In gdb.trace/unavailable.exp, an action is defined to collect
struct_b.struct_a.array[2] and struct_b.struct_a.array[100],
struct StructB
{
int d, ef;
StructA struct_a;
int s:1;
static StructA static_struct_a;
const char *string;
};
and the other files are not collected.
When GDB examine traceframe collected by the action, "struct_b" is
unavailable completely, which is wrong.
(gdb) p struct_b
$1 = <unavailable>
When GDB reads 'struct_b', it will request to read memory at struct_b's address
of length LEN. Since struct_b.d is not collected, no 'M' block
includes the first part of the desired range, so tfile_xfer_partial returns
TARGET_XFER_UNAVAILABLE and GDB thinks the whole requested range is unavailable.
In order to fix this problem, in the iteration to 'M' blocks, we record the
lowest address of blocks within the request range. If it has, the requested
range isn't unavailable completely. This applies to ctf too. With this patch
applied, the result looks good and fails in unavailable.exp is fixed.
(gdb) p struct_b
$1 = {d = <unavailable>, ef = <unavailable>, struct_a = {a = <unavailable>, b = <unavailable>, array = {<unavailable>,
<unavailable>, -1431655766, <unavailable> <repeats 97 times>, -1431655766, <unavailable> <repeats 9899 times>}, ptr = <unavailable>, bitfield = <unavailable>}, s = <unavailable>, static static_struct_a = {a = <unavailable>, b = <unavailable>, array = {<unavailable> <repeats 10000 times>}, ptr = <unavailable>,
bitfield = <unavailable>}, string = <unavailable>}
gdb:
2014-05-05 Yao Qi <yao@codesourcery.com>
Pedro Alves <palves@redhat.com>
* tracefile-tfile.c (tfile_xfer_partial): Record the lowest
address of blocks that intersects the requested range. Trim
LEN up to LOW_ADDR_AVAILABLE if read from executable read-only
sections.
* ctf.c (ctf_xfer_partial): Likewise.
gdb/testsuite:
2014-05-05 Yao Qi <yao@codesourcery.com>
* gdb.trace/unavailable.exp (gdb_collect_args_test): Save
traceframes into tfile and ctf trace files. Read data from
trace file and test collected data.
(gdb_collect_locals_test): Likewise.
(gdb_unavailable_registers_test): Likewise.
(gdb_unavailable_floats): Likewise.
(gdb_collect_globals_test): Likewise.
(top-level): Append "ctf" to trace_file_targets if GDB
supports.
Functions ctf_fetch_registers and tfile_fetch_registers have some
duplicated code about guessing the PC in regcache. Sometimes, we
may change one function and forget to update the other one, like this
https://www.sourceware.org/ml/gdb-patches/2014-01/msg00292.html
This patch is to move the duplicated code into a new function
tracefile_fetch_registers, and let both ctf_fetch_registers and
tfile_fetch_registers call it.
gdb:
2014-04-22 Yao Qi <yao@codesourcery.com>
* tracefile-tfile.c (tfile_fetch_registers): Move the bottom to ...
* tracefile.c (tracefile_fetch_registers): ... it. New function.
* tracefile.h (tracefile_fetch_registers): Declare.
* ctf.c (ctf_fetch_registers): Remove the bottom. Call
tracefile_fetch_registers.
We don't call post_create_inferior at the end of ctf_open. It is an
oversight in patch
[PATCH 2/2] Create inferior for ctf target.
https://sourceware.org/ml/gdb-patches/2014-01/msg01056.html
This patch is to call post_create_inferior at the end of ctf_open,
like the end of tfile_open.
gdb:
2014-04-19 Yao Qi <yao@codesourcery.com>
* ctf.c (ctf_open): Call post_create_inferior.
In ctf trace, for each 'R' block, we save it as a "register" event,
as defined below in metadata.
event {
name = "register";
id = 0;
fields := struct {
ascii contents[440];
};
}
Nowadays, we initialize trace_regblock_size by getting the length of
"contents" from a "register" event. However, 'R' block may not exist
in traceframe, as a result, "register" event doesn't exist in trace file
and trace_regblock_size isn't set.
