Move the traceframe_available_memory code from memory_xfer_partial_1 down to the targets
As a follow-up to [PATCH 7/8] Adjust read_value_memory to use to_xfer_partial https://sourceware.org/ml/gdb-patches/2014-02/msg00384.html this patch moves traceframe_available_memory down to the target side. After this patch, the gdb core code is cleaner, and code on handling unavailable memory is moved to remote/tfile/ctf targets. In details, this patch moves traceframe_available_memory code from memory_xfer_partial_1 to remote target only, so remote target still uses traceframe_info mechanism to check unavailable memory, and use remote_ops to read them from read-only sections. We don't use traceframe_info mechanism for tfile and ctf target, because it is fast to iterate all traceframes from trace file, so the summary information got from traceframe_info is not necessary. This patch also moves two functions to remote.c from target.c, because they are only used in remote.c. I'll clean them up in another patch. gdb: 2014-03-22 Yao Qi <yao@codesourcery.com> * ctf.c (ctf_xfer_partial): Check the return value of exec_read_partial_read_only, if it is not TARGET_XFER_OK, return TARGET_XFER_UNAVAILABLE. * tracefile-tfile.c (tfile_xfer_partial): Likewise. * target.c (target_read_live_memory): Move it to remote.c. (memory_xfer_live_readonly_partial): Likewise. (memory_xfer_partial_1): Move some code to remote_read_bytes. * remote.c (target_read_live_memory): Moved from target.c. (memory_xfer_live_readonly_partial): Likewise. (remote_read_bytes): New, factored out from memory_xfer_partial_1.
This commit is contained in:
parent
25d743f9e6
commit
8acf9577e5
5 changed files with 185 additions and 143 deletions
|
@ -1,3 +1,17 @@
|
|||
2014-03-22 Yao Qi <yao@codesourcery.com>
|
||||
|
||||
* ctf.c (ctf_xfer_partial): Check the return value of
|
||||
exec_read_partial_read_only, if it is not TARGET_XFER_OK,
|
||||
return TARGET_XFER_UNAVAILABLE.
|
||||
* tracefile-tfile.c (tfile_xfer_partial): Likewise.
|
||||
* target.c (target_read_live_memory): Move it to remote.c.
|
||||
(memory_xfer_live_readonly_partial): Likewise.
|
||||
(memory_xfer_partial_1): Move some code to remote_read_bytes.
|
||||
* remote.c (target_read_live_memory): Moved from target.c.
|
||||
(memory_xfer_live_readonly_partial): Likewise.
|
||||
(remote_read_bytes): Factored out from
|
||||
memory_xfer_partial_1.
|
||||
|
||||
2014-03-21 Daniel Gutson <daniel.gutson@tallertechnologies.com>
|
||||
|
||||
* extension.c (eval_ext_lang_from_control_command): Avoid dereferencing
|
||||
|
|
16
gdb/ctf.c
16
gdb/ctf.c
|
@ -1377,6 +1377,7 @@ ctf_xfer_partial (struct target_ops *ops, enum target_object object,
|
|||
{
|
||||
struct bt_iter_pos *pos;
|
||||
int i = 0;
|
||||
enum target_xfer_status res;
|
||||
|
||||
gdb_assert (ctf_iter != NULL);
|
||||
/* Save the current position. */
|
||||
|
@ -1466,7 +1467,20 @@ ctf_xfer_partial (struct target_ops *ops, enum target_object object,
|
|||
/* Restore the position. */
|
||||
bt_iter_set_pos (bt_ctf_get_iter (ctf_iter), pos);
|
||||
|
||||
return exec_read_partial_read_only (readbuf, offset, len, xfered_len);
|
||||
/* Requested memory is unavailable in the context of traceframes,
|
||||
and this address falls within a read-only section, fallback
|
||||
to reading from executable. */
|
||||
