This patch allows copy relocs for non-GOT pc-relative relocation in PIE.
bfd/
* elf64-x86-64.c (elf_x86_64_create_dynamic_sections): Always
allow copy relocs for building executables.
(elf_x86_64_check_relocs): Allow copy relocs for non-GOT
pc-relative relocation in shared object.
(elf_x86_64_adjust_dynamic_symbol): Allocate copy relocs for
PIE.
(elf_x86_64_relocate_section): Don't copy a pc-relative
relocation into the output file if the symbol needs copy reloc.
ld/testsuite/
* ld-x86-64/copyreloc-lib.c: New file.
* ld-x86-64/copyreloc-main.c: Likewise.
* ld-x86-64/copyreloc-main.out: Likewise.
* ld-x86-64/copyreloc-main1.rd: Likewise.
* ld-x86-64/copyreloc-main2.rd: Likewise.
* ld-x86-64/x86-64.exp: Run copyreloc tests.
When there are both PLT and GOT references to the same function symbol,
linker will create a GOTPLT slot for PLT entry and a GOT slot for GOT
reference. A run-time JUMP_SLOT relocation is created to update the
GOTPLT slot and a run-time GLOB_DAT relocation is created to update the
GOT slot. Both JUMP_SLOT and GLOB_DAT relocations will apply the same
symbol value to GOTPLT and GOT slots, respectively, at run-time.
This optimization combines GOTPLT and GOT slots into a single GOT slot
and removes the run-time JUMP_SLOT relocation. It replaces the regular
PLT entry:
indirect jump [GOTPLT slot]
push relocation index
jump PLT0
with an GOT PLT entry with an indirect jump via the GOT slot:
indirect jump [GOT slot]
nop
and resolves PLT reference to the GOT PLT entry.
We must avoid this optimization if pointer equality is needed since
we don't clear symbol value in this case and the dynamic linker won't
update the GOT slot. Otherwise, the resulting binary will get into an
infinite loop at run-time.
bfd/
* elf32-i386.c (elf_i386_got_plt_entry): New.
(elf_i386_pic_got_plt_entry): Likewise.
(elf_i386_link_hash_entry): Add plt_got.
(elf_i386_link_hash_table): Likewise.
(elf_i386_link_hash_newfunc): Initialize plt_got.offset to -1.
(elf_i386_get_local_sym_hash): Likewise.
(elf_i386_check_relocs): Create the GOT PLT if there are both
PLT and GOT references when the regular PLT is used.
(elf_i386_allocate_dynrelocs): Use the GOT PLT if there are
both PLT and GOT references unless pointer equality is needed.
(elf_i386_relocate_section): Also check the GOT PLT when
resolving R_386_PLT32.
(elf_i386_finish_dynamic_symbol): Use the GOT PLT if it is
available.
* elf64-x86-64.c (elf_x86_64_link_hash_entry): Add plt_got.
(elf_x86_64_link_hash_table): Likewise.
(elf_x86_64_link_hash_newfunc): Initialize plt_got.offset to -1.
(elf_x86_64_get_local_sym_hash): Likewise.
(elf_x86_64_check_relocs): Create the GOT PLT if there are both
PLT and GOT references when the regular PLT is used.
(elf_x86_64_allocate_dynrelocs): Use the GOT PLT if there are
both PLT and GOT references unless pointer equality is needed.
(elf_x86_64_relocate_section): Also check the GOT PLT when
resolving R_X86_64_PLT32.
(elf_x86_64_finish_dynamic_symbol): Use the GOT PLT if it is
available.
ld/
* emulparams/elf_i386.sh (TINY_READONLY_SECTION): New.
* emulparams/elf_x86_64.sh (TINY_READONLY_SECTION): Add .plt.got.
ld/testsuite/
* ld-i386/i386.exp: Add run-time relocation tests for plt-main.
* ld-i386/plt-main.rd: New file.
* ld-x86-64/plt-main-bnd.dd: Likewise.
* ld-x86-64/plt-main.rd: Likewise.
* ld-x86-64/x86-64.exp: Add run-time relocation tests for
plt-main.
Assert size of elf_x86_64_bnd_plt2_entry and elf_x86_64_legacy_plt2_entry
only in elf_x86_64_check_relocs.
* elf64-x86-64.c (elf_x86_64_check_relocs): Assert size of
elf_x86_64_bnd_plt2_entry and elf_x86_64_legacy_plt2_entry.
