available format.
The format is the only configuration option that can not be set via set
commands. It is given as argument to the "record btrace" command when
starting recording.
2015-02-09 Markus Metzger <markus.t.metzger@intel.com>
* Makefile.in (XMLFILES): Add btrace-conf.dtd.
* x86-linux-nat.c (x86_linux_enable_btrace): Update parameters.
(x86_linux_btrace_conf): New.
(x86_linux_create_target): Initialize to_btrace_conf.
* nat/linux-btrace.c (linux_enable_btrace): Update parameters.
Check format. Split into this and ...
(linux_enable_bts): ... this.
(linux_btrace_conf): New.
(perf_event_skip_record): Renamed into ...
(perf_event_skip_bts_record): ... this. Updated users.
(linux_disable_btrace): Split into this and ...
(linux_disable_bts): ... this.
(linux_read_btrace): Check format.
* nat/linux-btrace.h (linux_enable_btrace): Update parameters.
(linux_btrace_conf): New.
(btrace_target_info)<ptid>: Moved.
(btrace_target_info)<conf>: New.
(btrace_target_info): Split into this and ...
(btrace_tinfo_bts): ... this. Updated users.
* btrace.c (btrace_enable): Update parameters.
(btrace_conf, parse_xml_btrace_conf_bts, parse_xml_btrace_conf)
(btrace_conf_children, btrace_conf_attributes)
(btrace_conf_elements): New.
* btrace.h (btrace_enable): Update parameters.
(btrace_conf, parse_xml_btrace_conf): New.
* common/btrace-common.h (btrace_config): New.
* feature/btrace-conf.dtd: New.
* record-btrace.c (record_btrace_conf): New.
(record_btrace_cmdlist): New.
(record_btrace_enable_warn, record_btrace_open): Pass
&record_btrace_conf.
(record_btrace_info): Print recording format.
(cmd_record_btrace_bts_start): New.
(cmd_record_btrace_start): Call cmd_record_btrace_bts_start.
(_initialize_record_btrace): Add "record btrace bts" subcommand.
Add "record bts" alias command.
* remote.c (remote_state)<btrace_config>: New.
(remote_btrace_reset, PACKET_qXfer_btrace_conf): New.
(remote_protocol_features): Add qXfer:btrace-conf:read.
(remote_open_1): Call remote_btrace_reset.
(remote_xfer_partial): Handle TARGET_OBJECT_BTRACE_CONF.
(btrace_target_info)<conf>: New.
(btrace_sync_conf, btrace_read_config): New.
(remote_enable_btrace): Update parameters. Call btrace_sync_conf and
btrace_read_conf.
(remote_btrace_conf): New.
(init_remote_ops): Initialize to_btrace_conf.
(_initialize_remote): Add qXfer:btrace-conf packet.
* target.c (target_enable_btrace): Update parameters.
(target_btrace_conf): New.
* target.h (target_enable_btrace): Update parameters.
(target_btrace_conf): New.
(target_object)<TARGET_OBJECT_BTRACE_CONF>: New.
(target_ops)<to_enable_btrace>: Update parameters and comment.
(target_ops)<to_btrace_conf>: New.
* target-delegates: Regenerate.
* target-debug.h (target_debug_print_const_struct_btrace_config_p)
(target_debug_print_const_struct_btrace_target_info_p): New.
NEWS: Announce new command and new packet.
doc/
* gdb.texinfo (Process Record and Replay): Describe the "record
btrace bts" command.
(General Query Packets): Describe qXfer:btrace-conf:read packet.
(Branch Trace Configuration Format): New.
gdbserver/
* linux-low.c (linux_low_enable_btrace): Update parameters.
(linux_low_btrace_conf): New.
(linux_target_ops)<to_btrace_conf>: Initialize.
* server.c (current_btrace_conf): New.
(handle_btrace_enable): Rename to ...
(handle_btrace_enable_bts): ... this. Pass ¤t_btrace_conf
to target_enable_btrace. Update comment. Update users.
(handle_qxfer_btrace_conf): New.
(qxfer_packets): Add btrace-conf entry.
(handle_query): Report qXfer:btrace-conf:read as supported packet.
* target.h (target_ops)<enable_btrace>: Update parameters and comment.
(target_ops)<read_btrace_conf>: New.
(target_enable_btrace): Update parameters.
(target_read_btrace_conf): New.
testsuite/
* gdb.btrace/delta.exp: Update "info record" output.
* gdb.btrace/enable.exp: Update "info record" output.
* gdb.btrace/finish.exp: Update "info record" output.
* gdb.btrace/instruction_history.exp: Update "info record" output.
* gdb.btrace/next.exp: Update "info record" output.
* gdb.btrace/nexti.exp: Update "info record" output.
* gdb.btrace/step.exp: Update "info record" output.
* gdb.btrace/stepi.exp: Update "info record" output.
* gdb.btrace/nohist.exp: Update "info record" output.
Add a format argument to the various supports_btrace functions to check
for support of a specific btrace format. This is to prepare for a new
format.
Removed two redundant calls. The check will be made in the subsequent
btrace_enable call.
2015-02-09 Markus Metzger <markus.t.metzger@intel.com>
* btrace.c (btrace_enable): Pass BTRACE_FORMAT_BTS.
* record-btrace.c (record_btrace_open): Remove call to
target_supports_btrace.
* remote.c (remote_supports_btrace): Update parameters.
* target.c (target_supports_btrace): Update parameters.
* target.h (to_supports_btrace, target_supports_btrace): Update
parameters.
* target-delegates.c: Regenerate.
* target-debug.h (target_debug_print_enum_btrace_format): New.
* nat/linux-btrace.c
(kernel_supports_btrace): Rename into ...
(kernel_supports_bts): ... this. Update users. Update warning text.
(intel_supports_btrace): Rename into ...
(intel_supports_bts): ... this. Update users.
(cpu_supports_btrace): Rename into ...
(cpu_supports_bts): ... this. Update users.
(linux_supports_btrace): Update parameters. Split into this and ...
(linux_supports_bts): ... this.
* nat/linux-btrace.h (linux_supports_btrace): Update parameters.
gdbserver/
* server.c (handle_btrace_general_set): Remove call to
target_supports_btrace.
(supported_btrace_packets): New.
(handle_query): Call supported_btrace_packets.
* target.h: include btrace-common.h.
(btrace_target_info): Removed.
(supports_btrace, target_supports_btrace): Update parameters.
Add a structure to hold the branch trace data and an enum to describe
the format of that data. So far, only BTS is supported. Also added
a NONE format to indicate that no branch trace data is available.
This will make it easier to support different branch trace formats in
the future.
2015-02-09 Markus Metzger <markus.t.metzger@intel.com>
* Makefile.in (SFILES): Add common/btrace-common.c.
(COMMON_OBS): Add common/btrace-common.o.
(btrace-common.o): Add build rules.
* btrace.c (parse_xml_btrace): Update parameters.
(parse_xml_btrace_block): Set format field.
(btrace_add_pc, btrace_fetch): Use struct btrace_data.
(do_btrace_data_cleanup, make_cleanup_btrace_data): New.
(btrace_compute_ftrace): Split into this and...
(btrace_compute_ftrace_bts): ...this.
(btrace_stitch_trace): Split into this and...
(btrace_stitch_bts): ...this.
* btrace.h (parse_xml_btrace): Update parameters.
(make_cleanup_btrace_data): New.
* common/btrace-common.c: New.
* common/btrace-common.h: Include common-defs.h.
(btrace_block_s): Update comment.
(btrace_format): New.
(btrace_format_string): New.
(btrace_data_bts): New.
(btrace_data): New.
(btrace_data_init, btrace_data_fini, btrace_data_empty): New.
* remote.c (remote_read_btrace): Update parameters.
* target.c (target_read_btrace): Update parameters.
* target.h (target_read_btrace): Update parameters.
(target_ops)<to_read_btrace>: Update parameters.
* x86-linux-nat.c (x86_linux_read_btrace): Update parameters.
* target-delegates.c: Regenerate.
* target-debug (target_debug_print_struct_btrace_data_p): New.
* nat/linux-btrace.c (linux_read_btrace): Split into this and...
(linux_read_bts): ...this.
* nat/linux-btrace.h (linux_read_btrace): Update parameters.
gdbserver/
* Makefile.in (SFILES): Add common/btrace-common.c.
(OBS): Add common/btrace-common.o.
(btrace-common.o): Add build rules.
* linux-low: Include btrace-common.h.
(linux_low_read_btrace): Use struct btrace_data. Call
btrace_data_init and btrace_data_fini.
Add a bit of debug output that made things a bit easier for me before.
gdb/
2015-02-06 Pedro Alves <palves@redhat.com>
* linux-thread-db.c (find_new_threads_callback): Add debug output.
gdb/gdbserver/
2015-02-06 Pedro Alves <palves@redhat.com>
* thread-db.c (find_new_threads_callback): Add debug output.
Since the starvation avoidance series
(https://sourceware.org/ml/gdb-patches/2014-12/msg00631.html), both
GDB and GDBserver pull all events out of ptrace before deciding which
event to process.
There's one problem with that though. Because we resume new threads
immediately when we see a PTRACE_EVENT_CLONE event, if the program
constantly spawns threads fast enough, new threads can spawn threads
faster we can pull events out of the kernel, and thus we'd get stuck
in an infinite loop, never returning any event to the core to process.
I occasionally see this happen with the
attach-many-short-lived-threads.exp test against gdbserver.
The fix is to delay resuming new threads until we've pulled out all
events out of the kernel.
On native, we already have the resume_stopped_resumed_lwps function
that knows to resume LWPs that are stopped with no event to report to
the core. So the patch just adds another use. GDBserver didn't have
the equivalent yet, so the patch adds one.
Tested on x86_64 Fedora 20, native and gdbserver (remote and
extended-remote).
gdb/gdbserver/ChangeLog:
2015-02-04 Pedro Alves <palves@redhat.com>
* linux-low.c (handle_extended_wait): Don't resume LWPs here.
(resume_stopped_resumed_lwps): New function.
(linux_wait_for_event_filtered): Use it.
gdb/ChangeLog:
2015-02-04 Pedro Alves <palves@redhat.com>
* linux-nat.c (handle_extended_wait): Don't resume LWPs here.
(wait_lwp): Don't call wait_lwp if linux_handle_extended_wait
returns true.
(resume_stopped_resumed_lwps): Don't check whether the thread is
marked as executing.
(linux_nat_wait_1): Use resume_stopped_resumed_lwps.
This patch moves the shared code present on
gdb/linux-nat.c:linux_nat_create_inferior and
gdb/gdbserver/linux-low.c:linux_create_inferior to
nat/linux-personality.c. This code is responsible for disabling
address space randomization based on user setting, and using
<sys/personality.h> to do that. I decided to put the prototype of the
maybe_disable_address_space_randomization on nat/linux-osdata.h
because it seemed the best place to put it.
I regression-tested this patch on Fedora 20 x86_64, and found no
regressions.
gdb/ChangeLog
2015-01-15 Sergio Durigan Junior <sergiodj@redhat.com>
* Makefile.in (HFILES_NO_SRCDIR): Add nat/linux-personality.h.
(linux-personality.o): New rule.
* common/common-defs.h: Include <stdint.h>.
* config/aarch64/linux.mh (NATDEPFILES): Include
linux-personality.o.
* config/alpha/alpha-linux.mh (NATDEPFILES): Likewise.
* config/arm/linux.mh (NATDEPFILES): Likewise.
* config/i386/linux64.mh (NATDEPFILES): Likewise.
* config/i386/linux.mh (NATDEPFILES): Likewise.
* config/ia64/linux.mh (NATDEPFILES): Likewise.
* config/m32r/linux.mh (NATDEPFILES): Likewise.
* config/m68k/linux.mh (NATDEPFILES): Likewise.
* config/mips/linux.mh (NATDEPFILES): Likewise.
* config/pa/linux.mh (NATDEPFILES): Likewise.
* config/powerpc/linux.mh (NATDEPFILES): Likewise.
* config/powerpc/ppc64-linux.mh (NATDEPFILES): Likewise.
* config/powerpc/spu-linux.mh (NATDEPFILES): Likewise.
* config/s390/linux.mh (NATDEPFILES): Likewise.
* config/sparc/linux64.mh (NATDEPFILES): Likewise.
* config/sparc/linux.mh (NATDEPFILES): Likewise.
* config/tilegx/linux.mh (NATDEPFILES): Likewise.
* config/xtensa/linux.mh (NATDEPFILES): Likewise.
* defs.h: Remove #include <stdint.h> (moved to
common/common-defs.h).
* linux-nat.c: Include nat/linux-personality.h. Remove #include
<sys/personality.h>; do not define ADDR_NO_RANDOMIZE (moved to
nat/linux-personality.c).
(linux_nat_create_inferior): Remove code to disable address space
randomization (moved to nat/linux-personality.c). Create cleanup
to disable address space randomization.
* nat/linux-personality.c: New file.
* nat/linux-personality.h: Likewise.
gdb/gdbserver/ChangeLog
2015-01-15 Sergio Durigan Junior <sergiodj@redhat.com>
* Makefile.in (SFILES): Add linux-personality.c.
(linux-personality.o): New rule.
* configure.srv (srv_linux_obj): Add linux-personality.o to the
list of objects to be built.
* linux-low.c: Include nat/linux-personality.h.
(linux_create_inferior): Remove code to disable address space
randomization (moved to ../nat/linux-personality.c). Create
cleanup to disable address space randomization.
This patch moves safe_strerror from the gdb/{posix,mingw}-hdep.c files
to the respective common/{posix,mingw}-strerror.c files. This is a
preparation for the next patch, which shares a common code (to disable
address space randomization when creating a new inferior).
The patch has been regtested on Fedora 20 x86_64, and no regressions
were found.
gdb/ChangeLog
2015-01-15 Sergio Durigan Junior <sergiodj@redhat.com>
* Makefile.in (ALLDEPFILES): Including common/mingw-strerror.c and
common/posix-strerror.c.
(posix-strerror.o): New rule.
(mingw-strerror.o): Likewise.
* common/common-utils.h (safe_strerror): Move prototype to here,
from utils.h.
* common/common.host: New file.
* common/mingw-strerror.c: Likewise.
* common/posix-strerror.c: Likewise.
* configure: Regenerated.
* configure.ac: Source common/common.host. Add variable
common_host_obs to gdb_host_obs.
* contrib/ari/gdb_ari.sh: Mention gdb/common/mingw-strerror.c and
gdb/common/posix-strerror.c when warning about the use of
strerror.
* mingw-hdep.c (safe_strerror): Remove definition; move it to
common/mingw-strerror.c.
* posix-hdep.c (safe_strerror): Remove definition; move it to
common/posix-hdep.c.
* utils.h (safe_strerror): Remove prototype; move to
common/common-utils.h.
gdb/gdbserver/ChangeLog
2015-01-15 Sergio Durigan Junior <sergiodj@redhat.com>
* Makefile.in (posix-strerror.o): New rule.
(mingw-strerror.o): Likewise.
* configure: Regenerated.
* configure.ac: Source file ../common/common.host. Initialize new
variable srv_host_obs. Add srv_host_obs to GDBSERVER_DEPFILES.
This patch is to teach both GDB and GDBServer to detect 64-bit inferior
correctly. We find a problem that GDBServer is unable to detect on a
e5500 core processor. Current GDBServer assumes that MSR is a 64-bit
register, but MSR is a 32-bit register in Book III-E. This patch is
to fix this problem by checking the right bit in MSR, in order to handle
both Book III-S and Book III-E. In order to detect Book III-S and
Book III-E, we check the PPC_FEATURE_BOOKE from the host's HWCAP (by
getauxval on glibc >= 2.16. If getauxval doesn't exist, we implement
the fallback by parsing /proc/self/auxv), because it should an invariant
on the same machine cross different processes.
In order to share code, I add nat/ppc-linux.c for both GDB and
GDBserver side.
gdb:
2015-01-14 Yao Qi <yao@codesourcery.com>
* Makefile.in (ppc-linux.o): New rule.
* config/powerpc/ppc64-linux.mh (NATDEPFILES): Add ppc-linux.o.
* configure.ac: AC_CHECK_FUNCS(getauxval).
* config.in: Re-generated.
* configure: Re-generated.
* nat/ppc-linux.h [__powerpc64__] (ppc64_64bit_inferior_p):
Declare.
* nat/ppc-linux.c: New file.
* ppc-linux-nat.c (ppc_linux_target_wordsize) [__powerpc64__]:
Call ppc64_64bit_inferior_p.
gdb/gdbserver:
2015-01-14 Yao Qi <yao@codesourcery.com>
* Makefile.in (SFILES): Add nat/ppc-linux.c.
(ppc-linux.o): New rule.
* configure.srv (powerpc*-*-linux*): Add ppc-linux.o.
* configure.ac: AC_CHECK_FUNCS(getauxval).
* config.in: Re-generated.
* configure: Re-generated.
* linux-ppc-low.c (ppc_arch_setup) [__powerpc64__]: Call
ppc64_64bit_inferior_p
When I use PPC_FEATURE_BOOKE in GDBserver, I find it is defined in GDB
but not in GDBserver. After taking a further look, I find some macros
are duplicated between ppc-linux-nat.c and linux-ppc-low.c, so this
patch is to move them into nat/ppc-linux.h.
gdb/gdbserver:
2015-01-14 Yao Qi <yao@codesourcery.com>
* linux-ppc-low.c: Include "nat/ppc-linux.h".
(PPC_FEATURE_HAS_VSX): Move to nat/ppc-linux.h.
(PPC_FEATURE_HAS_ALTIVEC, PPC_FEATURE_HAS_SPE): Likewise.
(PT_ORIG_R3, PT_TRAP): Likewise.
(PTRACE_GETVSXREGS, PTRACE_SETVSXREGS): Likewise.
(PTRACE_GETVRREGS, PTRACE_SETVRREGS): Likewise.
(PTRACE_GETEVRREGS, PTRACE_SETEVRREGS): Likewise.
gdb:
2015-01-14 Yao Qi <yao@codesourcery.com>
* ppc-linux-nat.c (PT_ORIG_R3, PT_TRAP): Move to
nat/ppc-linux.h.
(PPC_FEATURE_CELL, PPC_FEATURE_BOOKE): Likewise.
(PPC_FEATURE_HAS_DFP): Likewise.
(PTRACE_GETVRREGS, PTRACE_SETVRREGS): Likewise.
(PTRACE_GETVSXREGS, PTRACE_SETVSXREGS): Likewise.
(PTRACE_GETEVRREGS, PTRACE_SETEVRREGS): Likewise.
Include "nat/ppc-linux.h".
* nat/ppc-linux.h: New file.
* Makefile.in (HFILES_NO_SRCDIR): Add nat/ppc-linux.h.
gdb/gdbserver/ChangeLog:
* i387-fp.c (i387_cache_to_xsave): In look over
num_avx512_zmmh_high_registers, replace use of struct i387_xsave
zmmh_low_space field by use of zmmh_high_space.
Tested on x86_64-linux, using boards/native-gdbserver.exp.
This patch applies the same starvation avoidance improvements of the
previous patch to the Linux gdbserver side.
Without this, the test added by the following commit
(gdb.threads/non-stop-fair-events.exp) always fails with time outs.
gdb/gdbserver/
2015-01-09 Pedro Alves <palves@redhat.com>
* linux-low.c (step_over_bkpt): Move higher up in the file.
(handle_extended_wait): Don't store the stop_pc here.
(get_stop_pc): Adjust comments and rename to ...
(check_stopped_by_breakpoint): ... this. Record whether the LWP
stopped for a software breakpoint or hardware breakpoint.
(thread_still_has_status_pending_p): New function.
(status_pending_p_callback): Use
thread_still_has_status_pending_p. If the event is no longer
interesting, resume the LWP.
(handle_tracepoints): Add assert.
(maybe_move_out_of_jump_pad): Remove cancel_breakpoints call.
(wstatus_maybe_breakpoint): New function.
(cancel_breakpoint): Delete function.
(check_stopped_by_watchpoint): New function, factored out from
linux_low_filter_event.
(lp_status_maybe_breakpoint): Delete function.
(linux_low_filter_event): Remove filter_ptid argument.
Leave thread group exits pending here. Store the LWP's stop PC.
Always leave events pending.
(linux_wait_for_event_filtered): Pull all events out of the
kernel, and leave them all pending.
(count_events_callback, select_event_lwp_callback): Consider all
events.
(cancel_breakpoints_callback, linux_cancel_breakpoints): Delete.
(select_event_lwp): Only give preference to the stepping LWP in
all-stop mode. Adjust comments.
(ignore_event): New function.
(linux_wait_1): Delete 'retry' label. Use ignore_event. Remove
references to cancel_breakpoints. Adjust to renames. Also give
equal priority to all LWPs that have had events in non-stop mode.
If reporting a software breakpoint event, unadjust the LWP's PC.
(linux_wait): If linux_wait_1 returned an ignored event, retry.
(stuck_in_jump_pad_callback, move_out_of_jump_pad_callback):
Adjust.
(linux_resume_one_lwp): Store the LWP's PC. Adjust.
(resume_status_pending_p): Use thread_still_has_status_pending_p.
(linux_stopped_by_watchpoint): Adjust.
(linux_target_ops): Remove reference to linux_cancel_breakpoints.
* linux-low.h (enum lwp_stop_reason): New.
(struct lwp_info) <stop_pc>: Adjust comment.
<stopped_by_watchpoint>: Delete field.
<stop_reason>: New field.
* linux-x86-low.c (x86_linux_prepare_to_resume): Adjust.
* mem-break.c (software_breakpoint_inserted_here)
(hardware_breakpoint_inserted_here): New function.
* mem-break.h (software_breakpoint_inserted_here)
(hardware_breakpoint_inserted_here): Declare.
* target.h (struct target_ops) <cancel_breakpoints>: Remove field.
(cancel_breakpoints): Delete.
* tracepoint.c (clear_installed_tracepoints, stop_tracing)
(upload_fast_traceframes): Remove references to
cancel_breakpoints.
I wrote a test that attaches to a program that constantly spawns
short-lived threads, which exposed several issues. This is one of
them.
On GNU/Linux, attaching to a multi-threaded program sometimes prints
out warnings like:
...
[New LWP 20700]
warning: unable to open /proc file '/proc/-1/status'
[New LWP 20850]
[New LWP 21019]
...
That happens because when a thread exits, and is joined, glibc does:
nptl/pthread_join.c:
pthread_join ()
{
...
if (__glibc_likely (result == 0))
{
/* We mark the thread as terminated and as joined. */
pd->tid = -1;
...
/* Free the TCB. */
__free_tcb (pd);
}
So if we attach or interrupt the program (which does an implicit "info
threads") at just the right (or rather, wrong) time, we can find and
return threads in the libthread_db/pthreads thread list with kernel
thread ID -1. I've filed glibc PR nptl/17707 for this. You'll find
more info there.
This patch handles this as a special case in GDB.
This is actually more than just a cosmetic issue. lin_lwp_attach_lwp
will think that this -1 is an LWP we're not attached to yet, and after
failing to attach will try to check we were already attached to the
process, using a waitpid call, which in this case ends up being
"waitpid (-1, ...", which obviously results in GDB potentially
discarding an event when it shouldn't...
Tested on x86_64 Fedora 20, native and gdbserver.
gdb/gdbserver/
2015-01-09 Pedro Alves <palves@redhat.com>
* thread-db.c (find_new_threads_callback): Ignore thread if the
kernel thread ID is -1.
gdb/
2015-01-09 Pedro Alves <palves@redhat.com>
* linux-nat.c (lin_lwp_attach_lwp): Assert that the lwp id we're
about to wait for is > 0.
* linux-thread-db.c (find_new_threads_callback): Ignore thread if
the kernel thread ID is -1.
... instead of relying on libthread_db.
I wrote a test that attaches to a program that constantly spawns
short-lived threads, which exposed several issues. This is one of
them.
On Linux, we need to attach to all threads of a process (thread group)
individually. We currently rely on libthread_db to list the threads,
but that is problematic, because libthread_db relies on reading data
structures out of the inferior (which may well be corrupted). If
threads are being created or exiting just while we try to attach, we
may trip on inconsistencies in the inferior's thread list. To work
around that, when we see a seemingly corrupt list, we currently retry
a few times:
static void
thread_db_find_new_threads_2 (ptid_t ptid, int until_no_new)
{
...
if (until_no_new)
{
/* Require 4 successive iterations which do not find any new threads.
The 4 is a heuristic: there is an inherent race here, and I have
seen that 2 iterations in a row are not always sufficient to
"capture" all threads. */
...
That heuristic may well fail, and when it does, we end up with threads
in the program that aren't under GDB's control. That's obviously bad
and results in quite mistifying failures, like e.g., the process dying
for seeminly no reason when a thread that wasn't attached trips on a
breakpoint.
There's really no reason to rely on libthread_db for this nowadays
when we have /proc mounted. In that case, which is the usual case, we
can list the LWPs from /proc/PID/task/. In fact, GDBserver is already
doing this. The patch factors out that code that knows to walk the
task/ directory out of GDBserver, and makes GDB use it too.
Like GDBserver, the patch makes GDB attach to LWPs and _not_ wait for
them to stop immediately. Instead, we just tag the LWP as having an
expected stop. Because we can only set the ptrace options when the
thread stops, we need a new flag in the lwp structure to keep track of
whether we've already set the ptrace options, just like in GDBserver.
Note that nothing issues any ptrace command to the threads between the
PTRACE_ATTACH and the stop, so this is safe (unlike one scenario
described in gdbserver's linux-low.c).
When we attach to a program that has threads exiting while we attach,
it's easy to race with a thread just exiting as we try to attach to
it, like:
#1 - get current list of threads
#2 - attach to each listed thread
#3 - ooops, attach failed, thread is already gone
As this is pretty normal, we shouldn't be issuing a scary warning in
step #3.
When #3 happens, PTRACE_ATTACH usually fails with ESRCH, but sometimes
we'll see EPERM as well. That happens when the kernel still has the
thread in its task list, but the thread is marked as dead.
Unfortunately, EPERM is ambiguous and we'll get it also on other
scenarios where the thread isn't dead, and in those cases, it's useful
to get a warning. To distiguish the cases, when we get an EPERM
failure, we open /proc/PID/status, and check the thread's state -- if
the /proc file no longer exists, or the state is "Z (Zombie)" or "X
(Dead)", we ignore the EPERM error silently; otherwise, we'll warn.
Unfortunately, there seems to be a kernel race here. Sometimes I get
EPERM, and then the /proc state still indicates "R (Running)"... If
we wait a bit and retry, we do end up seeing X or Z state, or get an
ESRCH. I thought of making GDB retry the attach a few times, but even
with a 500ms wait and 4 retries, I still see the warning sometimes. I
haven't been able to identify the kernel path that causes this yet,
but in any case, it looks like a kernel bug to me. As this just
results failure to suppress a warning that we've been printing since
about forever anyway, I'm just making the test cope with it, and issue
an XFAIL.
gdb/gdbserver/
2015-01-09 Pedro Alves <palves@redhat.com>
* linux-low.c (linux_attach_fail_reason_string): Move to
nat/linux-ptrace.c, and rename.
(linux_attach_lwp): Update comment.
(attach_proc_task_lwp_callback): New function.
(linux_attach): Adjust to rename and use
linux_proc_attach_tgid_threads.
(linux_attach_fail_reason_string): Delete declaration.
gdb/
2015-01-09 Pedro Alves <palves@redhat.com>
* linux-nat.c (attach_proc_task_lwp_callback): New function.
(linux_nat_attach): Use linux_proc_attach_tgid_threads.
(wait_lwp, linux_nat_filter_event): If not set yet, set the lwp's
ptrace option flags.
* linux-nat.h (struct lwp_info) <must_set_ptrace_flags>: New
field.
* nat/linux-procfs.c: Include <dirent.h>.
(linux_proc_get_int): New parameter "warn". Handle it.
(linux_proc_get_tgid): Adjust.
(linux_proc_get_tracerpid): Rename to ...
(linux_proc_get_tracerpid_nowarn): ... this.
(linux_proc_pid_get_state): New function, factored out from
(linux_proc_pid_has_state): ... this. Add new parameter "warn"
and handle it.
(linux_proc_pid_is_gone): New function.
(linux_proc_pid_is_stopped): Adjust.
(linux_proc_pid_is_zombie_maybe_warn)
(linux_proc_pid_is_zombie_nowarn): New functions.
(linux_proc_pid_is_zombie): Use
linux_proc_pid_is_zombie_maybe_warn.
(linux_proc_attach_tgid_threads): New function.
* nat/linux-procfs.h (linux_proc_get_tgid): Update comment.
(linux_proc_get_tracerpid): Rename to ...
(linux_proc_get_tracerpid_nowarn): ... this, and update comment.
(linux_proc_pid_is_gone): New declaration.
(linux_proc_pid_is_zombie): Update comment.
(linux_proc_pid_is_zombie_nowarn): New declaration.
(linux_proc_attach_lwp_func): New typedef.
(linux_proc_attach_tgid_threads): New declaration.
* nat/linux-ptrace.c (linux_ptrace_attach_fail_reason): Adjust to
use nowarn functions.
(linux_ptrace_attach_fail_reason_string): Move here from
gdbserver/linux-low.c and rename.
(ptrace_supports_feature): If the current ptrace options are not
known yet, check them now, instead of asserting.
* nat/linux-ptrace.h (linux_ptrace_attach_fail_reason_string):
Declare.
Hi,
This patch is a follow-up of the following discussions:
<https://sourceware.org/ml/gdb-patches/2014-12/msg00421.html>
<https://gcc.gnu.org/ml/gcc-patches/2014-12/msg01293.html>
input_interrupt is currently emiting non-printable characters, which
is confusing the dg-extract-results.sh script. This is obviously not
a good thing, and, by following Pedro's advices here:
<https://gcc.gnu.org/ml/gcc-patches/2014-12/msg01320.html>
I adapted the function to print "client connection closed" when it
receives a NUL character, or use the "isprint" function to decide how
to print the received char. I tested it by running the testcases that
were printing the non-printable chars before:
gdb.base/gdb-sigterm.exp
gdb.threads/non-ldr-exc-1.exp
gdb.threads/non-ldr-exc-2.exp
gdb.threads/non-ldr-exc-3.exp
gdb.threads/non-ldr-exc-4.exp
gdb.threads/thread-execl.exp
and confirming that they print the right message. I tried a bit to
come up with a testcase for this, but failed, and since I did not want
to spend too much time on it, I'm sending the patch anyway.
Comments are welcome, as usual.
gdb/gdbserver/ChangeLog:
2014-12-29 Sergio Durigan Junior <sergiodj@redhat.com>
* remote-utils.c: Include ctype.h.
(input_interrupt): Explicitly handle the case when the char
received is the NUL byte. Improve the printing of non-ASCII
characters.
This patch enhances GDB on GNU/Linux systems in the situation where
we are debugging an inferior that was created from GDB (as opposed
to attached to), by asking the kernel to kill the inferior if GDB
terminates without doing it itself.
