C++ does not officially support designators in initializer lists. Thus
some compilers may issue errors when encountering them. Modern versions
of GCC seem to allow them by default, as a GCC extension, even though
the GCC documentation explicitly states otherwise: "[...] This extension
is not implemented in GNU C++." But some older GCC versions (like
4.4.7) did indeed emit an error instead, like this:
.../gdb/xtensa-config.c:219: error: expected primary-expression before
‘.’ token
This patch removes the only such instance I've seen when building with
'--enable-targets=all'.
gdb/ChangeLog:
* xtensa-tdep.h (XTENSA_GDBARCH_TDEP_INSTANTIATE): Replace
designated initializer list by plain initializer list, for C++
compliance.
GLIBC BZ#20311 [1] proc_service.h install patch also remove 'const'
attributes from ps_get_thread_area and comment #15 discuss why to remove
the const attribute (basically since it a callback with the struct
ps_prochandle owned by the client it should be able to modify it if
it the case).
On default build this is not the issue and current g++ does not trigger
any issue with this mismatch declaration. However, on some bootstrap
build configuration where gdbserver is build with gcc instead this
triggers:
error: conflicting types for 'ps_get_thread_area'
This patch fixes it by syncing the declaration with GLIBC.
[1] https://sourceware.org/bugzilla/show_bug.cgi?id=20311
gdb/ChangeLog:
2016-08-25 Adhemerval Zanella <adhemerval.zanella@linaro.org>
* aarch64-linux-nat.c (ps_get_thread_area): Remove const from
struct ps_prochandle.
* amd64-linux-nat.c (ps_get_thread_area): Likewise.
* arm-linux-nat.c (ps_get_thread_area): Likewise.
* gdb_proc_service.h (ps_get_thread_area): Likewise.
* i386-linux-nat.c (ps_get_thread_area): Likewise.
* m68klinux-nat.c (ps_get_thread_area): Likewise.
* mips-linux-nat.c (ps_get_thread_area): Likewise.
* nat/aarch64-linux.c (aarch64_ps_get_thread_area): Likewise.
* nat/aarch64-linux.h (aarch64_ps_get_thread_area): Likewise.
* xtensa-linux-nat.c (ps_get_thread_area): Likewise.
gdb/gdbserver/ChangeLog:
2016-08-25 Adhemerval Zanella <adhemerval.zanella@linaro.org>
PR server/20491
* gdb_proc_service.h (ps_get_thread_area): Remove const from struct
ps_prochandle.
* linux-aarch64-low.c (ps_get_thread_area): Likewise.
* linux-arm-low.c (ps_get_thread_area): Likewise.
* linux-crisv32-low.c (ps_get_thread_area): Likewise.
* linux-m68k-low.c (ps_get_thread_area): Likewise.
* linux-mips-low.c (ps_get_thread_area): Likewise.
* linux-nios2-low.c (ps_get_thread_area): Likewise.
* linux-tic6x-low.c (ps_get_thread_area): Likewise.
* linux-x86-low.c (ps_get_thread_area): Likewise.
* linux-xtensa-low.c (ps_get_thread_area): Likewise.
This test case verifies that GDB will not attempt to invoke a python
unwinder recursively.
At the moment, the behavior exhibited by GDB looks like this:
(gdb) source py-recurse-unwind.py
Python script imported
(gdb) b ccc
Breakpoint 1 at 0x4004bd: file py-recurse-unwind.c, line 23.
(gdb) run
Starting program: py-recurse-unwind
TestUnwinder: Recursion detected - returning early.
TestUnwinder: Recursion detected - returning early.
TestUnwinder: Recursion detected - returning early.
TestUnwinder: Recursion detected - returning early.
Breakpoint 1, ccc (arg=<unavailable>) at py-recurse-unwind.c:23
23 }
(gdb) bt
#-1 ccc (arg=<unavailable>) at py-recurse-unwind.c:23
Backtrace stopped: previous frame identical to this frame (corrupt stack?)
[I've shortened pathnames for easier reading.]
The desired / expected behavior looks like this:
(gdb) source py-recurse-unwind.py
Python script imported
(gdb) b ccc
Breakpoint 1 at 0x4004bd: file py-recurse-unwind.c, line 23.
(gdb) run
Starting program: py-recurse-unwind
Breakpoint 1, ccc (arg=789) at py-recurse-unwind.c:23
23 }
(gdb) bt
#0 ccc (arg=789) at py-recurse-unwind.c:23
#1 0x00000000004004d5 in bbb (arg=456) at py-recurse-unwind.c:28
#2 0x00000000004004ed in aaa (arg=123) at py-recurse-unwind.c:34
#3 0x00000000004004fe in main () at py-recurse-unwind.c:40
Note that GDB's problems go well beyond the fact that it invokes the
unwinder recursively. In the process it messes up some internal state
(the frame stash) leading to display of (only) the sentinel frame in
the backtrace.
gdb/testsuite/ChangeLog:
* gdb.python/py-recurse-unwind.c: New file.
* gdb.python/py-recurse-unwind.py: New file.
* gdb.python/py-recurse-unwind.exp: New file.
This patch allows the user to set the inferior-tty to "empty", in order
to come back to the default behaviour of using the same tty as gdb is
using.
This is already supported in MI (and tested in gdb.mi/mi-basics.exp).
I added a new test, set-inferior-tty.exp, where I test only the setting
and unsetting of the parameter. It would be nice to actually test that
the inferior output properly goes to the separate tty, but that will be
for another day.
gdb/ChangeLog:
* infcmd.c (set_inferior_io_terminal): Set inferior terminal to
NULL if terminal_name is an empty string.
(_initialize_infcmd): Make the argument of "set inferior-tty"
optional, mention it in the help doc.
gdb/doc/ChangeLog:
* gdb.texinfo (Input/Output): Mention possibility to unset
inferior-tty.
gdb/testsuite/ChangeLog:
* gdb.base/set-inferior-tty.exp: New file.
* gdb.base/set-inferior-tty.c: New file.
It is my understanding that GDB used to require each architecture to
define a Frame Pointer (fp). However, this functionality was deprecated
some time ago so the call to setup the fp_reg was changed to deprecated
(set_gdbarch_deprecated_fp_regnum). It should have been removed from the
Power code.
That said, the code "set_gdbarch_deprecated_fp_regnum
(gdbarch, PPC_R0_REGNUM + 1);" sets up register r1 as the frame pointer.
