* Draft implementation * formatting * fix combined buttons * remove pimoroni throttle * sync pointing on a throttle loop with checksum * no longer used * doh Co-authored-by: Drashna Jaelre <drashna@live.com> * switch pimoroni to a cpi equivalent * add cpi support * allow user modification of seperate mouse reports * a little tidy up * add *_RIGHT defines. * docs * doxygen comments * basic changelog * clean up pimoroni * small doc fixes * Update docs/feature_pointing_device.md Co-authored-by: Drashna Jaelre <drashna@live.com> * performance tweak if side has usb * Don't run init funtions on wrong side * renamed some variables for consistency * fix pimoroni typos * Clamp instead of OR * Promote combined values to uint16_t * Update pointing_device.c Co-authored-by: Drashna Jaelre <drashna@live.com> Co-authored-by: Nick Brassel <nick@tzarc.org>
23 KiB
Pointing Device :id=pointing-device
Pointing Device is a generic name for a feature intended to be generic: moving the system pointer around. There are certainly other options for it - like mousekeys - but this aims to be easily modifiable and hardware driven. You can implement custom keys to control functionality, or you can gather information from other peripherals and insert it directly here - let QMK handle the processing for you.
To enable Pointing Device, uncomment the following line in your rules.mk:
POINTING_DEVICE_ENABLE = yes
Sensor Drivers
There are a number of sensors that are supported by default. Note that only one sensor can be enabled by POINTING_DEVICE_DRIVER
at a time. If you need to enable more than one sensor, then you need to implement it manually.
ADNS 5050 Sensor
To use the ADNS 5050 sensor, add this to your rules.mk
POINTING_DEVICE_DRIVER = adns5050
The ADNS 5050 sensor uses a serial type protocol for communication, and requires an additional light source.
Setting | Description |
---|---|
ADNS5050_SCLK_PIN |
(Required) The pin connected to the clock pin of the sensor. |
ADNS5050_SDIO_PIN |
(Required) The pin connected to the data pin of the sensor. |
ADNS5050_CS_PIN |
(Required) The pin connected to the cable select pin of the sensor. |
The CPI range is 125-1375, in increments of 125. Defaults to 500 CPI.
ADNS 9800 Sensor
To use the ADNS 9800 sensor, add this to your rules.mk
POINTING_DEVICE_DRIVER = adns9800
The ADNS 9800 is an SPI driven optical sensor, that uses laser output for surface tracking.
Setting | Description | Default |
---|---|---|
ADNS9800_CLOCK_SPEED |
(Optional) Sets the clock speed that the sensor runs at. | 2000000 |
ADNS9800_SPI_LSBFIRST |
(Optional) Sets the Least/Most Significant Byte First setting for SPI. | false |
ADNS9800_SPI_MODE |
(Optional) Sets the SPI Mode for the sensor. | 3 |
ADNS9800_SPI_DIVISOR |
(Optional) Sets the SPI Divisor used for SPI communication. | varies |
ADNS9800_CS_PIN |
(Required) Sets the Cable Select pin connected to the sensor. | not defined |
The CPI range is 800-8200, in increments of 200. Defaults to 1800 CPI.
Analog Joystick
To use an analog joystick to control the pointer, add this to your rules.mk
POINTING_DEVICE_DRIVER = analog_joystick
The Analog Joystick is an analog (ADC) driven sensor. There are a variety of joysticks that you can use for this.
