Semi-bogus version of the file (sharing through devo).
This commit is contained in:
parent
60a98b30b4
commit
17139ec594
1 changed files with 723 additions and 0 deletions
723
gdb/fr30-tdep.c
Normal file
723
gdb/fr30-tdep.c
Normal file
|
@ -0,0 +1,723 @@
|
|||
/* Target-dependent code for the NEC V850 for GDB, the GNU debugger.
|
||||
Copyright 1996, Free Software Foundation, Inc.
|
||||
|
||||
This file is part of GDB.
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with this program; if not, write to the Free Software
|
||||
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
|
||||
|
||||
#include "defs.h"
|
||||
#include "frame.h"
|
||||
#include "inferior.h"
|
||||
#include "obstack.h"
|
||||
#include "target.h"
|
||||
#include "value.h"
|
||||
#include "bfd.h"
|
||||
#include "gdb_string.h"
|
||||
#include "gdbcore.h"
|
||||
#include "symfile.h"
|
||||
|
||||
niy(char *f, int l)
|
||||
{
|
||||
fprintf(stderr, "%s(%d): Not implemented yet\n", f, l);
|
||||
}
|
||||
#define NIY() niy(__FILE__, __LINE__)
|
||||
|
||||
void
|
||||
fr30_pop_frame()
|
||||
{
|
||||
NIY();
|
||||
}
|
||||
|
||||
CORE_ADDR
|
||||
fr30_frame_chain(struct frame_info *fi)
|
||||
{
|
||||
NIY();
|
||||
}
|
||||
|
||||
CORE_ADDR
|
||||
fr30_frame_saved_pc(struct frame_info *fi)
|
||||
{
|
||||
NIY();
|
||||
}
|
||||
|
||||
CORE_ADDR
|
||||
fr30_skip_prologue(CORE_ADDR pc)
|
||||
{
|
||||
NIY();
|
||||
}
|
||||
|
||||
|
||||
CORE_ADDR
|
||||
fr30_push_arguments(nargs, args, sp, struct_return, struct_addr)
|
||||
int nargs;
|
||||
value_ptr * args;
|
||||
CORE_ADDR sp;
|
||||
int struct_return;
|
||||
CORE_ADDR struct_addr;
|
||||
{
|
||||
int argreg;
|
||||
int argnum;
|
||||
int stack_offset;
|
||||
struct stack_arg {
|
||||
char *val;
|
||||
int len;
|
||||
int offset;
|
||||
};
|
||||
struct stack_arg *stack_args =
|
||||
(struct stack_arg*)alloca (nargs * sizeof (struct stack_arg));
|
||||
int nstack_args = 0;
|
||||
|
||||
|
||||
/* Initialize the integer and float register pointers. */
|
||||
argreg = FIRST_ARGREG;
|
||||
|
||||
/* the struct_return pointer occupies the first parameter-passing reg */
|
||||
if (struct_return)
|
||||
write_register (argreg++, struct_addr);
|
||||
|
||||
#if(0)
|
||||
/* The offset onto the stack at which we will start copying parameters
|
||||
(after the registers are used up) begins at 16 in the old ABI.
