The assembly code for emitting the proper tracepointable instruction
was duplicated in many places. Keep it in one place, to reduce work
needed for new targets.
gdb/testsuite/ChangeLog:
* gdb.trace/change-loc.h: include "trace-common.h", remove SYMBOL
macro.
(func5): Removed.
(func4): Use FAST_TRACEPOINT_LABEL.
* gdb.trace/ftrace-lock.c: include "trace-common.h", remove SYMBOL
macro.
(func): Removed.
(thread_function): Use FAST_TRACEPOINT_LABEL.
* gdb.trace/ftrace.c: include "trace-common.h", remove SYMBOL macro.
(func): Remove.
(marker): Use FAST_TRACEPOINT_LABEL.
* gdb.trace/pendshr1.c: include "trace-common.h", remove SYMBOL macro.
(pendfunc1): Remove.
(pendfunc): Use FAST_TRACEPOINT_LABEL.
* gdb.trace/pendshr2.c: include "trace-common.h", remove SYMBOL macro.
(foo): Remove.
(pendfunc2): Use FAST_TRACEPOINT_LABEL.
* gdb.trace/trace-break.c: include "trace-common.h", remove SYMBOL
macro.
(func): Remove.
(marker): Use FAST_TRACEPOINT_LABEL.
* gdb.trace/trace-common.h: New header.
* gdb.trace/trace-condition.c: include "trace-common.h", remove SYMBOL
macro.
(func): Remove.
(marker): Use FAST_TRACEPOINT_LABEL.
* gdb.trace/trace-mt.c: include "trace-common.h", remove SYMBOL macro.
(func): Remove.
(thread_function): Use FAST_TRACEPOINT_LABEL.
These casts uses the typedef target type (long int *) instead of the
typedef name. This was a little mistake in one of the big C++ cast
patches.
gdb/ChangeLog:
* inf-ptrace.c (inf_ptrace_fetch_register): Change long int *
cast to PTRACE_TYPE_RET *.
(inf_ptrace_store_register): Likewise.
Switch to using 'add_info' function for creating basic info
sub-commands.
gdb/ChangeLog:
* avr-tdep.c (_initialize_avr_tdep): Switch to 'add_info' for creating
info sub-commands.
* gnu-nat.c (add_task_commands): Likewise.
* macrocmd.c (_initialize_macrocmd): Likewise.
The 'add_info' function is used for creating info commands, these
commands should be created as 'class_info' rather than 'no_class'.
gdb/ChangeLog:
* cli/cli-decode.c (add_info): Switch to class_info.
These variables were used in many gdb.trace tests. Keep them in one place,
to reduce work needed for new targets.
gdb/testsuite/ChangeLog:
* gdb.trace/backtrace.exp: Use global fpreg/spreg definition, add $
in front.
* gdb.trace/change-loc.exp: Use global pcreg definition.
* gdb.trace/collection.exp: Use global pcreg/fpreg/spreg definition.
* gdb.trace/entry-values.exp: Use global spreg definition, add $
in front.
* gdb.trace/mi-trace-frame-collected.exp: Use global pcreg definition.
* gdb.trace/pending.exp: Likewise.
* gdb.trace/report.exp: Use global pcreg/fpreg/spreg definition.
* gdb.trace/trace-break.exp: Likewise.
* gdb.trace/trace-condition.exp: Use global pcreg definition, add $
in front.
* gdb.trace/unavailable.exp: Use global pcreg/fpreg/spreg definition.
* gdb.trace/while-dyn.exp: Use global fpreg definition, add $
in front.
* lib/trace-support.exp: Define fpreg, spreg, pcreg variables.
Similar fix to "commit c316a17c40e44e8798b34ff84130904f2e7a53de".
* elf32-i386.c (elf_i386_relocate_section): Use read and write
pointers to reloc array, rather than memmove when deleting a
reloc. Don't use RELOC_AGAINST_DISCARDED_SECTION. Adjust
reloc counts at end of loop.
* elf64-x86-64.c (elf_x86_64_relocate_section): Likewise.
The idea here is that instead of using memmove to shuffle the relocs
array every time one is deleted, to add a "wrel" pointer and copy from
rel[0] to wrel[0] as we go.
* elf64-ppc.c (ppc64_elf_relocate_section): Use read and write
pointers to reloc array, rather than memmove when deleting a
reloc. Don't use RELOC_AGAINST_DISCARDED_SECTION. Adjust
reloc counts at end of loop.
* elf32-ppc.c (ppc_elf_relocate_section): Likewise.