res = exec_read_partial_read_only (readbuf, offset, len, xfered_len);
|
||||
|
||||
if (res == TARGET_XFER_OK)
|
||||
return TARGET_XFER_OK;
|
||||
else
|
||||
{
|
||||
/* No use trying further, we know some memory starting
|
||||
at MEMADDR isn't available. */
|
||||
*xfered_len = len;
|
||||
return TARGET_XFER_UNAVAILABLE;
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
|
|
144
gdb/remote.c
144
gdb/remote.c
|
@ -6824,6 +6824,87 @@ remote_write_bytes (CORE_ADDR memaddr, const gdb_byte *myaddr, ULONGEST len,
|
|||
packet_format[0], 1);
|
||||
}
|
||||
|
||||
/* Read memory from the live target, even if currently inspecting a
|
||||
traceframe. The return is the same as that of target_read. */
|
||||
|
||||
static enum target_xfer_status
|
||||
target_read_live_memory (enum target_object object,
|
||||
ULONGEST memaddr, gdb_byte *myaddr, ULONGEST len,
|
||||
ULONGEST *xfered_len)
|
||||
{
|
||||
enum target_xfer_status ret;
|
||||
struct cleanup *cleanup;
|
||||
|
||||
/* Switch momentarily out of tfind mode so to access live memory.
|
||||
Note that this must not clear global state, such as the frame
|
||||
cache, which must still remain valid for the previous traceframe.
|
||||
We may be _building_ the frame cache at this point. */
|
||||
cleanup = make_cleanup_restore_traceframe_number ();
|
||||
set_traceframe_number (-1);
|
||||
|
||||
ret = target_xfer_partial (current_target.beneath, object, NULL,
|
||||
myaddr, NULL, memaddr, len, xfered_len);
|
||||
|
||||
do_cleanups (cleanup);
|
||||
return ret;
|
||||
}
|
||||
|
||||
/* Using the set of read-only target sections of OPS, read live
|
||||
read-only memory. Note that the actual reads start from the
|
||||
top-most target again.
|
||||
|
||||
For interface/parameters/return description see target.h,
|
||||
to_xfer_partial. */
|
||||
|
||||
static enum target_xfer_status
|
||||
memory_xfer_live_readonly_partial (struct target_ops *ops,
|
||||
enum target_object object,
|
||||
gdb_byte *readbuf, ULONGEST memaddr,
|
||||
ULONGEST len, ULONGEST *xfered_len)
|
||||
{
|
||||
struct target_section *secp;
|
||||
struct target_section_table *table;
|
||||
|
||||
secp = target_section_by_addr (ops, memaddr);
|
||||
if (secp != NULL
|
||||
&& (bfd_get_section_flags (secp->the_bfd_section->owner,
|
||||
secp->the_bfd_section)
|
||||
& SEC_READONLY))
|
||||
{
|
||||
struct target_section *p;
|
||||
ULONGEST memend = memaddr + len;
|
||||
|
||||
table = target_get_section_table (ops);
|
||||
|
||||
for (p = table->sections; p < table->sections_end; p++)
|
||||
{
|
||||
if (memaddr >= p->addr)
|
||||
{
|
||||
if (memend <= p->endaddr)
|
||||
{
|
||||
/* Entire transfer is within this section. */
|
||||
return target_read_live_memory (object, memaddr,
|
||||
readbuf, len, xfered_len);
|
||||
}
|
||||
else if (memaddr >= p->endaddr)
|
||||
{
|
||||
/* This section ends before the transfer starts. */
|
||||
continue;
|
||||
}
|
||||
else
|
||||
{
|
||||
/* This section overlaps the transfer. Just do half. */
|
||||
len = p->endaddr - memaddr;
|
||||
return target_read_live_memory (object, memaddr,
|
||||
readbuf, len, xfered_len);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return TARGET_XFER_EOF;
|
||||
}
|
||||
|
||||
/* Read memory data directly from the remote machine.
|
||||
This does not use the data cache; the data cache uses this.