|
||||
This leaves room for the "home" area for register parameters. */
|
||||
stack_offset = REGISTER_SIZE * 4;
|
||||
#else
|
||||
/* XXX which ABI are we using ? Z.R. */
|
||||
stack_offset = 0;
|
||||
#endif
|
||||
|
||||
/* Process args from left to right. Store as many as allowed in
|
||||
registers, save the rest to be pushed on the stack */
|
||||
for(argnum = 0; argnum < nargs; argnum++)
|
||||
{
|
||||
char * val;
|
||||
value_ptr arg = args[argnum];
|
||||
struct type * arg_type = check_typedef (VALUE_TYPE (arg));
|
||||
struct type * target_type = TYPE_TARGET_TYPE (arg_type);
|
||||
int len = TYPE_LENGTH (arg_type);
|
||||
enum type_code typecode = TYPE_CODE (arg_type);
|
||||
CORE_ADDR regval;
|
||||
int newarg;
|
||||
|
||||
val = (char *) VALUE_CONTENTS (arg);
|
||||
|
||||
{
|
||||
/* Copy the argument to general registers or the stack in
|
||||
register-sized pieces. Large arguments are split between
|
||||
registers and stack. */
|
||||
while (len > 0)
|
||||
{
|
||||
if (argreg <= LAST_ARGREG)
|
||||
{
|
||||
int partial_len = len < REGISTER_SIZE ? len : REGISTER_SIZE;
|
||||
regval = extract_address (val, partial_len);
|
||||
|
||||
/* It's a simple argument being passed in a general
|
||||
register. */
|
||||
write_register (argreg, regval);
|
||||
argreg++;
|
||||
len -= partial_len;
|
||||
val += partial_len;
|
||||
}
|
||||
else
|
||||
{
|
||||
/* keep for later pushing */
|
||||
stack_args[nstack_args].val = val;
|
||||
stack_args[nstack_args++].len = len;
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
/* now do the real stack pushing, process args right to left */
|
||||
while(nstack_args--)
|
||||
{
|
||||
sp -= stack_args[nstack_args].len;
|
||||
write_memory(sp, stack_args[nstack_args].val,
|
||||
stack_args[nstack_args].len);
|
||||
}
|
||||
|
||||
/* Return adjusted stack pointer. */
|
||||
return sp;
|
||||
}
|
||||
|
||||
_initialize_fr30_tdep()
|
||||
{
|
||||
extern int print_insn_fr30(bfd_vma, disassemble_info *);
|
||||
|
||||
tm_print_insn = print_insn_fr30;
|
||||
}
|
||||
|
||||
|
||||
#if(0) /* Z.R. for now */
|
||||
/* Info gleaned from scanning a function's prologue. */
|
||||
|
||||
struct pifsr /* Info about one saved reg */
|
||||
{
|
||||
int framereg; /* Frame reg (SP or FP) */
|
||||
int offset; /* Offset from framereg */
|
||||
int cur_frameoffset; /* Current frameoffset */
|
||||
int reg; /* Saved register number */
|
||||
};
|
||||
|
||||
struct prologue_info
|
||||
{
|
||||
int framereg;
|
||||
int frameoffset;
|
||||
int start_function;
|
||||
struct pifsr *pifsrs;
|
||||
};
|
||||
|
||||
static CORE_ADDR xfr30_scan_prologue PARAMS ((CORE_ADDR pc,
|
||||
struct prologue_info *fs));
|
||||
|
||||
/* Function: scan_prologue
|
||||
Scan the prologue of the function that contains PC, and record what
|
||||
we find in PI. PI->fsr must be zeroed by the called. Returns the
|
||||
pc after the prologue. Note that the addresses saved in pi->fsr
|
||||
are actually just frame relative (negative offsets from the frame
|
||||
pointer). This is because we don't know the actual value of the
|
||||
frame pointer yet. In some circumstances, the frame pointer can't
|
||||
be determined till after we have scanned the prologue. */