Consider a function with the following signature...
function F (R : out Rec_Type) return Enum_Type;
... where Rec_Type is a simple record:
type Rec_Type is record
Cur : Integer;
end record;
Trying to "finish" from that function causes GDB to SEGV:
(gdb) fin
Run till exit from #0 bar.f (r=...) at bar.adb:5
0x00000000004022fe in foo () at foo.adb:5
5 I : Enum_Type := F (R);
[1] 18949 segmentation fault (core dumped) /[..]/gdb
This is related to the fact that funtion F has a parameter (R)
which is an "out" parameter being passed by copy. For those,
GNAT transforms the return value to be a record with multiple
fields: The first one is called "RETVAL" and contains the return
value shown in the source, and the remaining fields have the same
name as the "out" or "in out" parameters which are passed by copy.
So, in the example above, function F returns a struct that has
one field who name is "r".
Because "RETVAL" starts with "R", GDB thinks it's a wrapper field,
because it looks like the encoding used for variant records:
-- member_name ::= {choice} | others_choice
-- choice ::= simple_choice | range_choice
-- simple_choice ::= S number
-- range_choice ::= R number T number <<<<<----- here
-- number ::= {decimal_digit} [m]
-- others_choice ::= O (upper case letter O)
See ada_is_wrapper_field:
return (name != NULL
&& (startswith (name, "PARENT")
|| strcmp (name, "REP") == 0
|| startswith (name, "_parent")
|| name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
As a result of this, when trying to print the RETURN value,
we think that RETVAL is a wrapper, and thus recurse into
print_field_values...
if (ada_is_wrapper_field (type, i))
{
comma_needed =
print_field_values (TYPE_FIELD_TYPE (type, i),
valaddr,
(offset
+ TYPE_FIELD_BITPOS (type, i) / HOST_CHAR_BIT),
stream, recurse, val, options,
comma_needed, type, offset, language);
... which is a problem since print_field_values assumes that
the type it is given ("TYPE_FIELD_TYPE (type, i)" here), is also
a record type. However, that's not the case, since RETVAL is
an enum. That eventually leads GDB to a NULL type when trying to
extract fields out of the enum, which then leads to a SEGV when
trying to dereference it.
Ideally, we'd want to be a little more careful in identifying
wrapper fields, by enhancing ada_is_wrapper_field to be a little
more complete in its analysis of the field name before declaring
it a variant record wrapper. However, it's not super easy to do
so, considering that the choices can be combined together when
complex choices are used. Eg:
-- [...] the choice 1 .. 4 | 7 | -10 would be represented by
-- R1T4S7S10m
Given that we are working towards getting rid of GNAT encodings,
which means that the above will eventually disappear, we took
the more pragmatic approach is just treating RETVAL as a special
case.
gdb/ChangeLog:
* ada-lang.c (ada_is_wrapper_field): Add special handling
for fields called "RETVAL".
gdb/testsuite/ChangeLog:
* gdb.ada/fin_fun_out: New testcase.
This patch fixes all occurences of left-shifting negative constants in C code
which is undefined by the C standard.
binutils/ChangeLog:
* dwarf.c (read_leb128): Fix left shift of negative value.
This patch fixes all occurences of left-shifting negative constants in C code
which is undefined by the C standard.
bfd/ChangeLog:
* elf64-ppc.c (ppc64_elf_size_stubs, ppc64_elf_build_stubs): Fix left
shift of negative value.
* libbfd.c (safe_read_leb128): Likewise.
* dwarf2.c (place_sections): Likewise.
* bfd-in.h (align_power): Likewise.
* bfd-in2.h (align_power): Likewise.
We've already has the definition like this,
#define ELF_STRING_ARM_unwind ".ARM.exidx"
so it is better to use the macro rather than the string.
gdb:
2015-11-09 Yao Qi <yao.qi@linaro.org>
* arm-tdep.c (arm_exidx_new_objfile): Use
ELF_STRING_ARM_unwind.
This patch adds a new function displaced_step_in_progress_thread,
which returns whether the thread is in progress of displaced
stepping.
gdb:
2015-11-09 Yao Qi <yao.qi@linaro.org>
* infrun.c (displaced_step_in_progress_thread): New function.
(handle_inferior_event_1): Call it.
Provides defines used to determine whether glibc obstacks are
compatible. Generally speaking, 32-bit targets won't need to use
obstack.o from libiberty if glibc is used, while 64-bit targets will,
until glibc gets the new obstack code.
libiberty/
* configure.ac: Get size of size_t.