Setting | Description | Default |
---|---|---|
ANALOG_JOYSTICK_X_AXIS_PIN |
(Required) The pin used for the vertical/X axis. | not defined |
ANALOG_JOYSTICK_Y_AXIS_PIN |
(Required) The pin used for the horizontal/Y axis. | not defined |
ANALOG_JOYSTICK_AXIS_MIN |
(Optional) Sets the lower range to be considered movement. | 0 |
ANALOG_JOYSTICK_AXIS_MAX |
(Optional) Sets the upper range to be considered movement. | 1023 |
ANALOG_JOYSTICK_SPEED_REGULATOR |
(Optional) The divisor used to slow down movement. (lower makes it faster) | 20 |
ANALOG_JOYSTICK_READ_INTERVAL |
(Optional) The interval in milliseconds between reads. | 10 |
ANALOG_JOYSTICK_SPEED_MAX |
(Optional) The maximum value used for motion. | 2 |
ANALOG_JOYSTICK_CLICK_PIN |
(Optional) The pin wired up to the press switch of the analog stick. | not defined |
Cirque Trackpad
To use the Cirque Trackpad sensor, add this to your rules.mk
:
POINTING_DEVICE_DRIVER = cirque_pinnacle_i2c
or
POINTING_DEVICE_DRIVER = cirque_pinnacle_spi
This supports the Cirque Pinnacle 1CA027 Touch Controller, which is used in the TM040040, TM035035 and the TM023023 trackpads. These are I2C or SPI compatible, and both configurations are supported.
Setting | Description | Default |
---|---|---|
CIRQUE_PINNACLE_X_LOWER |
(Optional) The minimum reachable X value on the sensor. | 127 |
CIRQUE_PINNACLE_X_UPPER |
(Optional) The maximum reachable X value on the sensor. | 1919 |
CIRQUE_PINNACLE_Y_LOWER |
(Optional) The minimum reachable Y value on the sensor. | 63 |
CIRQUE_PINNACLE_Y_UPPER |
(Optional) The maximum reachable Y value on the sensor. | 1471 |
CIRQUE_PINNACLE_TAPPING_TERM |
(Optional) Length of time that a touch can be to be considered a tap. | TAPPING_TERM /200 |
CIRQUE_PINNACLE_TOUCH_DEBOUNCE |
(Optional) Length of time that a touch can be to be considered a tap. | TAPPING_TERM /200 |
I2C Setting | Description | Default |
---|---|---|
CIRQUE_PINNACLE_ADDR |
(Required) Sets the I2C Address for the Cirque Trackpad | 0x2A |
CIRQUE_PINNACLE_TIMEOUT |
(Optional) The timeout for i2c communication with the trackpad in milliseconds. | 20 |
SPI Setting | Description | Default |
---|---|---|
CIRQUE_PINNACLE_CLOCK_SPEED |
(Optional) Sets the clock speed that the sensor runs at. | 1000000 |
CIRQUE_PINNACLE_SPI_LSBFIRST |
(Optional) Sets the Least/Most Significant Byte First setting for SPI. | false |
CIRQUE_PINNACLE_SPI_MODE |
(Optional) Sets the SPI Mode for the sensor. | 1 |
CIRQUE_PINNACLE_SPI_DIVISOR |
(Optional) Sets the SPI Divisor used for SPI communication. | varies |
CIRQUE_PINNACLE_SPI_CS_PIN |
(Required) Sets the Cable Select pin connected to the sensor. | not defined |
Default Scaling/CPI is 1024.
Pimoroni Trackball
To use the Pimoroni Trackball module, add this to your rules.mk
:
POINTING_DEVICE_DRIVER = pimoroni_trackball
The Pimoroni Trackball module is a I2C based breakout board with an RGB enable trackball.
Setting | Description | Default |
---|---|---|
PIMORONI_TRACKBALL_ADDRESS |
(Required) Sets the I2C Address for the Pimoroni Trackball. | 0x0A |
PIMORONI_TRACKBALL_TIMEOUT |
(Optional) The timeout for i2c communication with the trackball in milliseconds. | 100 |
PIMORONI_TRACKBALL_SCALE |
(Optional) The multiplier used to generate reports from the sensor. | 5 |
PIMORONI_TRACKBALL_DEBOUNCE_CYCLES |
(Optional) The number of scan cycles used for debouncing on the ball press. | 20 |
PIMORONI_TRACKBALL_ERROR_COUNT |
(Optional) Specifies the number of read/write errors until the sensor is disabled. | 10 |
PMW 3360 Sensor
To use the PMW 3360 sensor, add this to your rules.mk
POINTING_DEVICE_DRIVER = pmw3360
The PMW 3360 is an SPI driven optical sensor, that uses a built in IR LED for surface tracking.