Register r1 is no longer used to hold the frame pointer on Power. By
removing the fp definition for Power in GDB, it causes GDB to fall back
to the call get_frame_base_address (frame) which returns the correct value
depending on the specific senario but most of the time is the DWARF
canonical frame address.
gdb/ChangeLog
2016-08-24 Carl Love <cel@us.ibm.com>
* rs6000-tdep.c (rs6000_gdbarch_init): Remove call
set_gdbarch_deprecated_fp_regnum() from initialization function.
This patch fixes a problem that problem triggers if you start an
inferior, e.g., with the "start" command, in a UI created with the
new-ui command, and then run a foreground execution command in the
main UI. Once the program stops for the latter command, typing in the
main UI no longer echoes back to the user.
The problem revolves around this:
- gdb_has_a_terminal computes its result lazily, on first call.
that is what saves gdb's initial main UI terminal state (the UI
associated with stdin):
our_terminal_info.ttystate = serial_get_tty_state (stdin_serial);
This is the state that target_terminal_ours() restores.
- In this scenario, the gdb_has_a_terminal function happens to be
first ever called from within the target_terminal_init call in
startup_inferior:
(top-gdb) bt
#0 gdb_has_a_terminal () at src/gdb/inflow.c:157
#1 0x000000000079db22 in child_terminal_init_with_pgrp () at src/gdb/inflow.c:217
[...]
#4 0x000000000065bacb in target_terminal_init () at src/gdb/target.c:456
#5 0x00000000004676d2 in startup_inferior () at src/gdb/fork-child.c:531
[...]
#7 0x000000000046b168 in linux_nat_create_inferior () at src/gdb/linux-nat.c:1112
[...]
#9 0x00000000005f20c9 in start_command (args=0x0, from_tty=1) at src/gdb/infcmd.c:657
If the command to start the inferior is issued on the main UI, then
readline will have deprepped the terminal when we reach the above, and
the problem doesn't appear.
If however the command is issued on a non-main UI, then when we reach
that gdb_has_a_terminal call, the main UI's terminal state is still
set to whatever readline has sets it to in rl_prep_terminal, which
happens to have echo disabled. Later, when the following synchronous
execution command finishes, we'll call target_terminal_ours to restore
gdb's the main UI's terminal settings, and that restores the terminal
state with echo disabled...
Conceptually, the fix is to move the gdb_has_a_terminal call earlier,
to someplace during GDB initialization, before readline/ncurses have
had a chance to change terminal settings. Turns out that
"set_initial_gdb_ttystate" is exactly such a place.
I say conceptually, because the fix actually inlines the
gdb_has_a_terminal part that saves the terminal state in
set_initial_gdb_ttystate and then simplifies gdb_has_a_terminal, since
there's no point in making gdb_has_a_terminal do lazy computation.
gdb/ChangeLog:
2016-08-23 Pedro Alves <palves@redhat.com>
PR gdb/20494
* inflow.c (our_terminal_info, initial_gdb_ttystate): Update
comments.
(enum gdb_has_a_terminal_flag_enum, gdb_has_a_terminal_flag):
Delete.
(set_initial_gdb_ttystate): Record our_terminal_info here too,
instead of ...
(gdb_has_a_terminal): ... here. Reimplement in terms of
initial_gdb_ttystate. Make static.
* terminal.h (gdb_has_a_terminal): Delete declaration.
(set_initial_gdb_ttystate): Add comment.
* top.c (show_interactive_mode): Use input_interactive_p instead
of gdb_has_a_terminal.
gdb/testsuite/ChangeLog:
2016-08-23 Pedro Alves <palves@redhat.com>
PR gdb/20494
* gdb.base/new-ui-echo.c: New file.
* gdb.base/new-ui-echo.exp: New file.
Hi,
I happen to see gdbserver is spawned like this in gdb.log,
spawn /scratch/yao/gdb/build-git/x86_64/gdb/testsuite/../../gdb/gdbserver/gdbserver --once :2346 /scratch/yao/gdb/build-git/x86_64/gdb/testsuite/outputs/gdb.s
erver/connect-stopped-target/connect-stopped-target /scratch/yao/gdb/build-git/x86_64/gdb/testsuite/outputs/gdb.server/connect-stopped-target/connect-stopped-t
arget
spawn /scratch/yao/gdb/build-git/x86_64/gdb/testsuite/../../gdb/gdbserver/gdbserver --once :2347 /scratch/yao/gdb/build-git/x86_64/gdb/testsuite/outputs/gdb.s
erver/connect-stopped-target/connect-stopped-target /scratch/yao/gdb/build-git/x86_64/gdb/testsuite/outputs/gdb.server/connect-stopped-target/connect-stopped-t
arget
as we can see, there are two instances of connect-stopped-target or
connect-stopped-target in the command line spawning gdbserver, but
none of these gets parameters from command line. In these two
tests, gdbserver is spawned via "gdbserver_spawn ${binfile}". However,
the argument of gdbserver_spawn is the argument passed the child
inferior, not the program itself.
# Start a gdbserver process running SERVER_EXEC, and connect GDB
# to it. CHILD_ARGS are passed to the inferior.
#
# Returns the target protocol and socket to connect to.
proc gdbserver_spawn { child_args } {
set target_exec [gdbserver_download_current_prog]
GDBserver gets the program via last_loaded_file, which is set by
gdb_file_cmd. In each test, we don't need to pass ${binfile}.
gdb/testsuite:
2016-08-23 Yao Qi <yao.qi@linaro.org>
* gdb.server/connect-stopped-target.exp (do_test): Pass "" to
gdbserver_spawn.
* gdb.server/connect-without-multi-process.exp (do_test):
Likewise.
Remote testing isn't considered in signals-state-child.exp, so the it
fails like
shell diff -s /scratch/yao/gdb/build-git/aarch64-linux-gnu/gdb/testsuite/outputs/gdb.base/signals-state-child/standalone.txt /scratch/yao/gdb/build-git/aarch64-linux-gnu/gdb/testsuite/outputs/gdb.base/signals-state-child/gdb.txt^M
diff: /scratch/yao/gdb/build-git/aarch64-linux-gnu/gdb/testsuite/outputs/gdb.base/signals-state-child/standalone.txt: No such file or directory^M
(gdb) FAIL: gdb.base/signals-state-child.exp: signals states are identical
This patch is to fix it.
gdb/testsuite:
2016-08-23 Yao Qi <yao.qi@linaro.org>
* gdb.base/signals-state-child.exp: Set variables gdb_txt and
standalone_txt. Delete gdb_txt and standalone_txt on host
and target. Spawn the binary on target. Copy files from
target to host.