* config.in: Regenerate.
* configure: Regenerate.
Fixes
warning: request for implicit conversion from ‘void *’ to ‘struct _obstack_chunk *’ not permitted in C++ [-Wc++-compat]
I moved the assignment to h->chunk to fix an overlong line, then
decided it would be better after the alloc failure check just to do
things the same way as in _obstack_newchunk.
* obstack.c (_obstack_newchunk): Silence -Wc++compat warning.
(_obstack_begin_worker): Likewise. Move assignment to h->chunk
after alloc failure check.
Using the standard gnulib obstack source requires importing quite a
lot of other files from gnulib, and requires build changes.
include/
PR gdb/17133
* obstack.h (__attribute_pure__): Expand _GL_ATTRIBUTE_PURE.
libiberty/
PR gdb/17133
* obstack.c (__alignof__): Expand alignof_type from alignof.h.
(obstack_exit_failure): Don't use exitfail.h.
(_): Include libintl.h when HAVE_LIBINTL_H and nls enabled.
Provide default. Don't include gettext.h.
(_Noreturn): Define.
* obstacks.texi: Adjust node references to external libc info files.
This copies obstack.[ch] from gnulib, and updates the docs. The next
patch should be applied if someone repeats the import at a later date.
include/
PR gdb/17133
* obstack.h: Import current gnulib file.
libiberty/
PR gdb/17133
* obstack.c: Import current gnulib file.
* obstacks.texi: Updated doc, from glibc's manual/memory.texi.
Some of the source code for the test cases in the GDB testsuite
reside in .S files containing assembly code. These files typically
define a symbol - such as main - which may, depending on the target,
require a prefix such as underscore.
For example, gdb.dwarf2/dw-compdir-oldgcc.S defines the symbol main:
main: .globl main
Some targets, such as rx-elf, require main to have an underscore
prefix. (If it doesn't, a linker error results due to not being able
to find _main required by crt0.o.) So, instead, the above should look
like this for rx-elf and other targets with this same requirement:
_main: .globl _main
This patch defines a new tcl proc in lib/gdb named
gdb_target_symbol_prefix_flags_asm. This proc returns a string
which will - assuming everything else is wired up correctly - cause
-DSYMBOL_PREFIX=_ to be passed on the command line to the compiler.
The test cases are augmented with a macro definition for SYMBOL
as follows:
#define CONCAT1(a, b) CONCAT2(a, b)
#define CONCAT2(a, b) a ## b
#ifdef SYMBOL_PREFIX
# define SYMBOL(str) CONCAT1(SYMBOL_PREFIX, str)
#else
# define SYMBOL(str) str
#endif
Symbols, such as main shown in the example earlier are then wrapped
with SYMBOL like this:
SYMBOL(main): .globl SYMBOL(main)
The net effect will be to add a prefix for those targets which need
it and add no prefix for those targets which do not.
It should be noted that there was already a proc in lib/gdb.exp
called gdb_target_symbol_prefix_flags. It still exists, but has
been significantly rewritten. (There is only one small difference
between the two versions.)
That proc used to explicitly list targets which were known to
require an underscore prefix. This is no longer done; the recently
added proc, gdb_target_symbol_prefix, is now invoked to dynamically
discover whether or not a prefix is required for that particular
target.
The difference between gdb_target_symbol_prefix_flags_asm
and gdb_target_symbol_prefix_flags is that the former returns
a bare prefix while the latter returns the prefix enclosed in
double quotes. I.e. assuming that the discovered prefix is
underscore, gdb_target_symbol_prefix_flags_asm returns:
additional_flags=-DSYMBOL_PREFIX=_
while gdb_target_symbol_prefix_flags returns:
additional_flags=-DSYMBOL_PREFIX="_"
The double-quoted version is not suitable for using with .S files
containing assembly code; there is no way to strip the double quotes
using C preprocessor constructs.
It would be possible to use the bare (non double quoted) version in
C source code. However, the supporting macros become more complicated
and therefore more difficult to maintain.
gdb/testsuite/ChangeLog:
* lib/gdb (gdb_target_symbol_prefix_flags_asm): New proc.
(gdb_target_symbol_prefix_flags): Define in terms of _asm
version.