This patch changes to get trace_regblock_size from metadata (or declaration)
which always exists.
gdb:
2014-04-19 Yao Qi <yao@codesourcery.com>
* ctf.c (handle_id): New static variable.
(ctf_open_dir): Get handle_id from bt_context_add_trace return
value. Get the declaration of event "register" and get length
of field "contents".
I find a gdb crash when gdb reads ctf trace. The crash is caused by passing
NULL to strcmp. This patch is to add null pointer check, as what we did
somewhere else in ctf.c.
gdb:
2014-04-19 Yao Qi <yao@codesourcery.com>
* ctf.c (ctf_xfer_partial): Check 'name' is NULL before strcmp.
As a follow-up to
[PATCH 7/8] Adjust read_value_memory to use to_xfer_partial
https://sourceware.org/ml/gdb-patches/2014-02/msg00384.html
this patch moves traceframe_available_memory down to the target side.
After this patch, the gdb core code is cleaner, and code on handling
unavailable memory is moved to remote/tfile/ctf targets.
In details, this patch moves traceframe_available_memory code from
memory_xfer_partial_1 to remote target only, so remote target still
uses traceframe_info mechanism to check unavailable memory, and use
remote_ops to read them from read-only sections. We don't use
traceframe_info mechanism for tfile and ctf target, because it is
fast to iterate all traceframes from trace file, so the summary
information got from traceframe_info is not necessary.
This patch also moves two functions to remote.c from target.c,
because they are only used in remote.c. I'll clean them up in another
patch.
gdb:
2014-03-22 Yao Qi <yao@codesourcery.com>
* ctf.c (ctf_xfer_partial): Check the return value of
exec_read_partial_read_only, if it is not TARGET_XFER_OK,
return TARGET_XFER_UNAVAILABLE.
* tracefile-tfile.c (tfile_xfer_partial): Likewise.
* target.c (target_read_live_memory): Move it to remote.c.
(memory_xfer_live_readonly_partial): Likewise.
(memory_xfer_partial_1): Move some code to remote_read_bytes.
* remote.c (target_read_live_memory): Moved from target.c.
(memory_xfer_live_readonly_partial): Likewise.
(remote_read_bytes): New, factored out from
memory_xfer_partial_1.
This patch adjust both ctf and tfile target implementation of to_xfer_partial,
to return TARGET_XFER_E_UNAVAILABLE and set *XFERED_LEN if data is
unavailable. Note that some code on xfer in exec.c can be shared, but
we can do it in a separate pass later.
gdb:
2014-02-23 Yao Qi <yao@codesourcery.com>
* exec.c (section_table_read_available_memory): New function.
* exec.h (section_table_read_available_memory): Declare.
* ctf.c (ctf_xfer_partial): Call
section_table_read_available_memory.
* tracefile-tfile.c (tfile_xfer_partial): Likewise.
In the to_xfer_partial implementations of ctf and tfile, the code on
reading from read-only sections is duplicated. This patch moves it to
a separate function exec_read_partial_read_only.
gdb:
2014-02-23 Yao Qi <yao@codesourcery.com>
* ctf.c (ctf_xfer_partial): Move code to ...
* exec.c (exec_read_partial_read_only): ... it. New function.
* tracefile-tfile.c (tfile_xfer_partial): Likewise.
* tracefile.c: Include "exec.h".
* exec.h (exec_read_partial_read_only): Declare.
This patch move the duplicated code between tfile and ctf
targets into file tracefile.c. The common part of target_ops
fields are set in init_tracefile_ops.
gdb:
2014-02-23 Yao Qi <yao@codesourcery.com>
* ctf.c (ctf_has_stack, ctf_has_registers): Remove.
(ctf_thread_alive, ctf_get_trace_status): Remove.