|
||||
MEMADDR is the address in the remote memory space.
|
||||
|
@ -6835,8 +6916,8 @@ remote_write_bytes (CORE_ADDR memaddr, const gdb_byte *myaddr, ULONGEST len,
|
|||
transferred in *XFERED_LEN. */
|
||||
|
||||
static enum target_xfer_status
|
||||
remote_read_bytes (CORE_ADDR memaddr, gdb_byte *myaddr, ULONGEST len,
|
||||
ULONGEST *xfered_len)
|
||||
remote_read_bytes (struct target_ops *ops, CORE_ADDR memaddr,
|
||||
gdb_byte *myaddr, ULONGEST len, ULONGEST *xfered_len)
|
||||
{
|
||||
struct remote_state *rs = get_remote_state ();
|
||||
int max_buf_size; /* Max size of packet output buffer. */
|
||||
|
@ -6847,6 +6928,63 @@ remote_read_bytes (CORE_ADDR memaddr, gdb_byte *myaddr, ULONGEST len,
|
|||
if (len == 0)
|
||||
return 0;
|
||||
|
||||
if (get_traceframe_number () != -1)
|
||||
{
|
||||
VEC(mem_range_s) *available;
|
||||
|
||||
/* If we fail to get the set of available memory, then the
|
||||
target does not support querying traceframe info, and so we
|
||||
attempt reading from the traceframe anyway (assuming the
|
||||
target implements the old QTro packet then). */
|
||||
if (traceframe_available_memory (&available, memaddr, len))
|
||||
{
|
||||
struct cleanup *old_chain;
|
||||
|
||||
old_chain = make_cleanup (VEC_cleanup(mem_range_s), &available);
|
||||
|
||||
if (VEC_empty (mem_range_s, available)
|
||||
|| VEC_index (mem_range_s, available, 0)->start != memaddr)
|
||||
{
|
||||
enum target_xfer_status res;
|
||||
|
||||
/* Don't read into the traceframe's available
|
||||
memory. */
|
||||
if (!VEC_empty (mem_range_s, available))
|
||||
{
|
||||
LONGEST oldlen = len;
|
||||
|
||||
len = VEC_index (mem_range_s, available, 0)->start - memaddr;
|
||||
gdb_assert (len <= oldlen);
|
||||
}
|
||||
|
||||
do_cleanups (old_chain);
|
||||
|
||||
/* This goes through the topmost target again. */
|
||||
res = memory_xfer_live_readonly_partial (ops,
|
||||
TARGET_OBJECT_MEMORY,
|
||||
myaddr, memaddr,
|
||||
len, xfered_len);
|
||||
if (res == TARGET_XFER_OK)
|
||||
return TARGET_XFER_OK;
|
||||
else
|
||||
{
|
||||
/* No use trying further, we know some memory starting
|
||||
at MEMADDR isn't available. */
|
||||
*xfered_len = len;
|
||||
return TARGET_XFER_UNAVAILABLE;
|
||||
}
|
||||
}
|
||||
|
||||
/* Don't try to read more than how much is available, in
|
||||
case the target implements the deprecated QTro packet to
|
||||
cater for older GDBs (the target's knowledge of read-only
|
||||
sections may be outdated by now). */
|
||||
len = VEC_index (mem_range_s, available, 0)->length;
|
||||
|
||||
do_cleanups (old_chain);
|
||||
}
|
||||
}
|
||||
|
||||
max_buf_size = get_memory_read_packet_size ();
|
||||
/* The packet buffer will be large enough for the payload;
|
||||
get_memory_packet_size ensures this. */
|
||||
|
@ -8698,7 +8836,7 @@ remote_xfer_partial (struct target_ops *ops, enum target_object object,
|
|||
if (writebuf != NULL)
|
||||
return remote_write_bytes (offset, writebuf, len, xfered_len);
|
||||
else
|
||||
return remote_read_bytes (offset, readbuf, len, xfered_len);
|
||||
return remote_read_bytes (ops, offset, readbuf, len, xfered_len);
|
||||
}
|
||||
|
||||
/* Handle SPU memory using qxfer packets. */
|
||||
|
|
138
gdb/target.c
138
gdb/target.c
|
@ -940,87 +940,6 @@ target_section_by_addr (struct target_ops *target, CORE_ADDR addr)
|
|||
return NULL;
|
||||
}
|
||||
|
||||
/* Read memory from the live target, even if currently inspecting a
|
||||
traceframe. The return is the same as that of target_read. */
|
||||
|
||||
static enum target_xfer_status
|
||||
target_read_live_memory (enum target_object object,
|
||||
ULONGEST memaddr, gdb_byte *myaddr, ULONGEST len,
|
||||
ULONGEST *xfered_len)
|
||||
{
|
||||
enum target_xfer_status ret;
|
||||
struct cleanup *cleanup;
|
||||
|
||||
/* Switch momentarily out of tfind mode so to access live memory.