* gdb.arch/i386-float.exp, gdb.arch/i386-permbkpt.exp,
gdb.dwarf2/dw2-canonicalize-type.exp,
gdb.dwarf2/dw2-compdir-oldgcc.exp, gdb.dwarf2/dw2-minsym-in-cu.exp,
gdb.dwarf2/dw2-op-stack-value.exp, gdb.dwarf2/dw2-unresolved.exp,
gdb.dwarf2/fission-reread.exp, gdb.dwarf2/pr13961.exp: Use flags
provided by gdb_target_symbol_prefix_flags_asm.
* gdb.dwarf2/dw2-canonicalize-type.S, gdb.dwarf2/dw2-compdir-oldgcc.S,
testsuite/gdb.dwarf2/dw2-minsym-in-cu.S,
testsuite/gdb.dwarf2/dw2-unresolved-main.c,
testsuite/gdb.dwarf2/dw2-unresolved.S, gdb.dwarf2/fission-reread.S,
gdb.dwarf2/pr13961.S: Define and use SYMBOL macro (and supporting
macros where needed). Use this macro for symbols which require
the prefix provided by SYMBOL_PREFIX.
Building libiberty on Android currently fails with the error message
shown below. This was discovered by trying to build GDBserver
for Android, which stopped building after libiberty became
a GDBserver dependency.
Here is the error message:
[...]/getpagesize.c:64:1: error: redefinition of 'getpagesize'
In file included from /[...]/getpagesize.c:34:0:
/[...]/usr/include/unistd.h:171:23: note: previous definition of 'getpagesize' was here
And looking at the definition, one can see that it defined as
a static inline function...
static __inline__ int getpagesize(void) {
extern unsigned int __page_size;
return __page_size;
}
... which explains why the AC_CHECK_FUNCS test failed to detect
the function, since there is no associated symbol to be linked in.
This patch prevents getpagesize.c to be compiled in by hard-coding
the fact that getpagesize is available on android hosts.
libiberty/ChangeLog:
* configure.ac: Set AC_CV_FUNC_GETPAGESIZE to "yes" on
Android hosts.
* configure: Regenerate.
Some of the tests in gdb.dwarf2 which use Dwarf::assemble refer to
(minimal/linker) symbols created in the course of building a small
test program. Some targets use a prefix such as underscore ("_") on
these symbols. Many of the tests in gdb.dwarf2 do not take this into
account. As a consequence, these tests fail to build, resulting
either in failures or untested testcases.
Here is an example from gdb.dwarf2/dw2-regno-invalid.exp:
Dwarf::assemble $asm_file {
cu {} {
compile_unit {
{low_pc main DW_FORM_addr}
{high_pc main+0x10000 DW_FORM_addr}
} {
...
}
For targets which require an underscore prefix on linker symbols,
the two occurrences of "main" would have to have a prepended underscore,
i.e. _main instead of main.
For the above case, a call to the new proc gdb_target_symbol is used
prepend the correct prefix to the symbol. I.e. the above code is
rewritten (as shown in the patch) as follows:
Dwarf::assemble $asm_file {
cu {} {
compile_unit {
{low_pc [gdb_target_symbol main] DW_FORM_addr}
{high_pc [gdb_target_symbol main]+0x10000 DW_FORM_addr}
} {
...
}
I also found it necessary to make an adjustment to lib/dwarf.exp so that
expressions of more than just one list element can be used in DW_TAG_...
constructs. Both atomic-type.exp and dw2-bad-mips-linkage-name.exp require
this new functionality.
gdb/testsuite/ChangeLog:
* lib/gdb.exp (gdb_target_symbol_prefix, gdb_target_symbol):
New procs.
* lib/dwarf.exp (_handle_DW_TAG): Handle attribute values,
representing expressions, of more than one list element.
* gdb.dwarf2/atomic-type.exp (Dwarf::assemble): Use gdb_target_symbol
to prepend linker symbol prefix to f.
* gdb.dwarf2/data-loc.exp (Dwarf::assemble): Likewise, for
table_1 and table_2.
* gdb.dwarf2/dw2-bad-mips-linkage-name.exp (Dwarf::assemble):
Likewise, for f and g.
* gdb.dwarf2/dw2-ifort-parameter.exp (Dwarf::assemble): Likewise,
for ptr.
* gdb.dwarf2/dw2-regno-invalid.exp (Dwarf::assemble): Likewise,
for main.
* gdb.dwarf2/dynarr-ptr.exp (Dwarf::assemble): Likewise, for
table_1_ptr and table_2_ptr.
Gold does not support all the emulations that Gnu ld does, and supports
only one spelling per target. The -m option is used only in the rare case
where there are no ELF input files, and we produce an empty output file.