Loading a core dump that was either generated on a system running
pristine glibc master, or on a Fedora/RHEL system with LD_DEBUG=unused
set in the environment, solib-svr4.c:svr4_current_sos fails to filter
out the vDSO, resulting in:
(gdb) core-file corefile.core^M
[New LWP 2362]^M
warning: Could not load shared library symbols for linux-vdso.so.1.^M
Do you need "set solib-search-path" or "set sysroot"?^M
Core was generated by `build-gdb/gdb/testsuite/outputs/gdb.base/corefile/'.^M
...
The problem is that gdbarch_vsyscall_range does not support core
inferiors at all.
When live debugging, we're finding the vDSO's start address with
auxv/AT_SYSINFO_EHDR, and then we find the vDSO's size by look for the
corresponding mapping, by parsing /proc/PID/maps. When debugging a
core dump, we can also determine the starting address from
auxv/AT_SYSINFO_EHDR. However, we obviously can't read the core
mappings out of the host's /proc. But we can instead look for a
corresponding load segment in the core's bfd.
gdb/ChangeLog:
2016-08-22 Pedro Alves <palves@redhat.com>
PR gdb/20505
* linux-tdep.c (linux_vsyscall_range_raw): For core inferiors,
find the vDSO's start address with AT_SYSINFO_EHDR too, and
determine the vDSO's size by finding the PT_LOAD segment that
matches AT_SYSINFO_EHDR.
gdb/testsuite/ChangeLog:
2016-08-22 Pedro Alves <palves@redhat.com>
PR gdb/20505
* gdb.base/vdso-warning.exp: Test core dumps too. Use
with_test_prefix. Factor out bits to ...
(test_no_vdso): ... this new procedure.
This patch fixes an issues with six test suite expect files that do not
run correctly when the test suite is not built in the source directory. The
issue is these tests are not using the current "standard_testfile" call
but rather using the older set command to initialize the "testfile",
"srcfile" and "binprefix" variables or are missing the set for the
"binprefix" variable.
-----------------------------------------------
gdb/testsuite/ChangeLog
2016-08-19 Carl Love <cel@us.ibm.com>
* gdb.arch/altivec-regs.exp: Use standard_testfile instead of
maintaining separate logic for constructing the output path.
* gdb.arch/powerpc-d128-regs.exp: Likewise.
* gdb.arch/ppc-dfp.exp: Likewise.
* gdb.arch/ppc-fp.exp: Likewise.
* gdb.arch/vsx-regs.exp: Likewise.
* gdb.arch/altivec-abi.exp: Likewise, plus added local variable
binprefix for generating the additional binary files.
Nowadays, we only match pre-indexed STP in prologue. Due to the change
in gcc, https://gcc.gnu.org/ml/gcc-patches/2016-07/msg01933.html, it
may generate "STP with base register" in prologue, which GDB doesn't
handle. That is to say, previously GCC generates prologue like this,
sub sp, sp, #490
stp x29, x30, [sp, #-96]!
mov x29, sp
with the gcc patch above, GCC generates prologue like like this,
sub sp, sp, #4f0
stp x29, x30, [sp]
mov x29, sp
This patch is to teach GDB to recognize this instruction in prologue
analysis.
gdb:
2016-08-19 Yao Qi <yao.qi@linaro.org>
* aarch64-tdep.c (aarch64_analyze_prologue): Handle register
based STP instruction.
If I build gdb with -fsanitize=address and run tests, I get error,
malformed linespec error: unexpected colon^M
(gdb) PASS: gdb.linespec/ls-errs.exp: lang=C: break :
break :=================================================================^M
==3266==ERROR: AddressSanitizer: heap-buffer-overflow on address 0x602000051451 at pc 0x2b5797a972a8 bp 0x7fffd8e0f3c0 sp 0x7fffd8e0f398^M
READ of size 2 at 0x602000051451 thread T0
#0 0x2b5797a972a7 in __interceptor_strlen (/usr/lib/x86_64-linux-gnu/libasan.so.1+0x322a7)^M
#1 0x7bd004 in compare_filenames_for_search(char const*, char const*) /home/yao/SourceCode/gnu/gdb/git/gdb/symtab.c:316^M
#2 0x7bd310 in iterate_over_some_symtabs(char const*, char const*, int (*)(symtab*, void*), void*, compunit_symtab*, compunit_symtab*) /home/yao/SourceCode/gnu/gdb/git/gdb/symtab.c:411^M
#3 0x7bd775 in iterate_over_symtabs(char const*, int (*)(symtab*, void*), void*) /home/yao/SourceCode/gnu/gdb/git/gdb/symtab.c:481^M
#4 0x7bda15 in lookup_symtab(char const*) /home/yao/SourceCode/gnu/gdb/git/gdb/symtab.c:527^M
#5 0x7d5e2a in make_file_symbol_completion_list_1 /home/yao/SourceCode/gnu/gdb/git/gdb/symtab.c:5635^M
#6 0x7d61e1 in make_file_symbol_completion_list(char const*, char const*, char const*) /home/yao/SourceCode/gnu/gdb/git/gdb/symtab.c:5684^M
#7 0x88dc06 in linespec_location_completer /home/yao/SourceCode/gnu/gdb/git/gdb/completer.c:288
....
0x602000051451 is located 0 bytes to the right of 1-byte region [0x602000051450,0x602000051451)^M
mallocated by thread T0 here:
#0 0x2b5797ab97ef in __interceptor_malloc (/usr/lib/x86_64-linux-gnu/libasan.so.1+0x547ef)^M
#1 0xbbfb8d in xmalloc /home/yao/SourceCode/gnu/gdb/git/gdb/common/common-utils.c:43^M
#2 0x88dabd in linespec_location_completer /home/yao/SourceCode/gnu/gdb/git/gdb/completer.c:273^M
#3 0x88e5ef in location_completer(cmd_list_element*, char const*, char const*) /home/yao/SourceCode/gnu/gdb/git/gdb/completer.c:531^M
#4 0x8902e7 in complete_line_internal /home/yao/SourceCode/gnu/gdb/git/gdb/completer.c:964^
The code in question is here
file_to_match = (char *) xmalloc (colon - text + 1);
strncpy (file_to_match, text, colon - text + 1);
it is likely that file_to_match is not null-terminated. The patch is
to strncpy 'colon - text' bytes and explicitly set '\0'.
gdb:
2016-08-19 Yao Qi <yao.qi@linaro.org>
* completer.c (linespec_location_completer): Make file_to_match
null-terminated.
gdb.trace/mi-trace-frame-collected.exp has a couple failures on x32:
FAIL: gdb.trace/mi-trace-frame-collected.exp: live: -trace-frame-collected (register)
FAIL: gdb.trace/mi-trace-frame-collected.exp: tfile: -trace-frame-collected (register)
gdb.log:
-trace-frame-collected
^done,explicit-variables=[{name="gdb_char_test",value="0 '\\000'"}],computed-expressions=[],registers=[{number="16",value="0x4004dc"},{number="204",value="0x4004dc"}],tvars
=[],memory=[{address="0x00601060",length="1"}]
(gdb)
FAIL: gdb.trace/mi-trace-frame-collected.exp: live: -trace-frame-collected (register)
[...]