This would typically happen when GDB encounters a problem and
crashes, or when it gets killed by an external process. This can
be observed by starting a program under GDB, and then killing
GDB with signal 9. After GDB is killed, the inferior still remains.
This patch also fixes GDBserver similarly.
This fix is conditional on the kernel supporting the PTRACE_O_EXITKILL
feature. On older kernels, the behavior remains unchanged.
gdb/ChangeLog:
* nat/linux-ptrace.h (PTRACE_O_EXITKILL): Define if not
already defined.
(linux_enable_event_reporting): Add parameter "attached".
* nat/linux-ptrace.c (linux_test_for_exitkill): New forward
declaration. New function.
(linux_check_ptrace_features): Add linux_test_for_exitkill call.
(linux_enable_event_reporting): Add new parameter "attached".
Do not call ptrace with the PTRACE_O_EXITKILL if ATTACHED is
nonzero.
* linux-nat.c (linux_init_ptrace): Add parameter "attached".
Use it. Update function description.
(linux_child_post_attach, linux_child_post_startup_inferior):
Update call to linux_enable_event_reporting.
gdb/gdbserver/ChangeLog:
* linux-low.c (linux_low_filter_event): Update call to
linux_enable_event_reporting following the addition of
a new parameter to that function.
Tested on x86_64-linux, native and native-gdbserver.
I also verified by hand that the inferior gets killed when killing
GDB in the "run" case, while the inferior remains in the "attach"
case. Same for GDBserver.
When using aarch64 gdb with gdbserver, floating point registers are
not correctly displayed, as below:
(gdb) info registers fpsr fpcr
fpsr <unavailable>
fpcr <unavailable>
To fix these problems, the missing fpsr and fpcr registers are added
when floating point registers are read/write
Add test for aarch64 floating point
PR server/17457
gdb/gdbserver/
PR server/17457
* linux-aarch64-low.c (AARCH64_FPSR_REGNO): New define.
(AARCH64_FPCR_REGNO): Likewise.
(AARCH64_NUM_REGS): Update to include fpsr/fpcr registers.
(aarch64_fill_fpregset): Add missing fpsr/fpcr registers.
(aarch64_store_fpregset): Likewise.
gdb/testsuite/
PR server/17457
* gdb.arch/aarch64-fp.c: New file.
* gdb.arch/aarch64-fp.exp: New file.
Signed-off-by: Catalin Udma <catalin.udma@freescale.com>
Currently, when we receive a request to single-step one single thread
(Eg, when single-stepping out of a breakpoint), we use the
PTRACE_SINGLESTEP pthread request, which does single-step
the corresponding thread, but also resumes execution of all
other threads in the inferior.
This causes problems when debugging programs where another thread
receives multiple debug events while trying to single-step a specific
thread out of a breakpoint (with infrun traces turned on):
(gdb) continue
Continuing.
infrun: clear_proceed_status_thread (Thread 126)
[...]
infrun: clear_proceed_status_thread (Thread 142)
[...]
infrun: clear_proceed_status_thread (Thread 146)
infrun: clear_proceed_status_thread (Thread 125)
infrun: proceed (addr=0xffffffff, signal=GDB_SIGNAL_DEFAULT, step=0)
infrun: resume (step=1, signal=GDB_SIGNAL_0), trap_expected=1, current thread [Thread 142] at 0x10684838
infrun: wait_for_inferior ()
infrun: target_wait (-1, status) =
infrun: 42000 [Thread 146],
infrun: status->kind = stopped, signal = GDB_SIGNAL_REALTIME_34
infrun: infwait_normal_state
infrun: TARGET_WAITKIND_STOPPED
infrun: stop_pc = 0x10a187f4
infrun: context switch
infrun: Switching context from Thread 142 to Thread 146
infrun: random signal (GDB_SIGNAL_REALTIME_34)
infrun: switching back to stepped thread
infrun: Switching context from Thread 146 to Thread 142
infrun: resume (step=1, signal=GDB_SIGNAL_0), trap_expected=1, current thread [Thread 142] at 0x10684838
infrun: prepare_to_wait
[...handling of similar events for threads 145, 144 and 143 snipped...]
infrun: prepare_to_wait
infrun: target_wait (-1, status) =
infrun: 42000 [Thread 146],
infrun: status->kind = stopped, signal = GDB_SIGNAL_REALTIME_34
infrun: infwait_normal_state
infrun: TARGET_WAITKIND_STOPPED
infrun: stop_pc = 0x10a187f4
infrun: context switch
infrun: Switching context from Thread 142 to Thread 146
../../src/gdb/inline-frame.c:339: internal-error: skip_inline_frames: Assertion `find_inline_frame_state (ptid) == NULL' failed.
What happens is that GDB keeps sending requests to resume one specific
thread, and keeps receiving debugging events for other threads.
Things break down when the one of the other threads receives a debug
event for the second time (thread 146 in the example above).
This patch fixes the problem by making sure that only one thread
gets resumed, thus preventing the other threads from generating
an unexpected event.
gdb/gdbserver/ChangeLog:
* lynx-low.c (lynx_resume): Use PTRACE_SINGLESTEP_ONE if N == 1.
Remove FIXME comment about assumption about N.
This patch mostly aims at fixing a GDB build failure on 32bit Solaris
systems (Sparc and x86), due to a recent gnulib update adding the
readlink module. But it might also fix related issues when configuring
with --disable-largefile.
A side-effect of the gnulib readlink module addition is that it caused
largefile support to be added as well, and in particular
gnulib/import/m4/largefile.m4 introduced the following new #define in
gnulib's config.in:
| +/* Number of bits in a file offset, on hosts where this is settable. */
| +#undef _FILE_OFFSET_BITS
When defined to 64, it triggers an issue with procfs.h while trying
to build sparc-sol2-nat.c:
| #if !defined(_LP64) && _FILE_OFFSET_BITS == 64
| #error "Cannot use procfs in the large file compilation environment"
| #endif
As it turns out, this is a fairly familiar problem, and one of
the reasons behind ACX_LARGEFILE having been created. In that macro,
we have some code which disables largefile support on solaris hosts:
| sparc-*-solaris*|i[3-7]86-*-solaris*)
| changequote([,])dnl
| # On native 32bit sparc and ia32 solaris, large-file and procfs support
| # are mutually exclusive; and without procfs support, the bfd/ elf module
| # cannot provide certain routines such as elfcore_write_prpsinfo
| # or elfcore_write_prstatus. So unless the user explicitly requested
| # large-file support through the --enable-largefile switch, disable
| # large-file support in favor of procfs support.
| test "${target}" = "${host}" -a "x$plugins" = xno \
| && : ${enable_largefile="no"}
| ;;
But gnulib ignores this fact, and so tries to determine how to
enable large-file support irrespective of whether we want it or not.
This patch fixes the issue by passing --disable-largefile to gnulib's
configure when large-file support in GDB is disabled. This is done
by first enhancing ACX_CONFIGURE_DIR to allow us to pass extra
arguments to be passed to the configure command, and then by modifying
GDB's configure to pass --disable-largefile if large-file support
is disabled.
gdb/ChangeLog:
* acx_configure_dir.m4 (ACX_CONFIGURE_DIR): Add support for
new "EXTRA-ARGS" parameter.
* configure.ac: If large-file support is disabled in GDB,
pass --disable-largefile to ACX_CONFIGURE_DIR call for "gnulib".
* configure: Regenerate.
gdb/gdbserver/ChangeLog:
* configure.ac: If large-file support is disabled in GDBserver,
pass --disable-largefile to ACX_CONFIGURE_DIR call for "gnulib".
* configure: Regenerate.
Tested by rebuilding on sparc-solaris and x86_64-linux (with gdbserver).
This fixes the build failure on sparc-solaris. I also verified in
gnulib's config.log file that we pass --disable-largefile in the solaris
case, while we do not in the GNU/Linux case.
This makes gdbserver actually provide values for the TDB registers
when the inferior was stopped in a transaction. The change in
linux-low.c is needed to suppress the warning for an unavailable TDB.
The test case 's390-tdbregs.exp' passes with this patch and fails
without.
gdb/gdbserver/ChangeLog:
* linux-low.c (regsets_fetch_inferior_registers): Suppress the
warning upon ENODATA from ptrace.
* linux-s390-low.c (s390_store_tdb): New.
(s390_regsets): Add regset for NT_S390_TDB.
For GNU/Linux targets using the regsets interface, this change
supports regsets that can be read but not written. The S390 "last
break" regset is an example. So far it had been defined with
regset->set_request == PTRACE_GETREGSET, such that the respective
ptrace call does not cause any harm. Now we just skip the whole
read/modify/write sequence for regsets that do not define a
fill_function.
gdb/gdbserver/ChangeLog:
* linux-low.c (regsets_store_inferior_registers): Skip regsets
without a fill_function.
* linux-s390-low.c (s390_fill_last_break): Remove.
(s390_regsets): Set fill_function to NULL for NT_S390_LAST_BREAK.
(s390_arch_setup): Use regset's size instead of fill_function for
loop end condition.
When fetch_inferior_registers does not update all registers, this
patch assures that no stale register values remain in the register
cache. On Linux platforms using the regsets interface, when one of
the ptrace calls used for fetching the register values returns an
error, this patch also avoids copying the random data returned from
ptrace into the register cache. All unfetched registers are marked
"unavailable" instead.
gdb/gdbserver/ChangeLog:
* linux-low.c (regsets_fetch_inferior_registers): Do not invoke
the regset's store function when ptrace returned an error.
* regcache.c (get_thread_regcache): Invalidate register cache
before fetching inferior's registers.
Replace the while-loops in linux-low.c that iterate over regsets by
for-loops. This makes it clearer what is iterated over. Also, since
"continue" now moves on to the next iteration without having to
increment the regset pointer first, the code is slightly reduced.
In case of EIO the old code did not increment the regset pointer, but
iterated over the same (now disabled) regset again. This extra
iteration is now avoided.
gdb/gdbserver/ChangeLog:
* linux-low.c (regsets_fetch_inferior_registers): Rephrase
while-loop as for-loop.
(regsets_store_inferior_registers): Likewise.
Since readlink module is imported, we can use it unconditionally.
This patch is to remove configure checks and HAVE_READLINK checks in
code. It was mentioned in the patch below
[RFA/commit] gdbserver: return ENOSYS if readlink not supported.
https://sourceware.org/ml/gdb-patches/2012-02/msg00148.html
to use readlink in gdbserver, but we chose something simple at that
moment.
gdb:
2014-11-28 Yao Qi <yao@codesourcery.com>
* configure.ac (AC_CHECK_FUNCS): Remove readlink.
* config.in, configure: Re-generate.
* inf-child.c (inf_child_fileio_readlink): Don't check
HAVE_READLINK is defined.
gdb/gdbserver:
2014-11-28 Yao Qi <yao@codesourcery.com>
* configure.ac(AC_CHECK_FUNCS): Remove readlink.
* config.in, configure: Re-generate.
* hostio.c (handle_unlink): Remove code checking HAVE_READLINK
is defined.
Since gnulib alloca module was imported, we can include alloca.h in
both gdb and gdbserver unconditionally, so this patch adds inclusion
of alloca.h in common-defs.h. This patch also removes AC_FUNC_ALLOCA
in configure.ac because we don't need to check alloca any more.
This patch below is removed in fact.
[RFA/commit] include alloca.h if available.
https://www.sourceware.org/ml/gdb-patches/2010-08/msg00566.html
Since alloca.h is from gnulib now, we don't have to check malloc.h in
configure and include malloc.h in code. This patch also remove them
too.
gdb:
2014-11-21 Yao Qi <yao@codesourcery.com>
* common/common-defs.h: Include alloca.h
* configure.ac: Don't invoke AC_FUNC_ALLOCA.
* configure: Re-generated.
* defs.h: Remove code handling alloca.
* utils.c (gdb_realpath): Don't check HAVE_ALLOCA is defined
or not.
gdb/gdbserver:
2014-11-21 Yao Qi <yao@codesourcery.com>
* configure.ac: Don't invoke AC_FUNC_ALLOCA.
(AC_CHECK_HEADERS): Remove malloc.h.
* configure: Re-generated.
* config.in: Re-generated.
* server.h: Don't include alloca.h and malloc.h.
* gdbreplay.c: Don't check HAVE_ALLOCA_H is defined.
Don't include malloc.h.
We noticed the following error on ppc-lynx178, using just about
any program:
(gdb) tar remote mytarget:4444
Remote debugging using mytarget:4444
0x000100c8 in _start ()
(gdb) b try
Breakpoint 1 at 0x10844: file try.adb, line 11.
(gdb) cont
Continuing.
!!!-> Cannot remove breakpoints because program is no longer writable.
!!!-> Further execution is probably impossible.
Breakpoint 1, try () at try.adb:11
11 Local : Integer := 18;
And, of course, trying to continue yielded the expected outcome:
(gdb) c
Continuing.
warning: Error removing breakpoint 1
Cannot remove breakpoints because program is no longer writable.
Further execution is probably impossible.
It turns out that the problem is caused by an intentional test
against a variable with an undefined value. After GDB receives
notification of the inferior stopping, it tries to remove the
breakpoint by sending a memory-write packet ("X10844,4:9 ").
This leads us to lynx_write_memory, where it tries to split
the memory-write into chunks of 4 bytes. And, in order to handle
writes which are not aligned on word boundaries, we have the
following code:
if (skip > 0 || truncate > 0)
/* We need to read the memory at this address in order to preserve
the data that we are not overwriting. */
lynx_read_memory (addr, (unsigned char *) &buf, xfer_size);
if (errno)
return errno;
(the comment explains what the code is about).
Unfortunately, the not-so-glaring error that we've made here is
that we're checking ERRNO regardless of whether we've called
lynx_read_memory. In our case, because we are writing 4 bytes
aligned on a word boundary, we do not call lynx_read_memory and
therefore test an ERRNO with an undefined value.
gdb/gdbserver/ChangeLog:
* lynx-low.c (lynx_write_memory): Put lynx_read_memory and
corresponding ERRNO check in same block.
As no place in the backends check cont_thread anymore, we can stop
setting and clearing it in places that resume the target and wait for
events. Instead simply clear it whenever a new GDB connects.
gdb/gdbserver/
2014-11-12 Pedro Alves <palves@redhat.com>
* server.c (cont_thread): Update comment.
(start_inferior, attach_inferior): No longer clear cont_thread.
(handle_v_cont): No longer set cont_thread.
(captured_main): Clear cont_thread each time a GDB connects.
There's code in linux_wait_1 that resumes all threads if the Hc thread
disappears. It's the wrong thing to do, as GDB has told GDBserver to
resume only one thread, because e.g., the user has scheduler-locking
enabled, or because GDB was stepping the program over a breakpoint.
Resuming all threads behind GDB's back can't be good in either case.
The right thing to do is to detect that that the (only) resumed thread
is gone, and let GDB know about it. The Linux backend is already
doing that nowadays, since:
commit fa96cb382c
Author: Pedro Alves <palves@redhat.com>
AuthorDate: Thu Feb 27 14:30:08 2014 +0000
Teach GDBserver's Linux backend about no unwaited-for children (TARGET_WAITKIND_NO_RESUMED).
The backend detects that all resumed threads have disappeared, and
returns TARGET_WAITKIND_NO_RESUMED to the core of GDBserver, which
then reports an error to GDB.
There's no need to frob the passed in ptid to wait for the continue
thread either -- linux_wait_for_event only returns events for resumed
threads.
The badness (of resuming threads) can actually be observed in the
testsuite, if we force-disable vCont support in GDBserver -- before
the patch, gdb.threads/no-unwaited-for-left.exp hangs if we disable
vCont:
(gdb) continue
Continuing.
FAIL: gdb.threads/no-unwaited-for-left.exp: continue to breakpoint: break-here (timeout)
... more cascading timeouts ....
After the patch, gdb.threads/no-unwaited-for-left.exp behaves the same
with or without vCont support:
(gdb) continue
Continuing.
[New Thread 32226]
[Switching to Thread 32226]
Breakpoint 2, thread_a (arg=0x0) at /home/pedro/gdb/mygit/build/../src/gdb/testsuite/gdb.threads/no-unwaited-for-left.c:28
28 return 0; /* break-here */
(gdb) PASS: gdb.threads/no-unwaited-for-left.exp: continue to breakpoint: break-here
...
continue
Continuing.
warning: Remote failure reply: E.No unwaited-for children left.
[Thread 32222] #1 stopped.
(gdb) FAIL: gdb.threads/no-unwaited-for-left.exp: continue stops when the main thread exits
Overall, this is also good for getting rid of a RSP detail from the backend.
gdb/gdbserver/
2014-11-12 Pedro Alves <palves@redhat.com>
* linux-low.c (linux_wait_1): Don't force a wait for the Hc
thread, and don't resume all threads if the Hc thread has exited.
The target->request_interrupt callback implements the handling for
ctrl-c. User types ctrl-c in GDB, GDB sends a \003 to the remote
target, and the remote targets stops the program with a SIGINT, just
like if the user typed ctrl-c in GDBserver's terminal.
The trouble is that using kill_lwp(signal_pid, SIGINT) sends the
SIGINT directly to the program's main thread. If that thread has
exited already, then that kill won't do anything.
Instead, send the SIGINT to the process group, just like GDB
does (see inf-ptrace.c:inf_ptrace_stop).
gdb.threads/leader-exit.exp is extended to cover the scenario. It
fails against GDBserver before the patch.
Tested on x86_64 Fedora 20, native and GDBserver.
gdb/gdbserver/
2014-11-12 Pedro Alves <palves@redhat.com>
* linux-low.c (linux_request_interrupt): Always send a SIGINT to
the process group instead of to a specific LWP.
gdb/testsuite/
2014-11-12 Pedro Alves <palves@redhat.com>
* gdb.threads/leader-exit.exp: Test sending ctrl-c works after the
leader has exited.
Don't use debug_reg_state for both:
* "intent" - what we want the debug registers to look like
* "reality" - what/which were the contents of the DR registers when
the event triggered
Reserve it for the former only, like in the GNU/Linux port.
Otherwise the core x86 debug registers code can get confused if the
inferior itself changes the debug registers since GDB last set them.
This is also a requirement for being able to set watchpoints while the
target is running, if/when we get to it on Windows. See the big
comment in x86_dr_stopped_data_address.
Seems to me this may also fixes propagating watchpoints to all threads
-- continue_one_thread only calls win32_set_thread_context (what
copies the DR registers to the thread), if something already fetched
the thread's context before. Something else may be masking this
issue, I haven't checked.
Smoke tested by running gdbserver under Wine, connecting to it from
GNU/Linux, and checking that I could trigger a watchpoint as expected.
Joel tested it on x86-windows using AdaCore's testsuite.
gdb/gdbserver/
2014-10-15 Pedro Alves <palves@redhat.com>
PR server/17487
* win32-arm-low.c (arm_set_thread_context): Remove current_event
parameter.
(arm_set_thread_context): Delete.
(the_low_target): Adjust.
* win32-i386-low.c (debug_registers_changed)
(debug_registers_used): Delete.
(update_debug_registers_callback): New function.
(x86_dr_low_set_addr, x86_dr_low_set_control): Mark all threads as
needing to update their debug registers.
(win32_get_current_dr): New function.
(x86_dr_low_get_addr, x86_dr_low_get_control)
(x86_dr_low_get_status): Fetch the debug register from the thread
record's context.
(i386_initial_stuff): Adjust.
(i386_get_thread_context): Remove current_event parameter. Don't
clear debug_registers_changed nor copy DR values to
debug_reg_state.
(i386_set_thread_context): Delete.
(i386_prepare_to_resume): New function.
(i386_thread_added): Mark the thread as needing to update irs
debug registers.
(the_low_target): Remove i386_set_thread_context and install
i386_prepare_to_resume.
* win32-low.c (win32_get_thread_context): Adjust.
(win32_set_thread_context): Use SetThreadContext
directly.
(win32_prepare_to_resume): New function.
(win32_require_context): New function, factored out from ...
(thread_rec): ... this.
(continue_one_thread): Call win32_prepare_to_resume on each thread
we're about to continue.
(win32_resume): Call win32_prepare_to_resume on the event thread.
* win32-low.h (struct win32_thread_info)
<debug_registers_changed>: New field.
(struct win32_target_ops): Change prototype of set_thread_context,
delete set_thread_context and add prepare_to_resume.
(win32_require_context): New declaration.
This commit includes common-exceptions.h in common-defs.h and removes
all other inclusions.
gdb/ChangeLog:
* common/common-defs.h: Include common-exceptions.h.
* exceptions.h: Do not include common-exceptions.h.
gdb/gdbserver/ChangeLog:
* server.h: Do not include common-exceptions.h.
This commit includes cleanups.h in common-defs.h and removes all other
inclusions.
gdb/ChangeLog:
* common/common-defs.h: Include cleanups.h.
* common/common-exceptions.c: Do not include cleanups.h.
* utils.h: Likewise.
gdb/gdbserver/ChangeLog:
* server.h: Do not include cleanups.h.
I see the following fail on arm-none-linux-gnueabi testing,
(gdb) continue^M
Continuing.^M
^M
Program received signal SIGILL, Illegal instruction.^M
[Switching to Thread 1003]^M
handler (signo=10) at
/scratch/yqi/arm-none-linux-gnueabi/src/gdb-trunk/gdb/testsuite/gdb.threads/sigstep-threads.c:33^M
33 tgkill (getpid (), gettid (), SIGUSR1); /* step-2 */^M
(gdb) FAIL: gdb.threads/sigstep-threads.exp: continue
the cause is that GDBserver doesn't cancel the breakpoint if the stop
signal is SIGILL. The kernel used here is a little old, 2.6.x, and
doesn't translate SIGILL to SIGTRAP when program hits breakpoint
instruction (which is an illegal instruction actually). GDB and
GDBserver can translate SIGILL to SIGTRAP under certain circumstance,
so it is not a problem here. See gdbserver/linux-low.c:linux_wait_1
/* If this event was not handled before, and is not a SIGTRAP, we
report it. SIGILL and SIGSEGV are also treated as traps in case
a breakpoint is inserted at the current PC. If this target does
not support internal breakpoints at all, we also report the
SIGTRAP without further processing; it's of no concern to us. */
maybe_internal_trap
= (supports_breakpoints ()
&& (WSTOPSIG (w) == SIGTRAP
|| ((WSTOPSIG (w) == SIGILL
|| WSTOPSIG (w) == SIGSEGV)
&& (*the_low_target.breakpoint_at) (event_child->stop_pc))));
However, SIGILL and SIGSEGV is not considered when cancelling
breakpoint, which causes the fail above. That is, when GDB is doing
software single step on address ADDR, both thread A and thread B hits the
software single step breakpoint, and get SIGILL. GDB selects the event
from thread A, removes the software single step breakpoint, and resume
the program. The event (SIGILL) from thread B is reported to GDB, but
GDB doesn't regard this SIGILL as SIGTRAP, because the breakpoint on
address ADDR was removed, so GDB reports "Program received signal
SIGILL".
The patch is to allow calling cancel_breakpoint if the signal is
SIGILL and SIGSEGV. This patch fixes the fail above. Likewise, event
lwp selection should honour SIGILL and SIGSEGV too.
gdb/gdbserver:
2014-09-23 Yao Qi <yao@codesourcery.com>
* linux-low.c (lp_status_maybe_breakpoint): New function.
(linux_low_filter_event): Call lp_status_maybe_breakpoint.
(count_events_callback): Likewise.
(select_event_lwp_callback): Likewise.
(cancel_breakpoints_callback): Likewise.
This commit renames target_stop_ptid as target_stop_and_wait and
target_continue_ptid as target_continue_no_signal. Comments are
updated to more fully describe the functions' behaviour.
gdb/ChangeLog:
* target/target.h (target_stop_ptid): Renamed as...
(target_stop_and_wait): New function. Updated comment.
All uses updated.
(target_continue_ptid): Renamed as...
(target_continue_no_signal): New function. Updated comment.
All uses updated.
This commit implements functions for identifying and extracting extended
ptrace event information from a Linux wait status. These are just
convenience functions intended to hide the ">> 16" used to extract the
event from the wait status word, replacing the hard-coded shift with a more
descriptive function call. This is preparatory work for implementation of
follow-fork and detach-on-fork for extended-remote linux targets.
gdb/ChangeLog:
* linux-nat.c (linux_handle_extended_wait): Call
linux_ptrace_get_extended_event.
(wait_lwp): Call linux_is_extended_waitstatus.
(linux_nat_filter_event): Call linux_ptrace_get_extended_event
and linux_is_extended_waitstatus.
* nat/linux-ptrace.c (linux_test_for_tracefork): Call
linux_ptrace_get_extended_event.
(linux_ptrace_get_extended_event): New function.
(linux_is_extended_waitstatus): New function.
* nat/linux-ptrace.h (linux_ptrace_get_extended_event)
(linux_is_extended_waitstatus): New declarations.
gdb/gdbserver/ChangeLog:
* linux-low.c (handle_extended_wait): Call
linux_ptrace_get_extended_event.
(get_stop_pc, get_detach_signal, linux_low_filter_event): Call
linux_is_extended_waitstatus.
---
In gdb/gdbserver/Makefile.in, IPAGENT_CFLAGS is defined using
an expression which references $(CPPFLAGS). But CPPFLAGS isn't
actually defined.
This patch first adds a CPPFLAGS definition, so as to inherit
the value passed at configure time (if any). And it then makes it
part of INTERNAL_CFLAGS_BASE, instead. There is no reason that
CPPFLAGS be useful for a certain class of source files, and not
the rest. This is also consistent with what's done in GDB.
gdb/gdbserver/ChangeLog:
* Makefile.in (CPPFLAGS): Define.
(INTERNAL_CFLAGS_BASE): Add ${CPPFLAGS}.
(IPAGENT_CFLAGS): Remove ${CPPFLAGS}.
Tested by rebuilding GDBserver with a dummy CPPFLAGS, and verifying
that the compilation command was altered as expected.
GDB has a function named "current_inferior" and gdbserver has a global
variable named "current_inferior", but the two are not equivalent;
indeed, gdbserver does not have any real equivalent of what GDB calls
an inferior. What gdbserver's "current_inferior" is actually pointing
to is a structure describing the current thread. This commit renames
current_inferior as current_thread in gdbserver to clarify this. It
also renames the function "set_desired_inferior" to "set_desired_thread"
and renames various local variables from foo_inferior to foo_thread.
gdb/gdbserver/ChangeLog:
* inferiors.h (current_inferior): Renamed as...
(current_thread): New variable. All uses updated.
* linux-low.c (get_pc): Renamed saved_inferior as saved_thread.
(maybe_move_out_of_jump_pad): Likewise.
(cancel_breakpoint): Likewise.
(linux_low_filter_event): Likewise.
(wait_for_sigstop): Likewise.
(linux_resume_one_lwp): Likewise.
(need_step_over_p): Likewise.
(start_step_over): Likewise.
(linux_stabilize_threads): Renamed save_inferior as saved_thread.
* linux-x86-low.c (x86_linux_update_xmltarget): Likewise.
* proc-service.c (ps_lgetregs): Renamed reg_inferior as reg_thread
and save_inferior as saved_thread.
* regcache.c (get_thread_regcache): Renamed saved_inferior as
saved_thread.
(regcache_invalidate_thread): Likewise.
* remote-utils.c (prepare_resume_reply): Likewise.
* thread-db.c (thread_db_get_tls_address): Likewise.
(disable_thread_event_reporting): Likewise.
(remove_thread_event_breakpoints): Likewise.
* tracepoint.c (gdb_agent_about_to_close): Renamed save_inferior
as saved_thread.
* target.h (set_desired_inferior): Renamed as...
(set_desired_thread): New declaration. All uses updated.
* server.c (myresume): Updated comment to reference thread instead
of inferior.
(handle_serial_event): Likewise.
(handle_target_event): Likewise.
This introduces common-regcache.h. This contains two functions that
allow nat/linux-btrace.c to be simplified. A better long term
solution would be unify the regcache code, but this is sufficient for
now.
gdb/ChangeLog:
* common/common-regcache.h: New file.
* Makefile.in (HFILES_NO_SRCDIR): Add common/common-regcache.h.
* regcache.h: Include common-regcache.h.
(regcache_read_pc): Don't declare.
* regcache.c (get_thread_regcache_for_ptid): New function.
* nat/linux-btrace.c: Don't include regcache.h.
Include common-regcache.h.
(perf_event_read_bts): Use get_thread_regcache_for_ptid.
gdb/gdbserver/ChangeLog:
* regcache.h: Include common-regcache.h.
(regcache_read_pc): Don't declare.
* regcache.c (get_thread_regcache_for_ptid): New function.
This introduces common/symbol.h. This file declares a function that
the shared code can use and that the clients must implement. It also
changes some shared code to use these functions.
gdb/ChangeLog:
* common/symbol.h: New file.
* Makefile.in (HFILES_NO_SRCDIR): Add common/symbol.h.
* minsyms.c (find_minimal_symbol_address): New function.
* common/agent.c: Include common/symbol.h.
[!GDBSERVER]: Don't include objfiles.h.
(agent_look_up_symbols): Use find_minimal_symbol_address.
gdb/gdbserver/ChangeLog:
* symbol.c: New file.
* Makefile.in (SFILES): Add symbol.c.
(OBS): Add symbol.o.
This commit introduces two new functions to stop and restart target
processes that shared code can use and that clients must implement.
It also changes some shared code to use these functions.
gdb/ChangeLog:
* target/target.h (target_stop_ptid, target_continue_ptid):
Declare.
* target.c (target_stop_ptid, target_continue_ptid): New
functions.
* common/agent.c [!GDBSERVER]: Don't include infrun.h.
(agent_run_command): Always use target_stop_ptid and
target_continue_ptid.
gdb/gdbserver/ChangeLog:
* target.c (target_stop_ptid, target_continue_ptid): New
functions.
This introduces target/target.h. This file declares some functions
that the shared code can use and that clients must implement. It also
changes some shared code to use these functions.
gdb/ChangeLog:
* target/target.h: New file.
* Makefile.in (HFILES_NO_SRCDIR): Add target/target.h.
* target.h: Include target/target.h.
(target_read_memory, target_write_memory): Don't declare.
* target.c (target_read_uint32): New function.
* common/agent.c: Include target/target.h.
[!GDBSERVER]: Don't include target.h.
(helper_thread_id): Type changed to uint32_t.
(agent_get_helper_thread_id): Use target_read_uint32.
(agent_run_command): Always use target_read_memory and
target_write_memory.
(agent_capability): Type changed to uint32_t.
(agent_capability_check): Use target_read_uint32.
gdb/gdbserver/ChangeLog:
* target.h: Include target/target.h.
* target.c (target_read_memory, target_read_uint32)
(target_write_memory): New functions.
This commit adds a new global flag show_debug_regs to common-debug.h
to replace the flag debug_hw_points used by gdbserver and by the
Linux x86 and AArch64 ports, and to replace the flag maint_show_dr
used by the Linux MIPS port.