(init_ctf_ops): Don't set some fields of ctf_ops. Call
init_tracefile_ops.
* tracefile-tfile.c (tfile_get_trace_status): Remove.
(tfile_has_stack, tfile_has_registers): Remove.
(tfile_thread_alive): Remove.
(init_tfile_ops): Don't set some fields of tfile_ops. Call
init_tracefile_ops.
* tracefile.c (tracefile_has_stack): New function.
(tracefile_has_registers): New function.
(tracefile_thread_alive): New function.
(tracefile_get_trace_status): New function.
(init_tracefile_ops): New function.
* tracefile.h (init_tracefile_ops): Declare.
This patch is a refactor which moves trace file writer related code
out of tracepoint.c, which has 6k LOC. It moves general trace file
writer to a new file tracefile.c and moves tfile specific writer to
tracefile-tfile.c.
gdb:
2014-02-23 Yao Qi <yao@codesourcery.com>
* Makefile.in (REMOTE_OBS): Append tracefile.o and
tracefile-tfile.o.
(HFILES_NO_SRCDIR): Add tracefile.h.
* ctf.c: Include "tracefile.h".
* tracefile.h: New file.
* tracefile.c: New file
* tracefile-tfile.c: New file.
* tracepoint.c: Include "tracefile.h".
(free_uploaded_tps, free_uploaded_tsvs): Remove declarations.
(stop_reason_names): Add const.
(trace_file_writer_xfree): Move it to tracefile.c.
(trace_save, trace_save_command, trace_save_tfile): Likewise.
(trace_save_ctf): Likewise.
(struct tfile_trace_file_writer): Move it to tracefile-tfile.c.
(tfile_target_save, tfile_dtor, tfile_start): Likewise.
(tfile_write_header, tfile_write_regblock_type): Likewise.
(tfile_write_status, tfile_write_uploaded_tsv): Likewise.
(tfile_write_uploaded_tp, tfile_write_definition_end): Likewise.
(tfile_write_raw_data, tfile_end): Likewise.
(tfile_trace_file_writer_new): Likewise.
(free_uploaded_tp): Make it extern.
(free_uploaded_tsv): Make it extern.
(_initialize_tracepoint): Move code to register command 'tsave'
to tracefile.c.
* tracepoint.h (stop_reason_names): Declare.
(struct trace_frame_write_ops): Move it to tracefile.h.
(struct trace_file_write_ops): Likewise.
(struct trace_file_writer): Likewise.
(free_uploaded_tsvs, free_uploaded_tps): Declare.
This patch does the conversion of to_xfer_partial from
LONGEST (*to_xfer_partial) (struct target_ops *ops,
enum target_object object, const char *annex,
gdb_byte *readbuf, const gdb_byte *writebuf,
ULONGEST offset, ULONGEST len);
to
enum target_xfer_status (*to_xfer_partial) (struct target_ops *ops,
enum target_object object, const char *annex,
gdb_byte *readbuf, const gdb_byte *writebuf,
ULONGEST offset, ULONGEST len, ULONGEST *xfered_len);
It changes to_xfer_partial return the transfer status and the transfered
length by *XFERED_LEN. Generally, the return status has three stats,
- TARGET_XFER_OK,
- TARGET_XFER_EOF,
- TARGET_XFER_E_XXXX,
See the comments to them in 'enum target_xfer_status'. Note that
Pedro suggested not name TARGET_XFER_DONE, as it is confusing,
compared with "TARGET_XFER_OK". We finally name it TARGET_XFER_EOF.
With this change, GDB core can handle unavailable data in a convenient
way.
The rationale behind this change was mentioned here
https://sourceware.org/ml/gdb-patches/2013-10/msg00761.html
Consider an object/value like this:
0 100 150 200 512
DDDDDDDDDDDxxxxxxxxxDDDDDD...DDIIIIIIIIIIII..III
where D is valid data, and xxx is unavailable data, and I is beyond
the end of the object (Invalid). Currently, if we start the
xfer at 0, requesting, say 512 bytes, we'll first get back 100 bytes.