|
||||
Note that this must not clear global state, such as the frame
|
||||
cache, which must still remain valid for the previous traceframe.
|
||||
We may be _building_ the frame cache at this point. */
|
||||
cleanup = make_cleanup_restore_traceframe_number ();
|
||||
set_traceframe_number (-1);
|
||||
|
||||
ret = target_xfer_partial (current_target.beneath, object, NULL,
|
||||
myaddr, NULL, memaddr, len, xfered_len);
|
||||
|
||||
do_cleanups (cleanup);
|
||||
return ret;
|
||||
}
|
||||
|
||||
/* Using the set of read-only target sections of OPS, read live
|
||||
read-only memory. Note that the actual reads start from the
|
||||
top-most target again.
|
||||
|
||||
For interface/parameters/return description see target.h,
|
||||
to_xfer_partial. */
|
||||
|
||||
static enum target_xfer_status
|
||||
memory_xfer_live_readonly_partial (struct target_ops *ops,
|
||||
enum target_object object,
|
||||
gdb_byte *readbuf, ULONGEST memaddr,
|
||||
ULONGEST len, ULONGEST *xfered_len)
|
||||
{
|
||||
struct target_section *secp;
|
||||
struct target_section_table *table;
|
||||
|
||||
secp = target_section_by_addr (ops, memaddr);
|
||||
if (secp != NULL
|
||||
&& (bfd_get_section_flags (secp->the_bfd_section->owner,
|
||||
secp->the_bfd_section)
|
||||
& SEC_READONLY))
|
||||
{
|
||||
struct target_section *p;
|
||||
ULONGEST memend = memaddr + len;
|
||||
|
||||
table = target_get_section_table (ops);
|
||||
|
||||
for (p = table->sections; p < table->sections_end; p++)
|
||||
{
|
||||
if (memaddr >= p->addr)
|
||||
{
|
||||
if (memend <= p->endaddr)
|
||||
{
|
||||
/* Entire transfer is within this section. */
|
||||
return target_read_live_memory (object, memaddr,
|
||||
readbuf, len, xfered_len);
|
||||
}
|
||||
else if (memaddr >= p->endaddr)
|
||||
{
|
||||
/* This section ends before the transfer starts. */
|
||||
continue;
|
||||
}
|
||||
else
|
||||
{
|
||||
/* This section overlaps the transfer. Just do half. */
|
||||
len = p->endaddr - memaddr;
|
||||
return target_read_live_memory (object, memaddr,
|
||||
readbuf, len, xfered_len);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return TARGET_XFER_EOF;
|
||||
}
|
||||
|
||||
/* Read memory from more than one valid target. A core file, for
|
||||
instance, could have some of memory but delegate other bits to
|
||||
the target below it. So, we must manually try all targets. */
|
||||
|
@ -1128,63 +1047,6 @@ memory_xfer_partial_1 (struct target_ops *ops, enum target_object object,
|
|||
}
|
||||
}
|
||||
|
||||
/* If reading unavailable memory in the context of traceframes, and
|
||||
this address falls within a read-only section, fallback to
|
||||
reading from live memory. */
|
||||
if (readbuf != NULL && get_traceframe_number () != -1)
|
||||
{
|
||||
VEC(mem_range_s) *available;
|
||||
|
||||
/* If we fail to get the set of available memory, then the
|
||||