Note that some debug printing in the AArch64 port was enabled only if
debug_hw_points > 1 but no way to set debug_hw_points to values other
than 0 and 1 was provided; that code was effectively dead. This
commit enables all debug printing if show_debug_regs is nonzero, so
the AArch64 output will be more verbose than previously.
gdb/ChangeLog:
* common/common-debug.h (show_debug_regs): Declare.
* common/common-debug.c (show_debug_regs): Define.
* aarch64-linux-nat.c (debug_hw_points): Don't define. Replace
all uses with show_debug_regs. Replace all uses that considered
debug_hw_points as a multi-value integer with straight boolean
uses.
* x86-nat.c (debug_hw_points): Don't define. Replace all uses
with show_debug_regs.
* nat/x86-dregs.c (debug_hw_points): Don't declare. Replace
all uses with show_debug_regs.
* mips-linux-nat.c (maint_show_dr): Don't define. Replace all
uses with show_debug_regs.
gdb/gdbserver/ChangeLog:
* server.h (debug_hw_points): Don't declare.
* server.c (debug_hw_points): Don't define. Replace all uses
with show_debug_regs.
* linux-aarch64-low.c (debug_hw_points): Don't define. Replace
all uses with show_debug_regs.
This patch fixes the routines to collect and supply ptrace registers on ppc64le
gdbserver. Originally written for big endian arch, they were causing several
issues on little endian. With this fix, the number of unexpected failures in
the testsuite dropped from 263 to 72 on ppc64le.
gdb/gdbserver/ChangeLog
* linux-ppc-low.c (ppc_collect_ptrace_register): Adjust routine to take
endianness into account.
(ppc_supply_ptrace_register): Likewise.
PTRACE_PEEKUSER can return -1, which is usually used to determine whether
a system call has reported an error, so errno must be used alone to
determine whether an error occurred. However errno isn't modified by a
successful system call so it must be reset to a known value (0) before the
syscall call.
Add the missing errno reset when reading the DSP_CONTROL register in the
native MIPS Linux backend and the MIPS gdbserver backend.
gdb/:
* mips-linux-nat.c (mips_linux_read_description): Reset errno to 0
prior to reading DSP_CONTROL with PTRACE_PEEKUSER ptrace call.
gdb/gdbserver/:
* linux-mips-low.c (mips_read_description): Reset errno to 0 prior
to reading DSP_CONTROL with PTRACE_PEEKUSER ptrace call.
The loop macro ALL_DEBUG_REGISTERS does not iterate over the status or
control registers, so its name is misleading. This commit renames it
as ALL_DEBUG_ADDRESS_REGISTERS and updates all uses. This commit also
updates its loop conditions to an equivalent but better form, and
makes two functions use it that had previously hardwired the loop.
A comment on a related field in the x86_debug_reg_state structure is
also updated to reflect that the field refers specifically to address
registers only.
gdb/ChangeLog:
* nat/x86-dregs.h (ALL_DEBUG_REGISTERS): Renamed as...
(ALL_DEBUG_ADDRESS_REGISTERS): New macro. All uses updated.
Loop conditions changed to equivalent form.
(struct x86_debug_reg_state): Updated dr_ref_count comment.
* x86-linux-nat.c (x86_linux_prepare_to_resume): Use
ALL_DEBUG_ADDRESS_REGISTERS.
gdb/gdbserver/ChangeLog:
* linux-x86-low.c (x86_linux_prepare_to_resume): Use
ALL_DEBUG_ADDRESS_REGISTERS.
This commit renames nine files that contain code used by both 32- and
64-bit Intel ports such that their names are prefixed with "x86"
rather than "i386". All types, functions and variables within these
files are likewise renamed such that their names are prefixed with
"x86" rather than "i386". This makes GDB follow the convention used
by gdbserver such that 32-bit Intel code lives in files called
"i386-*", 64-bit Intel code lives in files called "amd64-*", and code
for both 32- and 64-bit Intel lives in files called "x86-*".
This commit only renames OS-independent files. The Linux ports of
both GDB and gdbserver now follow the i386/amd64/x86 convention fully.
Some ports still use the old convention where "i386" in file/function/
type/variable names can mean "32-bit only" or "32- and 64-bit" but I
don't want to touch ports I can't fully test except where absolutely
necessary.
gdb/ChangeLog:
* i386-nat.h: Renamed as...
* x86-nat.h: New file. All type, function and variable name
prefixes changed from "i386_" to "x86_". All references updated.
* i386-nat.c: Renamed as...
* x86-nat.c: New file. All type, function and variable name
prefixes changed from "i386_" to "x86_". All references updated.
* common/i386-xstate.h: Renamed as...
* common/x86-xstate.h: New file. All type, function and variable
name prefixes changed from "i386_" to "x86_". All references
updated.
* nat/i386-cpuid.h: Renamed as...
* nat/x86-cpuid.h: New file. All type, function and variable name
prefixes changed from "i386_" to "x86_". All references updated.
* nat/i386-gcc-cpuid.h: Renamed as...
* nat/x86-gcc-cpuid.h: New file. All type, function and variable
name prefixes changed from "i386_" to "x86_". All references
updated.
* nat/i386-dregs.h: Renamed as...
* nat/x86-dregs.h: New file. All type, function and variable name
prefixes changed from "i386_" to "x86_". All references updated.
* nat/i386-dregs.c: Renamed as...
* nat/x86-dregs.c: New file. All type, function and variable name
prefixes changed from "i386_" to "x86_". All references updated.
gdb/gdbserver/ChangeLog:
* i386-low.h: Renamed as...
* x86-low.h: New file. All type, function and variable name
prefixes changed from "i386_" to "x86_". All references updated.
* i386-low.c: Renamed as...
* x86-low.c: New file. All type, function and variable name
prefixes changed from "i386_" to "x86_". All references updated.
This commit replaces two uses of xcalloc (1, ...) with XCNEW.
gdb/gdbserver/ChangeLog:
* linux-x86-low.c (x86_linux_new_process): Use XCNEW.
(x86_linux_new_thread): Likewise.
This commit replaces the hacky "exception" system in gdbserver with
the exceptions and cleanups subsystem from GDB.
Only the catch/cleanup code in what was "main" has been updated to
use the new system. Other parts of gdbserver can now be converted
to use TRY_CATCH and cleanups on an as-needed basis.
A side-effect of this commit is that some error messages will change
slightly, and in cases with multiple errors the error messages will
be printed in a different order.
gdb/gdbserver/ChangeLog:
* server.h (setjmp.h): Do not include.
(toplevel): Do not declare.
(common-exceptions.h): Include.
(cleanups.h): Likewise.
* server.c (toplevel): Do not define.
(exit_code): New static global.
(detach_or_kill_for_exit_cleanup): New function.
(main): New function. Original main renamed to...
(captured_main): New function.
* utils.c (verror) [!IN_PROCESS_AGENT]: Use throw_verror.
This commit creates a new file, common/gdb_setjmp.h, to hold some
portability macros for setjmp/longjmp et al. that are used by the
exceptions subsystem and by the demangler crash catcher.
gdb/ChangeLog:
* common/gdb_setjmp.h: New file.
* Makefile.in (HFILES_NO_SRCDIR): Add common/gdb_setjmp.h.
* configure.ac: Move sigsetjmp check...
* common/common.m4: ...here.
* configure: Regenerate.
* cp-support.c (SIGJMP_BUF): Delete.
(SIGSETJMP): Likewise.
(SIGLONGJMP): Likewise.
* exceptions.h (gdb_setjmp.h): Include.
(setjmp.h): Do not include.
(EXCEPTIONS_SIGJMP_BUF): Delete.
(EXCEPTIONS_SIGSETJMP): Likewise.
(EXCEPTIONS_SIGLONGJMP): Likewise.
Replace all uses of EXCEPTIONS_SIG* macros with SIG* macros
from gdb_setjmp.h.
* exceptions.c: Likewise.
gdb/gdbserver/ChangeLog:
* config.in: Regenerate.
* configure: Likewise.
This commit moves cleanups.[ch] into gdb/common/. The only change to
the content of the files is that cleanups.c's include list was altered
to match its new location.
gdb/ChangeLog:
* cleanups.h: Moved to...
* common/cleanups.h: New file.
* cleanups.c: Moved to...
* common/cleanups.c: New file. Include common-defs.h and
cleanups.h. Do not include defs.h.
* Makefile.in (SFILES): Replace cleanups.c with common/cleanups.c.
(HFILES_NO_SRCDIR): Replace cleanups.h with common/cleanups.h.
(cleanups.o): New rule.
gdb/gdbserver/ChangeLog:
* Makefile.in (SFILES): Add common/cleanups.c.
(OBS): cleanups.o.
(cleanups.o): New rule.
This commit removes the now-unused fatal function and prototype.
gdb/gdbserver/ChangeLog:
* utils.h (fatal): Remove declaration.
* utils.c (fatal): Remove function.
This commit converts four calls to fatal into calls to
perror_with_name. perror_with_name calls error, which
in IPA terminates with exit (1) rather than longjmp, so
there is no functional change here.
gdb/gdbserver/ChangeLog:
* tracepoint.c (gdb_agent_init): Replace fatal with
perror_with_name.
(initialize_tracepoint): Likewise.
This commit converts a call to fatal in remote_prepare with a call to
error. remote_prepare is called precisely once, from main, at a point
where jumping to toplevel will call exit (1), so error and fatal are
functionally equivalent at this point. Note that remote_prepare calls
perror_with_name (which calls error) so callers of remote_prepare must
already handle the fact that it may exit via longjmp.
gdb/gdbserver/ChangeLog:
* remote-utils.c (remote_prepare): Replace fatal with error.
This commit downgrades a fatal error to a warning in linux_async.
linux_async is called from two different places in gdbserver:
Via target_async from handle_accept_event. The argument
is always zero, so the warning will never be printed here.
Via start_non_stop from handle_general_set. This prints
its own error message to stderr on failure, which will
be preceded by the warning if it is emitted.
gdb/gdbserver/ChangeLog:
* linux-low.c (linux_async): Replace fatal with warning.
Tidy up and return.
(linux_start_non_stop): Return -1 if linux_async failed.
This commit converts if..fatal checks in both i386_dr_low_set_addr
implementations to gdb_asserts. It's not obvious from the context,
but the conditional in both cases is changed to match the equivalent
conditional in the i386_dr_low_get_addr implementations. Nothing
fundamental has changed because DR_FIRSTADDR is zero. This commit
also removes a vague comment in Linux i386_dr_low_get_addr. I could
have reworded the comment (and replicated it three times for the other
identical assertions) but I think the existence of specific functions
for the status and control registers makes it fairly obvious what is
going on.
gdb/gdbserver/ChangeLog:
* linux-x86-low.c (i386_dr_low_set_addr): Replace check with
gdb_assert.
(i386_dr_low_get_addr): Remove vague comment.
* win32-i386-low.c (i386_dr_low_set_addr): Replace check with
gdb_assert.
This introduces common-debug.h. This holds the functions debug_printf
and debug_vprintf, two functions that the common code can use to print
debugging messages. Clients of the common code are expected to
implement debug_vprintf; a debug_vprintf function is written from
scratch for GDB, and gdbserver's existing debug_printf is repurposed
as debug_vprintf.
common/agent.c is changed to use debug_vprintf rather than
defining the macro DEBUG_AGENT depending on GDBSERVER.
nat/i386-dregs.c is changed to use the externally-implemented
debug_printf, rather than defining it itself.
gdb/ChangeLog:
* common/common-debug.h: New file.
* common/common-debug.c: Likewise.
* debug.c: Likewise.
* Makefile.in (SFILES): Add common/common-debug.c.
(HFILES_NO_SRCDIR): Add common/common-debug.h.
(COMMON_OBS): Add common-debug.o and debug.o.
(common-debug.o): New rule.
* common/common-defs.h: Include common-debug.h.
* common/agent.c (debug_agent_printf): New function.
(DEBUG_AGENT): Redefine.
* nat/i386-dregs.c (debug_printf): Undefine.
gdb/gdbserver/ChangeLog:
* Makefile.in (SFILES): Add common/common-debug.c.
(OBS): Add common-debug.o.
(common-debug.o): New rule.
* debug.h (debug_printf): Don't declare.
* debug.c (debug_printf): Renamed and rewritten as...
(debug_vprintf): New function.
This commit moves the inclusion of print-utils.h to common-defs.h
and removes all other inclusions.
gdb/ChangeLog:
* common/common-defs.h: Include print-utils.h.
* utils.h: Do not include print-utils.h.
gdb/gdbserver/ChangeLog:
* utils.h: Do not include print-utils.h.
This introduces common-types.h. This file defines various standard
types used by gdb and gdbserver.
Currently these types are conditionally defined based on GDBSERVER.
The long term goal is to remove all such tests; however, this is
difficult as currently gdb uses definitions from BFD. In the meantime
this is still a step in the right direction.
gdb/ChangeLog:
* common/common-types.h: New file.
* Makefile.in (HFILES_NO_SRCDIR): Add common/common-types.h.
* common/common-defs.h: Include common-types.h.
* defs.h (gdb_byte, CORE_ADDR, CORE_ADDR_MAX, LONGEST)
(ULONGEST): Remove.
gdb/gdbserver/ChangeLog:
* server.h: Add static assertion.
(gdb_byte, CORE_ADDR, LONGEST, ULONGEST): Remove.
This introduces common/errors.h. This holds some error- and warning-
related declarations that can be used by the code in common, nat and
target. Some of the declared functions must be provided by the client
as documented by the header file comments.
gdb/ChangeLog:
* common/errors.h: New file.
* common/errors.c: Likewise.
* Makefile.in (SFILES): Add common/errors.c.
(HFILES_NO_SRCDIR): Add common/errors.h.
(COMMON_OBS): Add errors.o.
(errors.o): New rule.
* common/common-defs.h: Include errors.h.
* utils.h (perror_with_name, error, verror, warning, vwarning):
Don't declare.
* common/common-utils.h: (malloc_failure, internal_error):
Likewise.
gdb/gdbserver/ChangeLog:
* Makefile.in (SFILES): Add common/errors.c.
(OBS): Add errors.o.
(IPA_OBS): Add errors-ipa.o.
(errors.o): New rule.
(errors-ipa.o): Likewise.
* utils.h (perror_with_name, error, warning): Don't declare.
* utils.c (warning): Renamed and rewritten as...
(vwarning): New function.
(error): Renamed and rewritten as...
(verror): New function.
(internal_error): Renamed and rewritten as...
(internal_verror): New function.
This commit moves the inclusion of errno.h to common-defs.h and
removes all other inclusions. Note that prior to this commit
server.h included errno.h protected by "#ifdef HAVE_ERRNO_H".
This protection was added with the Windows CE port, which is
currently broken. Since no other platform needs this, I have
removed the protection and the configury to support it.
gdb/
2014-08-07 Gary Benson <gbenson@redhat.com>
* common/common-defs.h: Include errno.h.
* defs.h: Do not include errno.h.
* ada-typeprint.c: Likewise.
* c-typeprint.c: Likewise.
* core-regset.c: Likewise.
* corefile.c: Likewise.
* corelow.c: Likewise.
* event-loop.c: Likewise.
* f-typeprint.c: Likewise.
* gnu-nat.c: Likewise.
* go32-nat.c: Likewise.
* i386gnu-nat.c: Likewise.
* m2-typeprint.c: Likewise.
* nat/linux-btrace.c: Likewise.
* p-typeprint.c: Likewise.
* procfs.c: Likewise.
* remote-sim.c: Likewise.
* rs6000-nat.c: Likewise.
* target.c: Likewise.
* typeprint.c: Likewise.
* ui-file.c: Likewise.
* valops.c: Likewise.
* valprint.c: Likewise.
gdb/gdbserver/
2014-08-07 Gary Benson <gbenson@redhat.com>
* configure.ac (AC_CHECK_HEADERS): Remove errno.h.
* configure: Regenerate.
* config.in: Likewise.
* server.h: Do not include errno.h.
* event-loop.c: Likewise.
* hostio-errno.c: Likewise.
* linux-low.c: Likewise.
* remote-utils.c: Likewise.
* spu-low.c: Likewise.
* utils.c: Likewise.
* gdbreplay.c: Unconditionally include errno.h.
This commit moves the inclusion of common-utils.h to common-defs.h and
removes all other inclusions.
gdb/
2014-08-07 Gary Benson <gbenson@redhat.com>
* common/common-defs.h: Include common-utils.h.
* defs.h: Do not include common-utils.h.
* common/gdb_assert.h: Likewise.
* darwin-nat.h: Likewise.
* nat/linux-btrace.c: Likewise.
* target/waitstatus.h: Likewise.
gdb/gdbserver/
2014-08-07 Gary Benson <gbenson@redhat.com>
* server.h: Do not include common-utils.h.
This commit moves the inclusion of ptid.h to common-defs.h and removes
all other inclusions.
gdb/
2014-08-07 Gary Benson <gbenson@redhat.com>
* common/common-defs.h: Include ptid.h.
* defs.h: Do not include ptid.h.
* inferior.h: Likewise.
* infrun.h: Likewise.
* nat/linux-btrace.h: Likewise.
* nat/linux-osdata.h: Likewise.
* target/waitstatus.h: Likewise.
gdb/gdbserver/
2014-08-07 Gary Benson <gbenson@redhat.com>
* server.h: Do not include ptid.h.
* notif.h: Likewise.
This commit moves the inclusion of gdb_locale.h to common-defs.h and
removes all other inclusions.
gdb/
2014-08-07 Gary Benson <gbenson@redhat.com>
* common/common-defs.h: Include gdb_locale.h.
* defs.h: Do not include gdb_locale.h.
gdb/gdbserver/
2014-08-07 Gary Benson <gbenson@redhat.com>
* server.h: Do not include gdb_locale.h.
This commit moves the inclusion of gdb/signals.h to common-defs.h and
removes all other inclusions.
gdb/
2014-08-07 Gary Benson <gbenson@redhat.com>
* common/common-defs.h: Include gdb/signals.h.
* defs.h: Do not include gdb/signals.h.
gdb/gdbserver/
2014-08-07 Gary Benson <gbenson@redhat.com>
* server.h: Do not include gdb/signals.h.
* win32-low.c: Likewise.
This commit moves the inclusion of pathmax.h to common-defs.h and
removes all other inclusions.
gdb/
2014-08-07 Gary Benson <gbenson@redhat.com>
* common/common-defs.h: Include pathmax.h.
* defs.h: Do not include pathmax.h.
gdb/gdbserver/
2014-08-07 Gary Benson <gbenson@redhat.com>
* server.h: Do not include pathmax.h.
This commit moves the inclusion of libiberty.h to common-defs.h and
removes all other inclusions.
gdb/
2014-08-07 Gary Benson <gbenson@redhat.com>
* common/common-defs.h: Include libiberty.h.
* defs.h: Do not include libiberty.h.
* common/queue.h: Likewise.
* cp-name-parser.y: Likewise.
* mi/mi-cmd-catch.c: Likewise.
* python/python.c: Likewise.
gdb/gdbserver/
2014-08-07 Gary Benson <gbenson@redhat.com>
* server.h: Do not include libiberty.h.
* linux-bfin-low.c: Likewise.
This commit moves the inclusion of ansidecl.h to common-defs.h and
removes all other inclusions.
gdb/
2014-08-07 Gary Benson <gbenson@redhat.com>
* common/common-defs.h: Include ansidecl.h.
* defs.h: Do not include ansidecl.h.
* common/buffer.h: Likewise.
* common/common-utils.h: Likewise.
gdb/gdbserver/
2014-08-07 Gary Benson <gbenson@redhat.com>
* server.h: Do not include ansidecl.h.
This commit moves the inclusion of stdarg.h to common-defs.h and
removes all other inclusions.
gdb/
2014-08-07 Gary Benson <gbenson@redhat.com>
* common/common-defs.h: Include stdarg.h.
* defs.h: Do not include stdarg.h.
* ada-lang.c: Likewise.
* common/common-utils.h: Likewise.
* guile/scm-string.c: Likewise.
* guile/scm-utils.c: Likewise.
* m32c-tdep.c: Likewise.
gdb/gdbserver/
2014-08-07 Gary Benson <gbenson@redhat.com>
* server.h: Do not include stdarg.h.
* nto-low.c: Likewise.
gdbserver's init_register_cache has some preprocessor conditionals
awkwardly nested around an if..else block. This commit moves the
conditionals inside the braces to make the code more readable.
gdb/gdbserver/
2014-08-06 Gary Benson <gbenson@redhat.com>
* regcache.c (init_register_cache): Move conditionals inside if.
This commit replaces a hardwired target-is-async check.
gdb/gdbserver/
2014-08-06 Gary Benson <gbenson@redhat.com>
* linux-low.c (linux_supports_non_stop): Use target_is_async_p.
This commit removes all inclusions of defs.h and server.h from header
files.
gdb/
2014-07-31 Gary Benson <gbenson@redhat.com>
* common/btrace-common.h: Do not include defs.h or server.h.
* nat/mips-linux-watch.h: Likewise.
* gdb-dlfcn.h: Do not include defs.h.
* tracefile.h: Likewise.
gdb/gdbserver/
2014-07-31 Gary Benson <gbenson@redhat.com>
* ax.h: Do not include server.h.
* gdbthread.h: Likewise.
* lynx-low.h: Likewise.
* notif.h: Likewise.
This commit creates a new header, common/common-defs.h, to hold
definitions common to all code under gdb/. Both gdb/defs.h and
gdb/gdbserver/server.h are modified to include common-defs.h as
their first non-comment line; all code under gdb/ includes either
defs.h or server.h as appropriate, so common-defs.h will be the
first actual code the compiler sees.
For this initial commit common-defs.h includes only the two
config.h files. Future commits will move more code currently
duplicated across defs.h and server.h such that shared code in
gdb/{common,target,nat} can be modified to include common-defs.h
rather than defs.h or server.h.
gdb/
2014-07-30 Gary Benson <gbenson@redhat.com>
* common/common-defs.h: New file.
* Makefile.in (HFILES_NO_SRCDIR): Add common/common-defs.h.
* defs.h: Include common-defs.h.
Do not include config.h or build-gnulib/config.h.
gdb/gdbserver/
2014-07-30 Gary Benson <gbenson@redhat.com>
* server.h: Include common-defs.h.
Do not include config.h or build-gnulib-gdbserver/config.h.
This commit makes all source files under gdb/ that include headers
from gdb/ include either defs.h or server.h before any other code.
This ensures that definitions and macros from the two config.h files
are always in place for our code. An exception has been made for
gdb/gdbserver/gdbreplay.c which seems to be a special case.
gdb/
2014-07-30 Gary Benson <gbenson@redhat.com>
* btrace.c: Include defs.h.
* common/ptid.c: Include defs.h or server.h as appropriate.
* nat/mips-linux-watch.c: Likewise.
gdb/gdbserver/
2014-07-30 Gary Benson <gbenson@redhat.com>
* hostio-errno.c: Move server.h to top of includes list.
* inferiors.c: Likewise.
* linux-x86-low.c: Likewise.
* notif.c: Include server.h.
gdbserver defines CORE_ADDR to be signed. This seems erroneous to
me; and furthermore likely to cause problems in common/, as it is
different from gdb's definition.
gdb/gdbserver/
2014-07-24 Tom Tromey <tromey@redhat.com>
Gary Benson <gbenson@redhat.com>
* server.h (CORE_ADDR): Now unsigned.
Since we use tkill everywhere, using kill to try to kill each lwp
individually looks suspiciously odd. We should really be using tgkill
everywhere, but at least while we don't get there this makes us
consistent.
gdb/gdbserver/
2014-07-16 Pedro Alves <palves@redhat.com>
* linux-low.c (linux_kill_one_lwp): Use kill_lwp, not kill.
gdb/
2014-07-16 Pedro Alves <palves@redhat.com>
* linux-nat.c (kill_callback): Use kill_lwp, not kill.
Although most compilers follow right-to-left evaluation order, the
order of evaluation of a function call's arguments is really
unspecified. target_pid_to_str or ptid_of may well clobber errno when
we get to evaluate the third argument to debug_printf.
gdb/gdbserver/
2014-07-15 Pedro Alves <palves@redhat.com>
* linux-low.c (linux_kill_one_lwp): Save errno and work with saved
copy.
Here's an example, with the new test:
gdbserver :9999 gdb.threads/kill
gdb gdb.threads/kill
(gdb) b 52
Breakpoint 1 at 0x4007f4: file kill.c, line 52.
Continuing.
Breakpoint 1, main () at kill.c:52
52 return 0; /* set break here */
(gdb) k
Kill the program being debugged? (y or n) y
gdbserver :9999 gdb.threads/kill
Process gdb.base/watch_thread_num created; pid = 9719
Listening on port 1234
Remote debugging from host 127.0.0.1
Killing all inferiors
Segmentation fault (core dumped)
Backtrace:
(gdb) bt
#0 0x00000000004068a0 in find_inferior (list=0x66b060 <all_threads>, func=0x427637 <kill_one_lwp_callback>, arg=0x7fffffffd3fc) at src/gdb/gdbserver/inferiors.c:199
#1 0x00000000004277b6 in linux_kill (pid=15708) at src/gdb/gdbserver/linux-low.c:966
#2 0x000000000041354d in kill_inferior (pid=15708) at src/gdb/gdbserver/target.c:163
#3 0x00000000004107e9 in kill_inferior_callback (entry=0x6704f0) at src/gdb/gdbserver/server.c:2934
#4 0x0000000000406522 in for_each_inferior (list=0x66b050 <all_processes>, action=0x4107a6 <kill_inferior_callback>) at src/gdb/gdbserver/inferiors.c:57
#5 0x0000000000412377 in process_serial_event () at src/gdb/gdbserver/server.c:3767
#6 0x000000000041267c in handle_serial_event (err=0, client_data=0x0) at src/gdb/gdbserver/server.c:3880
#7 0x00000000004189ff in handle_file_event (event_file_desc=4) at src/gdb/gdbserver/event-loop.c:434
#8 0x00000000004181c6 in process_event () at src/gdb/gdbserver/event-loop.c:189
#9 0x0000000000418f45 in start_event_loop () at src/gdb/gdbserver/event-loop.c:552
#10 0x0000000000411272 in main (argc=3, argv=0x7fffffffd8d8) at src/gdb/gdbserver/server.c:3283
The problem is that linux_wait_for_event deletes lwps that have exited
(even those not passed in as lwps of interest), while the lwp/thread
list is being walked on with find_inferior. find_inferior can handle
the current iterated inferior being deleted, but not others.
When killing lwps, we don't really care about any of the pending
status handling of linux_wait_for_event. We can just waitpid the lwps
directly, which is also what GDB does (see
linux-nat.c:kill_wait_callback). This way the lwps are not deleted
while we're walking the list. They'll be deleted by linux_mourn
afterwards.
This crash triggers several times when running the testsuite against
GDBserver with the native-gdbserver board (target remote), but as GDB
can't distinguish between GDBserver crashing and "kill" being
sucessful, as in both cases the connection is closed (the 'k' packet
doesn't require a reply), and the inferior is gone, that results in no
FAIL.
The patch adds a generic test that catches the issue with
extended-remote mode (and works fine with native testing too). Here's
how it fails with the native-extended-gdbserver board without the fix:
(gdb) info threads
Id Target Id Frame
6 Thread 15367.15374 0x000000373bcbc98d in nanosleep () at ../sysdeps/unix/syscall-template.S:81
5 Thread 15367.15373 0x000000373bcbc98d in nanosleep () at ../sysdeps/unix/syscall-template.S:81
4 Thread 15367.15372 0x000000373bcbc98d in nanosleep () at ../sysdeps/unix/syscall-template.S:81
3 Thread 15367.15371 0x000000373bcbc98d in nanosleep () at ../sysdeps/unix/syscall-template.S:81
2 Thread 15367.15370 0x000000373bcbc98d in nanosleep () at ../sysdeps/unix/syscall-template.S:81
* 1 Thread 15367.15367 main () at .../gdb.threads/kill.c:52
(gdb) kill
Kill the program being debugged? (y or n) y
Remote connection closed
^^^^^^^^^^^^^^^^^^^^^^^^
(gdb) FAIL: gdb.threads/kill.exp: kill
Extended remote should remain connected after the kill.
gdb/gdbserver/
2014-07-11 Pedro Alves <palves@redhat.com>
* linux-low.c (kill_wait_lwp): New function, based on
kill_one_lwp_callback, but use my_waitpid directly.
(kill_one_lwp_callback, linux_kill): Use it.
gdb/testsuite/
2014-07-11 Pedro Alves <palves@redhat.com>
* gdb.threads/kill.c: New file.
* gdb.threads/kill.exp: New file.
This patch fixes this on x86 Linux:
(gdb) watch *buf@2
Hardware watchpoint 8: *buf@2
(gdb) si
0x00000000004005a7 34 for (i = 0; i < 100000; i++); /* stepi line */
(gdb) del
Delete all breakpoints? (y or n) y
(gdb) watch *(buf+1)@1
Hardware watchpoint 9: *(buf+1)@1
(gdb) si
0x00000000004005a7 in main () at ../../../src/gdb/testsuite/gdb.base/watchpoint-reuse-slot.c:34
34 for (i = 0; i < 100000; i++); /* stepi line */
Couldn't write debug register: Invalid argument.
(gdb)
In the example above the debug registers are being switched from this
state:
CONTROL (DR7): 0000000000050101 STATUS (DR6): 0000000000000000
DR0: addr=0x0000000000601040, ref.count=1 DR1: addr=0x0000000000000000, ref.count=0
DR2: addr=0x0000000000000000, ref.count=0 DR3: addr=0x0000000000000000, ref.count=0
to this:
CONTROL (DR7): 0000000000010101 STATUS (DR6): 0000000000000000
DR0: addr=0x0000000000601041, ref.count=1 DR1: addr=0x0000000000000000, ref.count=0
DR2: addr=0x0000000000000000, ref.count=0 DR3: addr=0x0000000000000000, ref.count=0
That is, before, DR7 was setup for watching a 2 byte region starting
at what's in DR0 (0x601040).
And after, DR7 is setup for watching a 1 byte region starting at
what's in DR0 (0x601041).
We always write DR0..DR3 before DR7, because if we enable a slot's
bits in DR7, you need to have already written the corresponding
DR0..DR3 registers -- the kernel rejects the DR7 write with EINVAL
otherwise.
The error shown above is the opposite scenario. When we try to write
0x601041 to DR0, DR7's bits still indicate intent of watching a 2-byte
region. That DR0/DR7 combination is invalid, because 0x601041 is
unaligned. To watch two bytes, we'd have to use two slots. So the
kernel errors out with EINVAL.
Fix this by always first clearing DR7, then writing DR0..DR3, and then
setting DR7's bits.
A little optimization -- if we're disabling the last watchpoint, then
we can clear DR7 just once. The changes to nat/i386-dregs.c make that
easier to detect, and as bonus, they make it a little easier to make
sense of DR7 in the debug logs, as we no longer need to remember we're
seeing stale bits.
Tested on x86_64 Fedora 20, native and GDBserver.
This adds an exhaustive test that switches between many different
combinations of watchpoint types and addresses and widths.
gdb/
2014-06-23 Pedro Alves <palves@redhat.com>
* amd64-linux-nat.c (amd64_linux_prepare_to_resume): Clear
DR_CONTROL before setting DR0..DR3.
