diff --git a/gdb/fr30-tdep.c b/gdb/fr30-tdep.c new file mode 100644 index 0000000000..60ac7a9138 --- /dev/null +++ b/gdb/fr30-tdep.c @@ -0,0 +1,723 @@ +/* Target-dependent code for the NEC V850 for GDB, the GNU debugger. + Copyright 1996, Free Software Foundation, Inc. + +This file is part of GDB. + +This program is free software; you can redistribute it and/or modify +it under the terms of the GNU General Public License as published by +the Free Software Foundation; either version 2 of the License, or +(at your option) any later version. + +This program is distributed in the hope that it will be useful, +but WITHOUT ANY WARRANTY; without even the implied warranty of +MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +GNU General Public License for more details. + +You should have received a copy of the GNU General Public License +along with this program; if not, write to the Free Software +Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ + +#include "defs.h" +#include "frame.h" +#include "inferior.h" +#include "obstack.h" +#include "target.h" +#include "value.h" +#include "bfd.h" +#include "gdb_string.h" +#include "gdbcore.h" +#include "symfile.h" + +niy(char *f, int l) +{ + fprintf(stderr, "%s(%d): Not implemented yet\n", f, l); +} +#define NIY() niy(__FILE__, __LINE__) + +void +fr30_pop_frame() +{ + NIY(); +} + +CORE_ADDR +fr30_frame_chain(struct frame_info *fi) +{ + NIY(); +} + +CORE_ADDR +fr30_frame_saved_pc(struct frame_info *fi) +{ + NIY(); +} + +CORE_ADDR +fr30_skip_prologue(CORE_ADDR pc) +{ + NIY(); +} + + +CORE_ADDR +fr30_push_arguments(nargs, args, sp, struct_return, struct_addr) + int nargs; + value_ptr * args; + CORE_ADDR sp; + int struct_return; + CORE_ADDR struct_addr; +{ + int argreg; + int argnum; + int stack_offset; + struct stack_arg { + char *val; + int len; + int offset; + }; + struct stack_arg *stack_args = + (struct stack_arg*)alloca (nargs * sizeof (struct stack_arg)); + int nstack_args = 0; + + + /* Initialize the integer and float register pointers. */ + argreg = FIRST_ARGREG; + + /* the struct_return pointer occupies the first parameter-passing reg */ + if (struct_return) + write_register (argreg++, struct_addr); + +#if(0) + /* The offset onto the stack at which we will start copying parameters + (after the registers are used up) begins at 16 in the old ABI. + This leaves room for the "home" area for register parameters. */ + stack_offset = REGISTER_SIZE * 4; +#else +/* XXX which ABI are we using ? Z.R. */ + stack_offset = 0; +#endif + + /* Process args from left to right. Store as many as allowed in + registers, save the rest to be pushed on the stack */ + for(argnum = 0; argnum < nargs; argnum++) + { + char * val; + value_ptr arg = args[argnum]; + struct type * arg_type = check_typedef (VALUE_TYPE (arg)); + struct type * target_type = TYPE_TARGET_TYPE (arg_type); + int len = TYPE_LENGTH (arg_type); + enum type_code typecode = TYPE_CODE (arg_type); + CORE_ADDR regval; + int newarg; + + val = (char *) VALUE_CONTENTS (arg); + + { + /* Copy the argument to general registers or the stack in + register-sized pieces. Large arguments are split between + registers and stack. */ + while (len > 0) + { + if (argreg <= LAST_ARGREG) + { + int partial_len = len < REGISTER_SIZE ? len : REGISTER_SIZE; + regval = extract_address (val, partial_len); + + /* It's a simple argument being passed in a general + register. */ + write_register (argreg, regval); + argreg++; + len -= partial_len; + val += partial_len; + } + else + { + /* keep