|
||||
|
||||
static CORE_ADDR
|
||||
xfr30_scan_prologue (pc, pi)
|
||||
CORE_ADDR pc;
|
||||
struct prologue_info *pi;
|
||||
{
|
||||
CORE_ADDR func_addr, prologue_end, current_pc;
|
||||
struct pifsr *pifsr, *pifsr_tmp;
|
||||
int fp_used;
|
||||
int ep_used;
|
||||
int reg;
|
||||
CORE_ADDR save_pc, save_end;
|
||||
int regsave_func_p;
|
||||
int current_sp_size;
|
||||
int r12_tmp;
|
||||
|
||||
/* First, figure out the bounds of the prologue so that we can limit the
|
||||
search to something reasonable. */
|
||||
|
||||
if (find_pc_partial_function (pc, NULL, &func_addr, NULL))
|
||||
{
|
||||
struct symtab_and_line sal;
|
||||
|
||||
sal = find_pc_line (func_addr, 0);
|
||||
|
||||
if (func_addr == entry_point_address ())
|
||||
pi->start_function = 1;
|
||||
else
|
||||
pi->start_function = 0;
|
||||
|
||||
#if 0
|
||||
if (sal.line == 0)
|
||||
prologue_end = pc;
|
||||
else
|
||||
prologue_end = sal.end;
|
||||
#else
|
||||
prologue_end = pc;
|
||||
#endif
|
||||
}
|
||||
else
|
||||
{ /* We're in the boondocks */
|
||||
func_addr = pc - 100;
|
||||
prologue_end = pc;
|
||||
}
|
||||
|
||||
prologue_end = min (prologue_end, pc);
|
||||
|
||||
/* Now, search the prologue looking for instructions that setup fp, save
|
||||
rp, adjust sp and such. We also record the frame offset of any saved
|
||||
registers. */
|
||||
|
||||
pi->frameoffset = 0;
|
||||
pi->framereg = SP_REGNUM;
|
||||
fp_used = 0;
|
||||
ep_used = 0;
|
||||
pifsr = pi->pifsrs;
|
||||
regsave_func_p = 0;
|
||||
save_pc = 0;
|
||||
save_end = 0;
|
||||
r12_tmp = 0;
|
||||
|
||||
#ifdef DEBUG
|
||||
printf_filtered ("Current_pc = 0x%.8lx, prologue_end = 0x%.8lx\n",
|
||||
(long)func_addr, (long)prologue_end);
|
||||
#endif
|
||||
|
||||
for (current_pc = func_addr; current_pc < prologue_end; current_pc += 2)
|
||||
{
|
||||
int insn;
|
||||
|
||||
#ifdef DEBUG
|
||||
printf_filtered ("0x%.8lx ", (long)current_pc);
|
||||
(*tm_print_insn) (current_pc, &tm_print_insn_info);
|
||||
#endif
|
||||
|
||||
insn = read_memory_unsigned_integer (current_pc, 2);
|
||||
|
||||
if ((insn & 0xffc0) == ((10 << 11) | 0x0780) && !regsave_func_p)
|
||||
{ /* jarl <func>,10 */
|
||||
long low_disp = read_memory_unsigned_integer (current_pc + 2, 2) & ~ (long) 1;
|
||||
long disp = (((((insn & 0x3f) << 16) + low_disp)
|
||||
& ~ (long) 1) ^ 0x00200000) - 0x00200000;
|
||||
|
||||
save_pc = current_pc;
|
||||
save_end = prologue_end;
|
||||
regsave_func_p = 1;
|
||||
current_pc += disp - 2;
|
||||
prologue_end = (current_pc
|
||||
+ (2 * 3) /* moves to/from ep */
|
||||
+ 4 /* addi <const>,sp,sp */
|
||||
+ 2 /* jmp [r10] */
|
||||
+ (2 * 12) /* sst.w to save r2, r20-r29, r31 */
|
||||
+ 20); /* slop area */
|
||||
|
||||
#ifdef DEBUG
|
||||
printf_filtered ("\tfound jarl <func>,r10, disp = %ld, low_disp = %ld, new pc = 0x%.8lx\n",
|
||||
disp, low_disp, (long)current_pc + 2);
|
||||
#endif
|
||||
continue;
|
||||
}
|
||||
else if ((insn & 0xffe0) == 0x0060 && regsave_func_p)
|
||||
{ /* jmp after processing register save function */
|
||||
current_pc = save_pc + 2;
|
||||
prologue_end = save_end;
|
||||
regsave_func_p = 0;
|
||||
#ifdef DEBUG
|
||||