* i386-linux-nat.c (i386_linux_prepare_to_resume): Likewise.
* nat/i386-dregs.c (i386_remove_aligned_watchpoint): Clear all
bits of DR_CONTROL related to the debug register slot being
disabled. If all slots are vacant, clear local slowdown as well,
and assert DR_CONTROL is 0.
gdb/gdbserver/
2014-06-23 Pedro Alves <palves@redhat.com>
* linux-x86-low.c (x86_linux_prepare_to_resume): Clear DR_CONTROL
before setting DR0..DR3.
gdb/testsuite/
2014-06-23 Pedro Alves <palves@redhat.com>
* gdb.base/watchpoint-reuse-slot.c: New file.
* gdb.base/watchpoint-reuse-slot.exp: New file.
This commit makes gdbserver access the x86 debug register accessor
functions via the same function vector as GDB proper. This removes
a chunk of conditional code that was previously in i386-{nat,low}.h
and leaves a single macro as the only GDB/gdbserver difference in
nat/i386-dregs.c.
gdb/
2014-06-20 Gary Benson <gbenson@redhat.com>
* i386-nat.h (debug_hw_points): Moved to nat/i386-dregs.c.
(i386_dr_low_type): Moved to nat/i386-dregs.h.
(i386_dr_low): Likewise.
(i386_dr_low_can_set_addr): Moved to nat/i386-dregs.c.
(i386_dr_low_set_addr): Likewise.
(i386_dr_low_get_addr): Likewise.
(i386_dr_low_can_set_control): Likewise.
(i386_dr_low_set_control): Likewise.
(i386_dr_low_get_control): Likewise.
(i386_dr_low_get_status): Likewise.
(i386_get_debug_register_length): Likewise.
* nat/i386-dregs.h (i386_dr_low_type): Moved from i386-nat.h.
(i386_dr_low): Likewise.
* nat/i386-dregs.c (i386-low.h): Remove include.
(i386-nat.h): Likewise.
(nat/i386-dregs.h): New include.
(i386_dr_low_can_set_addr): Moved from i386-nat.h.
(i386_dr_low_set_addr): Likewise.
(i386_dr_low_get_addr): Likewise.
(i386_dr_low_can_set_control): Likewise.
(i386_dr_low_set_control): Likewise.
(i386_dr_low_get_control): Likewise.
(i386_dr_low_get_status): Likewise.
(i386_get_debug_register_length): Likewise.
(debug_hw_points): Likewise.
gdb/gdbserver/
2014-06-20 Gary Benson <gbenson@redhat.com>
* i386-low.h (i386_dr_low_can_set_addr): Removed.
(i386_dr_low_set_addr): Likewise.
(i386_dr_low_get_addr): Likewise.
(i386_dr_low_can_set_control): Likewise.
(i386_dr_low_set_control): Likewise.
(i386_dr_low_get_control): Likewise.
(i386_dr_low_get_status): Likewise.
(i386_get_debug_register_length): Likewise.
* linux-x86-low.c (i386_dr_low_set_addr):
Changed signature. Made static.
(i386_dr_low_get_addr): Likewise.
(i386_dr_low_set_control): Likewise.
(i386_dr_low_get_control): Likewise.
(i386_dr_low_get_status): Likewise.
(i386_dr_low): New global variable.
* win32-i386-low.c (i386_dr_low_set_addr):
Changed signature. Made static.
(i386_dr_low_get_addr): Likewise.
(i386_dr_low_set_control): Likewise.
(i386_dr_low_get_control): Likewise.
(i386_dr_low_get_status): Likewise.
(i386_dr_low): New global variable.
The recent libiberty patch caused issues when cross building
gdbserver. The Makefile ends invoking the build machine's "ar"
instead of the --host version:
ar ./libiberty.a \
./regex.o (...)
ar: illegal option -- .
Usage: ar [emulation options] [-]{dmpqrstx}[abcfilNoPsSuvV] [member-name] [count] archive-file file...
ar -M [<mri-script]
The libiberty configure script does probe for and finds an appropriate
AR. However, gdbserver's configure does not probe for AR and
overrides the AR used in the libiberty build by explicitly passing AR
to the sub-builds.
gdb/gdbserver/
2014-06-20 Marcus Shawcroft <marcus.shawcroft@arm.com>
* configure.ac: Invoke. AC_CHECK_TOOL(AR, ar).
* Makefile.in (AR, AR_FLAGS): Define.
* configure: Regenerate.
The above commit did two things:
1) A number of functions were renamed and made nonstatic.
2) A number of other functions were renamed only.
This commit reverts #1 but not #2. In addition, prototypes for
functions now remade static have been removed from i386-dregs.h.
gdb/
2014-06-19 Gary Benson <gbenson@redhat.com>
* i386-nat.c (i386_dr_show): Renamed to
i386_show_dr and made static. All uses updated.
(i386_dr_length_and_rw_bits): Renamed to
i386_length_and_rw_bits and made static.
All uses updated.
(i386_dr_insert_aligned_watchpoint): Renamed to
i386_insert_aligned_watchpoint and made static.
All uses updated.
(i386_dr_remove_aligned_watchpoint): Renamed to
i386_remove_aligned_watchpoint and made static.
All uses updated.
(i386_dr_update_inferior_debug_regs): Renamed to
i386_update_inferior_debug_regs and made static.
All uses updated.
* nat/i386-dregs.h (i386_dr_show): Removed.
(i386_dr_length_and_rw_bits): Likewise.
(i386_dr_insert_aligned_watchpoint): Likewise.
(i386_dr_remove_aligned_watchpoint): Likewise.
(i386_dr_update_inferior_debug_regs): Likewise.
gdb/gdbserver/
2014-06-19 Gary Benson <gbenson@redhat.com>
* i386-low.c (i386_dr_show): Renamed to
i386_show_dr and made static. All uses updated.
(i386_dr_length_and_rw_bits): Renamed to
i386_length_and_rw_bits and made static.
All uses updated.
(i386_dr_insert_aligned_watchpoint): Renamed to
i386_insert_aligned_watchpoint and made static.
All uses updated.
(i386_dr_remove_aligned_watchpoint): Renamed to
i386_remove_aligned_watchpoint and made static.
All uses updated.
(i386_dr_update_inferior_debug_regs): Renamed to
i386_update_inferior_debug_regs and made static.
All uses updated.
This commit renames the functions that are to be shared.
Functions to be shared that were static are made nonstatic.
gdb/
2014-06-18 Gary Benson <gbenson@redhat.com>
* i386-nat.c (i386_show_dr): Renamed to
i386_dr_show and made nonstatic. All uses updated.
(i386_length_and_rw_bits): Renamed to
i386_dr_length_and_rw_bits and made nonstatic.
All uses updated.
(i386_insert_aligned_watchpoint): Renamed to
i386_dr_insert_aligned_watchpoint and made nonstatic.
All uses updated.
(i386_remove_aligned_watchpoint): Renamed to
i386_dr_remove_aligned_watchpoint and made nonstatic.
All uses updated.
(i386_update_inferior_debug_regs): Renamed to
i386_dr_update_inferior_debug_regs and made nonstatic.
All uses updated.
gdb/gdbserver/
2014-06-18 Gary Benson <gbenson@redhat.com>
* i386-low.h (i386_low_insert_watchpoint): Renamed to
i386_dr_insert_watchpoint.
(i386_low_remove_watchpoint): Renamed to
i386_dr_remove_watchpoint.
(i386_low_region_ok_for_watchpoint): Renamed to
i386_dr_region_ok_for_watchpoint.
(i386_low_stopped_data_address): Renamed to
i386_dr_stopped_data_address.
(i386_low_stopped_by_watchpoint): Renamed to
i386_dr_stopped_by_watchpoint.
* i386-low.c (i386_show_dr): Renamed to
i386_dr_show and made nonstatic. All uses updated.
(i386_length_and_rw_bits): Renamed to
i386_dr_length_and_rw_bits and made nonstatic.
All uses updated.
(i386_insert_aligned_watchpoint): Renamed to
i386_dr_insert_aligned_watchpoint and made nonstatic.
All uses updated.
(i386_remove_aligned_watchpoint): Renamed to
i386_dr_remove_aligned_watchpoint and made nonstatic.
All uses updated.
(i386_update_inferior_debug_regs): Renamed to
i386_dr_update_inferior_debug_regs and made nonstatic.
All uses updated.
(i386_low_insert_watchpoint): Renamed to
i386_dr_insert_watchpoint. All uses updated.
(i386_low_remove_watchpoint): Renamed to
i386_dr_remove_watchpoint. All uses updated.
(i386_low_region_ok_for_watchpoint): Renamed to
i386_dr_region_ok_for_watchpoint. All uses updated.
(i386_low_stopped_data_address): Renamed to
i386_dr_stopped_data_address. All uses updated.
(i386_low_stopped_by_watchpoint): Renamed to
i386_dr_stopped_by_watchpoint. All uses updated.
This commit adds macros to abstract access to the i386_dr_low
function vector used by i386-nat.c. The macros are named so
as to match the names of the functions that do the same work
in gdbserver.
gdb/
2014-06-18 Gary Benson <gbenson@redhat.com>
* i386-nat.c (i386_dr_low_can_set_addr): New macro.
(i386_dr_low_can_set_control): Likewise.
(i386_dr_low_set_addr): Likewise.
(i386_dr_low_set_control): Likewise.
(i386_dr_low_get_addr): Likewise.
(i386_dr_low_get_status): Likewise.
(i386_dr_low_get_control): Likewise.
(i386_insert_aligned_watchpoint): Use new macros.
(i386_update_inferior_debug_regs): Likewise.
(i386_stopped_data_address): Likewise.
gdb/gdbserver/
2014-06-18 Gary Benson <gbenson@redhat.com>
* i386-low.c (i386_dr_low_can_set_addr): New macro.
(i386_dr_low_can_set_control): Likewise.
(i386_insert_aligned_watchpoint): New check.
This commit synchronizes the i386_update_inferior_debug_regs functions
in i386-nat.c and i386-low.c.
gdb/
2014-06-18 Gary Benson <gbenson@redhat.com>
* i386-nat.c (i386_update_inferior_debug_regs) <state>:
New parameter. All uses updated.
gdb/gdbserver/
2014-06-18 Gary Benson <gbenson@redhat.com>
* i386-low.c (i386_update_inferior_debug_regs) <inf_state>:
Renamed to state.
This commit makes all error handling in i386-low.c use internal_error
rather than fatal and error.
gdb/gdbserver/
2014-06-18 Gary Benson <gbenson@redhat.com>
* i386-low.c (i386_length_and_rw_bits): Use internal_error
instead of fatal and error.
(i386_handle_nonaligned_watchpoint): Likewise.
This commit synchronizes the debug printing code in i386-nat.c and
i386-low.c.
gdb/
2014-06-18 Gary Benson <gbenson@redhat.com>
* i386-nat.c (debug_printf): New macro.
(i386_get_debug_register_length): Likewise.
(TARGET_HAS_DR_LEN_8): Use above macro.
(i386_show_dr): Use debug_printf instead of puts_unfiltered
and printf_unfiltered. Use phex to format values.
gdb/gdbserver/
2014-06-18 Gary Benson <gbenson@redhat.com>
* i386-low.c (i386_get_debug_register_length): New macro.
(TARGET_HAS_DR_LEN_8): Remove conditional. Use above macro.
(i386_show_dr): Use debug_printf instead of fprintf. Use
phex to format values.
This commit fixes various whitespace differences between i386-nat.c
and i386-low.c.
gdb/
2014-06-18 Gary Benson <gbenson@redhat.com>
* i386-nat.c: Whitespace changes.
gdb/gdbserver/
2014-06-18 Gary Benson <gbenson@redhat.com>
* i386-low.c: Whitespace changes.
gdbserver defines freeargv, but it is now trivial to just use the one
in libiberty.
2014-06-12 Tom Tromey <tromey@redhat.com>
* utils.c (freeargv): Remove.
This builds a libiberty just for gdbserver and arranges for gdbserver
to use it. I've tripped across the lack of libiberty in gdbserver at
least once, and I have seen other threads where it would have been
useful.
2014-06-12 Tom Tromey <tromey@redhat.com>
* debug.c (debug_printf): Remove HAVE_GETTIMEOFDAY checks.
* server.c (monitor_show_help): Remove HAVE_GETTIMEOFDAY check.
(parse_debug_format_options): Likewise.
(gdbserver_usage): Likewise.
* Makefile.in (LIBIBERTY_BUILDDIR, LIBIBERTY): New variables.
(SUBDIRS, REQUIRED_SUBDIRS): Add libiberty.
(gdbserver$(EXEEXT), gdbreplay$(EXEEXT)): Depend on and link
against libiberty.
($(LIBGNU)): Depend on libiberty.
(all-lib): Recurse into all subdirs.
(install-only): Invoke "install" target in subdirs.
(vasprintf.o, vsnprintf.o, safe-ctype.o, lbasename.o): Remove
targets.
* configure: Rebuild.
* configure.ac: Add ACX_CONFIGURE_DIR for libiberty. Don't check
for vasprintf, vsnprintf, or gettimeofday.
* configure.srv: Don't add safe-ctype.o or lbasename.o to
srv_tgtobj.
The goal of this patch is to provide an easy way to make
--disable-werror the default when building binutils, or the parts
of binutils that need to get built when building GDB. In development
mode, we want to continue making -Werror the default with GCC.
But, when making releases, I think we want to make it as easy as
possible for regular users to successfully build from sources.
GDB already has this kind of feature to turn -Werror as well as
the use of the libmcheck library. As GDB Release Manager, I take
advantage of it to turn those off after having cut the branch.
I'd like to be able to do the same for the binutils bits. And
perhaps Tristan will want to do the same for his releases too
(not sure, binutils builders might be a little savvier than GDB
builders).
This patch introduces a new file, called development.sh, which
just sets a variable called $development. In our development branches
(Eg. "master"), it's set to true. But setting it to false would allow
us to change the default behavior of various development-related
features to be turned off; in this case, it turns off the use of
-Werror by default (use --enable-werror to turn it back on).
bfd/ChangeLog:
* development.sh: New file.
* warning.m4 (AM_BINUTILS_WARNINGS): Source bfd/development.sh.
Make -Werror the default with GCC only if DEVELOPMENT is true.
* Makefile.am (CONFIG_STATUS_DEPENDENCIES): Add
$(srcdir)/development.sh.
* Makefile.in, configure: Regenerate.
binutils/ChangeLog:
* Makefile.am (CONFIG_STATUS_DEPENDENCIES): Add dependency on
bfd's development.sh.
* Makefile.in, configure: Regenerate.
gas/ChangeLog:
* Makefile.am (CONFIG_STATUS_DEPENDENCIES): Add dependency on
bfd's development.sh.
* Makefile.in, configure: Regenerate.
gold/ChangeLog:
* Makefile.am (CONFIG_STATUS_DEPENDENCIES): New.
* Makefile.in, configure: Regenerate.
gprof/ChangeLog:
* Makefile.am (CONFIG_STATUS_DEPENDENCIES): Add dependency on
bfd's development.sh.
* Makefile.in, configure: Regenerate.
ld/ChangeLog:
* Makefile.am (CONFIG_STATUS_DEPENDENCIES): Add dependency on
bfd's development.sh.
* Makefile.in, configure: Regenerate.
opcodes/ChangeLog:
* Makefile.am (CONFIG_STATUS_DEPENDENCIES): Add dependency on
bfd's development.sh.
* Makefile.in, configure: Regenerate.
gdb/ChangeLog:
* development.sh: Delete.
* Makefile.in (config.status): Adjust dependency on development.sh.
* configure.ac: Adjust development.sh source call.
* configure: Regenerate.
gdb/gdbserver/ChangeLog:
* configure.ac: Adjust development.sh source call.
* Makefile.in (config.status): Adjust dependency on development.sh.
* configure: Regenerate.
Tested on x86_64-linux by building two ways: One with DEVELOPMENT
set to true, and one with DEVELOPMENT set to false. In the first
case, I could see the use of -Werror, while it disappeared in
the second case.
When debugging on LynxOS targets (and probably on SPU targets as well),
inserting a breakpoint and resuming the program's execution causes
GDBserver to crash.
The crash occurs while handling the Z0 packet sent by GDB to insert
our breakpoint, because z_type_supported calls
the_target->supports_z_point_type without checking that it is not NULL
This patch fixes the issue by making z_type_supported return false if
the_target->supports_z_point_type is NULL.
gdb/gdbserver/ChangeLog:
PR server/17023
* mem-break.c (z_type_supported): Return zero if
THE_TARGET->SUPPORTS_Z_POINT_TYPE is NULL.
Tested on ppx-lynx5.
If GDB decides to change the breakpoint's conditions or commands,
it'll reinsert the same breakpoint again, with the new options
attached, without deleting the previous breakpoint. E.g.,
(gdb) set breakpoint always-inserted on
(gdb) b main if 0
Breakpoint 1 at 0x400594: file foo.c, line 21.
Sending packet: $Z0,400594,1;X3,220027#68...Packet received: OK
(gdb) b main
Breakpoint 15 at 0x400594: file foo.c, line 21.
Sending packet: $Z0,400594,1#49...Packet received: OK
GDBserver understands this and deletes the breakpoint's previous
conditions. But, it forgets to delete the previous commands.
gdb/gdbserver/
2014-06-02 Pedro Alves <palves@redhat.com>
* ax.c (gdb_free_agent_expr): New function.
* ax.h (gdb_free_agent_expr): New declaration.
* mem-break.c (delete_gdb_breakpoint_1): Also clear the commands
list.
(clear_breakpoint_conditions, clear_breakpoint_commands): Make
static.
(clear_breakpoint_conditions_and_commands): New function.
* mem-break.h (clear_breakpoint_conditions): Delete declaration.
(clear_breakpoint_conditions_and_commands): New declaration.
A recent change to glibc removed asm/ptrace.h from user.h for AArch64.
This meant that cross-native builds of gdbserver using trunk glibc broke
because linux-aarch64-low.c because user_hwdebug_state couldn't be found.
This is like commit #036cd38182bde32d8297b630cd5c861d53b8949e
2014-05-23 Ramana Radhakrishnan <ramana.radhakrishnan@arm.com>
* linux-aarch64-low.c (asm/ptrace.h): Include.
I have posted:
TLS variables access for -static -lpthread executables
https://sourceware.org/ml/libc-help/2014-03/msg00024.html
and the GDB patch below has been confirmed as OK for current glibcs.
Further work should be done for newer glibcs:
Improve TLS variables glibc compatibility
https://sourceware.org/bugzilla/show_bug.cgi?id=16954
Still the patch below implements the feature in a fully functional way backward
compatible with current glibcs, it depends on the following glibc source line:
csu/libc-tls.c
main_map->l_tls_modid = 1;
gdb/
2014-05-21 Jan Kratochvil <jan.kratochvil@redhat.com>
Fix TLS access for -static -pthread.
* linux-thread-db.c (struct thread_db_info): Add td_thr_tlsbase_p.
(try_thread_db_load_1): Initialize it.
(thread_db_get_thread_local_address): Call it if LM is zero.
* target.c (target_translate_tls_address): Remove LM_ADDR zero check.
* target.h (struct target_ops) (to_get_thread_local_address): Add
load_module_addr comment.
gdb/gdbserver/
2014-05-21 Jan Kratochvil <jan.kratochvil@redhat.com>
Fix TLS access for -static -pthread.
* gdbserver/thread-db.c (struct thread_db): Add td_thr_tlsbase_p.
(thread_db_get_tls_address): Call it if LOAD_MODULE is zero.
(thread_db_load_search, try_thread_db_load_1): Initialize it.
gdb/testsuite/
2014-05-21 Jan Kratochvil <jan.kratochvil@redhat.com>
Fix TLS access for -static -pthread.
* gdb.threads/staticthreads.c <HAVE_TLS> (tlsvar): New.
<HAVE_TLS> (thread_function, main): Initialize it.
* gdb.threads/staticthreads.exp: Try gdb_compile_pthreads for $have_tls.
Add clean_restart.
<$have_tls != "">: Check TLSVAR.
Message-ID: <20140410115204.GB16411@host2.jankratochvil.net>
This patch fixes hardware breakpoint regressions exposed by my fix for
"PR breakpoints/7143 - Watchpoint does not trigger when first set", at
https://sourceware.org/ml/gdb-patches/2014-03/msg00167.html
The testsuite caught them on Linux/x86_64, at least. gdb.sum:
gdb.sum:
FAIL: gdb.base/hbreak2.exp: next over recursive call
FAIL: gdb.base/hbreak2.exp: backtrace from factorial(5.1)
FAIL: gdb.base/hbreak2.exp: continue until exit at recursive next test
gdb.log:
(gdb) next
Program received signal SIGTRAP, Trace/breakpoint trap.
factorial (value=4) at ../../../src/gdb/testsuite/gdb.base/break.c:113
113 if (value > 1) { /* set breakpoint 7 here */
(gdb) FAIL: gdb.base/hbreak2.exp: next over recursive call
Actually, that patch just exposed a latent issue to "breakpoints
always-inserted off" mode, not really caused it. After that patch,
GDB no longer removes breakpoints at each internal event, thus making
some scenarios behave like breakpoint always-inserted on. The bug is
easy to trigger with always-inserted on.
The issue is that since the target-side breakpoint conditions support,
if the stub/server supports evaluating breakpoint conditions on the
target side, then GDB is sending duplicate Zx packets to the target
without removing them before, and GDBserver is not really expecting
that for Z packets other than Z0/z0. E.g., with "set breakpoint
always-inserted on" and "set debug remote 1":
(gdb) b main
Sending packet: $m410943,1#ff...Packet received: 48
Breakpoint 4 at 0x410943: file ../../../src/gdb/gdbserver/server.c, line 3028.
Sending packet: $Z0,410943,1#48...Packet received: OK
^^^^^^^^^^^^
(gdb) b main
Note: breakpoint 4 also set at pc 0x410943.
Sending packet: $m410943,1#ff...Packet received: 48
Breakpoint 5 at 0x410943: file ../../../src/gdb/gdbserver/server.c, line 3028.
Sending packet: $Z0,410943,1#48...Packet received: OK
^^^^^^^^^^^^
(gdb) b main
Note: breakpoints 4 and 5 also set at pc 0x410943.
Sending packet: $m410943,1#ff...Packet received: 48
Breakpoint 6 at 0x410943: file ../../../src/gdb/gdbserver/server.c, line 3028.
Sending packet: $Z0,410943,1#48...Packet received: OK
^^^^^^^^^^^^
(gdb) del
Delete all breakpoints? (y or n) y
Sending packet: $Z0,410943,1#48...Packet received: OK
Sending packet: $Z0,410943,1#48...Packet received: OK
Sending packet: $z0,410943,1#68...Packet received: OK
And for Z1, similarly:
(gdb) hbreak main
Sending packet: $m410943,1#ff...Packet received: 48
Hardware assisted breakpoint 4 at 0x410943: file ../../../src/gdb/gdbserver/server.c, line 3028.
Sending packet: $Z1,410943,1#49...Packet received: OK
^^^^^^^^^^^^
Packet Z1 (hardware-breakpoint) is supported
(gdb) hbreak main
Note: breakpoint 4 also set at pc 0x410943.
Sending packet: $m410943,1#ff...Packet received: 48
Hardware assisted breakpoint 5 at 0x410943: file ../../../src/gdb/gdbserver/server.c, line 3028.
Sending packet: $Z1,410943,1#49...Packet received: OK
^^^^^^^^^^^^
(gdb) hbreak main
Note: breakpoints 4 and 5 also set at pc 0x410943.
Sending packet: $m410943,1#ff...Packet received: 48
Hardware assisted breakpoint 6 at 0x410943: file ../../../src/gdb/gdbserver/server.c, line 3028.
Sending packet: $Z1,410943,1#49...Packet received: OK
^^^^^^^^^^^^
(gdb) del
Delete all breakpoints? (y or n) y
Sending packet: $Z1,410943,1#49...Packet received: OK
^^^^^^^^^^^^
Sending packet: $Z1,410943,1#49...Packet received: OK
^^^^^^^^^^^^
Sending packet: $z1,410943,1#69...Packet received: OK
^^^^^^^^^^^^
So GDB sent a bunch of Z1 packets, and then when finally removing the
breakpoint, only one z1 packet was sent. On the GDBserver side (with
monitor set debug-hw-points 1), in the Z1 case, we see:
$ ./gdbserver :9999 ./gdbserver
Process ./gdbserver created; pid = 8629
Listening on port 9999
Remote debugging from host 127.0.0.1
insert_watchpoint (addr=410943, len=1, type=instruction-execute):
CONTROL (DR7): 00000101 STATUS (DR6): 00000000
DR0: addr=0x410943, ref.count=1 DR1: addr=0x0, ref.count=0
DR2: addr=0x0, ref.count=0 DR3: addr=0x0, ref.count=0
insert_watchpoint (addr=410943, len=1, type=instruction-execute):
CONTROL (DR7): 00000101 STATUS (DR6): 00000000
DR0: addr=0x410943, ref.count=2 DR1: addr=0x0, ref.count=0
DR2: addr=0x0, ref.count=0 DR3: addr=0x0, ref.count=0
insert_watchpoint (addr=410943, len=1, type=instruction-execute):
CONTROL (DR7): 00000101 STATUS (DR6): 00000000
DR0: addr=0x410943, ref.count=3 DR1: addr=0x0, ref.count=0
DR2: addr=0x0, ref.count=0 DR3: addr=0x0, ref.count=0
insert_watchpoint (addr=410943, len=1, type=instruction-execute):
CONTROL (DR7): 00000101 STATUS (DR6): 00000000
DR0: addr=0x410943, ref.count=4 DR1: addr=0x0, ref.count=0
DR2: addr=0x0, ref.count=0 DR3: addr=0x0, ref.count=0
insert_watchpoint (addr=410943, len=1, type=instruction-execute):
CONTROL (DR7): 00000101 STATUS (DR6): 00000000
DR0: addr=0x410943, ref.count=5 DR1: addr=0x0, ref.count=0
DR2: addr=0x0, ref.count=0 DR3: addr=0x0, ref.count=0
remove_watchpoint (addr=410943, len=1, type=instruction-execute):
CONTROL (DR7): 00000101 STATUS (DR6): 00000000
DR0: addr=0x410943, ref.count=4 DR1: addr=0x0, ref.count=0
DR2: addr=0x0, ref.count=0 DR3: addr=0x0, ref.count=0
That's one insert_watchpoint call for each Z1 packet, and then one
remove_watchpoint call for the z1 packet. Notice how ref.count
increased for each insert_watchpoint call, and then in the end, after
GDB told GDBserver to forget about the hardware breakpoint, GDBserver
ends with the the first debug register still with ref.count=4! IOW,
the hardware breakpoint is left armed on the target, while on the GDB
end it's gone. If the program happens to execute 0x410943 afterwards,
then the CPU traps, GDBserver reports the trap to GDB, and GDB not
having a breakpoint set at that address anymore, reports to the user a
spurious SIGTRAP.
This is exactly what is happening in the hbreak2.exp test, though in
that case, it's a shared library event that triggers a
breakpoint_re_set, when breakpoints are still inserted (because
nowadays GDB doesn't remove breakpoints while handling internal
events), and that recreates breakpoint locations, which likewise
forces breakpoint reinsertion and Zx packet resends...
That is a lot of bogus Zx duplication that should possibly be
addressed on the GDB side. GDB resends Zx packets because the way to
change the target-side condition, is to resend the breakpoint to the
server with the new condition. (That's an option in the packet: e.g.,
"Z1,410943,1;X3,220027" for "hbreak main if 0". The packets in the
examples above are shorter because the breakpoints don't have
conditions attached). GDB doesn't remove the breakpoint first before
reinserting it because that'd be bad for non-stop, as it'd open a
window where the inferior could miss the breakpoint. The conditions
actually haven't changed between the resends, but GDB isn't smart
enough to realize that.
(TBC, if the target doesn't support target-side conditions, then GDB
doesn't trigger these resends (init_bp_location calls
mark_breakpoint_location_modified, and that does nothing if condition
evaluation is on the host side. The resends are caused by the
'loc->condition_changed = condition_modified.' line.)
But, even if GDB was made smarter, GDBserver should really still
handle the resends anyway. So target-side conditions also aren't
really to blame. The documentation of the Z/z packets says:
"To avoid potential problems with duplicate packets, the operations
should be implemented in an idempotent way."
As such, we may want to fix GDB, but we should definitely fix
GDBserver. The fix is a prerequisite for target-side conditions on
hardware breakpoints anyway (and while at it, on watchpoints too).
GDBserver indeed already treats duplicate Z0 packets in an idempotent
way. mem-break.c has the concept of high-level and low-level
breakpoints, somewhat similar to GDB's split of breakpoints vs
breakpoint locations, and keeps track of multiple breakpoints
referencing the same address/location, for the case of an internal
GDBserver breakpoint or a tracepoint being set at the same address as
a GDB breakpoint. But, it only allows GDB to ever contribute one
reference to a software breakpoint location. IOW, if gdbserver sees a
Z0 packet for the same address where it already had a GDB breakpoint
set, then GDBserver won't create another high-level GDB breakpoint.
However, mem-break.c only tracks GDB Z0 breakpoints. The same logic
should apply to all kinds of Zx packets. Currently, gdbserver passes
down each duplicate Zx (other than Z0) request directly to the
target->insert_point routine. The x86 watchpoint support itself
refcounts watchpoint / hw breakpoint requests, to handle overlapping
watchpoints, and save debug registers. But that code doesn't (and
really shouldn't) handle the duplicate requests, assuming that for
each insert there will be a corresponding remove.
So the fix is to generalize mem-break.c to track all kinds of Zx
breakpoints, and filter out duplicates. As mentioned, this ends up
adding support for target-side conditions on hardware breakpoints and
watchpoints too (though GDB itself doesn't support the latter yet).
Probably the least obvious change in the patch is that it kind of
turns the breakpoint insert/remove APIs inside out. Before, the
target methods were only called for GDB breakpoints. The internal
breakpoint set/delete methods inserted memory breakpoints directly
bypassing the insert/remove target methods. That's not good when the
target should use a debug API to set software breakpoints, instead of
relying on GDBserver patching memory with breakpoint instructions, as
is the case of NTO.
Now removal/insertion of all kinds of breakpoints/watchpoints, either
internal, or from GDB, always go through the target methods. The
insert_point/remove_point methods no longer get passed a Z packet
type, but an internal/raw breakpoint type. They're also passed a
pointer to the raw breakpoint itself (note that's still opaque outside
mem-break.c), so that insert_memory_breakpoint /
remove_memory_breakpoint have access to the breakpoint's shadow
buffer. I first tried passing down a new structure based on GDB's
"struct bp_target_info" (actually with that name exactly), but then
decided against it as unnecessary complication.