Setting | Description | Default |
---|---|---|
PMW3360_CS_PIN |
(Required) Sets the Cable Select pin connected to the sensor. | not defined |
PMW3360_CLOCK_SPEED |
(Optional) Sets the clock speed that the sensor runs at. | 2000000 |
PMW3360_SPI_LSBFIRST |
(Optional) Sets the Least/Most Significant Byte First setting for SPI. | false |
PMW3360_SPI_MODE |
(Optional) Sets the SPI Mode for the sensor. | 3 |
PMW3360_SPI_DIVISOR |
(Optional) Sets the SPI Divisor used for SPI communication. | varies |
PMW3360_LIFTOFF_DISTANCE |
(Optional) Sets the lift off distance at run time | 0x02 |
ROTATIONAL_TRANSFORM_ANGLE |
(Optional) Allows for the sensor data to be rotated +/- 30 degrees directly in the sensor. | 0 |
The CPI range is 100-12000, in increments of 100. Defaults to 1600 CPI.
Custom Driver
If you have a sensor type that isn't supported here, you can manually implement it, by adding these functions (with the correct implementation for your device):
void pointing_device_driver_init(void) {}
report_mouse_t pointing_device_driver_get_report(report_mouse_t mouse_report) { return mouse_report; }
uint16_t pointing_device_driver_get_cpi(void) { return 0; }
void pointing_device_driver_set_cpi(uint16_t cpi) {}
!> Ideally, new sensor hardware should be added to drivers/sensors/
and quantum/pointing_device_drivers.c
, but there may be cases where it's very specific to the hardware. So these functions are provided, just in case.
Common Configuration
Setting | Description | Default |
---|---|---|
POINTING_DEVICE_ROTATION_90 |
(Optional) Rotates the X and Y data by 90 degrees. | not defined |
POINTING_DEVICE_ROTATION_180 |
(Optional) Rotates the X and Y data by 180 degrees. | not defined |
POINTING_DEVICE_ROTATION_270 |
(Optional) Rotates the X and Y data by 270 degrees. | not defined |
POINTING_DEVICE_INVERT_X |
(Optional) Inverts the X axis report. | not defined |
POINTING_DEVICE_INVERT_Y |
(Optional) Inverts the Y axis report. | not defined |
POINTING_DEVICE_MOTION_PIN |
(Optional) If supported, will only read from sensor if pin is active. | not defined |
POINTING_DEVICE_TASK_THROTTLE_MS |
(Optional) Limits the frequency that the sensor is polled for motion. | not defined |
!> When using SPLIT_POINTING_ENABLE
the POINTING_DEVICE_MOTION_PIN
functionality is not supported and would recommend POINTING_DEVICE_TASK_THROTTLE_MS
be set to 1
. Increasing this value will increase transport performance at the cost of possible mouse responsiveness.
Split Keyboard Configuration
The following configuration options are only available when using SPLIT_POINTING_ENABLE
see data sync options. The rotation and invert *_RIGHT
options are only used with POINTING_DEVICE_COMBINED
. If using POINTING_DEVICE_LEFT
or POINTING_DEVICE_RIGHT
use the common configuration above to configure your pointing device.