In those cases, users are expected to supply a -m option naming one of
the supported emulations. In the many cases where a build script provides
an unnecessary -m option naming an emulation that gold does not support,
we will simply ignore the option, as we did before the reverted patch.
gold/
PR gold/19119
PR gold/19172
PR gold/19197
Revert commit 6457197210:
2015-10-16 H.J. Lu <hongjiu.lu@intel.com>
* options.h (General_options): Remove "obsolete" from -m.
* parameters.cc (set_parameters_target): Check if input target
is compatible with output emulation set by "-m emulation".
With --no-apply-dynamic-relocs on aarch64 targets, gold will not apply
link-time values for absolute relocations that become dynamic relocations.
This provides a workaround for broken Android dynamic linkers that use
the link-time value as an extra addend to the relocation.
gold/
PR gold/19163
* aarch64.cc (Target_aarch64::Relocate::relocate): Don't apply
certain relocations if --no-apply-dynamic-relocs is set.
* options.h (--apply-dynamic-relocs): New aarch64-specific option.
gdb:
2015-11-05 Yao Qi <yao.qi@linaro.org>
* aarch64-tdep.c (aarch64_displaced_step_copy_insn): Call
aarch64_decode_insn and decode instruction by aarch64_inst.
This patch convert aarch64_analyze_prologue to using aarch64_decode_insn
to decode instructions. After this change, aarch64_analyze_prologue
looks much simple, and some aarch64_decode_* functions are removed
accordingly.
gdb:
2015-11-05 Yao Qi <yao.qi@linaro.org>
* aarch64-tdep.c (extract_signed_bitfield): Remove.
(decode_masked_match): Remove.
(aarch64_decode_add_sub_imm): Remove.
(aarch64_decode_br): Remove.
(aarch64_decode_eret): Remove.
(aarch64_decode_movz): Remove.
(aarch64_decode_orr_shifted_register_x): Remove.
(aarch64_decode_ret): Remove.
(aarch64_decode_stp_offset): Remove.
(aarch64_decode_stur): Remove.
(aarch64_analyze_prologue): Call aarch64_decode_insn
and use aarch64_inst to decode instructions.
This patch combines both aarch64_decode_stp_offset_wb and
aarch64_decode_stp_offset together.
gdb:
2015-11-05 Yao Qi <yao.qi@linaro.org>
* aarch64-tdep.c (aarch64_decode_stp_offset): New argument
wback.
(aarch64_decode_stp_offset_wb): Removed.
(aarch64_analyze_prologue): Don't use
aarch64_decode_stp_offset_wb.
allocate (vla1 (5)) ! vla1-not-allocated
l = allocated(vla1) ! vla1-allocated <------------------
Expecting: ^(510-data-evaluate-expression vla1[^M
]+)?(510\^done,value="\(0, 0, 0, 0, 0\)"[^M
]+[(]gdb[)] ^M
[ ]*)
510-data-evaluate-expression vla1^M
510^done,value="(1.82987403e-09, 7.8472714e-44, 1.82987403e-09, 7.8472714e-44, 2.67929926e+20)"^M
(gdb) ^M
FAIL: gdb.mi/mi-vla-fortran.exp: evaluate allocated vla
gcc-4.9.2-6.fc21.x86_64
I think some older gfortran did initialize allocated memory but that is an
unspecified behavior. I haven't found any initialization mentioned
in Fortran 90 standard (draft) and it is also clearly stated here:
https://software.intel.com/en-us/forums/intel-fortran-compiler-for-linux-and-mac-os-x/topic/268786
Initialization to 0 of allocated arrays (of integers) is an
implementation issue. i.e. do not rely on it.
Joel Brobecker wrote:
I am wondering if it might be better to just relax instead the regexp to allow
any number rather than just remove the test altogether. The test allows us to
verify that, as soon as we're past the "allocate" call, we no longer say "not
allocated".
gdb/testsuite/ChangeLog
2015-11-03 Jan Kratochvil <jan.kratochvil@redhat.com>
Joel Brobecker <brobecker@adacore.com>
* gdb.mi/mi-vla-fortran.exp (evaluate allocated vla): Permit any data.
This is needed to avoid O(n**2) complexity when recording MVCLE and other
partial execution instructions.
gdb/ChangeLog:
PR/18376
* gdb/s390-linux-tdep.c (s390_is_partial_instruction): New function.
(s390_software_single_step): New function.
(s390_displaced_step_hw_singlestep): New function.
(s390_gdbarch_init): Fill gdbarch slots with the above.