As software/memory breakpoints work by poking at memory, when setting
a GDB Z0 breakpoint (but not internal breakpoints, as those can assume
the conditions are already right), we need to tell the target to
prepare to access memory (which on Linux means stop threads). If that
operation fails, we need to return error to GDB. Seeing an error, if
this is the first breakpoint of that type that GDB tries to insert,
GDB would then assume the breakpoint type is supported, but it may
actually not be. So we need to check whether the type is supported at
all before preparing to access memory. And to solve that, the patch
adds a new target->supports_z_point_type method that is called before
actually trying to insert the breakpoint.
Other than that, hopefully the change is more or less obvious.
New test added that exercises the hbreak2.exp regression in a more
direct way, without relying on a breakpoint re-set happening before
main is reached.
Tested by building GDBserver for:
aarch64-linux-gnu
arm-linux-gnueabihf
i686-pc-linux-gnu
i686-w64-mingw32
m68k-linux-gnu
mips-linux-gnu
mips-uclinux
nios2-linux-gnu
powerpc-linux-gnu
sh-linux-gnu
tilegx-unknown-linux-gnu
x86_64-redhat-linux
x86_64-w64-mingw32
And also regression tested on x86_64 Fedora 20.
gdb/gdbserver/
2014-05-20 Pedro Alves <palves@redhat.com>
* linux-aarch64-low.c (aarch64_insert_point)
(aarch64_remove_point): No longer check whether the type is
supported here. Adjust to new interface.
(the_low_target): Install aarch64_supports_z_point_type as
supports_z_point_type method.
* linux-arm-low.c (raw_bkpt_type_to_arm_hwbp_type): New function.
(arm_linux_hw_point_initialize): Take an enum raw_bkpt_type
instead of a Z packet char. Adjust.
(arm_supports_z_point_type): New function.
(arm_insert_point, arm_remove_point): Adjust to new interface.
(the_low_target): Install arm_supports_z_point_type.
* linux-crisv32-low.c (cris_supports_z_point_type): New function.
(cris_insert_point, cris_remove_point): Adjust to new interface.
Don't check whether the type is supported here.
(the_low_target): Install cris_supports_z_point_type.
* linux-low.c (linux_supports_z_point_type): New function.
(linux_insert_point, linux_remove_point): Adjust to new interface.
* linux-low.h (struct linux_target_ops) <insert_point,
remove_point>: Take an enum raw_bkpt_type instead of a char. Add
raw_breakpoint pointer parameter.
<supports_z_point_type>: New method.
* linux-mips-low.c (mips_supports_z_point_type): New function.
(mips_insert_point, mips_remove_point): Adjust to new interface.
Use mips_supports_z_point_type.
(the_low_target): Install mips_supports_z_point_type.
* linux-ppc-low.c (the_low_target): Install NULL as
supports_z_point_type method.
* linux-s390-low.c (the_low_target): Install NULL as
supports_z_point_type method.
* linux-sparc-low.c (the_low_target): Install NULL as
supports_z_point_type method.
* linux-x86-low.c (x86_supports_z_point_type): New function.
(x86_insert_point): Adjust to new insert_point interface. Use
insert_memory_breakpoint. Adjust to new
i386_low_insert_watchpoint interface.
(x86_remove_point): Adjust to remove_point interface. Use
remove_memory_breakpoint. Adjust to new
i386_low_remove_watchpoint interface.
(the_low_target): Install x86_supports_z_point_type.
* lynx-low.c (lynx_target_ops): Install NULL as
supports_z_point_type callback.
* nto-low.c (nto_supports_z_point_type): New.
(nto_insert_point, nto_remove_point): Adjust to new interface.
(nto_target_ops): Install nto_supports_z_point_type.
* mem-break.c: Adjust intro comment.
(struct raw_breakpoint) <raw_type, size>: New fields.
<inserted>: Update comment.
<shlib_disabled>: Delete field.
(enum bkpt_type) <gdb_breakpoint>: Delete value.
<gdb_breakpoint_Z0, gdb_breakpoint_Z1, gdb_breakpoint_Z2,
gdb_breakpoint_Z3, gdb_breakpoint_Z4>: New values.
(raw_bkpt_type_to_target_hw_bp_type): New function.
(find_enabled_raw_code_breakpoint_at): New function.
(find_raw_breakpoint_at): New type and size parameters. Use them.
(insert_memory_breakpoint): New function, based off
set_raw_breakpoint_at.
(remove_memory_breakpoint): New function.
(set_raw_breakpoint_at): Reimplement.
(set_breakpoint): New, based on set_breakpoint_at.
(set_breakpoint_at): Reimplement.
(delete_raw_breakpoint): Go through the_target->remove_point
instead of assuming memory breakpoints.
(find_gdb_breakpoint_at): Delete.
(Z_packet_to_bkpt_type, Z_packet_to_raw_bkpt_type): New functions.
(find_gdb_breakpoint): New function.
(set_gdb_breakpoint_at): Delete.
(z_type_supported): New function.
(set_gdb_breakpoint_1): New function, loosely based off
set_gdb_breakpoint_at.
(check_gdb_bp_preconditions, set_gdb_breakpoint): New functions.
(delete_gdb_breakpoint_at): Delete.
(delete_gdb_breakpoint_1): New function, loosely based off
delete_gdb_breakpoint_at.
(delete_gdb_breakpoint): New function.
(clear_gdb_breakpoint_conditions): Rename to ...
(clear_breakpoint_conditions): ... this. Don't handle a NULL
breakpoint.
(add_condition_to_breakpoint): Make static.
(add_breakpoint_condition): Take a struct breakpoint pointer
instead of an address. Adjust.
(gdb_condition_true_at_breakpoint): Rename to ...
(gdb_condition_true_at_breakpoint_z_type): ... this, and add
z_type parameter.
(gdb_condition_true_at_breakpoint): Reimplement.
(add_breakpoint_commands): Take a struct breakpoint pointer
instead of an address. Adjust.
(gdb_no_commands_at_breakpoint): Rename to ...
(gdb_no_commands_at_breakpoint_z_type): ... this. Add z_type
parameter. Return true if no breakpoint was found. Change debug
output.
(gdb_no_commands_at_breakpoint): Reimplement.
(run_breakpoint_commands): Rename to ...
(run_breakpoint_commands_z_type): ... this. Add z_type parameter,
and change return type to boolean.
(run_breakpoint_commands): New function.
(gdb_breakpoint_here): Also check for Z1 breakpoints.
(uninsert_raw_breakpoint): Don't try to reinsert a disabled
breakpoint. Go through the_target->remove_point instead of
assuming memory breakpoint.
(uninsert_breakpoints_at, uninsert_all_breakpoints): Uninsert
software and hardware breakpoints.
(reinsert_raw_breakpoint): Go through the_target->insert_point
instead of assuming memory breakpoint.
(reinsert_breakpoints_at, reinsert_all_breakpoints): Reinsert
software and hardware breakpoints.
(check_breakpoints, breakpoint_here, breakpoint_inserted_here):
Check both software and hardware breakpoints.
(validate_inserted_breakpoint): Assert the breakpoint is a
software breakpoint. Set the inserted flag to -1 instead of
setting shlib_disabled.
(delete_disabled_breakpoints): Adjust.
(validate_breakpoints): Only validate software breakpoints.
Adjust to inserted flag change.
(check_mem_read, check_mem_write): Skip breakpoint types other
than software breakpoints. Adjust to inserted flag change.
* mem-break.h (enum raw_bkpt_type): New enum.
(raw_breakpoint, struct process_info): Forward declare.
(Z_packet_to_target_hw_bp_type): Delete declaration.
(raw_bkpt_type_to_target_hw_bp_type, Z_packet_to_raw_bkpt_type)
(set_gdb_breakpoint, delete_gdb_breakpoint)
(clear_breakpoint_conditions): New declarations.
(set_gdb_breakpoint_at, clear_gdb_breakpoint_conditions): Delete.
(breakpoint_inserted_here): Update comment.
(add_breakpoint_condition, add_breakpoint_commands): Replace
address parameter with a breakpoint pointer parameter.
(gdb_breakpoint_here): Update comment.
(delete_gdb_breakpoint_at): Delete.
(insert_memory_breakpoint, remove_memory_breakpoint): Declare.
* server.c (process_point_options): Take a struct breakpoint
pointer instead of an address. Adjust.
(process_serial_event) <Z/z packets>: Use set_gdb_breakpoint and
delete_gdb_breakpoint.
* spu-low.c (spu_target_ops): Install NULL as
supports_z_point_type method.
* target.h: Include mem-break.h.
(struct target_ops) <prepare_to_access_memory>: Update comment.
<supports_z_point_type>: New field.
<insert_point, remove_point>: Take an enum raw_bkpt_type argument
instead of a char. Also take a raw breakpoint pointer.
* win32-arm-low.c (the_low_target): Install NULL as
supports_z_point_type.
* win32-i386-low.c (i386_supports_z_point_type): New function.
(i386_insert_point, i386_remove_point): Adjust to new interface.
(the_low_target): Install i386_supports_z_point_type.
* win32-low.c (win32_supports_z_point_type): New function.
(win32_insert_point, win32_remove_point): Adjust to new interface.
(win32_target_ops): Install win32_supports_z_point_type.
* win32-low.h (struct win32_target_ops):
<supports_z_point_type>: New method.
<insert_point, remove_point>: Take an enum raw_bkpt_type argument
instead of a char. Also take a raw breakpoint pointer.
gdb/testsuite/
2014-05-20 Pedro Alves <palves@redhat.com>
* gdb.base/break-idempotent.c: New file.
* gdb.base/break-idempotent.exp: New file.
The Aarch64, MIPS and x86 Linux backends all have Z packet number
defines and corresponding protocol number to internal type convertion
routines. Factor them all out to gdbserver's core code, so we only
have one shared copy.
Tested on x86_64 Fedora 20, and also cross built for aarch64-linux-gnu
and mips-linux-gnu.
gdb/gdbserver/
2014-05-20 Pedro Alves <palves@redhat.com>
* mem-break.h: Include break-common.h.
(Z_PACKET_SW_BP, Z_PACKET_HW_BP, Z_PACKET_WRITE_WP)
(Z_PACKET_READ_WP, Z_PACKET_ACCESS_WP): New defines.
(Z_packet_to_target_hw_bp_type): New declaration.
* mem-break.c (Z_packet_to_target_hw_bp_type): New function.
* i386-low.c (Z_PACKET_HW_BP, Z_PACKET_WRITE_WP, Z_PACKET_READ_WP)
(Z_PACKET_ACCESS_WP): Delete macros.
(Z_packet_to_hw_type): Delete function.
* i386-low.h: Don't include break-common.h here.
(Z_packet_to_hw_type): Delete declaration.
* linux-x86-low.c (x86_insert_point, x86_insert_point): Call
Z_packet_to_target_hw_bp_type instead of Z_packet_to_hw_type.
* win32-i386-low.c (i386_insert_point, i386_remove_point): Call
Z_packet_to_target_hw_bp_type instead of Z_packet_to_hw_type.
* linux-aarch64-low.c: Don't include break-common.h here.
(Z_PACKET_SW_BP, Z_PACKET_HW_BP, Z_PACKET_WRITE_WP)
(Z_PACKET_READ_WP, Z_PACKET_ACCESS_WP): Delete macros.
(Z_packet_to_target_hw_bp_type): Delete function.
* linux-mips-low.c (rsp_bp_type_to_target_hw_bp_type): Delete
function.
(mips_insert_point, mips_remove_point): Use
Z_packet_to_target_hw_bp_type.
This makes linux-aarch64-low.c use target_hw_bp_type, like gdb's
aarch64-linux-nat.c. The original motivation is decoupling
insert_point/remove_point from Z packet numbers, but I think making
the files a little bit more similar is a good thing on its own right.
Ideally we'd merge these files even... The
aarch64_point_encode_ctrl_reg change is taken straight from GDB's
copy.
I confirmed with a cross compiler that this builds, but it's otherwise
untested.
gdb/gdbserver/
2014-05-20 Pedro Alves <palves@redhat.com>
* linux-aarch64-low.c: Include break-common.h.
(enum target_point_type): Delete.
(Z_packet_to_point_type): Rename to ...
(Z_packet_to_target_hw_bp_type): ... this, and return a
target_hw_bp_type instead.
(aarch64_show_debug_reg_state): Take an enum target_hw_bp_type
instead of an enum target_point_type.
(aarch64_point_encode_ctrl_reg): Likewise. Compute type mask from
breakpoint type.
(aarch64_dr_state_insert_one_point)
(aarch64_dr_state_remove_one_point, aarch64_handle_breakpoint)
(aarch64_handle_aligned_watchpoint)
(aarch64_handle_unaligned_watchpoint, aarch64_handle_watchpoint):
Take an enum target_hw_bp_type instead of an enum
target_point_type.
(aarch64_supports_z_point_type): New function.
(aarch64_insert_point, aarch64_remove_point): Use it. Adjust to
use Z_packet_to_target_hw_bp_type.
On GDB release branches, we change $development in gdb/development.sh
to false, in order to build the GDB release without -Werror by default,
thus avoiding harmless compiler warnings from breaking the build of
someone who's only interested in building GDB rather than working
on it.
This patch implements the same strategy for gdbserver, using the exact
same method.
gdb/gdbserver/ChangeLog:
* configure.ac: Only use -Werror by default when DEVELOPMENT
is true.
* configure: Regenerate.
Tested on x86_64-linux, by rebuilding GDBserver first with development
set to true, and then doing it again with development set to false.
Werror was used in the first case, but not in the second.
gdbserver makes libthread_db to access uninitialized memory. Surprisingly it
does not harm normally, even -fsanitize=address works with current gdbserver.
I have found just valgrind detects it as a very first warning for gdbserver:
Syscall param ptrace(addr) contains uninitialised byte(s)
at 0x3721EECEBE: ptrace (ptrace.c:45)
by 0x436EE5: ps_get_thread_area (linux-x86-low.c:252)
by 0x5559D02: __td_ta_lookup_th_unique (td_ta_map_lwp2thr.c:157)
by 0x5559EC3: td_ta_map_lwp2thr (td_ta_map_lwp2thr.c:207)
by 0x43F87D: find_one_thread (thread-db.c:281)
by 0x440038: thread_db_get_tls_address (thread-db.c:505)
by 0x40F6D0: handle_query (server.c:2004)
by 0x4124CF: process_serial_event (server.c:3445)
by 0x4136B6: handle_serial_event (server.c:3889)
by 0x419571: handle_file_event (event-loop.c:434)
by 0x418D38: process_event (event-loop.c:189)
by 0x419AB7: start_event_loop (event-loop.c:552)
Reproducible with:
cd gdb/testsuite
g++ -o gdb.threads/tls gdb.threads/tls{,2}.c -m32 -pthread
../gdbserver/gdbserver :1234 gdb.threads/tls
../gdb -batch gdb.threads/tls -ex 'target remote :1234' -ex 'b spin' -ex c -ex 'p a_thread_local'
It is more easily reproducible even without valgrind using s/0x00/0xff/ in the
attached patch. It will then turn the output of reproducer above:
$1 = 0
->
Cannot find thread-local storage for Thread 29044, executable file .../gdb/testsuite/gdb.threads/tls:
Remote target failed to process qGetTLSAddr request
gdb/gdbserver/
2014-05-19 Jan Kratochvil <jan.kratochvil@redhat.com>
Fix gdbserver qGetTLSAddr for x86_64 -m32.
* linux-x86-low.c (X86_64_USER_REGS): New.
(x86_fill_gregset): Call memset for BUF first in x86_64 -m32 case.
Message-ID: <20140410114901.GA16411@host2.jankratochvil.net>
The makefile rule i386-avx512.c is to generate i386-avx512.c, but it
is written to i386-avx.c by mistake. This patch is to fix this typo.
gdb/gdbserver:
2014-04-28 Yao Qi <yao@codesourcery.com>
* Makefile.in (i386-avx512.c): Fix the typo of generated file
name.
2014-04-25 Pedro Alves <palves@redhat.com>
PR server/16255
* linux-low.c (linux_attach_fail_reason_string): New function.
(linux_attach_lwp): Delete.
(linux_attach_lwp_1): Rename to ...
(linux_attach_lwp): ... this. Take a ptid instead of a pid as
argument. Remove "initial" parameter. Return int instead of
void. Don't error or warn here.
(linux_attach): Adjust to call linux_attach_lwp. Call error on
failure to attach to the tgid. Call warning when failing to
attach to an lwp.
* linux-low.h (linux_attach_lwp): Take a ptid instead of a pid as
argument. Remove "initial" parameter. Return int instead of
void. Don't error or warn here.
(linux_attach_fail_reason_string): New declaration.
* thread-db.c (attach_thread): Adjust to linux_attach_lwp's
interface change. Use linux_attach_fail_reason_string.
On Linux, we need to explicitly ptrace attach to all lwps of a
process. Because GDB might not be connected yet when an attach is
requested, and thus it may not be possible to activate thread_db, as
that requires access to symbols (IOW, gdbserver --attach), a while ago
we make linux_attach loop over the lwps as listed by /proc/PID/task to
find the lwps to attach to.
linux_attach_lwp_1 has:
...
if (initial)
/* If lwp is the tgid, we handle adding existing threads later.
Otherwise we just add lwp without bothering about any other
threads. */
ptid = ptid_build (lwpid, lwpid, 0);
else
{
/* Note that extracting the pid from the current inferior is
safe, since we're always called in the context of the same
process as this new thread. */
int pid = pid_of (current_inferior);
ptid = ptid_build (pid, lwpid, 0);
}
That "safe" comment referred to linux_attach_lwp being called by
thread-db.c. But this was clearly missed when a new call to
linux_attach_lwp_1 was added to linux_attach. As a result,
current_inferior will be set to some random process, and non-initial
lwps of the second inferior get assigned the pid of the wrong
inferior. E.g., in the case of attaching to two inferiors, for the
second inferior (and so on), non-initial lwps of the second inferior
get assigned the pid of the first inferior. This doesn't trigger on
the first inferior, when current_inferior is NULL, add_thread switches
the current inferior to the newly added thread.
Rather than making linux_attach switch current_inferior temporarily
(thus avoiding further reliance on global state), or making
linux_attach_lwp_1 get the tgid from /proc, which add extra syscalls,
and will be wrong in case of the user having originally attached
directly to a non-tgid lwp, and then that lwp spawning new clones (the
ptid.pid field of further new clones should be the same as the
original lwp's pid, which is not the tgid), we note that callers of
linux_attach_lwp/linux_attach_lwp_1 always have the right pid handy
already, so they can pass it down along with the lwpid.
The only other reason for the "initial" parameter is to error out
instead of warn in case of attach failure, when we're first attaching
to a process. There are only three callers of
linux_attach_lwp/linux_attach_lwp_1, and each wants to print a
different warn/error string, so we can just move the error/warn out of
linux_attach_lwp_1 to the callers, thus getting rid of the "initial"
parameter.
There really nothing gdbserver-specific about attaching to two
threaded processes, so this adds a new test under gdb.multi/. The
test passes cleanly against the native GNU/Linux target, but
fails/triggers the bug against GDBserver (before the patch), with the
native-extended-remote board (as plain remote doesn't support
multi-process).
Tested on x86_64 Fedora 17, with the native-extended-gdbserver board.
gdb/gdbserver/
2014-04-25 Pedro Alves <palves@redhat.com>
PR server/16255
* linux-low.c (linux_attach_fail_reason_string): New function.
(linux_attach_lwp): Delete.
(linux_attach_lwp_1): Rename to ...
(linux_attach_lwp): ... this. Take a ptid instead of a pid as
argument. Remove "initial" parameter. Return int instead of
void. Don't error or warn here.
(linux_attach): Adjust to call linux_attach_lwp. Call error on
failure to attach to the tgid. Call warning when failing to
attach to an lwp.
* linux-low.h (linux_attach_lwp): Take a ptid instead of a pid as
argument. Remove "initial" parameter. Return int instead of
void. Don't error or warn here.
(linux_attach_fail_reason_string): New declaration.
* thread-db.c (attach_thread): Adjust to linux_attach_lwp's
interface change. Use linux_attach_fail_reason_string.
gdb/
2014-04-25 Pedro Alves <palves@redhat.com>
PR server/16255
* common/linux-ptrace.c (linux_ptrace_attach_warnings): Rename to ...
(linux_ptrace_attach_fail_reason): ... this. Remove "warning: "
and newline from built string.
* common/linux-ptrace.h (linux_ptrace_attach_warnings): Rename to ...
(linux_ptrace_attach_fail_reason): ... this.
* linux-nat.c (linux_nat_attach): Adjust to use
linux_ptrace_attach_fail_reason.
gdb/testsuite/
2014-04-25 Simon Marchi <simon.marchi@ericsson.com>
Pedro Alves <palves@redhat.com>
PR server/16255
* gdb.multi/multi-attach.c: New file.
* gdb.multi/multi-attach.exp: New file.
This patch adds support for the Intel(R) Advanced Vector
Extensions 512 (Intel(R) AVX-512) registers. Native and remote
debugging are covered by this patch.
Intel(R) AVX-512 is an extension to AVX to support 512-bit wide
SIMD registers in 64-bit mode (XMM0-XMM31, YMM0-YMM31, ZMM0-ZMM31).
The number of available registers in 32-bit mode is still 8
(XMM0-7, YMM0-7, ZMM0-7). The lower 256-bits of the ZMM registers
are aliased to the respective 256-bit YMM registers. The lower
128-bits are aliased to the respective 128-bit XMM registers.
There are also 8 new, dedicated mask registers (K0-K7) in both 32-bit
mode and 64-bit mode.
For more information please see
Intel(R) Developer Zone: Intel(R) AVX
http://software.intel.com/en-us/intel-isa-extensions#pid-16007-1495
Intel(R) Architecture Instruction Set Extensions Programming Reference:
http://software.intel.com/en-us/file/319433-017pdf
2014-04-24 Michael Sturm <michael.sturm@mintel.com>
Walfred Tedeschi <walfred.tedeschi@intel.com>
* amd64-linux-nat.c (amd64_linux_gregset32_reg_offset): Add
AVX512 registers.
(amd64_linux_read_description): Add code to handle AVX512 xstate
mask and return respective tdesc.
* amd64-linux-tdep.c: Include features/i386/amd64-avx512-linux.c
and features/i386/x32-avx512-linux.c.
(amd64_linux_gregset_reg_offset): Add AVX512 registers.
(amd64_linux_core_read_description): Add code to handle AVX512
xstate mask and return respective tdesc.
(_initialize_amd64_linux_tdep): Initialize AVX512 tdesc.
* amd64-linux-tdep.h (AMD64_LINUX_ORIG_RAX_REGNUM): Adjust regnum
calculation.
(AMD64_LINUX_NUM_REGS): Adjust to new number of registers.
(tdesc_amd64_avx512_linux): New prototype.
(tdesc_x32_avx512_linux): Likewise.
* amd64-tdep.c: Include features/i386/amd64-avx512.c and
features/i386/x32-avx512.c.
(amd64_ymm_avx512_names): New register names for pseudo
registers YMM16-31.
(amd64_ymmh_avx512_names): New register names for raw registers
YMMH16-31.
(amd64_k_names): New register names for K registers.
(amd64_zmmh_names): New register names for ZMM raw registers.
(amd64_zmm_names): New registers names for ZMM pseudo registers.
(amd64_xmm_avx512_names): New register names for XMM16-31
registers.
(amd64_pseudo_register_name): Add code to return AVX512 pseudo
registers.
(amd64_init_abi): Add code to intitialize AVX512 tdep variables
if feature is present.
(_initialize_amd64_tdep): Call AVX512 tdesc initializers.
* amd64-tdep.h (enum amd64_regnum): Add AVX512 registers.
(AMD64_NUM_REGS): Adjust to new number of registers.
* i386-linux-nat.c (GETXSTATEREGS_SUPPLIES): Extend range of
registers supplied via XSTATE by AVX512 registers.
(i386_linux_read_description): Add case for AVX512.
* i386-linux-tdep.c: Include i386-avx512-linux.c.
(i386_linux_gregset_reg_offset): Add AVX512 registers.
(i386_linux_core_read_description): Add case for AVX512.
(i386_linux_init_abi): Install supported register note section
for AVX512.
(_initialize_i386_linux_tdep): Add call to tdesc init function for
AVX512.
* i386-linux-tdep.h (I386_LINUX_NUM_REGS): Set number of
registers to be number of zmm7h + 1.
(tdesc_i386_avx512_linux): Add tdesc for AVX512 registers.
* i386-tdep.c: Include features/i386/i386-avx512.c.
(i386_zmm_names): Add ZMM pseudo register names array.
(i386_zmmh_names): Add ZMM raw register names array.
(i386_k_names): Add K raw register names array.
(num_lower_zmm_regs): Add constant for the number of lower ZMM
registers. AVX512 has 16 more ZMM registers than there are YMM
registers.
(i386_zmmh_regnum_p): Add function to look up register number of
ZMM raw registers.
(i386_zmm_regnum_p): Likewise for ZMM pseudo registers.
(i386_k_regnum_p): Likewise for K raw registers.
(i386_ymmh_avx512_regnum_p): Likewise for additional YMM raw
registers added by AVX512.
(i386_ymm_avx512_regnum_p): Likewise for additional YMM pseudo
registers added by AVX512.
(i386_xmm_avx512_regnum_p): Likewise for additional XMM registers
added by AVX512.
(i386_register_name): Add code to hide YMMH16-31 and ZMMH0-31.
(i386_pseudo_register_name): Add ZMM pseudo registers.
(i386_zmm_type): Construct and return vector registers type for ZMM
registers.
(i386_pseudo_register_type): Return appropriate type for YMM16-31,
ZMM0-31 pseudo registers and K registers.
(i386_pseudo_register_read_into_value): Add code to read K, ZMM
and YMM16-31 registers from register cache.
(i386_pseudo_register_write): Add code to write K, ZMM and
YMM16-31 registers.
(i386_register_reggroup_p): Add code to include/exclude AVX512
registers in/from respective register groups.
(i386_validate_tdesc_p): Handle AVX512 feature, add AVX512
registers if feature is present in xcr0.
(i386_gdbarch_init): Add code to initialize AVX512 feature
variables in tdep structure, wire in pseudo registers and call
initialize_tdesc_i386_avx512.
* i386-tdep.h (struct gdbarch_tdep): Add AVX512 related
variables.
(i386_regnum): Add AVX512 registers.
(I386_SSE_NUM_REGS): New define for number of SSE registers.
(I386_AVX_NUM_REGS): Likewise for AVX registers.
(I386_AVX512_NUM_REGS): Likewise for AVX512 registers.
(I386_MAX_REGISTER_SIZE): Change to 64 bytes, ZMM registers are
512 bits wide.
(i386_xmm_avx512_regnum_p): New prototype for register look up.
(i386_ymm_avx512_regnum_p): Likewise.
(i386_k_regnum_p): Likewise.
(i386_zmm_regnum_p): Likewise.
(i386_zmmh_regnum_p): Likewise.
* i387-tdep.c : Update year in copyright notice.
(xsave_ymm_avx512_offset): New table for YMM16-31 offsets in
XSAVE buffer.
(XSAVE_YMM_AVX512_ADDR): New macro.
(xsave_xmm_avx512_offset): New table for XMM16-31 offsets in
XSAVE buffer.
(XSAVE_XMM_AVX512_ADDR): New macro.
(xsave_avx512_k_offset): New table for K register offsets in
XSAVE buffer.
(XSAVE_AVX512_K_ADDR): New macro.
(xsave_avx512_zmm_h_offset): New table for ZMM register offsets
in XSAVE buffer.
(XSAVE_AVX512_ZMM_H_ADDR): New macro.
(i387_supply_xsave): Add code to supply AVX512 registers to XSAVE
buffer.
(i387_collect_xsave): Add code to collect AVX512 registers from
XSAVE buffer.
* i387-tdep.h (I387_NUM_XMM_AVX512_REGS): New define for number
of XMM16-31 registers.
(I387_NUM_K_REGS): New define for number of K registers.
(I387_K0_REGNUM): New define for K0 register number.
(I387_NUM_ZMMH_REGS): New define for number of ZMMH registers.
(I387_ZMM0H_REGNUM): New define for ZMM0H register number.
(I387_NUM_YMM_AVX512_REGS): New define for number of YMM16-31
registers.
(I387_YMM16H_REGNUM): New define for YMM16H register number.
(I387_XMM16_REGNUM): New define for XMM16 register number.
(I387_YMM0_REGNUM): New define for YMM0 register number.
(I387_KEND_REGNUM): New define for last K register number.
(I387_ZMMENDH_REGNUM): New define for last ZMMH register number.
(I387_YMMH_AVX512_END_REGNUM): New define for YMM31 register
number.
(I387_XMM_AVX512_END_REGNUM): New define for XMM31 register
number.
* common/i386-xstate.h: Add AVX 3.1 feature bits, mask and XSTATE
size.
* features/Makefile: Add AVX512 related files.
* features/i386/32bit-avx512.xml: New file.
* features/i386/64bit-avx512.xml: Likewise.
* features/i386/amd64-avx512-linux.c: Likewise.
* features/i386/amd64-avx512-linux.xml: Likewise.
* features/i386/amd64-avx512.c: Likewise.
* features/i386/amd64-avx512.xml: Likewise.
* features/i386/i386-avx512-linux.c: Likewise.
* features/i386/i386-avx512-linux.xml: Likewise.
* features/i386/i386-avx512.c: Likewise.
* features/i386/i386-avx512.xml: Likewise.
* features/i386/x32-avx512-linux.c: Likewise.
* features/i386/x32-avx512-linux.xml: Likewise.
* features/i386/x32-avx512.c: Likewise.
* features/i386/x32-avx512.xml: Likewise.
* regformats/i386/amd64-avx512-linux.dat: New file.
* regformats/i386/amd64-avx512.dat: Likewise.
* regformats/i386/i386-avx512-linux.dat: Likewise.
* regformats/i386/i386-avx512.dat: Likewise.
* regformats/i386/x32-avx512-linux.dat: Likewise.
* regformats/i386/x32-avx512.dat: Likewise.
* NEWS: Add note about new support for AVX512.
testsuite/
* Makefile.in (EXECUTABLES): Added i386-avx512.
* gdb.arch/i386-avx512.c: New file.
* gdb.arch/i386-avx512.exp: Likewise.
gdbserver/
* Makefile.in: Added rules to handle new files
i386-avx512.c i386-avx512-linux.c amd64-avx512.c
amd64-avx512-linux.c x32-avx512.c x32-avx512-linux.c.
* configure.srv (srv_i386_regobj): Add i386-avx512.o.
(srv_i386_linux_regobj): Add i386-avx512-linux.o.
(srv_amd64_regobj): Add amd64-avx512.o and x32-avx512.o.
(srv_amd64_linux_regobj): Add amd64-avx512-linux.o and
x32-avx512-linux.o.
(srv_i386_32bit_xmlfiles): Add i386/32bit-avx512.xml.
(srv_i386_64bit_xmlfiles): Add i386/64bit-avx512.xml.
(srv_amd64_xmlfiles): Add i386/amd64-avx512.xml and
i386/x32-avx512.xml.
(srv_i386_linux_xmlfiles): Add i386/i386-avx512-linux.xml.