printf_filtered ("\tfound jmp after regsave func");
|
||||
#endif
|
||||
}
|
||||
else if ((insn & 0x07c0) == 0x0780 /* jarl or jr */
|
||||
|| (insn & 0xffe0) == 0x0060 /* jmp */
|
||||
|| (insn & 0x0780) == 0x0580) /* branch */
|
||||
{
|
||||
#ifdef DEBUG
|
||||
printf_filtered ("\n");
|
||||
#endif
|
||||
break; /* Ran into end of prologue */
|
||||
}
|
||||
|
||||
else if ((insn & 0xffe0) == ((SP_REGNUM << 11) | 0x0240)) /* add <imm>,sp */
|
||||
pi->frameoffset += ((insn & 0x1f) ^ 0x10) - 0x10;
|
||||
else if (insn == ((SP_REGNUM << 11) | 0x0600 | SP_REGNUM)) /* addi <imm>,sp,sp */
|
||||
pi->frameoffset += read_memory_integer (current_pc + 2, 2);
|
||||
else if (insn == ((FP_RAW_REGNUM << 11) | 0x0000 | SP_REGNUM)) /* mov sp,fp */
|
||||
{
|
||||
fp_used = 1;
|
||||
pi->framereg = FP_RAW_REGNUM;
|
||||
}
|
||||
|
||||
else if (insn == ((R12_REGNUM << 11) | 0x0640 | R0_REGNUM)) /* movhi hi(const),r0,r12 */
|
||||
r12_tmp = read_memory_integer (current_pc + 2, 2) << 16;
|
||||
else if (insn == ((R12_REGNUM << 11) | 0x0620 | R12_REGNUM)) /* movea lo(const),r12,r12 */
|
||||
r12_tmp += read_memory_integer (current_pc + 2, 2);
|
||||
else if (insn == ((SP_REGNUM << 11) | 0x01c0 | R12_REGNUM) && r12_tmp) /* add r12,sp */
|
||||
pi->frameoffset = r12_tmp;
|
||||
else if (insn == ((EP_REGNUM << 11) | 0x0000 | SP_REGNUM)) /* mov sp,ep */
|
||||
ep_used = 1;
|
||||
else if (insn == ((EP_REGNUM << 11) | 0x0000 | R1_REGNUM)) /* mov r1,ep */
|
||||
ep_used = 0;
|
||||
else if (((insn & 0x07ff) == (0x0760 | SP_REGNUM) /* st.w <reg>,<offset>[sp] */
|
||||
|| (fp_used
|
||||
&& (insn & 0x07ff) == (0x0760 | FP_RAW_REGNUM))) /* st.w <reg>,<offset>[fp] */
|
||||
&& pifsr
|
||||
&& (((reg = (insn >> 11) & 0x1f) >= SAVE1_START_REGNUM && reg <= SAVE1_END_REGNUM)
|
||||
|| (reg >= SAVE2_START_REGNUM && reg <= SAVE2_END_REGNUM)
|
||||
|| (reg >= SAVE3_START_REGNUM && reg <= SAVE3_END_REGNUM)))
|
||||
{
|
||||
pifsr->reg = reg;
|
||||
pifsr->offset = read_memory_integer (current_pc + 2, 2) & ~1;
|
||||
pifsr->cur_frameoffset = pi->frameoffset;
|
||||
#ifdef DEBUG
|
||||
printf_filtered ("\tSaved register r%d, offset %d", reg, pifsr->offset);
|
||||
#endif
|
||||
pifsr++;
|
||||
}
|
||||
|
||||
else if (ep_used /* sst.w <reg>,<offset>[ep] */
|
||||
&& ((insn & 0x0781) == 0x0501)
|
||||
&& pifsr
|
||||
&& (((reg = (insn >> 11) & 0x1f) >= SAVE1_START_REGNUM && reg <= SAVE1_END_REGNUM)
|
||||
|| (reg >= SAVE2_START_REGNUM && reg <= SAVE2_END_REGNUM)
|
||||
|| (reg >= SAVE3_START_REGNUM && reg <= SAVE3_END_REGNUM)))
|
||||
{
|
||||
pifsr->reg = reg;
|
||||
pifsr->offset = (insn & 0x007e) << 1;
|
||||
pifsr->cur_frameoffset = pi->frameoffset;
|
||||
#ifdef DEBUG
|
||||
printf_filtered ("\tSaved register r%d, offset %d", reg, pifsr->offset);
|
||||
#endif
|
||||
pifsr++;
|
||||
}
|
||||
|
||||
if ((insn & 0x0780) >= 0x0600) /* Four byte instruction? */
|
||||
current_pc += 2;
|
||||
|
||||
#ifdef DEBUG
|
||||
printf_filtered ("\n");
|
||||
#endif
|
||||
}
|
||||
|
||||
if (pifsr)
|
||||
pifsr->framereg = 0; /* Tie off last entry */
|
||||
|
||||
/* Fix up any offsets to the final offset. If a frame pointer was created, use it
|
||||
instead of the stack pointer. */
|
||||