(elf_x86_64_allocate_dynrelocs): Don't assert size of
elf_x86_64_bnd_plt2_entry and elf_x86_64_legacy_plt2_entry.
Displacement of branch to PLT0 in x86-64 PLT entry is signed 32-bit.
This patch adds a sanity check. We will only see the failure when PLT
size is > 2GB.
* elf64-x86-64.c (elf_x86_64_finish_dynamic_symbol): Check
branch displacement overflow in PLT entry.
Structions with R_X86_64_GOTTPOFF relocation must be encoded with REX
prefix even if it isn't required by destination register. Otherwise
linker can't safely perform IE -> LE optimization.
bfd/
PR ld/17482
* elf64-x86-64.c (elf_x86_64_relocate_section): Update comments
for IE->LE transition.
gas/
PR ld/17482
* config/tc-i386.c (output_insn): Add a dummy REX_OPCODE prefix
for structions with R_X86_64_GOTTPOFF relocation for x32 if needed.
gas/testsuite/
PR ld/17482
* gas/i386/ilp32/x32-tls.d: New file.
* gas/i386/ilp32/x32-tls.s: Likewise.
ld/testsuite/
PR ld/17482
* ld-x86-64/tlsie4.dd: Updated.
Relocations against .got.plt section may not be in the same order as
entries in PLT section. It is incorrect to assume that the Ith reloction
index against .got.plt section always maps to the (I + 1)th entry in PLT
section. This patch matches the .got.plt relocation offset/index in PLT
entry against the index in .got.plt relocation table. It only checks
R_*_JUMP_SLOT and R_*_IRELATIVE relocations. It ignores R_*_TLS_DESC
and R_*_TLSDESC relocations since they have different PLT entries.
bfd/
PR binutils/17154
* elf32-i386.c (elf_i386_plt_sym_val): Only match R_*_JUMP_SLOT
and R_*_IRELATIVE relocation offset with PLT entry.
* elf64-x86-64.c (elf_x86_64_plt_sym_val): Likewise.
(elf_x86_64_plt_sym_val_offset_plt_bnd): New.
(elf_x86_64_get_synthetic_symtab): Use it.
ld/testsuite/
PR binutils/17154
* ld-ifunc/pr17154-i386.d: New file.
* ld-ifunc/pr17154-x86-64.d: Likewise.
* ld-ifunc/pr17154-x86.s: Likewise.
* ld-x86-64/bnd-ifunc-2.d: Likewise.
* ld-x86-64/bnd-ifunc-2.s: Likewise.
* ld-x86-64/mpx.exp: Run bnd-ifunc-2.
* ld-x86-64/tlsdesc-nacl.pd: Updated.
* ld-x86-64/tlsdesc.pd: Likewise.
Intel MPX introduces 4 bound registers, which will be used for parameter
passing in x86-64. Bound registers are cleared by branch instructions.
Branch instructions with BND prefix will keep bound register contents.
This leads to 2 requirements to 64-bit MPX run-time:
1. Dynamic linker (ld.so) should save and restore bound registers during
symbol lookup.
2. Change the current 16-byte PLT0:
ff 35 08 00 00 00 pushq GOT+8(%rip)
ff 25 00 10 00 jmpq *GOT+16(%rip)
0f 1f 40 00 nopl 0x0(%rax)
and 16-byte PLT1:
ff 25 00 00 00 00 jmpq *name@GOTPCREL(%rip)
68 00 00 00 00 pushq $index
e9 00 00 00 00 jmpq PLT0
which clear bound registers, to preserve bound registers.
We use 2 new relocations:
to mark branch instructions with BND prefix.
When linker sees any R_X86_64_PC32_BND or R_X86_64_PLT32_BND relocations,
it switches to a different PLT0:
ff 35 08 00 00 00 pushq GOT+8(%rip)
f2 ff 25 00 10 00 bnd jmpq *GOT+16(%rip)
0f 1f 00 nopl (%rax)
to preserve bound registers for symbol lookup and it also creates an
external PLT section, .pl.bnd. Linker will create a BND PLT1 entry
in .plt:
68 00 00 00 00 pushq $index
f2 e9 00 00 00 00 bnd jmpq PLT0
0f 1f 44 00 00 nopl 0(%rax,%rax,1)
and a 8-byte BND PLT entry in .plt.bnd:
f2 ff 25 00 00 00 00 bnd jmpq *name@GOTPCREL(%rip)
90 nop
Otherwise, linker will create a legacy PLT1 entry in .plt:
68 00 00 00 00 pushq $index
e9 00 00 00 00 jmpq PLT0
66 0f 1f 44 00 00 nopw 0(%rax,%rax,1)
and a 8-byte legacy PLT in .plt.bnd:
ff 25 00 00 00 00 jmpq *name@GOTPCREL(%rip)
66 90 xchg %ax,%ax
The initial value of the GOT entry for "name" will be set to the the
"pushq" instruction in the corresponding entry in .plt. Linker will
resolve reference of symbol "name" to the entry in the second PLT,
.plt.bnd.