The xfer machinery then retries fetching [100,512), and gets back
TARGET_XFER_E_UNAVAILABLE. That's sufficient when you're either
interested in either having the whole of the 512 bytes available,
or erroring out. But, in this scenario, we're interested in
the data at [150,512). The problem is that the last
TARGET_XFER_E_UNAVAILABLE gives us no indication where to
start the read next. We'd need something like:
get me [0,512) >>>
<<< here's [0,100), *xfered_len is 100, returns TARGET_XFER_OK
get me [100,512) >>> (**1)
<<< [100,150) is unavailable, *xfered_len is 50, return TARGET_XFER_E_UNAVAILABLE.
get me [150,512) >>>
<<< here's [150,200), *xfered_len is 50, return TARGET_XFER_OK.
get me [200,512) >>>
<<< no more data, return TARGET_XFER_EOF.
This naturally implies pushing down the decision of whether
to return TARGET_XFER_E_UNAVAILABLE or something else
down to the target. (Which kinds of leads back to tfile
itself reading from RO memory from file (though we could
export a function in exec.c for that that tfile delegates to,
instead of re-adding the old code).
Beside this change, we also add a macro TARGET_XFER_STATUS_ERROR_P to
check whether a status is an error or not, to stop using "status < 0".
This patch also eliminates the comparison between status and 0.
No target implementations to to_xfer_partial adapts this new
interface. The interface still behaves as before.
gdb:
2014-02-11 Yao Qi <yao@codesourcery.com>
* target.h (enum target_xfer_error): Rename to ...
(enum target_xfer_status): ... it. New. All users updated.
(enum target_xfer_status) <TARGET_XFER_OK>, <TARGET_XFER_EOF>:
New.
(TARGET_XFER_STATUS_ERROR_P): New macro.
(target_xfer_error_to_string): Remove declaration.
(target_xfer_status_to_string): Declare.
(target_xfer_partial_ftype): Adjust it.
(struct target_ops) <to_xfer_partial>: Return
target_xfer_status. Add argument xfered_len. Update
comments.
* target.c (target_xfer_error_to_string): Rename to ...
(target_xfer_status_to_string): ... it. New. All callers
updated.
(target_read_live_memory): Likewise. Call target_xfer_partial
instead of target_read.
(memory_xfer_live_readonly_partial): Return
target_xfer_status. Add argument xfered_len.
(raw_memory_xfer_partial): Likewise.
(memory_xfer_partial_1): Likewise.
(memory_xfer_partial): Likewise.
(target_xfer_partial): Likewise. Check *XFERED_LEN is set
properly. Update debug message.
(default_xfer_partial, current_xfer_partial): Likewise.
(target_write_partial): Likewise.
(target_read_partial): Likewise. All callers updated.
(read_whatever_is_readable): Likewise.
(target_write_with_progress): Likewise.
(target_read_alloc_1): Likewise.
* aix-thread.c (aix_thread_xfer_partial): Likewise.
* auxv.c (procfs_xfer_auxv): Likewise.
(ld_so_xfer_auxv, memory_xfer_auxv): Likewise.
* bfd-target.c (target_bfd_xfer_partial): Likewise.
* bsd-kvm.c (bsd_kvm_xfer_partial): Likewise.
* bsd-uthread.c (bsd_uthread_xfer_partia): Likewise.
* corefile.c (read_memory): Adjust.
* corelow.c (core_xfer_partial): Likewise.
* ctf.c (ctf_xfer_partial): Likewise.
* darwin-nat.c (darwin_read_dyld_info): Likewise. All callers
updated.
(darwin_xfer_partial): Likewise.
* exec.c (section_table_xfer_memory_partial): Likewise. All
callers updated.
(exec_xfer_partial): Likewise.
* exec.h (section_table_xfer_memory_partial): Update
declaration.