-trace-frame-collected
^done,explicit-variables=[{name="gdb_char_test",value="0 '\\000'"}],computed-expressions=[],registers=[{number="16",value="0x4004dc"},{number="204",value="0x4004dc"}],tvars
=[],memory=[{address="0x00601060",length="1"}]
(gdb)
FAIL: gdb.trace/mi-trace-frame-collected.exp: tfile: -trace-frame-collected (register)
This test only collects the PC, and thus expects to only see one
register in the output of -trace-frame-collected. However, while on
the 64-bit ABI gdb only exposes 64-bit $pc/$rip (register 16 above),
on x32, GDB exposes 32-bit $eip as well, as a pseudo-register
(register 204 above). Thus, collecting $pc/$rip automatically always
collects $eip as well.
gdb/testsuite/ChangeLog:
2016-08-19 Pedro Alves <palves@redhat.com>
* gdb.trace/mi-trace-frame-collected.exp
(test_trace_frame_collected): On x32, expect two registers.
Running the fast tracepoints tests against x32 gdbserver exposes a
latent bug. E.g.,:
(gdb)
continue
Continuing.
Reading /media/sf_host-pedro/gdb/mygit/build-ubuntu-x32/gdb/testsuite/outputs/gdb.trace/change-loc/change-loc-2.sl from remote target...
Thread 1 "change-loc" received signal SIGSEGV, Segmentation fault.
func4 () at /home/pedro/gdb/src/gdb/testsuite/gdb.trace/change-loc.h:24
24 }
(gdb) FAIL: gdb.trace/change-loc.exp: 1 ftrace: continue to marker 2
The test sets a fast tracepoint on a shared library. On x32, shared
libraries end up loaded somewhere in the upper 2GB of the 4GB address
space x32 has access to. When gdbserver needs to copy an instruction
to execute it in the jump pad, it asks gdb to relocate/adjust it, with
the qRelocInsn packet. gdb converts "call" instructions into a "push
$<2GB-4GB addr> + jmp" sequence, however, the "pushq" instruction sign
extends its operand, so later when the called function returns, it
returns to an incorrectly sign-extended address. E.g.,
0xfffffffffabc0000 instead of 0xfabc0000, resulting in the
segmentation fault.
Fix this by converting calls at such addresses to "sub + mov + jmp"
sequences instead.
gdb/ChangeLog:
2016-08-19 Pedro Alves <palves@redhat.com>
* amd64-tdep.c (amd64_relocate_instruction) <callq>: Handle return
addresses over 0x7fffffff.
Running fast tracepoint tests on x32 exposes a latent bug in the agent
bytecode jitting. There's a code path that forgets to emit the call
opcode... Whoops. Fixes a bunch of gdb.trace/trace-condition.exp
FAILs, like:
(gdb)
continue
Continuing.
Thread 1 "trace-condition" received signal SIGSEGV, Segmentation fault.
0x7ffec016 in ?? ()
(gdb) FAIL: gdb.trace/trace-condition.exp: ftrace: $rip == *set_point: advance through tracing
gdb/gdbserver/ChangeLog:
2016-08-19 Pedro Alves <palves@redhat.com>
* linux-x86-low.c (amd64_emit_call): Emit missing call opcode.
We're casting through unsigned long to write a 64-bit immediate
operand of movabs (the comment said movl, but that was incorrect).
The problem is that unsigned long is 32-bit on x32, so we were writing
fewer bytes than necessary.
Fix this by using an 8 byte memcpy like in other similar places in the
function.
gdb/gdbserver/ChangeLog:
2016-08-19 Pedro Alves <palves@redhat.com>
* linux-x86-low.c (amd64_install_fast_tracepoint_jump_pad): Fix
comment. Use memcpy instead of casting through unsigned long.
MAP_32BIT is ignored on x32, meaning the jump pad can end up somewhere
between 2GB and 4GB, too far away from the executable for 5-byte
relative jumps (JMP rel32). So on x32, try explicitly placing the
jump pad near the middle of the available address space.
gdb/gdbserver/ChangeLog:
2016-08-19 Pedro Alves <palves@redhat.com>
* linux-amd64-ipa.c (alloc_jump_pad_buffer) [__ILP32__]: Try
allocating around 0x80000000.
Building GDB for x32 fails building the IPA, with:
.../src/gdb/gdbserver/linux-amd64-ipa.c: In function ‘const target_desc* get_ipa_tdesc(int)’:
.../src/gdb/gdbserver/linux-amd64-ipa.c:182:14: error: ‘tdesc_amd64_avx_linux’ was not declared in this scope
return tdesc_amd64_avx_linux;
^
.../src/gdb/gdbserver/linux-amd64-ipa.c:184:14: error: ‘tdesc_amd64_mpx_linux’ was not declared in this scope
return tdesc_amd64_mpx_linux;
^
.../src/gdb/gdbserver/linux-amd64-ipa.c:186:14: error: ‘tdesc_amd64_avx_mpx_linux’ was not declared in this scope
return tdesc_amd64_avx_mpx_linux;
^
[...]
The problem is that the IPA is trying to use the 64-bit descriptions,
when it should be using the x32 ones.
gdb/gdbserver/ChangeLog:
2016-08-19 Pedro Alves <palves@redhat.com>
PR gdb/20415
* Makefile.in (x32-linux-ipa.o, x32-avx-linux-ipa.o)
(x32-avx512-linux-ipa.o): New rules.
* configure.ac (x86_64-*-linux*): New x32 check.
* configure.srv (ipa_x32_linux_regobj): New.
(x86_64-*-linux*): Use $ipa_x32_linux_regobj if building for x32.
* linux-amd64-ipa.c (get_ipa_tdesc) [__ILP32__]: Return x32
descriptions.