Setting | Description | Default |
---|---|---|
POINTING_DEVICE_LEFT |
Pointing device on the left side (Required - pick one only) | not defined |
POINTING_DEVICE_RIGHT |
Pointing device on the right side (Required - pick one only) | not defined |
POINTING_DEVICE_COMBINED |
Pointing device on both sides (Required - pick one only) | not defined |
POINTING_DEVICE_ROTATION_90_RIGHT |
(Optional) Rotates the X and Y data by 90 degrees. | not defined |
POINTING_DEVICE_ROTATION_180_RIGHT |
(Optional) Rotates the X and Y data by 180 degrees. | not defined |
POINTING_DEVICE_ROTATION_270_RIGHT |
(Optional) Rotates the X and Y data by 270 degrees. | not defined |
POINTING_DEVICE_INVERT_X_RIGHT |
(Optional) Inverts the X axis report. | not defined |
POINTING_DEVICE_INVERT_Y_RIGHT |
(Optional) Inverts the Y axis report. | not defined |
!> If there is a _RIGHT
configuration option or callback, the common configuration option will work for the left. For correct left/right detection you should setup a handedness option, EE_HANDS
is usually a good option for an existing board that doesn't do handedness by hardware.
Callbacks and Functions
Function | Description |
---|---|
pointing_device_init_kb(void) |
Callback to allow for keyboard level initialization. Useful for additional hardware sensors. |
pointing_device_init_user(void) |
Callback to allow for user level initialization. Useful for additional hardware sensors. |
pointing_device_task_kb(mouse_report) |
Callback that sends sensor data, so keyboard code can intercept and modify the data. Returns a mouse report. |
pointing_device_task_user(mouse_report) |
Callback that sends sensor data, so user code can intercept and modify the data. Returns a mouse report. |
pointing_device_handle_buttons(buttons, pressed, button) |
Callback to handle hardware button presses. Returns a uint8_t . |
pointing_device_get_cpi(void) |
Gets the current CPI/DPI setting from the sensor, if supported. |
pointing_device_set_cpi(uint16_t) |
Sets the CPI/DPI, if supported. |
pointing_device_get_report(void) |
Returns the current mouse report (as a mouse_report_t data structure). |
pointing_device_set_report(mouse_report) |
Sets the mouse report to the assigned mouse_report_t data structured passed to the function. |
pointing_device_send(void) |
Sends the current mouse report to the host system. Function can be replaced. |
has_mouse_report_changed(old, new) |
Compares the old and new mouse_report_t data and returns true only if it has changed. |
pointing_device_adjust_by_defines(mouse_report) |
Applies rotations and invert configurations to a raw mouse report. |
Split Keyboard Callbacks and Functions
The combined functions below are only available when using SPLIT_POINTING_ENABLE
and POINTING_DEVICE_COMBINED
. The 2 callbacks pointing_device_task_combined_*
replace the single sided equivalents above. See the combined pointing devices example
Function | Description |
---|---|
pointing_device_set_shared_report(mouse_report) |
Sets the shared mouse report to the assigned mouse_report_t data structured passed to the function. |
pointing_device_set_cpi_on_side(bool, uint16_t) |
Sets the CPI/DPI of one side, if supported. Passing true will set the left and false the right` |
pointing_device_combine_reports(left_report, right_report) |
Returns a combined mouse_report of left_report and right_report (as a mouse_report_t data structure) |
pointing_device_task_combined_kb(left_report, right_report) |
Callback, so keyboard code can intercept and modify the data. Returns a combined mouse report. |
pointing_device_task_combined_user(left_report, right_report) |
Callback, so user code can intercept and modify. Returns a combined mouse report using pointing_device_combine_reports |
pointing_device_adjust_by_defines_right(mouse_report) |
Applies right side rotations and invert configurations to a raw mouse report. |
Manipulating Mouse Reports
The report_mouse_t (here "mouseReport") has the following properties:
mouseReport.x
- this is a signed int from -127 to 127 (not 128, this is defined in USB HID spec) representing movement (+ to the right, - to the left) on the x axis.mouseReport.y
- this is a signed int from -127 to 127 (not 128, this is defined in USB HID spec) representing movement (+ upward, - downward) on the y axis.mouseReport.v
- this is a signed int from -127 to 127 (not 128, this is defined in USB HID spec) representing vertical scrolling (+ upward, - downward).mouseReport.h
- this is a signed int from -127 to 127 (not 128, this is defined in USB HID spec) representing horizontal scrolling (+ right, - left).mouseReport.buttons
- this is a uint8_t in which all 8 bits are used. These bits represent the mouse button state - bit 0 is mouse button 1, and bit 7 is mouse button 8.