* gnu-nat.c (gnu_xfer_memory): Likewise. Assert 'res' is not
negative.
(gnu_xfer_partial): Likewise.
* ia64-hpux-nat.c (ia64_hpux_xfer_memory_no_bs): Likewise.
(ia64_hpux_xfer_memory, ia64_hpux_xfer_uregs): Likewise.
(ia64_hpux_xfer_solib_got): Likewise.
* inf-ptrace.c (inf_ptrace_xfer_partial): Likewise. Change
type of 'partial_len' to ULONGEST.
* inf-ttrace.c (inf_ttrace_xfer_partial): Likewise.
* linux-nat.c (linux_xfer_siginfo ): Likewise.
(linux_nat_xfer_partial): Likewise.
(linux_proc_xfer_partial, linux_xfer_partial): Likewise.
(linux_proc_xfer_spu, linux_nat_xfer_osdata): Likewise.
* monitor.c (monitor_xfer_memory): Likewise.
(monitor_xfer_partial): Likewise.
* procfs.c (procfs_xfer_partial): Likewise.
* record-btrace.c (record_btrace_xfer_partial): Likewise.
* record-full.c (record_full_xfer_partial): Likewise.
(record_full_core_xfer_partial): Likewise.
* remote-sim.c (gdbsim_xfer_memory): Likewise.
(gdbsim_xfer_partial): Likewise.
* remote.c (remote_write_bytes_aux): Likewise. All callers
updated.
(remote_write_bytes, remote_read_bytes): Likewise. All
callers updated.
(remote_flash_erase): Likewise. All callers updated.
(remote_write_qxfer): Likewise. All callers updated.
(remote_read_qxfer): Likewise. All callers updated.
(remote_xfer_partial): Likewise.
* rs6000-nat.c (rs6000_xfer_partial): Likewise.
(rs6000_xfer_shared_libraries): Likewise.
* sol-thread.c (sol_thread_xfer_partial): Likewise.
(sol_thread_xfer_partial): Likewise.
* sparc-nat.c (sparc_xfer_wcookie): Likewise.
(sparc_xfer_partial): Likewise.
* spu-linux-nat.c (spu_proc_xfer_spu): Likewise. All callers
updated.
(spu_xfer_partial): Likewise.
* spu-multiarch.c (spu_xfer_partial): Likewise.
* tracepoint.c (tfile_xfer_partial): Likewise.
* windows-nat.c (windows_xfer_memory): Likewise.
(windows_xfer_shared_libraries): Likewise.
(windows_xfer_partial): Likewise.
* valprint.c: Replace 'target_xfer_error' with
'target_xfer_status' in comments.
This patch creates inferior when GDB opens a ctf trace data, to be
consistent with tfile target. A test case is added to test for
live target, tfile and ctf target.
gdb:
2014-02-05 Yao Qi <yao@codesourcery.com>
* ctf.c: Include "inferior.h" and "gdbthread.h".
(CTF_PID): A new macro.
(ctf_open): Call inferior_appeared and add_thread_silent.
(ctf_close): Call exit_inferior_silent and set inferior_ptid.
(ctf_thread_alive): New function.
(init_ctf_ops): Install ctf_thread_alive to to_thread_alive.
gdb/testsuite:
2014-02-05 Yao Qi <yao@codesourcery.com>
* gdb.trace/report.exp (use_collected_data): Test the output
of "info threads" and "info inferiors".
Confirmed that cross building a mingw gdb still works, and also made
sure it was gnulib's sys/stat.h that was defining the values, by
hacking the header with #errors where the macros are defined.
gdb/
2013-12-02 Pedro Alves <palves@redhat.com>
* ctf.c (ctf_start): Use S_IRGRP, S_IXGRP, S_IXOTH
unconditionally.
This patch is purely mechanical. It removes gdb_stat.h and changes
the code to use sys/stat.h.
2013-11-18 Tom Tromey <tromey@redhat.com>
* common/gdb_stat.h: Remove.