(initialize_low_tracepoint) [__ILP32__]: Initialize x32
descriptions.
* configure: Regenerate.
gdb/ChangeLog:
* MAINTAINERS (Write After Approval): Add "Carl Love".
gdb/testsuite/ChangeLog:
* gdb.arch/powerpc-power.s: Add new Power9 instruction tests
and sync up the test with tests in gas/testsuite/gas/ppc.
* gdb.arch/powerpc-power.exp: Likewise.
The GDB testsuite reports 5 test failures on Power 7 instructions.
Additionally the ppc test is missing the new Power 9 instructions as
well as a large number of older instructions. Additionally, some
instruction names have changed or been deleted. This patch
fixes the test failures and completely updates the test to make it
consistent with the supported Power 9 instructions listed in:
gas/testsuite/gas/ppc/power7.d
gas/testsuite/gas/ppc/power8.d
gas/testsuite/gas/ppc/power9.d
gas/testsuite/gas/ppc/altivec.d
gas/testsuite/gas/ppc/altivec2.d
gas/testsuite/gas/ppc/altivec3.d
gas/testsuite/gas/ppc/vsx.d
gas/testsuite/gas/ppc/vsx2.d
gas/testsuite/gas/ppc/vsx3.d
-----------------------------------------------------
gdb/testsuite/ChangeLog
2016-08-18 Carl Love <cel@us.ibm.com>
* gdb.arch/powerpc-power.s: Add new Power9 instruction tests
and sync up the test with tests in gas/testsuite/gas/ppc.
* gdb.arch/powerpc-power.exp: Likewise.
The patch fixes the record support of Hardware Transactional Memory
instructions on Power. It also solves a large number of unexpected failures
from gdb.reverse testcases sigall-precsave.exp and sigall-reverse.exp that
occur on distros which glibc uses HTM instructions.
gdb/ChangeLog
2016-08-18 Edjunior Barbosa Machado <emachado@linux.vnet.ibm.com>
* rs6000-tdep.c (ppc_process_record_op31): Handle HTM instructions.
This error message should not contain the word symbol:
(gdb) remove-inferiors 1
Warning: Can not remove current symbol inferior 1.
gdb/ChangeLog:
* inferior.c (remove_inferior_command): Fix error message.
gdb/testsuite/ChangeLog:
* gdb.multi/remove-inferiors.exp (test_remove_inferiors): Fix
expected error message.
I noticed that the remove-inferiors command was not tested, and as I am
doing some changes related to the user selection, I want to make sure I
don't break it. For example, I want to make sure it's not possible to
remove the current inferior.
gdb/testsuite/ChangeLog:
* gdb.multi/remove-inferiors.exp: New file.
* gdb.multi/remove-inferiors.c: New file.
GLIBC BZ#20311 introduced a change to install proc_service.h so that gdb
didn't have to use the version it embeds in gdb_proc_service.h. The
embedded version is guarded by HAVE_PROC_SERVICE_H and
gdb_proc_service.h has a number other of includes and definitions, all
of which are uncondional except for an include for gregset.h. This is
only included if HAVE_PROC_SERIVCE_H is not defined.
This causes a build failure when cross compiling gdb with the latest
glibc because type definitions in gregset are used independently of
HAVE_PROC_SERIVCE_H. In particular, they are used in gdb_proc_service.h
when PRFPREGSET_T_BROKEN is set.
The error messages on the failure are
----
binutils-gdb/gdb/gdb_proc_service.h:173:9: error: ‘gdb_fpregset_t’ does
not name a type; did you mean ‘elf_fpregset_t’?
typedef gdb_fpregset_t gdb_prfpregset_t;
^~~~~~~~~~~~~~
elf_fpregset_t
binutils-gdb/gdb/gdb_proc_service.h:173:9: error: ‘gdb_fpregset_t’ does
not name a type; did you mean ‘elf_fpregset_t’?
typedef gdb_fpregset_t gdb_prfpregset_t;
^~~~~~~~~~~~~~
elf_fpregset_t
binutils-gdb/gdb/proc-service.c:218:15: error: ‘gdb_prfpregset_t’ does
not name a type; did you mean ‘gdb_fpregset_t’?
const gdb_prfpregset_t *fpregset)
^~~~~~~~~~~~~~~~
gdb_fpregset_t
----
This patch moves the include for gregset.h to before the code guarded by
HAVE_PROC_SERIVCE_H, so that it is always included. This is enough to
fix the build.
2016-08-15 Matthew Wahab <matthew.wahab@arm.com>
PR gdb/20457
* gdb_proc_service.h: Add an include of gregset.h
[!HAVE_PROC_SERVICE_H]: Remove the include of gregset.h.
I build GDB with -fsanitize=address, and see the error in tests,
(gdb) PASS: gdb.linespec/ls-errs.exp: lang=C++: break 3 foo
break -line 3 foo^M
=================================================================^M
==4401==ERROR: AddressSanitizer: heap-buffer-overflow on address 0x603000047487 at pc 0x819d8e bp 0x7fff4e4e6bb0 sp 0x7fff4e4e6ba8^M
READ of size 1 at 0x603000047487 thread T0^[[1m^[[0m^M
#0 0x819d8d in explicit_location_lex_one /home/yao/SourceCode/gnu/gdb/git/gdb/location.c:502^M
#1 0x81a185 in string_to_explicit_location(char const**, language_defn const*, int) /home/yao/SourceCode/gnu/gdb/git/gdb/location.c:556^M
#2 0x81ac10 in string_to_event_location(char**, language_defn const*) /home/yao/SourceCode/gnu/gdb/git/gdb/location.c:687^
the code in question is:
> /* Special case: C++ operator,. */
> if (language->la_language == language_cplus
> && strncmp (*inp, "operator", 8) <--- [1]
> && (*inp)[9] == ',')
> (*inp) += 9;
> ++(*inp);
The error is caused by the access to (*inp)[9] if 9 is out of its bounds.
However [1] looks odd to me, because if strncmp returns true (non-zero),
the following check "(*inp)[9] == ','" makes no sense any more. I
suspect it was a typo in the code we meant to "strncmp () == 0". Another
problem in the code above is that if *inp is "operator,", we first
increment *inp by 9, and then increment it by one again, which is wrong
to me. We should only increment *inp by 8 to skip "operator", and go
back to the loop header to decide where we stop.
gdb:
2016-08-15 Yao Qi <yao.qi@linaro.org>
* location.c (explicit_location_lex_one): Compare the return
value of strncmp with zero. Don't check (*inp)[9]. Increment
*inp by 8.