for (pifsr_tmp = pi->pifsrs; pifsr_tmp && pifsr_tmp != pifsr; pifsr_tmp++)
|
||||
{
|
||||
pifsr_tmp->offset -= pi->frameoffset - pifsr_tmp->cur_frameoffset;
|
||||
pifsr_tmp->framereg = pi->framereg;
|
||||
|
||||
#ifdef DEBUG
|
||||
printf_filtered ("Saved register r%d, offset = %d, framereg = r%d\n",
|
||||
pifsr_tmp->reg, pifsr_tmp->offset, pifsr_tmp->framereg);
|
||||
#endif
|
||||
}
|
||||
|
||||
#ifdef DEBUG
|
||||
printf_filtered ("Framereg = r%d, frameoffset = %d\n", pi->framereg, pi->frameoffset);
|
||||
#endif
|
||||
|
||||
return current_pc;
|
||||
}
|
||||
|
||||
/* Function: init_extra_frame_info
|
||||
Setup the frame's frame pointer, pc, and frame addresses for saved
|
||||
registers. Most of the work is done in scan_prologue().
|
||||
|
||||
Note that when we are called for the last frame (currently active frame),
|
||||
that fi->pc and fi->frame will already be setup. However, fi->frame will
|
||||
be valid only if this routine uses FP. For previous frames, fi-frame will
|
||||
always be correct (since that is derived from xfr30_frame_chain ()).
|
||||
|
||||
We can be called with the PC in the call dummy under two circumstances.
|
||||
First, during normal backtracing, second, while figuring out the frame
|
||||
pointer just prior to calling the target function (see run_stack_dummy). */
|
||||
|
||||
void
|
||||
xfr30_init_extra_frame_info (fi)
|
||||
struct frame_info *fi;
|
||||
{
|
||||
struct prologue_info pi;
|
||||
struct pifsr pifsrs[NUM_REGS + 1], *pifsr;
|
||||
int reg;
|
||||
|
||||
if (fi->next)
|
||||
fi->pc = FRAME_SAVED_PC (fi->next);
|
||||
|
||||
memset (fi->fsr.regs, '\000', sizeof fi->fsr.regs);
|
||||
|
||||
/* The call dummy doesn't save any registers on the stack, so we can return
|
||||
now. */
|
||||
if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
|
||||
return;
|
||||
|
||||
pi.pifsrs = pifsrs;
|
||||
|
||||
xfr30_scan_prologue (fi->pc, &pi);
|
||||
|
||||
if (!fi->next && pi.framereg == SP_REGNUM)
|
||||
fi->frame = read_register (pi.framereg) - pi.frameoffset;
|
||||
|
||||
for (pifsr = pifsrs; pifsr->framereg; pifsr++)
|
||||
{
|
||||
fi->fsr.regs[pifsr->reg] = pifsr->offset + fi->frame;
|
||||
|
||||
if (pifsr->framereg == SP_REGNUM)
|
||||
fi->fsr.regs[pifsr->reg] += pi.frameoffset;
|
||||
}
|
||||
}
|
||||
|
||||
/* Function: frame_chain
|
||||
Figure out the frame prior to FI. Unfortunately, this involves
|
||||
scanning the prologue of the caller, which will also be done
|
||||
shortly by xfr30_init_extra_frame_info. For the dummy frame, we
|
||||
just return the stack pointer that was in use at the time the
|
||||
function call was made. */
|
||||
|
||||
CORE_ADDR
|
||||
xfr30_frame_chain (fi)
|
||||
struct frame_info *fi;
|
||||
{
|
||||
struct prologue_info pi;
|
||||
CORE_ADDR callers_pc, fp;
|
||||
|
||||
/* First, find out who called us */
|
||||
callers_pc = FRAME_SAVED_PC (fi);
|
||||
/* If caller is a call-dummy, then our FP bears no relation to his FP! */
|
||||
fp = xfr30_find_callers_reg (fi, FP_RAW_REGNUM);
|
||||
if (PC_IN_CALL_DUMMY(callers_pc, fp, fp))
|
||||
return fp; /* caller is call-dummy: return oldest value of FP */
|
||||
|
||||
/* Caller is NOT a call-dummy, so everything else should just work.