Prelink stores the offset of pushq of PLT1 (plt_base + 0x10) in GOT[1]
and GOT[1] is stored in GOT[3]. We can undo prelink in GOT by computing
the corresponding the pushq offset with
GOT[1] + (GOT offset - &GOT[3]) * 2
Since for each entry in .plt except for PLT0 we create a 8-byte entry in
.plt.bnd, there is extra 8-byte per PLT symbol.
We also investigated the 16-byte entry for .plt.bnd. We compared the
8-byte entry vs the the 16-byte entry for .plt.bnd on Sandy Bridge.
There are no performance differences in SPEC CPU 2000/2006 as well as
micro benchmarks.
Pros:
No change to undo prelink in dynamic linker.
Only 8-byte memory overhead for each PLT symbol.
Cons:
Extra .plt.bnd section is needed.
Extra 8 byte for legacy branches to PLT.
GDB is unware of the new layout of .plt and .plt.bnd.
bfd/
* elf64-x86-64.c (elf_x86_64_bnd_plt0_entry): New.
(elf_x86_64_legacy_plt_entry): Likewise.
(elf_x86_64_bnd_plt_entry): Likewise.
(elf_x86_64_legacy_plt2_entry): Likewise.
(elf_x86_64_bnd_plt2_entry): Likewise.
(elf_x86_64_bnd_arch_bed): Likewise.
(elf_x86_64_link_hash_entry): Add has_bnd_reloc and plt_bnd.
(elf_x86_64_link_hash_table): Add plt_bnd.
(elf_x86_64_link_hash_newfunc): Initialize has_bnd_reloc and
plt_bnd.
(elf_x86_64_copy_indirect_symbol): Also copy has_bnd_reloc.
(elf_x86_64_check_relocs): Create the second PLT for Intel MPX
in 64-bit mode.
(elf_x86_64_allocate_dynrelocs): Handle the second PLT for IFUNC
symbols. Resolve call to the second PLT if it is created.
(elf_x86_64_size_dynamic_sections): Keep the second PLT section.
(elf_x86_64_relocate_section): Resolve PLT references to the
second PLT if it is created.
(elf_x86_64_finish_dynamic_symbol): Use BND PLT0 and fill the
second PLT entry for BND relocation.
(elf_x86_64_finish_dynamic_sections): Use MPX backend data if
the second PLT is created.
(elf_x86_64_get_synthetic_symtab): New.
(bfd_elf64_get_synthetic_symtab): Likewise. Undefine for NaCl.
ld/
* emulparams/elf_x86_64.sh (TINY_READONLY_SECTION): New.
ld/testsuite/
* ld-x86-64/mpx.exp: Run bnd-ifunc-1 and bnd-plt-1.
* ld-x86-64/bnd-ifunc-1.d: New file.
* ld-x86-64/bnd-ifunc-1.s: Likewise.
* ld-x86-64/bnd-plt-1.d: Likewise.
It has been fixed by
commit 4199e3b866
Author: Alan Modra <amodra@gmail.com>
Date: Wed Jan 15 21:50:55 2014 +1030
non-PIC references to __ehdr_start in pie and shared
Rather than hacking every backend to not discard dynamic relocations
against an undefined hidden __ehdr_start, make it appear to be defined
early. We want __ehdr_start hidden before size_dynamic_sections so
that it isn't put in .dynsym, but we do need the dynamic relocations
for a PIE or shared library with a non-PIC reference. Defining it
early is wrong if we don't actually define the symbol later to its
proper value. (In some cases we want to leave the symbol undefined,
for example, when the ELF header isn't loaded, and we don't have this
infomation available in before_allocation.)
* elf32-i386.c (elf_i386_allocate_dynrelocs): Revert the last
change.
* elf64-x86-64.c (elf_x86_64_allocate_dynrelocs): Likewise.
__ehdr_start will be defined by assign_file_positions_for_non_load_sections
later.