I see the following warning when running signals-state-child.exp.
gdb/testsuite/gdb.base/signals-state-child.c:77:4: warning: too many arguments for format [-Wformat-extra-args]
fprintf (out, "sigaction={sa_handler=", i);
^
this patch is to remove the argument from fprintf.
gdb/testsuite:
2016-08-12 Yao Qi <yao.qi@linaro.org>
* gdb.base/signals-state-child.c (main): Remove "i" from fprintf's
argument list.
Fixes, on NIOS GNU/Linux:
In file included from
/scratch/mbilal/nois-lite/src/gdb-trunk/gdb/gdbserver/../nat/linux-ptrace.c:26:0:
/scratch/mbilal/nois-lite/src/gdb-trunk/gdb/gdbserver/../gregset.h:27:23:
error: unknown type name 'gregset_t'
#define GDB_GREGSET_T gregset_t
^
Fix this by including sys/procfs.h directly. We shouldn't really be
including a gdb-only header in a gdb/nat/ file, anyway. Whoops.
gdb/ChangeLog:
2016-08-11 Pedro Alves <palves@redhat.com>
PR gdb/20413
* nat/linux-ptrace.c: Include <sys/procfs.h> instead of
"gregset.h".
Right after a fork is detected, we detach breakpoints from the child
(detach_breakpoints), which calls into target_remove_breakpoint with
inferior_ptid pointing at the child process, but leaves the breakpoint
marked inserted (in the parent).
The problem is that record-full.c always deletes all knowledge of the
breakpoint. Then when we later really delete the breakpoint from the
parent, we fail the assertion, since the breakpoint is unexpectedly
not found in the record-full.c breakpoint table.
The fix is simply to not forget about the breakpoint if we're
detaching it from a fork child.
gdb/ChangeLog:
2016-08-10 Pedro Alves <palves@redhat.com>
PR gdb/19187
* record-full.c (record_full_remove_breakpoint): Don't remove the
breakpoint from the record_full_breakpoints VEC if we're detaching
the breakpoint from a fork child.
gdb/testsuite/ChangeLog:
2016-08-10 Pedro Alves <palves@redhat.com>
PR gdb/19187
* gdb.reverse/waitpid-reverse.exp: Add comment and remove
setup_kfails.
Makes the code more obvious.
gdb/ChangeLog:
2016-08-10 Pedro Alves <palves@redhat.com>
PR gdb/19187
* breakpoint.c (insertion_state_t): Delete.
(enum remove_bp_reason): New.
(detach_breakpoints, remove_breakpoint_1, remove_breakpoint):
Adjust to use enum remove_bp_reason instead of insertion_state_t.
All callers pass mark_uninserted, so there's no need for the 'is'
parameter.
gdb/ChangeLog:
2016-08-10 Pedro Alves <palves@redhat.com>
PR gdb/19187
* breakpoint.c (remove_breakpoint): Remove 'is' parameter and
always pass mark_uninserted to remove_breakpoint_1.
(insert_breakpoint_locations, remove_breakpoints)
(remove_breakpoints_pid, update_global_location_list): Update
callers.
This is done by catching an exception number 0x406d1388 (it has no
documented name, though MSDN dubs it "MS_VC_EXCEPTION" in one code
example), which is thrown by the program. The exception record
contains an ID of a thread and a name to give it.
This requires rolling back some changes in handle_exception(), which
now again returns more than two distinct values. The new
HANDLE_EXCEPTION_IGNORED value means that gdb should just continue,
without returning the thread ID up the stack (which would result in
further handling of the exception, which is not what we want).
gdb/ChangeLog:
2016-08-10 Руслан Ижбулатов <lrn1986@gmail.com>
Pedro Alves <palves@redhat.com>
* windows-nat.c (MS_VC_EXCEPTION): New define.
(handle_exception_result): New enum.
(windows_delete_thread): Free the thread's name.
(handle_exception): Handle MS_VC_EXCEPTION.
(get_windows_debug_event): Handle HANDLE_EXCEPTION_IGNORED.
(windows_thread_name): New function.
(windows_target): Install it as to_thread_name method.
* NEWS: Mention the thread naming support on MS-Windows.
The ARI complains about this new file:
common/signals-state-save-restore.c:46: warning: gettext: All messages should be marked up with _.
common/signals-state-save-restore.c:59: warning: gettext: All messages should be marked up with _.
common/signals-state-save-restore.c:87: warning: gettext: All messages should be marked up with _.
common/signals-state-save-restore.c:92: warning: gettext: All messages should be marked up with _.
Since these are untranslatable strings, use () instead of _().
gdb/ChangeLog:
2016-08-10 Pedro Alves <palves@redhat.com>
* common/signals-state-save-restore.c
(save_original_signals_state, restore_original_signals_state):
Wrap perror_with_name arguments with '()'.
When executing commands on a secondary UI running the MI interpreter,
some commands that should be synchronous are not. MI incorrectly
continues processing input right after the synchronous command is
sent, before the target stops.
The problem happens when we emit MI async events (=library-loaded,
etc.), and we go about restoring the previous terminal state, we end
up calling target_terminal_ours, which incorrectly always installs the
current UI's input_fd in the event loop... That is, code like this:
old_chain = make_cleanup_restore_target_terminal ();
target_terminal_ours_for_output ();
fprintf_unfiltered (mi->event_channel, "library-loaded");
...
do_cleanups (old_chain);
The fix is to move the add_file_handler/delete_file_handler calls out
of target_terminal_$foo, making these completely no-ops unless called
with the main UI as current UI.
gdb/ChangeLog:
2016-08-09 Pedro Alves <palves@redhat.com>
PR gdb/20418
* event-top.c (ui_register_input_event_handler)
(ui_unregister_input_event_handler): New functions.
(async_enable_stdin): Register input in the event loop.
(async_disable_stdin): Unregister input from the event loop.
(gdb_setup_readline): Register input in the event loop.
* infrun.c (check_curr_ui_sync_execution_done): Register input in
the event loop.
* target.c (target_terminal_inferior): Don't unregister input from
the event loop.
(target_terminal_ours): Don't register input in the event loop.
* target.h (target_terminal_inferior)
(target_terminal_ours_for_output, target_terminal_ours): Update
comments.
* top.h (ui_register_input_event_handler)
(ui_unregister_input_event_handler): New declarations.
* utils.c (ui_unregister_input_event_handler_cleanup)
(prepare_to_handle_input): New functions.