* ada-lang.c: Use sys/stat.h, not gdb_stat.h.
* common/filestuff.c: Use sys/stat.h, not gdb_stat.h.
* common/linux-osdata.c: Use sys/stat.h, not gdb_stat.h.
* corefile.c: Use sys/stat.h, not gdb_stat.h.
* ctf.c: Use sys/stat.h, not gdb_stat.h.
* darwin-nat.c: Use sys/stat.h, not gdb_stat.h.
* dbxread.c: Use sys/stat.h, not gdb_stat.h.
* dwarf2read.c: Use sys/stat.h, not gdb_stat.h.
* exec.c: Use sys/stat.h, not gdb_stat.h.
* gdbserver/linux-low.c: Use sys/stat.h, not gdb_stat.h.
* gdbserver/remote-utils.c: Use sys/stat.h, not gdb_stat.h.
* inf-child.c: Use sys/stat.h, not gdb_stat.h.
* jit.c: Use sys/stat.h, not gdb_stat.h.
* linux-nat.c: Use sys/stat.h, not gdb_stat.h.
* m68klinux-nat.c: Use sys/stat.h, not gdb_stat.h.
* main.c: Use sys/stat.h, not gdb_stat.h.
* mdebugread.c: Use sys/stat.h, not gdb_stat.h.
* mi/mi-cmd-env.c: Use sys/stat.h, not gdb_stat.h.
* nto-tdep.c: Use sys/stat.h, not gdb_stat.h.
* objfiles.c: Use sys/stat.h, not gdb_stat.h.
* procfs.c: Use sys/stat.h, not gdb_stat.h.
* remote-fileio.c: Use sys/stat.h, not gdb_stat.h.
* remote-mips.c: Use sys/stat.h, not gdb_stat.h.
* remote.c: Use sys/stat.h, not gdb_stat.h.
* rs6000-nat.c: Use sys/stat.h, not gdb_stat.h.
* sol-thread.c: Use sys/stat.h, not gdb_stat.h.
* solib-spu.c: Use sys/stat.h, not gdb_stat.h.
* source.c: Use sys/stat.h, not gdb_stat.h.
* symfile.c: Use sys/stat.h, not gdb_stat.h.
* symmisc.c: Use sys/stat.h, not gdb_stat.h.
* symtab.c: Use sys/stat.h, not gdb_stat.h.
* top.c: Use sys/stat.h, not gdb_stat.h.
* xcoffread.c: Use sys/stat.h, not gdb_stat.h.
2013-06-26 Pedro Alves <pedro@codesourcery.com>
Yao Qi <yao@codesourcery.com>
* ctf.c (ctf_traceframe_info): Push trace state variables
present in the trace data into the traceframe info object.
* breakpoint.c (DEF_VEC_I): Remove.
* common/filestuff.c (DEF_VEC_I): Likewise.
* dwarf2loc.c (DEF_VEC_I): Likewise.
* mi/mi-main.c (DEF_VEC_I): Likewise.
* common/gdb_vecs.h (DEF_VEC_I): Define vector for int.
* features/traceframe-info.dtd: Add tvar element and its
attributes.
* tracepoint.c (free_traceframe_info): Free vector 'tvars'.
(build_traceframe_info): Push trace state variables present in the
trace data into the traceframe info object.
(traceframe_info_start_tvar): New function.
(tvar_attributes): New.
(traceframe_info_children): Add "tvar" element.
* tracepoint.h (struct traceframe_info) <tvars>: New field.
* NEWS: Mention the change in GDB and GDBserver.
gdb/doc:
2013-06-26 Pedro Alves <pedro@codesourcery.com>
* gdb.texinfo (Traceframe Info Format): Document tvar element and
its attributes.
gdb/gdbserver:
2013-06-26 Pedro Alves <pedro@codesourcery.com>
* tracepoint.c (build_traceframe_info_xml): Output trace state
variables present in the trace buffer.