|
||||
Even if THIS frame is a call-dummy! */
|
||||
pi.pifsrs = NULL;
|
||||
|
||||
xfr30_scan_prologue (callers_pc, &pi);
|
||||
|
||||
if (pi.start_function)
|
||||
return 0; /* Don't chain beyond the start function */
|
||||
|
||||
if (pi.framereg == FP_RAW_REGNUM)
|
||||
return xfr30_find_callers_reg (fi, pi.framereg);
|
||||
|
||||
return fi->frame - pi.frameoffset;
|
||||
}
|
||||
|
||||
/* Function: find_callers_reg
|
||||
Find REGNUM on the stack. Otherwise, it's in an active register.
|
||||
One thing we might want to do here is to check REGNUM against the
|
||||
clobber mask, and somehow flag it as invalid if it isn't saved on
|
||||
the stack somewhere. This would provide a graceful failure mode
|
||||
when trying to get the value of caller-saves registers for an inner
|
||||
frame. */
|
||||
|
||||
CORE_ADDR
|
||||
xfr30_find_callers_reg (fi, regnum)
|
||||
struct frame_info *fi;
|
||||
int regnum;
|
||||
{
|
||||
for (; fi; fi = fi->next)
|
||||
if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
|
||||
return generic_read_register_dummy (fi->pc, fi->frame, regnum);
|
||||
else if (fi->fsr.regs[regnum] != 0)
|
||||
return read_memory_unsigned_integer (fi->fsr.regs[regnum],
|
||||
REGISTER_RAW_SIZE(regnum));
|
||||
|
||||
return read_register (regnum);
|
||||
}
|
||||
|
||||
/* Function: skip_prologue
|
||||
Return the address of the first code past the prologue of the function. */
|
||||
|
||||
CORE_ADDR
|
||||
xfr30_skip_prologue (pc)
|
||||
CORE_ADDR pc;
|
||||
{
|
||||
CORE_ADDR func_addr, func_end;
|
||||
|
||||
/* See what the symbol table says */
|
||||
|
||||
if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
|
||||
{
|
||||
struct symtab_and_line sal;
|
||||
|
||||
sal = find_pc_line (func_addr, 0);
|
||||
|
||||
if (sal.line != 0 && sal.end < func_end)
|
||||
return sal.end;
|
||||
else
|
||||
/* Either there's no line info, or the line after the prologue is after
|
||||
the end of the function. In this case, there probably isn't a
|
||||
prologue. */
|
||||
return pc;
|
||||
}
|
||||
|
||||
/* We can't find the start of this function, so there's nothing we can do. */
|
||||
return pc;
|
||||
}
|
||||
|
||||
/* Function: pop_frame
|
||||
This routine gets called when either the user uses the `return'
|
||||
command, or the call dummy breakpoint gets hit. */
|
||||
|
||||
void
|
||||
xfr30_pop_frame (frame)
|
||||
struct frame_info *frame;
|
||||
{
|
||||
int regnum;
|
||||
|
||||
if (PC_IN_CALL_DUMMY(frame->pc, frame->frame, frame->frame))
|
||||
generic_pop_dummy_frame ();
|
||||
else
|
||||
{
|
||||
write_register (PC_REGNUM, FRAME_SAVED_PC (frame));
|
||||
|
||||
for (regnum = 0; regnum < NUM_REGS; regnum++)
|
||||
if (frame->fsr.regs[regnum] != 0)
|
||||
write_register (regnum,
|
||||
read_memory_unsigned_integer (frame->fsr.regs[regnum],
|
||||
REGISTER_RAW_SIZE(regnum)));
|
||||
|
||||
write_register (SP_REGNUM, FRAME_FP (frame));
|
||||
}
|
||||
|
||||
flush_cached_frames ();
|
||||
}
|
||||
|
||||
/* Function: push_arguments
|
||||