(defaulted_query, prompt_for_continue): Use
prepare_to_handle_input.
gdb/testsuite/ChangeLog:
2016-08-09 Pedro Alves <palves@redhat.com>
Simon Marchi <simon.marchi@ericsson.com>
PR gdb/20418
* gdb.mi/new-ui-mi-sync.c, gdb.mi/new-ui-mi-sync.exp: New files.
* lib/mi-support.exp (mi_expect_interrupt): Remove anchors.
gdb 7.11 introduced an MI regression: a failing MI sync execution
command misses printing the MI prompt, and then all subsequent command
miss it too:
$ gdb-7.11.1 -i=mi
[...]
p 1
&"p 1\n"
~"$1 = 1"
~"\n"
^done
(gdb) <<< prompted ok
-exec-continue
^error,msg="The program is not being run." <<< missing prompt after this
print 1
&"print 1\n"
~"$2 = 1"
~"\n"
^done <<< missing prompt after this
gdb 7.10.1 behaved correctly, even with "set mi-async on":
-exec-continue
^error,msg="The program is not being run."
(gdb) <<< prompted ok
etc.
Bisecting points at:
commit 0b333c5e7d
Author: Pedro Alves <palves@redhat.com>
Date: Wed Sep 9 18:23:23 2015 +0100
Merge async and sync code paths some more
[...]
The problem is that when an exception is thrown, we leave the prompt
state set to PROMPT_BLOCKED, and then mi_execute_command_input_handler
doesn't print the prompt. It used to work because before that patch,
we happened to skip disabling stdin if the current target didn't do
async (which it never does before execution).
I was surprised to find that this bug isn't caught by the testsuite,
so I made a thorough test that tests all combinations of pairs of:
- a failing synchronous execution command
- a failing non-execution command
- a non-failing command
gdb/ChangeLog:
2016-08-09 Pedro Alves <palves@redhat.com>
PR mi/20431
* mi/mi-main.c (mi_execute_command): Enable input and set prompt
state to PROMPT_NEEDED.
gdb/testsuite/ChangeLog:
2016-08-09 Pedro Alves <palves@redhat.com>
PR mi/20431
* gdb.mi/mi-cmd-error.exp: New file.
gdb's (or gdbserver's) own signal handling should not interfere with
the signal dispositions their spawned children inherit. However, it
currently does. For example, some paths in gdb cause SIGPIPE to be
set to SIG_IGN, and as consequence, the child starts with SIGPIPE to
set to SIG_IGN too, even though gdb was started with SIGPIPE set to
SIG_DFL.
This is because the exec family of functions does not reset the signal
disposition of signals that are set to SIG_IGN:
http://pubs.opengroup.org/onlinepubs/7908799/xsh/execve.html
Signals set to the default action (SIG_DFL) in the calling process
image are set to the default action in the new process
image. Signals set to be ignored (SIG_IGN) by the calling process
image are set to be ignored by the new process image. Signals set to
be caught by the calling process image are set to the default action
in the new process image (see <signal.h>).
And neither does it reset signal masks or flags.
In order to be transparent, when spawning new child processes to debug
(with "run", etc.), reset signal actions and mask back to what was
originally inherited from gdb/gdbserver's parent, just before execing
the target program to debug.
gdb/ChangeLog:
2016-08-09 Pedro Alves <palves@redhat.com>
PR gdb/18653
* Makefile.in (SFILES): Add
common/signals-state-save-restore.c.
(HFILES_NO_SRCDIR): Add common/signals-state-save-restore.h.
(COMMON_OBS): Add signals-state-save-restore.o.
(signals-state-save-restore.o): New rule.
* configure: Regenerate.
* fork-child.c: Include "signals-state-save-restore.h".
(fork_inferior): Call restore_original_signals_state.
* main.c: Include "signals-state-save-restore.h".
(captured_main): Call save_original_signals_state.
* common/common.m4: Add sigaction to AC_CHECK_FUNCS checks.
* common/signals-state-save-restore.c: New file.
* common/signals-state-save-restore.h: New file.
gdb/gdbserver/ChangeLog:
2016-08-09 Pedro Alves <palves@redhat.com>
PR gdb/18653
* Makefile.in (OBS): Add signals-state-save-restore.o.
(signals-state-save-restore.o): New rule.
* config.in: Regenerate.
* configure: Regenerate.
* linux-low.c: Include "signals-state-save-restore.h".
(linux_create_inferior): Call
restore_original_signals_state.
* server.c: Include "dispositions-save-restore.h".
(captured_main): Call save_original_signals_state.
gdb/testsuite/ChangeLog:
2016-08-09 Pedro Alves <palves@redhat.com>
PR gdb/18653
* gdb.base/signals-state-child.c: New file.
* gdb.base/signals-state-child.exp: New file.
* gdb.gdb/selftest.exp (do_steps_and_nexts): Add new pattern.
With something like:
struct A { int bitfield:4; } var;
If 'var' ends up wholly-optimized out, printing 'var.bitfield' crashes
gdb here:
(top-gdb) bt
#0 0x000000000058b89f in extract_unsigned_integer (addr=0x2 <error: Cannot access memory at address 0x2>, len=2, byte_order=BFD_ENDIAN_LITTLE)
at /home/pedro/gdb/mygit/src/gdb/findvar.c:109
#1 0x00000000005a187a in unpack_bits_as_long (field_type=0x16cff70, valaddr=0x0, bitpos=16, bitsize=12) at /home/pedro/gdb/mygit/src/gdb/value.c:3347
#2 0x00000000005a1b9d in unpack_value_bitfield (dest_val=0x1b5d9d0, bitpos=16, bitsize=12, valaddr=0x0, embedded_offset=0, val=0x1b5d8d0)
at /home/pedro/gdb/mygit/src/gdb/value.c:3441
#3 0x00000000005a2a5f in value_fetch_lazy (val=0x1b5d9d0) at /home/pedro/gdb/mygit/src/gdb/value.c:3958
#4 0x00000000005a10a7 in value_primitive_field (arg1=0x1b5d8d0, offset=0, fieldno=0, arg_type=0x16d04c0) at /home/pedro/gdb/mygit/src/gdb/value.c:3161
#5 0x00000000005b01e5 in do_search_struct_field (name=0x1727c60 "bitfield", arg1=0x1b5d8d0, offset=0, type=0x16d04c0, looking_for_baseclass=0, result_ptr=0x7fffffffcaf8,
[...]
unpack_value_bitfield is already optimized-out/unavailable -aware:
(...) VALADDR points to the contents of VAL. If the VAL's contents
required to extract the bitfield from are unavailable/optimized
out, DEST_VAL is correspondingly marked unavailable/optimized out.
however, it is not considering the case of the value having no
contents buffer at all, as can happen through
allocate_optimized_out_value.
gdb/ChangeLog:
2016-08-09 Pedro Alves <palves@redhat.com>
* value.c (unpack_value_bitfield): Skip unpacking if the parent
has no contents buffer to begin with.
gdb/testsuite/ChangeLog:
2016-08-09 Pedro Alves <palves@redhat.com>
* gdb.dwarf2/bitfield-parent-optimized-out.exp: New file.