PR ld/16428
* elf32-i386.c (elf_i386_allocate_dynrelocs): Don't discard relocs
against __ehdr_start.
* elf64-x86-64.c (elf_x86_64_allocate_dynrelocs): Likewise.
PR ld/16428
* elf32-i386.c (elf_i386_allocate_dynrelocs): Don't update reloc
count if there are any non pc-relative relocs.
* elf64-x86-64.c (elf_x86_64_allocate_dynrelocs): Likewise.
bfd/
* archures.c (bfd_mach_i386_nacl): Fix definition so it doesn't
collide with bfd_mach_l1om.
* bfd-in2.h: Regenerate.
* elf32-i386.c (elf32_i386_nacl_elf_object_p): New function.
(elf_backend_object_p): Use that in elf32-i386-nacl definition.
* elf64-x86-64.c (elf64_x86_64_nacl_elf_object_p): New function.
(elf_backend_object_p): Use that in elf64-x86-64-nacl definition.
(elf32_x86_64_nacl_elf_object_p): New function.
(elf_backend_object_p): Use that in elf32-x86-64-nacl definition.
binutils/
* objdump.c (dump_dwarf): Grok bfd_mach_x86_64_nacl and
bfd_mach_x64_32_nacl as equivalent to bfd_mach_x86_64.
ld/testsuite/
* ld-x86-64/x86-64.exp (mixed1, mixed2): Loosen error string match
so it accepts "i386:nacl" in place of "i386".
* ld-x86-64/ilp32-2.d: Likewise.
* ld-x86-64/ilp32-3.d: Likewise.
* ld-x86-64/lp64-2.d: Likewise.
* ld-x86-64/lp64-3.d: Likewise.
* elf-nacl.c (nacl_modify_segment_map): Fix logic reordering the
elf_segment_map list. If an executable segment is page-aligned
but does not end with a full page, then append a fake section into
the segment map entry that pads out the page.
(nacl_final_write_processing): New function. Write the code fill
laid out in nacl_modify_segment_map.
* elf-nacl.h: Declare it.
* elf32-arm.c (elf32_arm_nacl_final_write_processing): New function.
(elf_backend_final_write_processing): Define it for NaCl backend.
* elf32-i386.c (elf_backend_final_write_processing): Likewise.
* elf64-x86-64.c (elf_backend_final_write_processing): Likewise.
* elf-nacl.c (segment_eligible_for_headers): Rename MAXPAGESIZE
parameter to MINPAGESIZE.
(nacl_modify_segment_map): Use minpagesize instead of maxpagesize.
* elf32-arm.c (ELF_MINPAGESIZE, ELF_COMMONPAGESIZE): Set to
0x10000 for NaCl targets.
ld/testsuite/
* ld-x86-64/ilp32-4-nacl.d: Loosen .shstrtab line regexp to match
any file offset.
* ld-x86-64/tlsbin-nacl.rd: Update expected code segment PT_LOAD.
* ld-x86-64/tlsbindesc-nacl.rd: Likewise.
* ld-scripts/rgn-at3.d: XFAIL for *-*-nacl* targets.
* ld-scripts/rgn-over8-ok.d: Likewise.
bfd/ChangeLog:
2013-05-07 Will Newton <will.newton@linaro.org>
* elf-ifunc.c (_bfd_elf_allocate_ifunc_dyn_relocs): Add a
plt_header_size argument for ports where it differs from
plt_entry_size.
* elf-bfd.h: Likewise.
* elf32-i386.c: Pass plt_header_size to
_bfd_elf_allocate_ifunc_dyn_relocs.
* elf64-x86-64.c: Likewise.
bfd/
PR ld/15323
* elf32-i386.c (elf_i386_check_relocs): Set non_ir_ref if a
symbol is referenced by a non-shared object.
* elf64-x86-64.c (elf_x86_64_check_relocs): Likewise.
ld/testsuite/
PR ld/15323
* ld-plugin/lto.exp (lto_link_tests): Add pr15323a-r.o.
(lto_run_tests): Add a test for PR ld/15323.
* ld-plugin/pr15323.out: New file.
* ld-plugin/pr15323a.c: Likewise.
* ld-plugin/pr15323b.c: Likewise.
(_bfd_elf_init_reloc_shdr): Delete.
* elf.c (_bfd_elf_init_reloc_shdr): Make static.
* elf64-x86-64.c (elf_x86_64_merge_symbol): Trim parameters to
just what is needed.
* elflink.c (_bfd_elf_merge_symbol): Update bed->merge_symbol call.