(srv_amd64_linux_xmlfiles): Add i386/amd64-avx512-linux.xml and
i386/x32-avx512-linux.xml.
* i387-fp.c (num_avx512_k_registers): New constant for number
of K registers.
(num_avx512_zmmh_low_registers): New constant for number of
lower ZMM registers (0-15).
(num_avx512_zmmh_high_registers): New constant for number of
higher ZMM registers (16-31).
(num_avx512_ymmh_registers): New contant for number of higher
YMM registers (ymm16-31 added by avx521 on x86_64).
(num_avx512_xmm_registers): New constant for number of higher
XMM registers (xmm16-31 added by AVX512 on x86_64).
(struct i387_xsave): Add space for AVX512 registers.
(i387_cache_to_xsave): Change raw buffer size to 64 characters.
Add code to handle AVX512 registers.
(i387_xsave_to_cache): Add code to handle AVX512 registers.
* linux-x86-low.c (init_registers_amd64_avx512_linux): New
prototypei from generated file.
(tdesc_amd64_avx512_linux): Likewise.
(init_registers_x32_avx512_linux): Likewise.
(tdesc_x32_avx512_linux): Likewise.
(init_registers_i386_avx512_linux): Likewise.
(tdesc_i386_avx512_linux): Likewise.
(x86_64_regmap): Add AVX512 registers.
(x86_linux_read_description): Add code to handle AVX512 XSTATE
mask.
(initialize_low_arch): Add code to initialize AVX512 registers.
doc/
* gdb.texinfo (i386 Features): Add description of AVX512
registers.
Change-Id: Ifc4c08c76b85dbec18d02efdbe6182e851584438
Signed-off-by: Michael Sturm <michael.sturm@intel.com>
My main motivation here is moving in the direction of decoupling
insert_point/remove_point from packet numbers, though this bit alone
should make it a little bit easier to merge gdb/gdbserver/i386-low.c
and gdb/i386-nat.c (which are largely the same).
Tested on x86_64 Fedora 17, and cross built for i686-mingw32 too.
gdb/gdbserver/
2014-04-23 Pedro Alves <palves@redhat.com>
* i386-low.c: Don't include break-common.h here.
(i386_low_insert_watchpoint, i386_low_remove_watchpoint): Change
prototype to take target_hw_bp_type as argument instead of a Z
packet char.
* i386-low.h: Include break-common.h here.
(Z_packet_to_hw_type): Declare.
(i386_low_insert_watchpoint, i386_low_remove_watchpoint): Change
prototypes.
* linux-x86-low.c (x86_insert_point): Convert the packet number to
a target_hw_bp_type before calling i386_low_insert_watchpoint.
(x86_remove_point): Convert the packet number to a
target_hw_bp_type before calling i386_low_remove_watchpoint.
* win32-i386-low.c (i386_insert_point): Convert the packet number
to a target_hw_bp_type before calling i386_low_insert_watchpoint.
(i386_remove_point): Convert the packet number to a
target_hw_bp_type before calling i386_low_remove_watchpoint.
While trying to fix hbreak2.exp against GDBserver I noticed this...
(gdb) hbreak main if 1
Sending packet: $m400580,40#2e...Packet received: e8d2ffffff5dc3554889e54883ec10c745fc00000000eb0eb800000000e8c1ffffff8345fc01817dfce70300007ee9b800000000c9c3662e0f1f840000000000
Sending packet: $m40058f,1#31...Packet received: c7
Hardware assisted breakpoint 1 at 0x40058f: file ../../../src/gdb/testsuite/gdb.base/break-idempotent.c, line 46.
Sending packet: $Z1,40058f,1;X3,220127#9b...
*hangs forever*
The issue is that nothing advances the packet pointer if
add_breakpoint_condition either fails to parse the agent expression,
or fails to find the breakpoint, resulting in an infinite loop in
process_point_options. The latter case should really be fixed by
GDBserver tracking GDB Z1 breakpoints in its breakpoint structures
like Z0 breakpoints are, but the latter case still needs handling.
add_breakpoint_commands has the same issue, though at present I don't
know any way to trigger it other than sending a manually cooked
packet.
Unbelievably, it doesn't look like we have any test that tries setting
a conditional hardware breakpoint. Looking at cond-eval-mode.exp, it
looks like the file was meant to actually test something, but it's
mostly empty today. This patch adds tests that tries all sorts of
conditional breakpoints and watchpoints. The test hangs/fails without
the GDBserver fix.
Tested on x86_64 Fedora 17.
gdb/gdbserver/
2014-04-10 Pedro Alves <palves@redhat.com>
* mem-break.c (add_breakpoint_condition, add_breakpoint_commands):
Check if the condition or command is NULL before checking if the
breakpoint is known. On success, return true.
* mem-break.h (add_breakpoint_condition): Document return.
(add_breakpoint_commands): Add describing comment.
* server.c (skip_to_semicolon): New function.
(process_point_options): Use it.
gdb/testsuite/
2014-04-10 Pedro Alves <palves@redhat.com>
* gdb.base/cond-eval-mode.c: New file.
* gdb.base/cond-eval-mode.exp: Use standard_testfile. Adjust
prepare_for_testing to build the new file. Check result of
runto_main.
(test_break, test_watch): New procedures.
(top level): Use them.
sh-linux-gnu-gcc (...) src/gdb/gdbserver/linux-low.c
.../src/gdb/gdbserver/linux-low.c: In function 'linux_read_loadmap':
.../src/gdb/gdbserver/linux-low.c:5284:13: error: 'struct lwp_info' has no member named 'entry'
make[1]: *** [linux-low.o] Error 1
gdb/gdbserver/
2014-04-09 Pedro Alves <palves@redhat.com>
* linux-low.c (linux_read_loadmap): Pass current_inferior directly
to lwpid_of.
GDBserver currently hangs forever in waitpid if the leader thread
exits before other threads, or if all resumed threads exit - e.g.,
next over a thread exit with sched-locking on. This is exposed by
leader-exit.exp. leader-exit.exp is part of a series of tests for a
set of related problems. See
<http://www.sourceware.org/ml/gdb-patches/2011-10/msg00704.html>:
"
To recap, on the Linux kernel, ptrace/waitpid don't allow reaping the
leader thread until all other threads in the group are reaped. When
the leader exits, it goes zombie, but waitpid will not return an exit
status until the other threads are gone. This is presently exercised
by the gdb.threads/leader-exit.exp test. The fix for that test, in
linux-nat.c:wait_lwp, handles the case where we see the leader gone
when we're stopping all threads to report an event to some other
thread to the core.
(...)
The latter bit about not blocking if there no resumed threads in the
process also applies to some other thread exiting, not just the main
thread. E.g., this test starts a thread, and runs to a breakpoint in
that thread:
...
(gdb) c
Continuing.
[New Thread 0x7ffff75a4700 (LWP 23397)]
[Switching to Thread 0x7ffff75a4700 (LWP 23397)]
Breakpoint 2, thread_a (arg=0x0) at ../../../src/gdb/testsuite/gdb.threads/no-unwaited-for-left.c:28
28 return 0; /* break-here */
(gdb) info threads
* 2 Thread 0x7ffff75a4700 (LWP 23397) thread_a (arg=0x0) at ../../../src/gdb/testsuite/gdb.threads/no-unwaited-for-left.c:28
1 Thread 0x7ffff7fcb720 (LWP 23391) 0x00007ffff7bc606d in pthread_join (threadid=140737343276800, thread_return=0x0) at pthread_join.c:89
The thread will exit as soon as we resume it. But if we only resume
that thread, leaving the rest of the threads stopped:
(gdb) set scheduler-locking on
(gdb) c
Continuing.
^C^C^C^C^C^C^C^C
"
This patch fixes the issues by implementing TARGET_WAITKIND_NO_RESUMED
on GDBserver, similarly to what the patch above did for native
Linux GDB.
gdb.threads/leader-exit.exp now passes.
gdb.threads/no-unwaited-for-left.exp now at least errors out instead
of hanging:
continue
Continuing.
warning: Remote failure reply: E.No unwaited-for children left.
[Thread 15454] #1 stopped.
0x00000034cf408e60 in pthread_join (threadid=140737353922368, thread_return=0x0) at pthread_join.c:93
93 lll_wait_tid (pd->tid);
(gdb) FAIL: gdb.threads/no-unwaited-for-left.exp: continue stops when the main thread exits
The gdb.threads/non-ldr-exc-*.exp tests are skipped because GDBserver
unfortunately doesn't support fork/exec yet, but I'm confident this
fixes the related issues.
I'm leaving modeling TARGET_WAITKIND_NO_RESUMED in the RSP for a
separate pass.
(BTW, in case of error in response to a vCont, it would be better for
GDB to query the target for the current thread, or re-select one,
instead of assuming current inferior_ptid is still the selected
thread.)
This implementation is a little different from GDB's, because I'm
avoiding bringing in more of this broken use of waitpid(PID) into
GDBserver. Specifically, this avoids waitpid(PID) when stopping all
threads. There's really no need for wait_for_sigstop to wait for each
LWP in turn. Instead, with some refactoring, we make it reuse
linux_wait_for_event.
gdb/gdbserver/
2014-02-27 Pedro Alves <palves@redhat.com>
PR 12702
* inferiors.h (A_I_NEXT, ALL_INFERIORS_TYPE, ALL_PROCESSES): New
macros.
* linux-low.c (delete_lwp, handle_extended_wait): Add debug
output.
(last_thread_of_process_p): Take a PID argument instead of a
thread pointer.
(linux_wait_for_lwp): Delete.
(num_lwps, check_zombie_leaders, not_stopped_callback): New
functions.
(linux_low_filter_event): New function, party factored out from
linux_wait_for_event.
(linux_wait_for_event): Rename to ...
(linux_wait_for_event_filtered): ... this. Add new filter ptid
argument. Partly rewrite. Always use waitpid(-1, WNOHANG) and
sigsuspend. Check for zombie leaders.
(linux_wait_for_event): Reimplement as wrapper around
linux_wait_for_event_filtered.
(linux_wait_1): Handle TARGET_WAITKIND_NO_RESUMED. Assume that if
a normal or signal exit is seen, it's the whole process exiting.
(wait_for_sigstop): No longer a for_each_inferior callback.
Rewrite on top of linux_wait_for_event_filtered.
(stop_all_lwps): Call wait_for_sigstop directly.
* server.c (resume, handle_target_event): Handle
TARGET_WAITKIND_NO_RESUMED.
This is the GDBserver counterpart of a change we recently made in
GDB to only rely on get_image_name to determine its name.
This simplification, in turn, allows us to remove a fair amount of
functions and globals which now become unused.
gdb/gdbserver/ChangeLog:
* win32-low.c (psapi_get_dll_name,
* win32_CreateToolhelp32Snapshot): Delete.
(win32_CreateToolhelp32Snapshot, win32_Module32First)
(win32_Module32Next, load_toolhelp, toolhelp_get_dll_name):
Delete.
(handle_load_dll): Add function description.
Remove code using psapi_get_dll_name and toolhelp_get_dll_name.
This patch is a small cleanup that moves the magic 0x1000 offset
to apply to a DLL's base address inside the win32_add_one_solib
function, rather than delegate that reponsibility to its callers.
gdb/gdbserver/ChangeLog:
* win32-low.c (win32_add_one_solib): Add 0x1000 to load_addr.
Add comment.
(win32_add_all_dlls): Remove 0x1000 offset applied to DLL
base address when calling win32_add_one_solib.
(handle_load_dll): Delete local variable load_addr.
Remove 0x1000 offset applied to DLL base address when calling
win32_add_one_solib.
(handle_unload_dll): Add comment.
This GDBserver patch mirrors a change made in GDB wich aims at
simplifying DLL handling during the inferior initialization
(process creation during the "run", or during an "attach").
Instead of processing each DLL load event, which is sometimes
incomplete, we ignore these events until the inferior has completed
its startup phase, and then just iterate over all DLLs via
EnumProcessModules.
As a side-effect, it fixes a small bug where win32_ensure_ntdll_loaded
was missing a 0x1000 offset in the DLL base address. This problem
should only be visible on the 64bit version of Windows 8.1, since
this is the only platform where win32_ensure_ntdll_loaded is actually
needed.
gdb/gdbserver/ChangeLog:
* win32-low.c (win32_add_all_dlls): Renames
win32_ensure_ntdll_loaded. Rewrite function documentation.
Adjust implementation to always load all DLLs.
Add 0x1000 offset to DLL base address when calling
win32_add_one_solib.
(child_initialization_done): New static global.
(do_initial_child_stuff): Set child_initialization_done to
zero during child initialization, and 1 after. Replace call
to win32_ensure_ntdll_loaded by call to win32_add_all_dlls.
Add comment.
(match_dll_by_basename, dll_is_loaded_by_basename): Delete.
(handle_unload_dll): Add function documentation.
(get_child_debug_event): Ignore load and unload DLL events
during child initialization.
* gdbthread.h (add_thread): Change result type to struct thread_info *.
* inferiors.c (add_thread): Change result type to struct thread_info *.
All callers updated.
(add_lwp): Call add_thread here instead of in callers.
All callers updated.
* linux-low.h (get_lwp_thread): Rewrite.
(struct lwp_info): New member "thread".
This speeds up gdbserver attach in non-stop mode because now get_lwp_thread
doesn't do a linear search for the corresponding thread_info object.
* dll.c (clear_dlls): Replace accessing list implemention details
with API function.
* gdbthread.h (get_first_thread): Declare.
* inferiors.c (for_each_inferior_with_data): New function.
(get_first_thread): New function.
(find_thread_ptid): Simplify.
(get_first_inferior): New function.
(clear_list): Delete.
(one_inferior_p): New function.
(clear_inferior_list): New function.
(clear_inferiors): Update.
* inferiors.h (for_each_inferior_with_data): Declare.
(clear_inferior_list): Declare.
(one_inferior_p): Declare.
(get_first_inferior): Declare.
* linux-low.c (linux_wait_for_event): Replace accessing list
implemention details with API function.
* server.c (target_running): Ditto.
(accumulate_file_name_length): New function.
(emit_dll_description): New function.
(handle_qxfer_libraries): Replace accessing list implemention
details with API function.
(handle_qxfer_threads_worker): New function.
(handle_qxfer_threads_proper): Replace accessing list implemention
details with API function.
(handle_query): Ditto.
(visit_actioned_threads_callback_ftype): New typedef.
(visit_actioned_threads_data): New struct.
(visit_actioned_threads): Rewrite to be find_inferior callback.
(resume): Call find_inferior.
(handle_status): Replace accessing list implemention
details with API function.
(process_serial_event): Replace accessing list implemention details
with API function.
* target.c (set_desired_inferior): Replace accessing list implemention
details with API function.
* tracepoint.c (same_process_p): New function.
(gdb_agent_about_to_close): Replace accessing list implemention
details with API function.
* win32-low.c (child_delete_thread): Replace accessing list
implemention details with API function.
(match_dll_by_basename): New function.
(dll_is_loaded_by_basename): New function.
(win32_ensure_ntdll_loaded): Replace accessing list implemention
details call to dll_is_loaded_by_basename.
This adds a "self" argument to to_supports_btrace. Due to how one
implementation of this method is shared with gdbserver this required a
small change to gdbserver as well.
2014-02-19 Tom Tromey <tromey@redhat.com>
* common/linux-btrace.c (linux_supports_btrace): Add "ops"
argument.
* common/linux-btrace.h (linux_supports_btrace): Update.
* remote.c (remote_supports_btrace): Add "self" argument.
* target-delegates.c: Rebuild.
* target.c (target_supports_btrace): Remove.
* target.h (struct target_ops) <to_supports_btrace>: Add
target_ops argument.
(target_supports_btrace): New define.
2014-02-19 Tom Tromey <tromey@redhat.com>
* target.h (struct target_ops) <supports_btrace>: Add target_ops
argument.
(target_supports_btrace): Update.
unhexify and hex2bin are identical, so this removes unhexify. The
particular choice of which to keep was made on the basis of
parallelism with the earlier patch that removed hexify.
2014-02-12 Tom Tromey <tromey@redhat.com>
* common/rsp-low.h (unhexify): Don't declare.
* common/rsp-low.c (unhexify): Remove.
2014-02-12 Tom Tromey <tromey@redhat.com>
* server.c (handle_query, handle_v_run): Use hex2bin, not
unhexify.
* tracepoint.c (cmd_qtdpsrc, cmd_qtdv, cmd_qtnotes): Likewise.
convert_int_to_ascii is identical to bin2hex. This removes the
former. In this case I made the choice of which to keep on the basis
that I consider the name bin2hex to be superior to
convert_int_to_ascii.
2014-02-12 Tom Tromey <tromey@redhat.com>
* common/rsp-low.h (convert_int_to_ascii): Don't declare.
* common/rsp-low.c (convert_int_to_ascii): Remove.
2014-02-12 Tom Tromey <tromey@redhat.com>
* ax.c (gdb_unparse_agent_expr): Use bin2hex, not
convert_int_to_ascii.
* regcache.c (registers_to_string, collect_register_as_string):
Likewise.
* remote-utils.c (look_up_one_symbol, relocate_instruction):
Likewise.
* server.c (process_serial_event): Likewise.
* tracepoint.c (cmd_qtstatus, response_source, response_tsv)
(cmd_qtbuffer, cstr_to_hexstr): Likewise.
This removes hexify in favor of bin2hex.
The choice of which to keep was arbitrary.
2014-02-12 Tom Tromey <tromey@redhat.com>
* common/rsp-low.h (hexify): Don't declare.
* common/rsp-low.c (hexify): Remove.
2014-02-12 Tom Tromey <tromey@redhat.com>
* remote-utils.c (look_up_one_symbol, monitor_output): Use
bin2hex, not hexify.
* tracepoint.c (cmd_qtstatus): Likewise.
hexify had the same issue as bin2hex; and the fix is the same.
2014-02-12 Tom Tromey <tromey@redhat.com>
* common/rsp-low.c (hexify): Never take strlen of argument.
2014-02-12 Tom Tromey <tromey@redhat.com>
* remote-utils.c (monitor_output): Pass explicit length to
hexify.
This moves various low-level remote serial protocol bits into
common/rsp-low.[ch].
This is as close to a pure move as possible. There are some
redundancies remaining but those will be dealt with in a subsequent
patch.
Note that the two variants of remote_escape_output disagreed on the
treatment of "*". On the theory that quoting cannot hurt but the
absence possibly can, I chose the gdbserver variant to be the
canonical one.
2014-02-12 Tom Tromey <tromey@redhat.com>
* tracepoint.c: Include rsp-low.h.
* remote.h (hex2bin, bin2hex, unpack_varlen_hex): Don't declare.
* remote.c: Include rsp-low.h.
(hexchars, ishex, unpack_varlen_hex, pack_nibble, pack_hex_byte)
(fromhex, hex2bin, tohex, bin2hex, remote_escape_output)
(remote_unescape_input): Move to common/rsp-low.c.
* common/rsp-low.h: New file.
* common/rsp-low.c: New file.
* Makefile.in (SFILES): Add common/rsp-low.c.
(HFILES_NO_SRCDIR): Add common/rsp-low.h.
(COMMON_OBS): Add rsp-low.o.
(rsp-low.o): New target.
2014-02-12 Tom Tromey <tromey@redhat.com>
* tracepoint.c: Include rsp-low.h.
* server.c: Include rsp-low.h.
* remote-utils.h (convert_ascii_to_int, convert_int_to_ascii)
(unhexify, hexify, remote_escape_output, unpack_varlen_hex): Don't
declare.
* remote-utils.c: Include rsp-low.h.
(fromhex, hexchars, ishex, unhexify, tohex, hexify)
(remote_escape_output, remote_unescape_input, unpack_varlen_hex)
(convert_int_to_ascii, convert_ascii_to_int): Move to
common/rsp-low.c.
* regcache.c: Include rsp-low.h.
* ax.c: Include rsp-low.h.
* Makefile.in (SFILES): Add common/rsp-low.c.
(OBS): Add rsp-low.o.
(rsp-low.o): New target.
Currently, xtensa code using the Linux ptrace interface only include
sys/ptrace.h. This file comes from the C library (glibc and uClibc,
at least), and includes a declaration of the ptrace() functions, along
with some cross architecture constants that are mostly copied from the
file located at include/uapi/linux/ptrace.h in recent Linux kernels.
For xtensa specific constants like PTRACE_GETXTREGS and
PTRACE_SETXTREGS the asm/ptrace.h include from the Linux kernel UAPI
is needed. The code in gdbserver xtensa specific part doesn't call
ptrace() directly, so we can remove the unneeded sys/ptrace.h include.
The gdb xtensa specific code needs both headers, since it calls
ptrace().
gdb/
* xtensa-linux-nat.c: Include asm/ptrace.h.
gdb/gdbserver/
* linux-xtensa-low.c: Include asm/ptrace.h instead of
sys/ptrace.h.
If gdb_proc_service.h ends up including linux/elf.h, we'll trip on
duplicate definitions:
In file included from ../../../gdb/gdbserver/linux-x86-low.c:29:0:
../../../gdb/gdbserver/../../include/elf/common.h:36:0: error: "ELFMAG0"
redefined [-Werror]
... etc ...
Handle this the same way linux-low.c and linux-arm-low.c handle this.
gdb/gdbserver/
2014-01-17 Pedro Alves <palves@redhat.com>
PR PR16445
* linux-x86-low.c (linux-x86-low.c): Don't include elf/common.h if
ELFMAG0 is defined after including gdb_proc_service.h.
Read branch trace data incrementally and extend the current trace rather than
discarding it and reading the entire trace buffer each time.
If the branch trace buffer overflowed, we can't extend the current trace so we
discard it and start anew by reading the entire branch trace buffer.
2014-01-16 Markus Metzger <markus.t.metzger@intel.com>
* common/linux-btrace.c (perf_event_read_bts, linux_read_btrace):
Support delta reads.
(linux_disable_btrace): Change return type.
* common/linux-btrace.h (linux_read_btrace): Change parameters
and return type to allow error reporting. Update users.
(linux_disable_btrace): Change return type. Update users.
* common/btrace-common.h (btrace_read_type) <BTRACE_READ_DELTA>:
New.
(btrace_error): New.
(btrace_block) <begin>: Comment on BEGIN == 0.
* btrace.c (btrace_compute_ftrace): Start from the end of
the current trace.
(btrace_stitch_trace, btrace_clear_history): New.
(btrace_fetch): Read delta trace, return if replaying.
(btrace_clear): Move clear history code to btrace_clear_history.
(parse_xml_btrace): Throw an error if parsing failed.
* target.h (struct target_ops) <to_read_btrace>: Change parameters
and return type to allow error reporting.
(target_read_btrace): Change parameters and return type to allow
error reporting.
* target.c (target_read_btrace): Update.
* remote.c (remote_read_btrace): Support delta reads. Pass
errors on.
* NEWS: Announce it.
gdbserver/
* target.h (target_ops) <read_btrace>: Change parameters and
return type to allow error reporting.
* server.c (handle_qxfer_btrace): Support delta reads. Pass
trace reading errors on.
* linux-low.c (linux_low_read_btrace): Pass trace reading
errors on.
(linux_low_disable_btrace): New.
... not when a new GDB connection sends the status packet ('?').
Mainly just a cleanup/simplification, as GDB always sends '?' first.
Tested on x86_64 Fedora 17.
2014-01-08 Pedro Alves <palves@redhat.com>
* server.c (handle_status): Don't discard previous queued stop
replies or thread's pending status here.
(main) <disconnection>: Do it here instead.
Currently, when GDB connects in all-stop mode, GDBserver always
responds to the status packet with a GDB_SIGNAL_TRAP, even if the
program is actually stopped for some other signal.
(gdb) tar rem ...
...
(gdb) c
Program received signal SIGUSR1, User defined signal 1.
(gdb) disconnect
(gdb) tar rem ...
(gdb) c
(Or a GDB crash instead of an explicit disconnect.)
This results in the program losing that signal on that last continue,
because gdb will tell the target to resume with no signal (to suppress
the GDB_SIGNAL_TRAP, due to 'handle SISGTRAP nopass'), and that will
actually suppress the real signal the program had stopped for
(SIGUSR1). To fix that, I think we should make GDBserver report the
real signal the thread had stopped for in response to the status
packet:
@item ?
@cindex @samp{?} packet
Indicate the reason the target halted. The reply is the same as for
step and continue.
But, that raises the question -- which thread are we reporting the
status for? Due to how the RSP in all-stop works, we can only report
one status. The status packet's response is a stop reply packet, so
it includes the thread identifier, so it's not a problem packet-wise.
However, GDBserver is currently always reporting the status for first
thread in the thread list, even though that may well not be the thread
that got the signal that caused the program to stop. So the next
logical step would be to report the status for the
last_ptid/last_status thread (the last event reported to gdb), if it's
still around; and if not, fallback to some other thread.
There's an issue on the GDB side with that, though...
GDB currently always adds the thread reported in response to the
status query as the first thread in its list. That means that if we
start with e.g.,
(gdb) info threads
3 Thread 1003 ...
* 2 Thread 1002 ...
1 Thread 1001 ...
And reconnect:
(gdb) disconnect
(gdb) tar rem ...
We end up with:
(gdb) info threads
3 Thread 1003 ...
2 Thread 1001 ...
* 1 Thread 1002 ...
Not a real big issue, but it's reasonably fixable, by having GDB
fetch/sync the thread list before fetching the status/'?', and then
using the status to select the right thread as current on the GDB
side. Holes in the thread numbers are squashed before/after
reconnection (e.g., 2,3,5 becomes 1,2,3), but the order is preserved,
which I think is both good, and good enough.
However (yes, there's more...), the previous GDB that was connected
might have had gdbserver running in non-stop mode, or could have left
gdbserver doing disconnected tracing (which also forces non-stop), and
if the new gdb/connection is in all-stop mode, we can end up with more
than one thread with a signal to report back to gdb. As we can only
report one thread/status (in the all-stop RSP variant; the non-stop
variant doesn't have this issue), we get to do what we do at every
other place we have this situation -- leave events we can't report
right now as pending, so that the next resume picks them up.
Note all this ammounts to a QoI change, within the existing framework.
There's really no RSP change here.
The only user visible change (other than that the signal is program is
stopped at isn't lost / is passed to the program), is in "info
program", that now can show the signal the program stopped for. Of
course, the next resume will respect the pass/nopass setting for the
signal in question. It'd be reasonable to have the initial connection
tell the user the program was stopped with a signal, similar to when
we load a core to debug, but I'm leaving that out for a future change.
I think we'll need to either change how handle_inferior_event & co
handle stop_soon, or maybe bypass them completely (like
fork-child.c:startup_inferior) for that.
Tested on x86_64 Fedora 17.
gdb/gdbserver/
2014-01-08 Pedro Alves <palves@redhat.com>
* gdbthread.h (struct thread_info) <status_pending_p>: New field.
* server.c (visit_actioned_threads, handle_pending_status): New
function.
(handle_v_cont): Factor out parts to ...
(resume): ... this new function. If in all-stop, and a thread
being resumed has a pending status, report it without actually
resuming.
(myresume): Adjust to use the new 'resume' function.
(clear_pending_status_callback, set_pending_status_callback)
(find_status_pending_thread_callback): New functions.
(handle_status): Handle the case of multiple threads having
interesting statuses to report. Report threads' real last signal
instead of always reporting GDB_SIGNAL_TRAP. Look for a thread
with an interesting thread to report the status for, instead of
always reporting the status of the first thread.
gdb/
2014-01-08 Pedro Alves <palves@redhat.com>
* remote.c (remote_add_thread): Add threads silently if starting
up.
(remote_notice_new_inferior): If in all-stop, and starting up,
don't call notice_new_inferior.
(get_current_thread): New function, factored out from ...
(add_current_inferior_and_thread): ... this. Adjust.
(remote_start_remote) <all-stop>: Fetch the thread list. If we
found any thread, then select the remote's current thread as GDB's
current thread too.
gdb/testsuite/
2014-01-08 Pedro Alves <palves@redhat.com>
* gdb.threads/reconnect-signal.c: New file.
* gdb.threads/reconnect-signal.exp: New file.
gdb/ChangeLog:
* top.c (print_gdb_version): Set copyright year to 2014.
gdb/gdbserver/ChangeLog:
* gdbserver.c (gdbserver_version): Set copyright year to 2014.
* gdbreplay.c (gdbreplay_version): Likewise.
* aarch64-linux-nat.c (aarch64_linux_set_debug_regs): Set
iov.iov_len with the real length in use.
gdb/gdbserver/
* linux-aarch64-low.c (aarch64_linux_set_debug_regs): Set
iov.iov_len with the real length in use.
This is the gdbserver-equivalent of the change made in GDB to handle
the case, in x64 windows version 2012, where the kernel produces
a LOAD_DLL_DEBUG_EVENT where the name of the associated DLL cannot
be determined at that time, and thus has to be processed later.
The visible symptom is that ntdll.dll is missing from the list of
shared libraries known to be mapped by the inferior, with other
side-effects such as failure to unwind through code provided by
that DLL (such as exception handling routines).
gdb/gdbserver/ChangeLog:
* Makefile.in (safe-ctype.o, lbasename.o): New rules.
* configure.srv: Add safe-ctype.o and lbasename.o to srv_tgtobj
for all targets that use win32-low.c.
* win32-low.c (win32_ensure_ntdll_loaded): New function.
(do_initial_child_stuff): Add call to win32_ensure_ntdll_loaded.
This is a preparatory patch that achieves two goals:
. Makes the initial event handling more similar to GDB's;
. Opens the door for implementing post-inititial-handling
operations.
At the moment, this is only done on Windows, where the
post-initial-handling is going to be needed (in the context of
Windows 2012). And because we're close to creating the gdb 7.7
branch, making that change for all platforms is a little more
risk that we'd like. So the change is currently implemented
on Windows.
gdb/gdbserver/ChangeLog:
* target.c (mywait): Set OURSTATUS->KIND to TARGET_WAITKIND_STOPPED
if equal to TARGET_WAITKIND_LOADED.
* win32-low.c (cached_status): New static global.
(win32_wait): Add declaration.
(do_initial_child_stuff): Flush all initial pending debug events
up to the initial breakpoint.
(win32_wait): If CACHED_STATUS was set, return that instead
of doing a real wait. Remove the code resuming the execution
of the inferior after receiving a TARGET_WAITKIND_LOADED event
during the initial phase. Also remove the code changing
OURSTATUS->KIND from TARGET_WAITKIND_LOADED to
TARGET_WAITKIND_STOPPED.
Due to copy-n-paste, the problem caused PR remote/15974 also exists
in gdbserver. This patch fixes it in the same way. Patch to fix
remote/15974 can be found:
https://sourceware.org/ml/gdb-patches/2013-12/msg00014.html
gdb/gdbserver:
2013-12-11 Yao Qi <yao@codesourcery.com>
* notif.c (handle_notif_ack): Return 0 if no notification
matches.
This patch is purely mechanical. It removes gdb_stat.h and changes
the code to use sys/stat.h.
2013-11-18 Tom Tromey <tromey@redhat.com>
* common/gdb_stat.h: Remove.