I regenerated all target description .c files from scratch, and got
this spurious diff.
It's a simple mid-air collision - these files were clearly generated
before commit 73b4f516a0 ("maint_print_c_tdesc_cmd: Use type for
TYPE_CODE_FLAGS instead of field_type."), which did the global
s/field_type/type/, and pushed to master afterwards.
gdb/features/ChangeLog:
2016-08-08 Pedro Alves <palves@redhat.com>
* features/i386/amd64-avx-mpx-linux.c: Regenerate.
* features/i386/amd64-avx-mpx.c: Regenerate.
* features/i386/i386-avx-mpx-linux.c: Regenerate.
* features/i386/i386-avx-mpx.c: Regenerate.
We build by default with a C++ compiler, but "configure --help" still
says "--enable-build-with-cxx", which hints that it is by default
disabled. Update the --help text.
gdb/ChangeLog:
2016-08-05 Pedro Alves <palves@redhat.com>
* build-with-cxx.m4: Change help string to be in terms of
--disable-build-with-cxx.
* configure: Regenerate.
gdb/gdbserver/ChangeLog:
2016-08-05 Pedro Alves <palves@redhat.com>
* configure: Regenerate.
I find the following test fail when I test native aarch64 gdb with
arm program,
(gdb) PASS: gdb.base/attach-pie-noexec.exp: attach
set architecture arm^M
warning: Selected architecture arm is not compatible with reported target architecture aarch64^M
Architecture `arm' not recognized.^M
The target architecture is set automatically (currently aarch64)^M
(gdb) FAIL: gdb.base/attach-pie-noexec.exp: set architecture arm
GDB thinks the target is aarch64, but it isn't. Nowadays, we are
using some entries AT_PHENT and AT_HWCAP in auxv to determine whether
the process is a 32-bit arm one or 64-bit aarch64 one, and get the
right gdbarch. However, in the process of parsing auxv (in
inf_ptrace_auxv_parse), the size of int and data pointer of
target_gdbarch is used. If debug program exists (in most of cases),
target_gdbarch is already set according to the debug program, which
is arm in my case. Then, GDB can parse auxv successfully. However,
in gdb.base/attach-pie-noexec.exp, the debug program is removed,
target_gdbarch is aarch64 when GDB parse auxv, so GDB can't parse
it successfully.
Instead of using auxv, we check the return value of ptrace NT_ARM_VFP.
If the program is an arm process, NT_ARM_VFP is OK, otherwise, error
is returned.
Additionally, we only return tdesc_arm_with_neon for arm process,
because neon is mandatory on ARMv8.
gdb:
2016-08-04 Yao Qi <yao.qi@linaro.org>
* aarch64-linux-nat.c (tdesc_arm_with_vfpv3): Remove the
declaration.
(aarch64_linux_read_description): Remove code on getting
auxv and select target description on it. Select target
description by the result of NT_ARM_VFP ptrace request.
When I run process-dies-while-detaching.exp with GDBserver, I see many
warnings printed by GDBserver,
ptrace(regsets_fetch_inferior_registers) PID=26183: No such process
ptrace(regsets_fetch_inferior_registers) PID=26183: No such process
ptrace(regsets_fetch_inferior_registers) PID=26184: No such process
ptrace(regsets_fetch_inferior_registers) PID=26184: No such process
regsets_fetch_inferior_registers is called when GDBserver resumes each
lwp.
#2 0x0000000000428260 in regsets_fetch_inferior_registers (regsets_info=0x4690d0 <aarch64_regsets_info>, regcache=0x31832020)
at /home/yao/SourceCode/gnu/gdb/git/gdb/gdbserver/linux-low.c:5412
#3 0x00000000004070e8 in get_thread_regcache (thread=0x31832940, fetch=fetch@entry=1) at /home/yao/SourceCode/gnu/gdb/git/gdb/gdbserver/regcache.c:58
#4 0x0000000000429c40 in linux_resume_one_lwp_throw (info=<optimized out>, signal=0, step=0, lwp=0x31832830)
at /home/yao/SourceCode/gnu/gdb/git/gdb/gdbserver/linux-low.c:4463
#5 linux_resume_one_lwp (lwp=0x31832830, step=<optimized out>, signal=<optimized out>, info=<optimized out>)
at /home/yao/SourceCode/gnu/gdb/git/gdb/gdbserver/linux-low.c:4573
The is the case that threads are disappeared when GDB/GDBserver resumes
them. We check errno for ESRCH, and don't print error messages, like
what we are doing in regsets_store_inferior_registers.
gdb/gdbserver:
2016-08-04 Yao Qi <yao.qi@linaro.org>
* linux-low.c (regsets_fetch_inferior_registers): Check
errno is ESRCH or not.
PR python/18565 notes that calling frame filters don't work properly for
inlined functions. This happens because Frame.function on an inline
frame will yield the wrong result. This patch changes this code to use
find_frame_funname instead, which handles inline frames properly.
Built and regtested on x86-64 Fedora 24.
2016-08-03 Tom Tromey <tom@tromey.com>
PR python/18565:
* python/py-frame.c (frapy_function): Use find_frame_funname.
2016-08-03 Tom Tromey <tom@tromey.com>
PR python/18565:
* gdb.python/py-frame-inline.exp: Add Frame.function test.
The PR 18565 thread pointed out that, if cp_remove_params can throw
(we aren't quite sure), then find_frame_funname could leak some
memory. This patch avoids any potential issue by rearranging some
code in find_frame_funname.
Built and regtested on x86-64 Fedora 24.
2016-08-03 Tom Tromey <tom@tromey.com>
* stack.c (find_frame_funname): Avoid any possible leak in case
cp_remove_params can throw.
An earlier patch added three new breakpoint-related events to the
Python API. However, at that time, I forgot to update NEWS. This
patch supplies the missing entry.
2016-08-03 Tom Tromey <tom@tromey.com>
* NEWS: Mention new Python breakpoint events.