Setup arguments and RP for a call to the target. First four args
|
||||
go in R6->R9, subsequent args go into sp + 16 -> sp + ... Structs
|
||||
are passed by reference. 64 bit quantities (doubles and long
|
||||
longs) may be split between the regs and the stack. When calling a
|
||||
function that returns a struct, a pointer to the struct is passed
|
||||
in as a secret first argument (always in R6).
|
||||
|
||||
Stack space for the args has NOT been allocated: that job is up to us.
|
||||
*/
|
||||
|
||||
CORE_ADDR
|
||||
xfr30_push_arguments (nargs, args, sp, struct_return, struct_addr)
|
||||
int nargs;
|
||||
value_ptr *args;
|
||||
CORE_ADDR sp;
|
||||
unsigned char struct_return;
|
||||
CORE_ADDR struct_addr;
|
||||
{
|
||||
int argreg;
|
||||
int argnum;
|
||||
int len = 0;
|
||||
int stack_offset;
|
||||
|
||||
/* First, just for safety, make sure stack is aligned */
|
||||
sp &= ~3;
|
||||
|
||||
/* Now make space on the stack for the args. */
|
||||
for (argnum = 0; argnum < nargs; argnum++)
|
||||
len += ((TYPE_LENGTH(VALUE_TYPE(args[argnum])) + 3) & ~3);
|
||||
sp -= len; /* possibly over-allocating, but it works... */
|
||||
/* (you might think we could allocate 16 bytes */
|
||||
/* less, but the ABI seems to use it all! ) */
|
||||
argreg = ARG0_REGNUM;
|
||||
|
||||
/* the struct_return pointer occupies the first parameter-passing reg */
|
||||
if (struct_return)
|
||||
write_register (argreg++, struct_addr);
|
||||
|
||||
stack_offset = 16;
|
||||
/* The offset onto the stack at which we will start copying parameters
|
||||
(after the registers are used up) begins at 16 rather than at zero.
|
||||
I don't really know why, that's just the way it seems to work. */
|
||||
|
||||
/* Now load as many as possible of the first arguments into
|
||||
registers, and push the rest onto the stack. There are 16 bytes
|
||||
in four registers available. Loop thru args from first to last. */
|
||||
for (argnum = 0; argnum < nargs; argnum++)
|
||||
{
|
||||
int len;
|
||||
char *val;
|
||||
char valbuf[REGISTER_RAW_SIZE(ARG0_REGNUM)];
|
||||
|
||||
if (TYPE_CODE (VALUE_TYPE (*args)) == TYPE_CODE_STRUCT
|
||||
&& TYPE_LENGTH (VALUE_TYPE (*args)) > 8)
|
||||
{
|
||||
store_address (valbuf, 4, VALUE_ADDRESS (*args));
|
||||
len = 4;
|
||||
val = valbuf;
|
||||
}
|
||||
else
|
||||
{
|
||||
len = TYPE_LENGTH (VALUE_TYPE (*args));
|
||||
val = (char *)VALUE_CONTENTS (*args);
|
||||
}
|
||||
|
||||
while (len > 0)
|
||||
if (argreg <= ARGLAST_REGNUM)
|
||||
{
|
||||
CORE_ADDR regval;
|
||||
|
||||
regval = extract_address (val, REGISTER_RAW_SIZE (argreg));
|
||||
write_register (argreg, regval);
|
||||
|
||||
len -= REGISTER_RAW_SIZE (argreg);
|
||||
val += REGISTER_RAW_SIZE (argreg);
|
||||
argreg++;
|
||||
}
|
||||
else
|
||||
{
|
||||
write_memory (sp + stack_offset, val, 4);
|
||||
|
||||
len -= 4;
|
||||
val += 4;
|
||||
stack_offset += 4;
|
||||
}
|
||||
args++;
|
||||
}
|
||||
return sp;
|
||||
}
|
||||
|
||||
/* Function: push_return_address (pc)
|
||||
Set up the return address for the inferior function call.