target does not support querying traceframe info, and so we
|
||||
attempt reading from the traceframe anyway (assuming the
|
||||
target implements the old QTro packet then). */
|
||||
if (traceframe_available_memory (&available, memaddr, len))
|
||||
{
|
||||
struct cleanup *old_chain;
|
||||
|
||||
old_chain = make_cleanup (VEC_cleanup(mem_range_s), &available);
|
||||
|
||||
if (VEC_empty (mem_range_s, available)
|
||||
|| VEC_index (mem_range_s, available, 0)->start != memaddr)
|
||||
{
|
||||
/* Don't read into the traceframe's available
|
||||
memory. */
|
||||
if (!VEC_empty (mem_range_s, available))
|
||||
{
|
||||
LONGEST oldlen = len;
|
||||
|
||||
len = VEC_index (mem_range_s, available, 0)->start - memaddr;
|
||||
gdb_assert (len <= oldlen);
|
||||
}
|
||||
|
||||
do_cleanups (old_chain);
|
||||
|
||||
/* This goes through the topmost target again. */
|
||||
res = memory_xfer_live_readonly_partial (ops, object,
|
||||
readbuf, memaddr,
|
||||
len, xfered_len);
|
||||
if (res == TARGET_XFER_OK)
|
||||
return TARGET_XFER_OK;
|
||||
else
|
||||
{
|
||||
/* No use trying further, we know some memory starting
|
||||
at MEMADDR isn't available. */
|
||||
*xfered_len = len;
|
||||
return TARGET_XFER_UNAVAILABLE;
|
||||
}
|
||||
}
|
||||
|
||||
/* Don't try to read more than how much is available, in
|
||||
case the target implements the deprecated QTro packet to
|
||||
cater for older GDBs (the target's knowledge of read-only
|
||||
sections may be outdated by now). */
|
||||
len = VEC_index (mem_range_s, available, 0)->length;
|
||||
|
||||
do_cleanups (old_chain);
|
||||
}
|
||||
}
|
||||
|
||||
/* Try GDB's internal data cache. */
|
||||
region = lookup_mem_region (memaddr);
|
||||
/* region->hi == 0 means there's no upper bound. */
|
||||
|
|
|
@ -900,6 +900,7 @@ tfile_xfer_partial (struct target_ops *ops, enum target_object object,
|
|||
if (get_traceframe_number () != -1)
|
||||
{
|
||||
int pos = 0;
|
||||
enum target_xfer_status res;
|
||||
|
||||
/* Iterate through the traceframe's blocks, looking for
|
||||
memory. */
|
||||
|
@ -937,7 +938,20 @@ tfile_xfer_partial (struct target_ops *ops, enum target_object object,
|
|||
pos += (8 + 2 + mlen);
|
||||
}
|
||||
|
||||
return exec_read_partial_read_only (readbuf, offset, len, xfered_len);
|
||||
/* Requested memory is unavailable in the context of traceframes,
|
||||
and this address falls within a read-only section, fallback
|
||||
to reading from executable. */
|
||||
res = exec_read_partial_read_only (readbuf, offset, len, xfered_len);
|
||||
|
||||
if (res == TARGET_XFER_OK)
|
||||
return TARGET_XFER_OK;
|
||||
else
|
||||
{
|
||||
/* No use trying further, we know some memory starting
|
||||
at MEMADDR isn't available. */
|
||||
*xfered_len = len;
|
||||
return TARGET_XFER_UNAVAILABLE;
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
|
|
Loading…
Reference in a new issue