* ada-lang.c: Use sys/stat.h, not gdb_stat.h.
* common/filestuff.c: Use sys/stat.h, not gdb_stat.h.
* common/linux-osdata.c: Use sys/stat.h, not gdb_stat.h.
* corefile.c: Use sys/stat.h, not gdb_stat.h.
* ctf.c: Use sys/stat.h, not gdb_stat.h.
* darwin-nat.c: Use sys/stat.h, not gdb_stat.h.
* dbxread.c: Use sys/stat.h, not gdb_stat.h.
* dwarf2read.c: Use sys/stat.h, not gdb_stat.h.
* exec.c: Use sys/stat.h, not gdb_stat.h.
* gdbserver/linux-low.c: Use sys/stat.h, not gdb_stat.h.
* gdbserver/remote-utils.c: Use sys/stat.h, not gdb_stat.h.
* inf-child.c: Use sys/stat.h, not gdb_stat.h.
* jit.c: Use sys/stat.h, not gdb_stat.h.
* linux-nat.c: Use sys/stat.h, not gdb_stat.h.
* m68klinux-nat.c: Use sys/stat.h, not gdb_stat.h.
* main.c: Use sys/stat.h, not gdb_stat.h.
* mdebugread.c: Use sys/stat.h, not gdb_stat.h.
* mi/mi-cmd-env.c: Use sys/stat.h, not gdb_stat.h.
* nto-tdep.c: Use sys/stat.h, not gdb_stat.h.
* objfiles.c: Use sys/stat.h, not gdb_stat.h.
* procfs.c: Use sys/stat.h, not gdb_stat.h.
* remote-fileio.c: Use sys/stat.h, not gdb_stat.h.
* remote-mips.c: Use sys/stat.h, not gdb_stat.h.
* remote.c: Use sys/stat.h, not gdb_stat.h.
* rs6000-nat.c: Use sys/stat.h, not gdb_stat.h.
* sol-thread.c: Use sys/stat.h, not gdb_stat.h.
* solib-spu.c: Use sys/stat.h, not gdb_stat.h.
* source.c: Use sys/stat.h, not gdb_stat.h.
* symfile.c: Use sys/stat.h, not gdb_stat.h.
* symmisc.c: Use sys/stat.h, not gdb_stat.h.
* symtab.c: Use sys/stat.h, not gdb_stat.h.
* top.c: Use sys/stat.h, not gdb_stat.h.
* xcoffread.c: Use sys/stat.h, not gdb_stat.h.
stdlib.h is universal as well, so there is no need to check for it.
2013-11-18 Tom Tromey <tromey@redhat.com>
* configure: Rebuild.
* configure.ac: Don't check for stdlib.h
* defs.h: Include stdlib.h unconditionally.
2013-11-18 Tom Tromey <tromey@redhat.com>
* configure: Rebuild.
* configure.ac: Don't check for stdlib.h.
* gdbreplay.c: Unconditionally include stdlib.h.
This removes gdb_dirent.h and updates the code to use dirent.h
instead. It also removes the now-useless configure checks.
2013-11-18 Tom Tromey <tromey@redhat.com>
* common/common.m4 (GDB_AC_COMMON): Don't use AC_HEADER_DIRENT.
* common/gdb_dirent.h: Remove.
* common/filestuff.c: Use dirent.h.
* common/linux-osdata.c: Use dirent.h.
(NAMELEN): Define.
* config.in: Rebuild.
* configure: Rebuild.
* configure.ac: Don't use AC_HEADER_DIRENT.
* linux-fork.c: Use dirent.h
* linux-nat.c: Use dirent.h.
* nto-procfs.c: Use dirent.h.
* procfs.c: Use dirent.h.
2013-11-18 Tom Tromey <tromey@redhat.com>
* config.in: Rebuild.
* configure: Rebuild.
* configure.ac: Don't use AC_HEADER_DIRENT.
Now that we are using the gnulib string.h module, we don't need to
check for string.h or strings.h. This removes the last few checks
from the source and from the configure scripts.
2013-11-18 Tom Tromey <tromey@redhat.com>
* configure: Rebuild.
* common/common.m4 (GDB_AC_COMMON): Don't check for string.h or
strings.h.
2013-11-18 Tom Tromey <tromey@redhat.com>
* server.h: Don't check HAVE_STRING_H.
* gdbreplay.c: Don't check HAVE_STRING_H.
* configure: Rebuild.
Later patches in this series will make changes to gdb and gdbserver
configury, necessitating the use of gnulib in gdbreplay. This patch
introduces the dependency early, so that subsequent patches don't
break the build.
2013-11-18 Tom Tromey <tromey@redhat.com>
* Makefile.in (gdbreplay$(EXEEXT)): Depend on and link against
LIBGNU.
It has bothered me for a while that files in common/ use macros
defined via autoconf checks, but rely on each configure.ac doing the
proper checks independently.
This patch introduces common/common.m4 which consolidates the checks
assumed by code in common.
The rule I propose is that if something is needed or used by common,
it should be checked for by common.m4. However, if the check is also
needed by gdb or gdbserver, then it should be duplicated there.
Built and regtested on x86-64 Fedora 18 (though this is hardly the
most strenuous case) and using the Fedora 18 mingw cross compilers. I
also examined the config.in diffs to ensure that symbols did not go
missing.
2013-11-08 Tom Tromey <tromey@redhat.com>
* acinclude.m4: Include common.m4.
* common/common.m4: New file.
* configure, config.in: Rebuild.
* configure.ac: Use GDB_AC_COMMON.
2013-11-08 Tom Tromey <tromey@redhat.com>
* acinclude.m4: Include common.m4, codeset.m4.
* configure, config.in: Rebuild.
* configure.ac: Use GDB_AC_COMMON.
When checking for the presence of the TDB regset, the current code
interprets ENODATA from PTRACE_GETREGSET as an indication that the TDB
regset *could* occur on this system, but the inferior stopped outside
a transaction. However, the Linux kernel actually reports ENODATA
even on systems without the transactional execution facility. Thus
the logic is now changed to check the TE field in the HWCAP as well.
This version also checks the existence of the TDB regset -- just to be
on the safe side when running on TE-enabled hardware with a kernel
that does not offer the TDB regset for some reason.
gdb/
* s390-linux-nat.c (s390_read_description): Consider the TE field
in the HWCAP for determining 'have_regset_tdb'.
gdbserver/
* linux-s390-low.c (HWCAP_S390_TE): New define.
(s390_arch_setup): Consider the TE field in the HWCAP for
determining 'have_regset_tdb'.
The first one, dw2_get_real_path from gdb/dwarf2read.c, was actually
making use of OBSTACK_CALLOC which already calls "sizeof" for its third
argument.
The second, download_tracepoint_1 from gdb/gdbserver/tracepoint.c, was
explicitly calling "sizeof" inside another "sizeof".
This patch fixed both functions.
gdb/ChangeLog
2013-10-16 Sergio Durigan Junior <sergiodj@redhat.com>
PR gdb/16014
* dwarf2read.c (dw2_get_real_path): Remove unnecessary call to
sizeof.
gdb/gdbserver/ChangeLog
2013-10-16 Sergio Durigan Junior <sergiodj@redhat.com>
PR gdb/16014
* tracepoint.c (download_tracepoint_1): Remove unnecessary double
call to sizeof.
If we make gdbserver gdb_continue_to_end actually expect a process
exit with GDBserver, we get many testsuite failures with the remote
stdio board:
-PASS: gdb.arch/amd64-disp-step.exp: continue until exit at amd64-disp-step
+FAIL: gdb.arch/amd64-disp-step.exp: continue until exit at amd64-disp-step (the program exited)
-PASS: gdb.base/break.exp: continue until exit at recursive next test
+FAIL: gdb.base/break.exp: continue until exit at recursive next test (the program exited)
-PASS: gdb.base/chng-syms.exp: continue until exit at breakpoint first time through
+FAIL: gdb.base/chng-syms.exp: continue until exit at breakpoint first time through (the program exited)
... etc. ...
This is what the log shows for all of them:
(gdb) continue
Continuing.
Child exited with status 0
GDBserver exiting
[Inferior 1 (process 22721) exited normally]
(gdb) FAIL: gdb.arch/amd64-disp-step.exp: continue until exit (the program exited)
The problem is the whole "Child exited ... GDBserver exiting" output,
that comes out of GDBserver, and that the testsuite is not expecting.
I pondered somehow making the testsuite adjust to this. But,
testsuite aside, I think GDBserver should not be outputting this at
all when GDB is connected through stdio. GDBserver will be printing
this in GDB's console, but the user can already tell from the regular
output that the inferior is gone.
Again, manually:
(gdb) tar remote | ./gdbserver/gdbserver - program
Remote debugging using | ./gdbserver/gdbserver - program
Process program created; pid = 22486
stdin/stdout redirected
Remote debugging using stdio
done.
Loaded symbols for /lib64/ld-linux-x86-64.so.2
0x000000323d001530 in _start () from /lib64/ld-linux-x86-64.so.2
(gdb) c
Continuing.
Child exited with status 1
^^^^^^^^^^^^^^^^^^^^^^^^^^
GDBserver exiting
^^^^^^^^^^^^^^^^^
[Inferior 1 (process 22486) exited with code 01]
(gdb)
Suppressing those two lines makes the output be exactly like when
debugging against a remote tcp gdbserver:
(gdb) c
Continuing.
[Inferior 1 (process 22914) exited with code 01]
(gdb)
2013-10-02 Pedro Alves <palves@redhat.com>
* server.c (process_serial_event): Don't output "GDBserver
exiting" if GDB is connected through stdio.
* target.c (mywait): Likewise, be silent if GDB is connected
through stdio.
The current implementation is forgetting to populate the thread list
when attaching to the process. This results in an incomplete list of
threads when debugging a threaded program.
Unfortunately, as the added comments hints, there appears to be
no way of getting the list of threads via ptrace, other than by
spawning the "ps" command, and parsing its output. Not great,
but it appears to be the best we can do.
gdb/gdbserver/ChangeLog:
* lynx-low.c (lynx_add_threads_after_attach): New function.
(lynx_attach): Remove call to add_thread. Add call to
lynx_add_threads_after_attach instead.
It is possible to have a build of glibc where SYS_perf_event_open is not
defined (because when the glibc was compiled, the syscall did not exist),
but have newer kernel headers installed so that linux/perf_event.h is
available. In this setup, you get a build failure:
./common/linux-btrace.c: In function 'kernel_supports_btrace':
./common/linux-btrace.c:316:23: error: 'SYS_perf_event_open' undeclared (first use in this function)
Update the ifdef check to also see if the syscall is available.
URL: https://bugs.gentoo.org/473522
Reported-by: William Throwe <wtt6@cornell.edu>
Signed-off-by: Mike Frysinger <vapier@gentoo.org>
Apply the same fix that was applied to aarch64-linux-nat.c.
2013-09-16 Will Newton <will.newton@linaro.org>
* linux-aarch64-low.c (aarch64_linux_set_debug_regs): Zero
out regs.
These two are still written in the pre-auto-dependency-tracking style.
They probably were written before that, and committed afterwards
without adjustment. An easy oversight to make.
gdb/gdbserver/
2013-09-06 Pedro Alves <palves@redhat.com>
* Makefile.in (linux-btrace.o, mips-linux-watch.o): Remove
explicit header dependencies and use $COMPILE/$POSTCOMPILE.
Somehow, my builds yesterdays didn't trip on this...
../src/gdb/gdbserver/linux-amd64-ipa.c: In function ‘initialize_low_tracepoint’:
../src/gdb/gdbserver/linux-amd64-ipa.c:172:3: error: ‘ipa_tdesc’ undeclared (first use in this function)
../src/gdb/gdbserver/linux-amd64-ipa.c:172:3: note: each undeclared identifier is reported only once for each function it appears in
gdb/gdbserver/
2013-09-06 Pedro Alves <palves@redhat.com>
* linux-amd64-ipa.c: Include tracepoint.h.
* linux-i386-ipa.c: Include tracepoint.h.
One misspelled function call, and one superfluous typedef. The latter
causes an error of the following type when building:
linux-crisv32-low.c:372: error: conflicting types for 'elf_gregset_t'
/.../target/include/asm/elf.h:36:
error: previous declaration of 'elf_gregset_t' was here
2013-09-06 Ricard Wanderlof <ricardw@axis.com>
* linux-crisv32-low.c (elf_gregset_t): Delete typedef.
(initialize_low_arch): Call init_registers_crisv32 rather than
init_register_crisv32.
gdb/gdbserver/
2013-09-05 Pedro Alves <palves@redhat.com>
* server.h (gdb_client_data, handler_func, callback_handler_func)
(delete_file_handler, add_file_handler, append_callback_event)
(delete_callback_event, start_event_loop, initialize_event_loop):
Move to event-loop.h and include it.
* event-loop.h: New file.
gdb/gdbserver/
2013-09-05 Pedro Alves <palves@redhat.com>
* server.h (perror_with_name, error, fatal, warning, paddress)
(pulongest, plongest, phex_nz, pfildes): Move to utils.h, and
include it.
* utils.h: New file.
server.h nowadays includes gdb_locale.h, which already brings this in.
gdb/gdbserver/
2013-09-05 Pedro Alves <palves@redhat.com>
* server.h (_): Delete.
I'm seeing trace-buffer-size.exp failing (with gdbserver):
(gdb) PASS: gdb.trace/trace-buffer-size.exp: tstatus check 2
show trace-buffer-size 4
Requested size of trace buffer is 4.
(gdb) PASS: gdb.trace/trace-buffer-size.exp: show trace buffer size
set trace-buffer-size -1
memory clobbered past end of allocated block
Remote connection closed
(gdb) FAIL: gdb.trace/trace-buffer-size.exp: set trace buffer size 2
set trace-buffer-size unlimited
(gdb) PASS: gdb.trace/trace-buffer-size.exp: set trace-buffer-size unlimited
That "memory clobbered past end of allocated block" is mcheck triggering.
Valgrind shows:
==23624== Invalid write of size 1
==23624== at 0x418DD8: clear_trace_buffer (tracepoint.c:1443)
==23624== by 0x418F3A: init_trace_buffer (tracepoint.c:1497)
==23624== by 0x41D95B: cmd_bigqtbuffer_size (tracepoint.c:4061)
==23624== by 0x41DEEC: handle_tracepoint_general_set (tracepoint.c:4193)
clear_trace_buffer does:
static void
clear_trace_buffer (void)
{
trace_buffer_start = trace_buffer_lo;
trace_buffer_free = trace_buffer_lo;
trace_buffer_end_free = trace_buffer_hi;
trace_buffer_wrap = trace_buffer_hi;
/* A traceframe with zeroed fields marks the end of trace data. */
((struct traceframe *) trace_buffer_free)->tpnum = 0;
((struct traceframe *) trace_buffer_free)->data_size = 0;
traceframe_read_count = traceframe_write_count = 0;
traceframes_created = 0;
}
And the tpnum+data_size fields are over 4 bytes... This fixes it by
ensuring we allocate space at least for an EOB. We have code
elsewhere that relies on the EOB being present (like e.g.,
find_traceframe), so this seems simplest.
gdb/gdbserver/
2013-09-02 Pedro Alves <palves@redhat.com>
* tracepoint.c (TRACEFRAME_EOB_MARKER_SIZE): New macro.
(init_trace_buffer): Ensure at least TRACEFRAME_EOB_MARKER_SIZE is
allocated.
(trace_buffer_alloc): Use TRACEFRAME_EOB_MARKER_SIZE.
When I added gdb_read_memory, with bits factored out from elsewhere, I
missed adjusting this error return. gdb_read_memory has an interface
similar to Like GDB's xfer_partial:
> /* Read trace frame or inferior memory. Returns the number of bytes
> actually read, zero when no further transfer is possible, and -1 on
> error. Return of a positive value smaller than LEN does not
> indicate there's no more to be read, only the end of the transfer.
Returning EIO, a positive value, is obviously bogus, for the caller
will confuse it with a successful partial transfer.
Found by inspection.
Tested on x86_64 Fedora 17.
gdb/gdbserver/
2013-09-02 Pedro Alves <palves@redhat.com>
* server.c (gdb_read_memory): Return -1 on traceframe memory read
error instead of EIO.
* Makefile.in (SFILES): Remove common/target-common.c and
add target/waitstatus.c.
(HFILES_NO_SRCDIR): Remove common/target-common.h and add
target/resume.h, target/wait.h and target/waitstatus.h.
(COMMON_OBS): Remove target-common.o and add
waitstatus.o.
(target-common.o): Remove.
(waitstatus.o): New target object file.
* common/target-common.c: Move contents to
target/waitstatus.c and remove.
* common/target-common.h: Move contents to other files and
remove.
(enum resume_kind: Move to target/resume.h.
(TARGET_WNOHANG): Move to target/wait.h.
(enum target_waitkind): Move to target/waitstatus.h.
(struct target_waitstatus): Likewise.
* target.h: Do not include target-common.h and
include target/resume.h, target/wait.h and
target/waitstatus.h.
* target/resume.h: New file.
* target/wait.h: New file.
* target/waitstatus.h: New file.
* target/waitstatus.c: New file.
gdb/gdbserver/
* Makefile.in (INCLUDE_CFLAGS): Include -I$(srcdir)/../.
(SFILES): Remove $(srcdir)/common/target-common.c and
add $(srcdir)/target/waitstatus.c.
(OBS): Remove target-common.o and add waitstatus.o.
(server_h): Remove $(srcdir)/../common/target-common.h and
add $(srcdir)/../target/resume.h, $(srcdir)/../target/wait.h
and $(srcdir)/../target/waitstatus.h.
(target-common.o): Remove.
(waitstatus.o): New target object file.
* target.h: Do not include target-common.h and
include target/resume.h, target/wait.h and
target/waitstatus.h.
to PTRACE_TYPE_ARG3.
* linux-low.c: Rename all occurrences of PTRACE_ARG3_TYPE
to PTRACE_TYPE_ARG3 and PTRACE_ARG4_TYPE to
PTRACE_TYPE_ARG4.
* linux-low.h (PTRACE_ARG3_TYPE): Rename to PTRACE_TYPE_ARG3.
(PTRACE_ARG4_TYPE): Rename to PTRACE_TYPE_ARG4.
* Makefile.in (SFILES): Add common/mips-linux-watch.c.
(mips-linux-watch.o): New rule.
(mips_linux_watch_h): New variable.
* configure.srv <mips*-*-linux*>: Add mips-linux-watch.o to
srv_tgtobj.
* linux-mips-low.c: Include mips-linux-watch.h.
(struct arch_process_info, struct arch_lwp_info): New.
(update_watch_registers_callback): New function.
(mips_linux_new_process, mips_linux_new_thread) New functions.
(mips_linux_prepare_to_resume, mips_insert_point): New
functions.
(mips_remove_point, mips_stopped_by_watchpoint): New
functions.
(rsp_bp_type_to_target_hw_bp_type): New function.
(mips_stopped_data_address): New function.
(the_low_target): Add watchpoint support functions.
gdb/
* NEWS: Mention that GDBserver now supports hardware
watchpoints on the MIPS GNU/Linux target.
2013-07-04 Yao Qi <yao@codesourcery.com>
Revert:
2013-06-27 Yao Qi <yao@codesourcery.com>
* common/create-version.sh: Update comments. Handle the case
that TARGET_ALIAS is empty.
gdb/gdbserver/
2013-07-04 Yao Qi <yao@codesourcery.com>
* Makefile.in (host_alias): Use @host_noncanonical@.
(target_alias): Use @target_noncanonical@.
* configure.ac: Use ACX_NONCANONICAL_TARGET and
ACX_NONCANONICAL_HOST.
* configure: Regenerated.
Revert:
2013-06-28 Mircea Gherzan <mircea.gherzan@intel.com>
* configure.ac (version_host, version_target): Set and AC_SUBST them.
* configure: Rebuild.
* Makefile.in (version_host, version_target): Get from configure.
(version.c): Use $(version_host) and $(version_target).
This factors --enable-libmcheck related bits from GDB's configure.ac
and makes GDBserver use them too. Specifically, the 'development'
global is moved to a separate script to it can be sourced by both GDB
and GDBserver, and the --enable-libmcheck/--disable-libmcheck bits
proper are moved to a new m4 file.
I started out by defining 'development' in the m4 file, but in the end
decided against it, as a separate script has the advantage that
changing it in release branches does not require regenerating
configure, unlike today.
I had also started out by making the new GDB_AC_LIBMCHECK itself
handle the yes/no default fallback depending on release/developement,
but since I had split out 'development' to a separate script, and, GDB
needs the python checks anyway (hence we'd need to do the python
checks in gdb's configure.ac, and pass in a 'default lmcheck yes/no'
parameter to GDB_AC_LIBMCHECK anyway), I ended up keeping
GDB_AC_LIBMCHECK isolated from the 'development' global. IOW, it's
the caller's business to handle it.
Tested on x86_64 Fedora 17. Built GDB and GDBserver with and without
--enable-libmcheck, and observed --enable-libmcheck overrides the
disablement of -lmcheck caused by python supporting threads, and that
GDBserver links with -lmcheck when expected. Also observed that
changing the 'development' global, and issuing "make" triggers a
relink, and '-lmcheck' is included or not from the link accordingly.
gdb/
2013-07-03 Pedro Alves <palves@redhat.com>
* Makefile.in (config.status): Depend on development.sh.
(aclocal_m4_deps): Add libmcheck.m4.
* acinclude.m4: Include libmcheck.m4.
* configure.ac: Source development.sh instead of setting
'development' here. --enable-libmcheck/--disable-libmcheck code
factored out to GDB_AC_LIBMCHECK. Run it.
* development.sh: New file.
* libmcheck.m4: New file.
* configure: Regenerate.
gdb/gdbserver/
2013-07-03 Pedro Alves <palves@redhat.com>
* Makefile.in (config.status): Depend on development.sh.
* acinclude.m4: Include libmcheck.m4.
* configure: Regenerate.
2013-06-25 Mircea Gherzan <mircea.gherzan@intel.com>
gdbserver/
* notif.h (notif_event): Add a dummy member to avoid compiler
errors.
Change-Id: I490dbdb70a24f52b3947371f7c0397bf7a18423c
Signed-off-by: Mircea Gherzan <mircea.gherzan@intel.com>
PATH_MAX is not defined on systems which have no limit on filename
length, such as GNU/Hurd. As designed, the hostio RSP packets carry
the paths as parameters in the request/reply packets, which themselves
have an upper size limit, so lifting the filename limit completely
would require a redesign with new hostio packets. While that doesn't
happen, we can at least support filename lengths as long as the packet
buffer can fit.
gdb/gdbserver/
2013-07-01 Pedro Alves <palves@redhat.com>
* hostio.c (HOSTIO_PATH_MAX): Define.
(require_filename, handle_open, handle_unlink, handle_readlink):
Use it.
With the pathmax gnulib module in place, we can use PATH_MAX
consistently throughout, instead of the current mixbag of PATH_MAX and
MAXPATHLEN uses. It's no longer necessary to include sys/param.h
(supposedly, I can't check all ports touched here) for MAXPATHLEN.
Don't remove sys/param.h from GDB's configure.ac, as later tests in
the file use HAVE_SYS_PARAM_H checks.
Tested on x86_64 Fedora 17.
Also cross-built for --host=i686-w64-mingw32, and --host=i586-pc-msdosdjgpp.
gdb/
2013-07-01 Pedro Alves <palves@redhat.com>
* defs.h: Include "pathmax.h".
* utils.c: Don't include sys/param.h.
(gdb_realpath): Remove code that checks for MAXPATHLEN.
* solib-ia64-hpux.c (ia64_hpux_handle_load_event): Use PATH_MAX
instead of MAXPATHLEN.
* solib-sunos.c: Don't include sys/param.h.
* xcoffread.c: Don't include sys/param.h.
* bsd-kvm.c: Don't include sys/param.h.
* darwin-nat.c: Don't include sys/param.h.
(darwin_pid_to_exec_file): Use PATH_MAX instead of MAXPATHLEN.
* darwin-nat-info.c: Don't include sys/param.h.
* fbsd-nat.c (fbsd_pid_to_exec_file): Use PATH_MAX instead of
MAXPATHLEN.
* i386obsd-nat.c: Don't include sys/param.h.
* inf-child.c: Don't include sys/param.h.
(inf_child_fileio_readlink): Use PATH_MAX instead of MAXPATHLEN.
* linux-fork.c: Don't include sys/param.h.
(fork_save_infrun_state): Use PATH_MAX instead of MAXPATHLEN.
* linux-nat.c: Don't include sys/param.h.
(linux_child_pid_to_exec_file, linux_proc_pending_signals)
(linux_proc_pending_signals): Use PATH_MAX instead of MAXPATHLEN.
* m68klinux-nat.c: Don't include sys/param.h.
* nbsd-nat.c: Don't include sys/param.h.
(nbsd_pid_to_exec_file): Use PATH_MAX instead of MAXPATHLEN.
* ppc-linux-nat.c: Don't include sys/param.h.
* rs6000-nat.c: Don't include sys/param.h.
* spu-linux-nat.c. Don't include sys/param.h.
* windows-nat.c: Don't include sys/param.h.
* xtensa-linux-nat.c: Don't include sys/param.h.
* config/i386/nm-fbsd.h: Don't include sys/param.h.
gdb/gdbserver/
2013-07-01 Pedro Alves <palves@redhat.com>
* server.h: Include "pathmax.h".
* linux-low.c: Don't include sys/param.h.
(linux_pid_exe_is_elf_64_file): Use PATH_MAX instead of
MAXPATHLEN.
* win32-low.c: Don't include sys/param.h.
(win32_create_inferior): Use PATH_MAX instead of MAXPATHLEN.
With gnulib's unistd module, we can assume unistd.h is always present, and that
STDIN_FILENO, STDOUT_FILENO, STDERR_FILENO are always defined.
Don't remove unistd.h from GDB's configure.ac, as later tests in the
file use HAVE_UNISTD_H checks.
gdb/
2013-07-01 Pedro Alves <palves@redhat.com>
* defs.h: Don't check HAVE_UNISTD_H before including <unistd.h>.
(STDIN_FILENO, STDOUT_FILENO, STDERR_FILENO): Delete.
* tracepoint.c: Don't check HAVE_UNISTD_H before including
<unistd.h>.
gdb/gdbserver/
2013-07-01 Pedro Alves <palves@redhat.com>
* event-loop.c: Don't check HAVE_UNISTD_H before including
<unistd.h>.
* gdbreplay.c: Likewise.
* remote-utils.c: Likewise.
* server.c: Likewise.
* configure.ac: Don't check for unistd.h.
* configure: Regenerate.
This reverts part of the earlier version.in change. It moves
version.in back to the gdb directory. This works around the CVS bug
we've found.
gdb
* Makefile.in (version.c): Use version.in, not
common/version.in.
* common/create-version.sh: Likewise.
* common/version.in: Move...
* version.in: ...here.
gdb/doc
* Makefile.in (version.subst): Use version.in, not
common/version.in.
* gdbint.texinfo (Versions and Branches, Releasing GDB):
Likewise.
gdb/gdbserver
* Makefile.in (version.c): Use version.in, not
common/version.in.
sim/common
* Make-common.in (version.c): Use version.in, not
common/version.in.
* create-version.sh: Likewise.
sim/ppc:
* Make-common.in (version.c): Use version.in, not
common/version.in.
When directly invoking gdb/gdbserver/configure && make, the build will
fail because the $(host_alias) is empty and thus create-version.sh does
not get enough parameters.
The output of gdbserver --version without this patch (built like above):
[...]
This gdbserver was configured as ""
After applying this patch:
[...]
This gdbserver was configured as "x86_64-unknown-linux-gnu"
2013-06-28 Mircea Gherzan <mircea.gherzan@intel.com>
gdbserver:
* configure.ac (version_host, version_target): Set and AC_SUBST
them.
* configure: Rebuild.
* Makefile.in (version_host, version_target): Get from
configure.
(version.c): Use $(version_host) and $(version_target).
Change-Id: Id48240532ad3d624ec78867a6db5ebd4c09583ff
Signed-off-by: Mircea Gherzan <mircea.gherzan@intel.com>
2013-06-26 Pedro Alves <pedro@codesourcery.com>
Yao Qi <yao@codesourcery.com>
* ctf.c (ctf_traceframe_info): Push trace state variables
present in the trace data into the traceframe info object.
* breakpoint.c (DEF_VEC_I): Remove.
* common/filestuff.c (DEF_VEC_I): Likewise.
* dwarf2loc.c (DEF_VEC_I): Likewise.
* mi/mi-main.c (DEF_VEC_I): Likewise.
* common/gdb_vecs.h (DEF_VEC_I): Define vector for int.
* features/traceframe-info.dtd: Add tvar element and its
attributes.
* tracepoint.c (free_traceframe_info): Free vector 'tvars'.
(build_traceframe_info): Push trace state variables present in the
trace data into the traceframe info object.
(traceframe_info_start_tvar): New function.
(tvar_attributes): New.
(traceframe_info_children): Add "tvar" element.
* tracepoint.h (struct traceframe_info) <tvars>: New field.
* NEWS: Mention the change in GDB and GDBserver.
gdb/doc:
2013-06-26 Pedro Alves <pedro@codesourcery.com>
* gdb.texinfo (Traceframe Info Format): Document tvar element and
its attributes.
gdb/gdbserver:
2013-06-26 Pedro Alves <pedro@codesourcery.com>
* tracepoint.c (build_traceframe_info_xml): Output trace state
variables present in the trace buffer.
Right now there are two nightly commits to update a file in the tree
with the current date. One commit is for BFD, one is for gdb.
It seems unnecessary to me to do this twice. We can make do with a
single such commit.
This patch changes gdb in a minimal way to reuse the BFD date -- it
extracts it from bfd/version.h and changes version.in to use the
placeholder string "DATE" for those times when a date is wanted.
I propose removing the cron job that updates the version on trunk, and
then check in this patch.
For release branches, we can keep the cron job, but just tell it to
rewrite bfd/version.h. I believe this is a simple change in the
crontab -- the script will work just fine on this file.
This also moves version.in and version.h into common/, to reflect
their shared status; and updates gdbserver to use version.h besides.
* common/create-version.sh: New file.
* Makefile.in (version.c): Use bfd/version.h, common/version.in,
create-version.sh.
(HFILES_NO_SRCDIR): Use common/version.h.
* version.in: Move to ...
* common/version.in: ... here. Replace date with "DATE".
* version.h: Move to ...
* common/version.h: ... here.
gdbserver:
* Makefile.in (version.c): Use bfd/version.h, common/version.in,
create-version.sh.
(version.o): Remove.
* gdbreplay.c: Include version.h.
(version, host_name): Don't declare.
* server.h: Include version.h.
(version, host_name): Don't declare.
doc:
* Makefile.in (POD2MAN1, POD2MAN5): Use version.subst.
(GDBvn.texi): Use version.subst.
(version.subst): New target.
(mostlyclean): Remove version.subst.