To manually manipulate the mouse reports outside of the pointing_device_task_*
functions, you can use:
pointing_device_get_report()
- Returns the current report_mouse_t that represents the information sent to the host computerpointing_device_set_report(report_mouse_t newMouseReport)
- Overrides and saves the report_mouse_t to be sent to the host computerpointing_device_send()
- Sends the mouse report to the host and zeroes out the report.
When the mouse report is sent, the x, y, v, and h values are set to 0 (this is done in pointing_device_send()
, which can be overridden to avoid this behavior). This way, button states persist, but movement will only occur once. For further customization, both pointing_device_init
and pointing_device_task
can be overridden.
Additionally, by default, pointing_device_send()
will only send a report when the report has actually changed. This prevents it from continuously sending mouse reports, which will keep the host system awake. This behavior can be changed by creating your own pointing_device_send()
function.
Also, you use the has_mouse_report_changed(new, old)
function to check to see if the report has changed.
Example
In the following example, a custom key is used to click the mouse and scroll 127 units vertically and horizontally, then undo all of that when released - because that's a totally useful function. Listen, this is an example:
case MS_SPECIAL:
report_mouse_t currentReport = pointing_device_get_report();
if (record->event.pressed) {
currentReport.v = 127;
currentReport.h = 127;
currentReport.buttons |= MOUSE_BTN1; // this is defined in report.h
} else {
currentReport.v = -127;
currentReport.h = -127;
currentReport.buttons &= ~MOUSE_BTN1;
}
pointing_device_set_report(currentReport);
pointing_device_send();
break;
Recall that the mouse report is set to zero (except the buttons) whenever it is sent, so the scrolling would only occur once in each case.
Split Examples
The following examples make use the SPLIT_POINTING_ENABLE
functionality and show how to manipulate the mouse report for a scrolling mode.
Single Pointing Device
The following example will work with either POINTING_DEVICE_LEFT
or POINTING_DEVICE_RIGHT
and enables scrolling mode while on a particular layer.
static bool scrolling_mode = false;
layer_state_t layer_state_set_user(layer_state_t state) {
switch (get_highest_layer(state)) {
case _RAISE: // If we're on the _RAISE layer enable scrolling mode
scrolling_mode = true;
pointing_device_set_cpi(2000);
break;
default:
if (scrolling_mode) { // check if we were scrolling before and set disable if so
scrolling_mode = false;
pointing_device_set_cpi(8000);
}
break;
}
return state;
}
report_mouse_t pointing_device_task_user(report_mouse_t mouse_report) {
if (scrolling_mode) {
mouse_report.h = mouse_report.x;
mouse_report.v = mouse_report.y;
mouse_report.x = 0;
mouse_report.y = 0;
}
return mouse_report;
}
Combined Pointing Devices
The following example requires POINTING_DEVICE_COMBINED
and sets the left side pointing device to scroll only.
void keyboard_post_init_user(void) {
pointing_device_set_cpi_on_side(true, 1000); //Set cpi on left side to a low value for slower scrolling.
pointing_device_set_cpi_on_side(false, 8000); //Set cpi on right side to a reasonable value for mousing.
}
report_mouse_t pointing_device_task_combined_user(report_mouse_t left_report, report_mouse_t right_report) {
left_report.h = left_report.x;
left_report.v = left_report.y;
left_report.x = 0;
left_report.y = 0;
return pointing_device_combine_reports(left_report, right_report);
}