* ctf.c (ctf_fetch_registers): Change the type of 'regs' from
'char *' to 'gdb_byte *'. Cast the return value of
'bt_ctf_get_char_array' to 'gdb_byte *'.
ctf_save_write's second parameter is gdb_byte *, and all these
arguments are 'char *'. Since this function is ultimately just
writing host bytes to a local file with fwrite, an alternative would
be to change ctf_save_write to take a 'void *' instead of 'gdb_byte
*', thus removing the need for any cast (we have more calls with casts
than without).
gdb/
2013-04-19 Pedro Alves <palves@redhat.com>
* ctf.c (ctf_write_uploaded_tsv, ctf_write_uploaded_tp): Add casts
to 'gdb_byte *'.
* ctf.c (_initialize_ctf): Include "completer.h".
Call add_target_with_completer instead of add_target.
gdb/testsuite/
* gdb.base/completion.exp: Test completion of command
'target ctf' if target ctf is supported.
2013-04-10 Hui Zhu <hui@codesourcery.com>
Yao Qi <yao@codesourcery.com>
* configure.ac: Check libbabeltrace is installed.
* config.in: Regenerate.
* configure: Regenerate.
* Makefile.in (LIBBABELTRACE): New.
(CLIBS): Add LIBBABELTRACE.
* ctf.c: Include "exec.h".
(CTF_EVENT_ID_STATUS, CTF_EVENT_ID_TSV_DEF): New macros.
(CTF_EVENT_ID_TP_DEF, ctf_save_write_int32): New macros.
(ctf_save_metadata_header): Define new type aliases in
metadata.
(ctf_write_header): Define event type "tsv_def" and "tp_def"
in metadata. Start a new faked packet for trace status.
(ctf_write_status): Write trace status to CTF.
(ctf_write_uploaded_tsv): Write TSV to CTF.
(ctf_write_uploaded_tp): Write tracepoint definition to CTF.
(ctf_write_definition_end): End the faked packet.
(ctx, ctf_iter, trace_dirname): New.
(start_pos): New variable.
(ctf_destroy, ctf_open_dir, ctf_open): New.
(SET_INT32_FIELD, SET_ARRAY_FIELD, SET_STRING_FIELD): New
macros.
(ctf_read_tsv, ctf_read_tp, ctf_close, ctf_files_info): New.
(ctf_fetch_registers, ctf_xfer_partial): New.
(ctf_get_trace_state_variable_value): New.
(ctf_get_tpnum_from_frame_event): New.
(ctf_get_traceframe_address): New.
(ctf_trace_find, ctf_has_stack): New.
(ctf_has_registers, ctf_traceframe_info, init_ctf_ops): New.
(ctf_get_trace_status, ctf_read_status): New.
(_initialize_ctf): New.
* tracepoint.c (get_tracepoint_number): New
(get_uploaded_tsv): Remove 'static'.
(struct traceframe_info, trace_regblock_size): Move it to ...
* tracepoint.h: ... here.
(get_tracepoint_number): Declare it.
(get_uploaded_tsv): Declare it.
* NEWS: Mention new configure option.
gdb/doc/
2013-04-10 Yao Qi <yao@codesourcery.com>
* gdb.texinfo (Trace Files): Add "target ctf".
gdb/testsuite/
2013-04-10 Yao Qi <yao@codesourcery.com>
* gdb.trace/actions.exp: Save trace data to CTF.
Change to ctf target if GDB supports, read CTF data in ctf
target, and check the actions of tracepoints.
* gdb.trace/while-stepping.exp: Likewise.
* gdb.trace/report.exp: Test GDB saves trace data to CTF
format and read CTF trace file if GDB supports.
* gdb.trace/tstatus.exp: Save trace data to CTF. If ctf
target is supported, change to ctf target, read trace data and
check output of command "tstatus".
* gdb.trace/tsv.exp: Save trace frame to CTF. If GDB supports,
read CTF data by target ctf and call check_tsv.