This fixes the regressions reported at
<http://sourceware.org/ml/gdb-patches/2013-06/msg00280.html>:
$ runtest-gdbserver gdb.base/siginfo-obj.exp gdb.base/siginfo-thread.exp gdb.threads/siginfo-threads.exp
Running ./gdb.base/siginfo-thread.exp ...
FAIL: gdb.base/siginfo-thread.exp: p ssi_addr
Running ./gdb.threads/siginfo-threads.exp ...
FAIL: gdb.threads/siginfo-threads.exp: signal 0 si_pid
FAIL: gdb.threads/siginfo-threads.exp: signal 1 si_pid
FAIL: gdb.threads/siginfo-threads.exp: signal 2 si_pid
FAIL: gdb.threads/siginfo-threads.exp: signal 3 si_pid
Running ./gdb.base/siginfo-obj.exp ...
FAIL: gdb.base/siginfo-obj.exp: p ssi_addr
FAIL: gdb.base/siginfo-obj.exp: p ssi_addr
The multi-arch patch made GDBserver do the the wrong siginfo layout
conversion, because most uses of `linux_is_elf64' were removed, and it
ended up never set. A global really is the wrong thing to use as
elf64-ness is a per-process property; `linux_is_elf64' was just
accidentally left behind.
Tested on x86_64 Fedora 17.
gdb/gdbserver/
2013-06-12 Pedro Alves <palves@redhat.com>
* linux-x86-low.c (linux_is_elf64): Delete global.
(x86_siginfo_fixup): Replace reference to `linux_is_elf64' global
with local linux_pid_exe_is_elf_64_file use.
There's no need for every arch to pre-allocate disabled_regsets.
Chances are the array won't be used.
(I have a hunch that with some more work we could dispense with
initialize_regsets_info.)
Tested on x86_64 Fedora 17 w/ -lmcheck.
gdb/gdbserver/
2013-06-11 Pedro Alves <palves@redhat.com>
* linux-low.c (regset_disabled, disable_regset): New functions.
(regsets_fetch_inferior_registers)
(regsets_store_inferior_registers): Use them.
(initialize_regsets_info); Don't allocate the disabled_regsets
array here.
* linux-low.h (struct regsets_info) <disabled_regsets>: Extend
comment.
This fixes the regression reported at
<http://sourceware.org/ml/gdb-patches/2013-06/msg00185.html>.
GDBserver was reaching:
static int
regsets_fetch_inferior_registers (struct regsets_info *regsets_info,
struct regcache *regcache)
{
struct regset_info *regset;
int saw_general_regs = 0;
int pid;
struct iovec iov;
regset = regsets_info->regsets;
pid = lwpid_of (get_thread_lwp (current_inferior));
while (regset->size >= 0)
{
void *buf, *data;
int nt_type, res;
if (regset->size == 0
|| regsets_info->disabled_regsets[regset - regsets_info->regsets])
{
>>>>>>> regset ++; <<<<<<< HERE
continue;
}
Because info->disabled_regsets[] was not being initialized, and that
causes all sorts of wrong.
gdb/gdbserver/
2013-06-11 Pedro Alves <palves@redhat.com>
* linux-low.c (initialize_regsets_info): Use xcalloc instead of
xmalloc.
All target descriptions must be initialized at startup, but this one was forgotten.
gdb/gdbserver/
2013-06-11 Pedro Alves <palves@redhat.com>
* linux-x86-low.c (initialize_low_arch): Call
init_registers_x32_avx_linux.
This patch makes GDBserver support multi-process + biarch.
Currently, if you're debugging more than one process at once with a
single gdbserver (in extended-remote mode), then all processes must
have the same architecture (e.g., 64-bit vs 32-bit). Otherwise, you
see this:
Added inferior 2
[Switching to inferior 2 [<null>] (<noexec>)]
Reading symbols from /home/pedro/gdb/tests/main32...done.
Temporary breakpoint 2 at 0x4004cf: main. (2 locations)
Starting program: /home/pedro/gdb/tests/main32
warning: Selected architecture i386 is not compatible with reported target architecture i386:x86-64
warning: Architecture rejected target-supplied description
Remote 'g' packet reply is too long: 000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000090cfffff0000000000000000000000000000000000000000000000000000000000020000000000000000000000000000000000000000000000000000000000000000000000000000b042f7460000000000020000230000002b0000002b0000002b000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000007f03000000000000ffff0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000801f00003b0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
... etc, etc ...
Even though the process was running a 32-bit program, GDBserver sent
back to GDB a register set in 64-bit layout.
A patch (http://sourceware.org/ml/gdb-patches/2012-11/msg00228.html) a
while ago made GDB track a target_gdbarch per inferior, and as
consequence, fetch a target description per-inferior. This patch is
the GDBserver counterpart, that makes GDBserver keep track of each
process'es XML target description and register layout. So in the
example above, GDBserver will send the correct register set in 32-bit
layout to GDB.
A new "struct target_desc" object (tdesc for short) is added, that
holds the target description and register layout information about
each process. Each `struct process_info' holds a pointer to a target
description. The regcache also gains a pointer to a target
description, mainly for convenience, and parallel with GDB (and
possible future support for programs that flip processor modes).
The low target's arch_setup routines are responsible for setting the
process'es correct tdesc. This isn't that much different to how
things were done before, except that instead of detecting the inferior
process'es architecture and calling the corresponding
init_registers_FOO routine, which would change the regcache layout
globals and recreate the threads' regcaches, the regcache.c globals
are gone, and the init_registers_$BAR routines now each initialize a
separate global struct target_desc object (one for each arch variant
GDBserver supports), and so all the init_registers_$BAR routines that
are built into GDBserver are called early at GDBserver startup time
(similarly to how GDB handles its built-in target descriptions), and
then the arch_setup routine is responsible for making
process_info->tdesc point to one of these target description globals.
The regcache module is all parameterized to get the regcache's layout
from the tdesc object instead of the old register_bytes, etc. globals.
The threads' regcaches are now created lazily. The old scheme where
we created each of them when we added a new thread doesn't work
anymore, because we add the main thread/lwp before we see it stop for
the first time, and it is only when we see the thread stop for the
first time that we have a chance of determining the inferior's
architecture (through the_low_target.arch_setup). Therefore when we
add the main thread we don't know which architecture/tdesc its
regcache should have.
This patch makes the gdb.multi/multi-arch.exp test now pass against
(extended-remote) GDBserver. It currently fails, without this patch.
The IPA also uses the regcache, so it gains a new global struct
target_desc pointer, which points at the description of the process it
is loaded in.
Re. the linux-low.c & friends changes. Since the register map
etc. may differ between processes (64-bit vs 32-bit) etc., the
linux_target_ops num_regs, regmap and regset_bitmap data fields are no
longer sufficient. A new method is added in their place that returns
a pointer to a new struct that includes all info linux-low.c needs to
access registers of the current inferior.
The patch/discussion that originally introduced
linux-low.c:disabled_regsets mentions that the disabled_regsets set
may be different per mode (in a biarch setup), and indeed that is
cleared whenever we start a new (first) inferior, so that global is
moved as well behind the new `struct regs_info'.
On the x86 side:
I simply replaced the i387-fp.c:num_xmm_registers global with a check
for 64-bit or 32-bit process, which is equivalent to how the global
was set. This avoided coming up with some more general mechanism that
would work for all targets that use this module (GNU/Linux, Windows,
etc.).
Tested:
GNU/Linux IA64
GNU/Linux MIPS64
GNU/Linux PowerPC (Fedora 16)
GNU/Linux s390x (Fedora 16)
GNU/Linux sparc64 (Debian)
GNU/Linux x86_64, -m64 and -m32 (Fedora 17)
Cross built, and smoke tested:
i686-w64-mingw32, under Wine.
GNU/Linux TI C6x, by Yao Qi.
Cross built but otherwise not tested:
aarch64-linux-gnu
arm-linux-gnu
m68k-linux
nios2-linux-gnu
sh-linux-gnu
spu
tilegx-unknown-linux-gnu
Completely untested:
GNU/Linux Blackfin
GNU/Linux CRIS
GNU/Linux CRISv32
GNU/Linux TI Xtensa
GNU/Linux M32R
LynxOS
QNX NTO
gdb/gdbserver/
2013-06-07 Pedro Alves <palves@redhat.com>
* Makefile.in (OBS): Add tdesc.o.
(IPA_OBJS): Add tdesc-ipa.o.
(tdesc-ipa.o): New rule.
* ax.c (gdb_eval_agent_expr): Adjust register_size call to new
interface.
* linux-low.c (new_inferior): Delete.
(disabled_regsets, num_regsets): Delete.
(linux_add_process): Adjust to set the new per-process
new_inferior flag.
(linux_detach_one_lwp): Adjust to call regcache_invalidate_thread.
(linux_wait_for_lwp): Adjust. Only call arch_setup if the event
was a stop. When calling arch_setup, switch the current inferior
to the thread that got an event.
(linux_resume_one_lwp): Adjust to call regcache_invalidate_thread.
(regsets_fetch_inferior_registers)
(regsets_store_inferior_registers): New regsets_info parameter.
Adjust to use it.
(linux_register_in_regsets): New regs_info parameter. Adjust to
use it.
(register_addr, fetch_register, store_register): New usrregs_info
parameter. Adjust to use it.
(usr_fetch_inferior_registers, usr_store_inferior_registers): New
parameter regs_info. Adjust to use it.
(linux_fetch_registers): Get the current inferior's regs_info, and
adjust to use it.
(linux_store_registers): Ditto.
[HAVE_LINUX_REGSETS] (initialize_regsets_info): New.
(initialize_low): Don't initialize the target_regsets here. Call
initialize_low_arch.
* linux-low.h (target_regsets): Delete declaration.
(struct regsets_info): New.
(struct usrregs_info): New.
(struct regs_info): New.
(struct process_info_private) <new_inferior>: New field.
(struct linux_target_ops): Delete the num_regs, regmap, and
regset_bitmap fields. New field regs_info.
[HAVE_LINUX_REGSETS] (initialize_regsets_info): Declare.
* i387-fp.c (num_xmm_registers): Delete.
(i387_cache_to_fsave, i387_fsave_to_cache): Adjust find_regno
calls to new interface.
(i387_cache_to_fxsave, i387_cache_to_xsave, i387_fxsave_to_cache)
(i387_xsave_to_cache): Adjust find_regno calls to new interface.
Infer the number of xmm registers from the regcache's target
description.
* i387-fp.h (num_xmm_registers): Delete.
* inferiors.c (add_thread): Don't install the thread's regcache
here.
* proc-service.c (gregset_info): Fetch the current inferior's
regs_info. Adjust to use it.
* regcache.c: Include tdesc.h.
(register_bytes, reg_defs, num_registers)
(gdbserver_expedite_regs): Delete.
(get_thread_regcache): If the thread doesn't have a regcache yet,
create one, instead of aborting gdbserver.
(regcache_invalidate_one): Rename to ...
(regcache_invalidate_thread): ... this.
(regcache_invalidate_one): New.
(regcache_invalidate): Only invalidate registers of the current
process.
(init_register_cache): Add target_desc parameter, and use it.
(new_register_cache): Ditto. Assert the target description has a
non zero registers_size.
(regcache_cpy): Add assertions. Adjust.
(realloc_register_cache, set_register_cache): Delete.
(registers_to_string, registers_from_string): Adjust.
(find_register_by_name, find_regno, find_register_by_number)
(register_cache_size): Add target_desc parameter, and use it.
(free_register_cache_thread, free_register_cache_thread_one)
(regcache_release, register_cache_size): New.
(register_size): Add target_desc parameter, and use it.
(register_data, supply_register, supply_register_zeroed)
(supply_regblock, supply_register_by_name, collect_register)
(collect_register_as_string, collect_register_by_name): Adjust.
* regcache.h (struct target_desc): Forward declare.
(struct regcache) <tdesc>: New field.
(init_register_cache, new_register_cache): Add target_desc
parameter.
(regcache_invalidate_thread): Declare.
(regcache_invalidate_one): Delete declaration.
(regcache_release): Declare.
(find_register_by_number, register_cache_size, register_size)
(find_regno): Add target_desc parameter.
(gdbserver_expedite_regs, gdbserver_xmltarget): Delete
declarations.
* remote-utils.c: Include tdesc.h.
(outreg, prepare_resume_reply): Adjust.
* server.c: Include tdesc.h.
(gdbserver_xmltarget): Delete declaration.
(get_features_xml, process_serial_event): Adjust.
* server.h [IN_PROCESS_AGENT] (struct target_desc): Forward
declare.
(struct process_info) <tdesc>: New field.
(ipa_tdesc): Declare.
* tdesc.c: New file.
* tdesc.h: New file.
* tracepoint.c: Include tdesc.h.
[IN_PROCESS_AGENT] (ipa_tdesc): Define.
(get_context_regcache): Adjust to pass ipa_tdesc down.
(do_action_at_tracepoint): Adjust to get the register cache size
from the context regcache's description.
(traceframe_walk_blocks): Adjust to get the register cache size
from the current trace frame's description.
(traceframe_get_pc): Adjust to get current trace frame's
description and pass it down.
(gdb_collect): Adjust to get the register cache size from the
IPA's description.
* linux-amd64-ipa.c (tdesc_amd64_linux): Declare.
(gdbserver_xmltarget): Delete.
(initialize_low_tracepoint): Set the ipa's target description.
* linux-i386-ipa.c (tdesc_i386_linux): Declare.
(initialize_low_tracepoint): Set the ipa's target description.
* linux-x86-low.c: Include tdesc.h.
[__x86_64__] (is_64bit_tdesc): New.
(ps_get_thread_area, x86_get_thread_area): Use it.
(i386_cannot_store_register): Rename to ...
(x86_cannot_store_register): ... this. Use is_64bit_tdesc.
(i386_cannot_fetch_register): Rename to ...
(x86_cannot_fetch_register): ... this. Use is_64bit_tdesc.
(x86_fill_gregset, x86_store_gregset): Adjust register_size calls
to new interface.
(target_regsets): Rename to ...
(x86_regsets): ... this.
(x86_get_pc, x86_set_pc): Adjust register_size calls to new
interface.
(x86_siginfo_fixup): Use is_64bit_tdesc.
[__x86_64__] (tdesc_amd64_linux, tdesc_amd64_avx_linux)
(tdesc_x32_avx_linux, tdesc_x32_linux)
(tdesc_i386_linux, tdesc_i386_mmx_linux, tdesc_i386_avx_linux):
Declare.
(x86_linux_update_xmltarget): Delete.
(I386_LINUX_XSAVE_XCR0_OFFSET): Define.
(have_ptrace_getfpxregs, have_ptrace_getregset): New.
(AMD64_LINUX_USER64_CS): New.
(x86_linux_read_description): New, based on
x86_linux_update_xmltarget.
(same_process_callback): New.
(x86_arch_setup_process_callback): New.
(x86_linux_update_xmltarget): New.
(x86_regsets_info): New.
(amd64_linux_regs_info): New.
(i386_linux_usrregs_info): New.
(i386_linux_regs_info): New.
(x86_linux_regs_info): New.
(x86_arch_setup): Reimplement.
(x86_install_fast_tracepoint_jump_pad): Use is_64bit_tdesc.
(x86_emit_ops): Ditto.
(the_low_target): Adjust. Install x86_linux_regs_info,
x86_cannot_fetch_register, and x86_cannot_store_register.
(initialize_low_arch): New.
* linux-ia64-low.c (tdesc_ia64): Declare.
(ia64_fetch_register): Adjust.
(ia64_usrregs_info, regs_info): New globals.
(ia64_regs_info): New function.
(the_low_target): Adjust.
(initialize_low_arch): New function.
* linux-sparc-low.c (tdesc_sparc64): Declare.
(sparc_fill_gregset_to_stack, sparc_store_gregset_from_stack):
Adjust.
(sparc_arch_setup): New function.
(sparc_regsets_info, sparc_usrregs_info, regs_info): New globals.
(the_low_target): Adjust.
(initialize_low_arch): New function.
* linux-ppc-low.c (tdesc_powerpc_32l, tdesc_powerpc_altivec32l)
(tdesc_powerpc_cell32l, tdesc_powerpc_vsx32l)
(tdesc_powerpc_isa205_32l, tdesc_powerpc_isa205_altivec32l)
(tdesc_powerpc_isa205_vsx32l, tdesc_powerpc_e500l)
(tdesc_powerpc_64l, tdesc_powerpc_altivec64l)
(tdesc_powerpc_cell64l, tdesc_powerpc_vsx64l)
(tdesc_powerpc_isa205_64l, tdesc_powerpc_isa205_altivec64l)
(tdesc_powerpc_isa205_vsx64l): Declare.
(ppc_cannot_store_register, ppc_collect_ptrace_register)
(ppc_supply_ptrace_register, parse_spufs_run, ppc_get_pc)
(ppc_set_pc, ppc_get_hwcap): Adjust.
(ppc_usrregs_info): Forward declare.
(!__powerpc64__) ppc_regmap_adjusted: New global.
(ppc_arch_setup): Adjust to the current process'es target
description.
(ppc_fill_vsxregset, ppc_store_vsxregset, ppc_fill_vrregset)
(ppc_store_vrregset, ppc_fill_evrregset, ppc_store_evrregse)
(ppc_store_evrregset): Adjust.
(target_regsets): Rename to ...
(ppc_regsets): ... this, and make static.
(ppc_usrregs_info, ppc_regsets_info, regs_info): New globals.
(ppc_regs_info): New function.
(the_low_target): Adjust.
(initialize_low_arch): New function.
* linux-s390-low.c (tdesc_s390_linux32, tdesc_s390_linux32v1)
(tdesc_s390_linux32v2, tdesc_s390_linux64, tdesc_s390_linux64v1)
(tdesc_s390_linux64v2, tdesc_s390x_linux64, tdesc_s390x_linux64v1)
(tdesc_s390x_linux64v2): Declare.
(s390_collect_ptrace_register, s390_supply_ptrace_register)
(s390_fill_gregset, s390_store_last_break): Adjust.
(target_regsets): Rename to ...
(s390_regsets): ... this, and make static.
(s390_get_pc, s390_set_pc): Adjust.
(s390_get_hwcap): New target_desc parameter, and use it.
[__s390x__] (have_hwcap_s390_high_gprs): New global.
(s390_arch_setup): Adjust to set the current process'es target
description. Don't adjust the regmap.
(s390_usrregs_info, s390_regsets_info, regs_info): New globals.
[__s390x__] (s390_usrregs_info_3264, s390_regsets_info_3264)
(regs_info_3264): New globals.
(s390_regs_info): New function.
(the_low_target): Adjust.
(initialize_low_arch): New function.
* linux-mips-low.c (tdesc_mips_linux, tdesc_mips_dsp_linux)
(tdesc_mips64_linux, tdesc_mips64_dsp_linux): Declare.
[__mips64] (init_registers_mips_linux)
(init_registers_mips_dsp_linux): Delete defines.
[__mips64] (tdesc_mips_linux, tdesc_mips_dsp_linux): New defines.
(have_dsp): New global.
(mips_read_description): New, based on mips_arch_setup.
(mips_arch_setup): Reimplement.
(get_usrregs_info): New function.
(mips_cannot_fetch_register, mips_cannot_store_register)
(mips_get_pc, mips_set_pc, mips_fill_gregset, mips_store_gregset)
(mips_fill_fpregset, mips_store_fpregset): Adjust.
(target_regsets): Rename to ...
(mips_regsets): ... this, and make static.
(mips_regsets_info, mips_dsp_usrregs_info, mips_usrregs_info)
(dsp_regs_info, regs_info): New globals.
(mips_regs_info): New function.
(the_low_target): Adjust.
(initialize_low_arch): New function.
* linux-arm-low.c (tdesc_arm, tdesc_arm_with_iwmmxt)
(tdesc_arm_with_vfpv2, tdesc_arm_with_vfpv3, tdesc_arm_with_neon):
Declare.
(arm_fill_vfpregset, arm_store_vfpregset): Adjust.
(arm_read_description): New, with bits factored from
arm_arch_setup.
(arm_arch_setup): Reimplement.
(target_regsets): Rename to ...
(arm_regsets): ... this, and make static.
(arm_regsets_info, arm_usrregs_info, regs_info): New globals.
(arm_regs_info): New function.
(the_low_target): Adjust.
(initialize_low_arch): New function.
* linux-m68k-low.c (tdesc_m68k): Declare.
(target_regsets): Rename to ...
(m68k_regsets): ... this, and make static.
(m68k_regsets_info, m68k_usrregs_info, regs_info): New globals.
(m68k_regs_info): New function.
(m68k_arch_setup): New function.
(the_low_target): Adjust.
(initialize_low_arch): New function.
* linux-sh-low.c (tdesc_sharch): Declare.
(target_regsets): Rename to ...
(sh_regsets): ... this, and make static.
(sh_regsets_info, sh_usrregs_info, regs_info): New globals.
(sh_regs_info, sh_arch_setup): New functions.
(the_low_target): Adjust.
(initialize_low_arch): New function.
* linux-bfin-low.c (tdesc_bfin): Declare.
(bfin_arch_setup): New function.
(bfin_usrregs_info, regs_info): New globals.
(bfin_regs_info): New function.
(the_low_target): Adjust.
(initialize_low_arch): New function.
* linux-cris-low.c (tdesc_cris): Declare.
(cris_arch_setup): New function.
(cris_usrregs_info, regs_info): New globals.
(cris_regs_info): New function.
(the_low_target): Adjust.
(initialize_low_arch): New function.
* linux-cris-low.c (tdesc_crisv32): Declare.
(cris_arch_setup): New function.
(cris_regsets_info, cris_usrregs_info, regs_info): New globals.
(cris_regs_info): New function.
(the_low_target): Adjust.
(initialize_low_arch): New function.
* linux-m32r-low.c (tdesc_m32r): Declare.
(m32r_arch_setup): New function.
(m32r_usrregs_info, regs_info): New globals.
(m32r_regs_info): Adjust.
(initialize_low_arch): New function.
* linux-tic6x-low.c (tdesc_tic6x_c64xp_linux)
(tdesc_tic6x_c64x_linux, tdesc_tic6x_c62x_linux): Declare.
(tic6x_usrregs_info): Forward declare.
(tic6x_read_description): New function, based on ...
(tic6x_arch_setup): ... this. Reimplement.
(target_regsets): Rename to ...
(tic6x_regsets): ... this, and make static.
(tic6x_regsets_info, tic6x_usrregs_info, regs_info): New globals.
(tic6x_regs_info): New function.
(the_low_target): Adjust.
(initialize_low_arch): New function.
* linux-xtensa-low.c (tdesc_xtensa): Declare.
(xtensa_fill_gregset, xtensa_store_gregset): Adjust.
(target_regsets): Rename to ...
(xtensa_regsets): ... this, and make static.
(xtensa_regsets_info, xtensa_usrregs_info, regs_info): New
globals.
(xtensa_arch_setup, xtensa_regs_info): New functions.
(the_low_target): Adjust.
(initialize_low_arch): New function.
* linux-nios2-low.c (tdesc_nios2_linux): Declare.
(nios2_arch_setup): Set the current process'es tdesc.
(target_regsets): Rename to ...
(nios2_regsets): ... this.
(nios2_regsets_info, nios2_usrregs_info, regs_info): New globals.
(nios2_regs_info): New function.
(the_low_target): Adjust.
(initialize_low_arch): New function.
* linux-aarch64-low.c (tdesc_aarch64): Declare.
(aarch64_arch_setup): Set the current process'es tdesc.
(target_regsets): Rename to ...
(aarch64_regsets): ... this.
(aarch64_regsets_info, aarch64_usrregs_info, regs_info): New globals.
(aarch64_regs_info): New function.
(the_low_target): Adjust.
(initialize_low_arch): New function.
* linux-tile-low.c (tdesc_tilegx, tdesc_tilegx32): Declare
globals.
(target_regsets): Rename to ...
(tile_regsets): ... this.
(tile_regsets_info, tile_usrregs_info, regs_info): New globals.
(tile_regs_info): New function.
(tile_arch_setup): Set the current process'es tdesc.
(the_low_target): Adjust.
(initialize_low_arch): New function.
* spu-low.c (tdesc_spu): Declare.
(spu_create_inferior, spu_attach): Set the new process'es tdesc.
* win32-arm-low.c (tdesc_arm): Declare.
(arm_arch_setup): New function.
(the_low_target): Install arm_arch_setup instead of
init_registers_arm.
* win32-i386-low.c (tdesc_i386, tdesc_amd64): Declare.
(init_windows_x86): Rename to ...
(i386_arch_setup): ... this. Set `win32_tdesc'.
(the_low_target): Adjust.
* win32-low.c (win32_tdesc): New global.
(child_add_thread): Don't create the thread cache here.
(do_initial_child_stuff): Set the new process'es tdesc.
* win32-low.h (struct target_desc): Forward declare.
(win32_tdesc): Declare.
* lynx-i386-low.c (tdesc_i386): Declare global.
(lynx_i386_arch_setup): Set `lynx_tdesc'.
* lynx-low.c (lynx_tdesc): New global.
(lynx_add_process): Set the new process'es tdesc.
* lynx-low.h (struct target_desc): Forward declare.
(lynx_tdesc): Declare global.
* lynx-ppc-low.c (tdesc_powerpc_32): Declare global.
(lynx_ppc_arch_setup): Set `lynx_tdesc'.
* nto-low.c (nto_tdesc): New global.
(do_attach): Set the new process'es tdesc.
* nto-low.h (struct target_desc): Forward declare.
(nto_tdesc): Declare.
* nto-x86-low.c (tdesc_i386): Declare.
(nto_x86_arch_setup): Set `nto_tdesc'.
gdb/
2013-06-07 Pedro Alves <palves@redhat.com>
* regformats/regdat.sh: Output #include tdesc.h. Make globals
static. Output a global target description pointer.
(init_registers_${name}): Adjust to initialize a
target description structure.
The GDBserver Aarch64 port includes the aarch64-without-fpu
description in the build, but doesn't actually use it anywhere. As
Linux always requires an FPU, just remove the dead code.
gdb/gdbserver/
2013-05-28 Pedro Alves <palves@redhat.com>
* Makefile.in (clean): Remove reference to aarch64-without-fpu.c.
(aarch64-without-fpu.c): Delete rule.
* configure.srv (aarch64*-*-linux*): Remove references to
aarch64-without-fpu.o and aarch64-without-fpu.xml.
* linux-aarch64-low.c (init_registers_aarch64_without_fpu): Remove
declaration.
This bit:
+ p1 = strchr (p, ':');
+ decode_address (&resume_info[i].step_range_end, p, p1 - p);
should not expect the ':' to be there. An action without a ptid is
valid:
"If an action is specified with no thread-id, then it is applied to any
threads that don't have a specific action specified"
This is handled further below:
if (p[0] == 0)
{
resume_info[i].thread = minus_one_ptid;
default_action = resume_info[i];
/* Note: we don't increment i here, we'll overwrite this entry
the next time through. */
}
else if (p[0] == ':')
A stub that doesn't support and report to gdb thread ids at all (like
metal metal targets) only will always only see a single default action
with no ptid.
Use unpack_varlen_hex instead of decode_address. The former doesn't
need to be told where the hex number ends, and it actually returns
that info instead, which we can use for validation.
Tested on x86_64 Fedora 17.
gdb/gdbserver/
2013-05-24 Pedro Alves <palves@redhat.com>
* server.c (handle_v_cont) <vCont;r>: Use unpack_varlen_hex
instead of strchr/decode_address. Error if the range isn't split
with a ','. Don't assume there's be a ':' in the action.
This patch adds support for range stepping to GDBserver, teaching it
about vCont;r.
It'd be easy to enable this for all hardware single-step targets
without needing the linux_target_ops hook, however, at least PPC needs
special care, due to the fact that PPC atomic sequences can't be
hardware single-stepped through, a thing which GDBserver doesn't know
about. So this leaves the support limited to x86/x86_64.
gdb/
2013-05-23 Pedro Alves <palves@redhat.com>
* NEWS: Mention GDBserver range stepping support.
gdb/gdbserver/
2013-05-23 Yao Qi <yao@codesourcery.com>
Pedro Alves <palves@redhat.com>
* linux-low.c (lwp_in_step_range): New function.
(linux_wait_1): If the thread was range stepping and stopped
outside the stepping range, report the stop to GDB. Otherwise,
continue stepping. Add range stepping debug output.
(linux_set_resume_request): Copy the step range from the resume
request to the lwp.
(linux_supports_range_stepping): New.
(linux_target_ops) <supports_range_stepping>: Set to
linux_supports_range_stepping.
* linux-low.h (struct linux_target_ops)
<supports_range_stepping>: New field.
(struct lwp_info) <step_range_start, step_range_end>: New fields.
* linux-x86-low.c (x86_supports_range_stepping): New.
(the_low_target) <supports_range_stepping>: Set to
x86_supports_range_stepping.
* server.c (handle_v_cont): Handle 'r' action.
(handle_v_requests): Append ";r" if the target supports range
stepping.
* target.h (struct thread_resume) <step_range_start,
step_range_end>: New fields.
(struct target_ops) <supports_range_stepping>:
New field.
(target_supports_range_stepping): New macro.
On ppc-lynx178, resuming the execution of a program after hitting
a breakpoint sometimes triggers a spurious SIG61 event:
(gdb) cont
Continuing.
Program received signal SIG61, Real-time event 61.
[Switching to Thread 39]
0x10002324 in a_test.task1 (<_task>=0x3ffff774) at a_test.adb:30
30 select -- Task 1
From this point on, continuing again lets the signal kill the program.
Using "signal 0" or configuring GDB to discard the signal does not
help either, as the program immediately reports the same signal again.
What happens is the following:
- GDB sends a single-step order to gdbserver: $vCont;s:31
This tells GDBserver to do a step using thread 0x31=49.
GDBserver does the step, and thread 49 receives the SIGTRAP
indicating that the step has finished.
- GDB then sends a "continue", but this time does not specify
which thread to continue: $vCont;c
GDBserver uses an arbitrary thread's ptid to resume the program's
execution (the current_inferior's ptid was chosen for that).
See lynx-low.c:lynx_resume:
if (ptid_equal (ptid, minus_one_ptid))
ptid = thread_to_gdb_id (current_inferior);
So far on all LynxOS platforms, this has been good enough. But
not so on LynxOS 178. If the ptid used to resume the execution
is not the same as the thread that did the step, we get the weird
signal.
This patch fixes the problem by saving the ptid of the thread
that last caused an event, received during a call to waitpid.
The ptid is saved in per-process private data.
gdb/gdbserver/ChangeLog:
* lynx-low.c (struct process_info_private): New type.
(lynx_add_process): New function.
(lynx_create_inferior, lynx_attach): Replace calls to
add_process by calls to lynx_add_process.
(lynx_resume): If PTID is null, then try using
current_process()->private->last_wait_event_ptid.
Add comments.
(lynx_clear_inferiors): Delete. The contents of that function
has been inlined in lynx_mourn;
(lynx_wait_1): Save the ptid in the process's private data.
(lynx_mourn): Free the process' private data. Replace call
to lynx_clear_inferiors by call to clear_inferiors.