|
||||
Needed for targets where we don't actually execute a JSR/BSR instruction */
|
||||
|
||||
CORE_ADDR
|
||||
xfr30_push_return_address (pc, sp)
|
||||
CORE_ADDR pc;
|
||||
CORE_ADDR sp;
|
||||
{
|
||||
write_register (RP_REGNUM, CALL_DUMMY_ADDRESS ());
|
||||
return sp;
|
||||
}
|
||||
|
||||
/* Function: frame_saved_pc
|
||||
Find the caller of this frame. We do this by seeing if RP_REGNUM
|
||||
is saved in the stack anywhere, otherwise we get it from the
|
||||
registers. If the inner frame is a dummy frame, return its PC
|
||||
instead of RP, because that's where "caller" of the dummy-frame
|
||||
will be found. */
|
||||
|
||||
CORE_ADDR
|
||||
xfr30_frame_saved_pc (fi)
|
||||
struct frame_info *fi;
|
||||
{
|
||||
if (PC_IN_CALL_DUMMY(fi->pc, fi->frame, fi->frame))
|
||||
return generic_read_register_dummy(fi->pc, fi->frame, PC_REGNUM);
|
||||
else
|
||||
return xfr30_find_callers_reg (fi, RP_REGNUM);
|
||||
}
|
||||
|
||||
void
|
||||
get_saved_register (raw_buffer, optimized, addrp, frame, regnum, lval)
|
||||
char *raw_buffer;
|
||||
int *optimized;
|
||||
CORE_ADDR *addrp;
|
||||
struct frame_info *frame;
|
||||
int regnum;
|
||||
enum lval_type *lval;
|
||||
{
|
||||
generic_get_saved_register (raw_buffer, optimized, addrp,
|
||||
frame, regnum, lval);
|
||||
}
|
||||
|
||||
|
||||
/* Function: fix_call_dummy
|
||||
Pokes the callee function's address into the CALL_DUMMY assembly stub.
|
||||
Assumes that the CALL_DUMMY looks like this:
|
||||
jarl <offset24>, r31
|
||||
trap
|
||||
*/
|
||||
|
||||
int
|
||||
xfr30_fix_call_dummy (dummy, sp, fun, nargs, args, type, gcc_p)
|
||||
char *dummy;
|
||||
CORE_ADDR sp;
|
||||
CORE_ADDR fun;
|
||||
int nargs;
|
||||
value_ptr *args;
|
||||
struct type *type;
|
||||
int gcc_p;
|
||||
{
|
||||
long offset24;
|
||||
|
||||
offset24 = (long) fun - (long) entry_point_address ();
|
||||
offset24 &= 0x3fffff;
|
||||
offset24 |= 0xff800000; /* jarl <offset24>, r31 */
|
||||
|
||||
store_unsigned_integer ((unsigned int *)&dummy[2], 2, offset24 & 0xffff);
|
||||
store_unsigned_integer ((unsigned int *)&dummy[0], 2, offset24 >> 16);
|
||||
return 0;
|
||||
}
|
||||
|
||||
#endif /* Z.R. */
|
Loading…
Reference in a new issue