for later pushing */ + stack_args[nstack_args].val = val; + stack_args[nstack_args++].len = len; + break; + } + } + } + } + /* now do the real stack pushing, process args right to left */ + while(nstack_args--) + { + sp -= stack_args[nstack_args].len; + write_memory(sp, stack_args[nstack_args].val, + stack_args[nstack_args].len); + } + + /* Return adjusted stack pointer. */ + return sp; +} + +_initialize_fr30_tdep() +{ + extern int print_insn_fr30(bfd_vma, disassemble_info *); + + tm_print_insn = print_insn_fr30; +} + + +#if(0) /* Z.R. for now */ +/* Info gleaned from scanning a function's prologue. */ + +struct pifsr /* Info about one saved reg */ +{ + int framereg; /* Frame reg (SP or FP) */ + int offset; /* Offset from framereg */ + int cur_frameoffset; /* Current frameoffset */ + int reg; /* Saved register number */ +}; + +struct prologue_info +{ + int framereg; + int frameoffset; + int start_function; + struct pifsr *pifsrs; +}; + +static CORE_ADDR xfr30_scan_prologue PARAMS ((CORE_ADDR pc, + struct prologue_info *fs)); + +/* Function: scan_prologue + Scan the prologue of the function that contains PC, and record what + we find in PI. PI->fsr must be zeroed by the called. Returns the + pc after the prologue. Note that the addresses saved in pi->fsr + are actually just frame relative (negative offsets from the frame + pointer). This is because we don't know the actual value of the + frame pointer yet. In some circumstances, the frame pointer can't + be determined till after we have scanned the prologue. */ + +static CORE_ADDR +xfr30_scan_prologue (pc, pi) + CORE_ADDR pc; + struct prologue_info *pi; +{ + CORE_ADDR func_addr, prologue_end, current_pc; + struct pifsr *pifsr, *pifsr_tmp; + int fp_used; + int ep_used; + int reg; + CORE_ADDR save_pc, save_end; + int regsave_func_p; + int current_sp_size; + int r12_tmp; + + /* First, figure out the bounds of the prologue so that we can limit the + search to something reasonable. */ + + if (find_pc_partial_function (pc, NULL, &func_addr, NULL)) + { + struct symtab_and_line sal; + + sal = find_pc_line (func_addr, 0); + + if (func_addr == entry_point_address ()) + pi->start_function = 1; + else + pi->start_function = 0; + +#if 0 + if (sal.line == 0) + prologue_end = pc; + else + prologue_end = sal.end; +#else + prologue_end = pc; +#endif + } + else + { /* We're in the boondocks */ + func_addr = pc - 100; + prologue_end = pc; + } + + prologue_end = min (prologue_end, pc); + + /* Now, search the prologue looking for instructions that setup fp, save + rp, adjust sp and such. We also record the frame offset of any saved + registers. */ + + pi->frameoffset = 0; + pi->framereg = SP_REGNUM; + fp_used = 0; + ep_used = 0; + pifsr = pi->pifsrs; + regsave_func_p = 0; + save_pc = 0; + save_end = 0; + r12_tmp = 0; + +#ifdef DEBUG + printf_filtered ("Current_pc = 0x%.8lx, prologue_end = 0x%.8lx\n", + (long)func_addr, (long)prologue_end); +#endif + + for (current_pc = func_addr; current_pc < prologue_end; current_pc += 2) + { + int insn; + +#ifdef DEBUG + printf_filtered ("0x%.8lx ", (long)current_pc); + (*tm_print_insn) (current_pc, &tm_print_insn_info); +#endif + + insn = read_memory_unsigned_integer (current_pc, 2); + + if ((insn & 0xffc0) == ((10 << 11) | 0x0780) && !regsave_func_p) + { /* jarl ,10 */ + long low_disp = read_memory_unsigned_integer (current_pc + 2, 2) & ~ (long) 1; + long disp = (((((insn & 0x3f) << 16) + low_disp) + & ~ (long) 1) ^ 0x00200000) - 0x00200000; + + save_pc = current_pc; + save_end = prologue_end; + regsave_func_p = 1; + current_pc += disp - 2; + prologue_end = (current_pc + + (2 * 3) /* moves to/from ep */ + + 4 /* addi ,sp,sp */ + + 2 /* jmp [r10] */ + + (2 * 12) /* sst.w to save r2, r20-r29, r31 */ + + 20); /* slop area */ + +#ifdef DEBUG + printf_filtered ("\tfound jarl ,r10, disp = %ld, low_disp = %ld, new pc = 0x%.8lx\n", + disp, low_disp, (long)current_pc + 2); +#endif + continue; + } + else if ((insn & 0xffe0) == 0x0060 && regsave_func_p) + { /* jmp after processing register save function */ + current_pc = save_pc + 2; + prologue_end = save_end; + regsave_func_p = 0; +#ifdef DEBUG + printf_filtered ("\tfound jmp after regsave func"); +#endif + } + else if ((insn & 0x07c0) == 0x0780 /* jarl or jr */ + || (insn & 0xffe0) == 0x0060 /* jmp */ + || (insn & 0x0780) == 0x0580) /* branch */ + { +#ifdef DEBUG + printf_filtered ("\n"); +#endif + break; /* Ran into end of prologue */ + } + + else if ((insn & 0xffe0) == ((SP_REGNUM << 11) | 0x0240)) /* add ,sp */ + pi->frameoffset += ((insn & 0x1f) ^ 0x10) - 0x10; + else if (insn == ((SP_REGNUM << 11) | 0x0600 | SP_REGNUM)) /* addi ,sp,sp */ + pi->frameoffset += read_memory_integer (current_pc + 2, 2); + else if (insn == ((FP_RAW_REGNUM << 11) | 0x0000 | SP_REGNUM)) /* mov sp,fp */ + { + fp_used = 1; + pi->framereg = FP_RAW_REGNUM; + } + + else if (insn == ((R12_REGNUM << 11) | 0x0640 | R0_REGNUM)) /* movhi hi(const),r0,r12 */ + r12_tmp = read_memory_integer (current_pc + 2, 2) << 16; + else if (insn == ((R12_REGNUM << 11) | 0x0620 | R12_REGNUM)) /* movea lo(const),r12,r12 */ + r12_tmp += read_memory_integer (current_pc + 2, 2); + else if (insn == ((SP_REGNUM << 11) | 0x01c0 | R12_REGNUM) && r12_tmp) /* add r12,sp */ + pi->frameoffset = r12_tmp; + else if (insn == ((EP_REGNUM << 11) | 0x0000 | SP_REGNUM)) /* mov sp,ep */ + ep_used = 1; + else if (insn == ((EP_REGNUM << 11) | 0x0000 | R1_REGNUM)) /* mov r1,ep */ + ep_used = 0; + else if (((insn & 0x07ff) == (0x0760 | SP_REGNUM) /* st.w ,[sp] */ + || (fp_used + && (insn & 0x07ff) == (0x0760 | FP_RAW_REGNUM))) /* st.w ,[fp] */ + && pifsr + && (((reg = (insn >> 11) & 0x1f) >= SAVE1_START_REGNUM && reg <= SAVE1_END_REGNUM) + || (reg >= SAVE2_START_REGNUM && reg <= SAVE2_END_REGNUM) + || (reg >= SAVE3_START_REGNUM && reg <= SAVE3_END_REGNUM))) + { + pifsr->reg = reg; + pifsr->offset = read_memory_integer (current_pc + 2, 2) & ~1; + pifsr->cur_frameoffset = pi->frameoffset; +#ifdef DEBUG + printf_filtered ("\tSaved register r%d, offset %d", reg, pifsr->offset); +#endif + pifsr++; + } + + else if (ep_used /* sst.w ,[ep] */ + && ((insn & 0x0781) == 0x0501) + && pifsr + && (((reg = (insn >> 11) & 0x1f) >= SAVE1_START_REGNUM && reg <= SAVE1_END_REGNUM) + || (reg >= SAVE2_START_REGNUM && reg <= SAVE2_END_REGNUM) + || (reg >= SAVE3_START_REGNUM && reg <= SAVE3_END_REGNUM))) + { + pifsr->reg = reg; + pifsr->offset = (insn & 0x007e) << 1; + pifsr->cur_frameoffset = pi->frameoffset; +#ifdef DEBUG + printf_filtered ("\tSaved register r%d, offset %d", reg, pifsr->offset); +#endif + pifsr++; + } + + if ((insn & 0x0780) >= 0x0600) /* Four byte instruction? */ + current_pc += 2; + +#ifdef DEBUG + printf_filtered ("\n"); +#endif + } + + if (pifsr) + pifsr->framereg = 0; /* Tie off last entry */ + + /* Fix up any offsets to the final offset. If a frame pointer was created, use it + instead of the stack pointer. */ + for (pifsr_tmp = pi->pifsrs; pifsr_tmp && pifsr_tmp != pifsr; pifsr_tmp++) + { + pifsr_tmp->offset -= pi->frameoffset - pifsr_tmp->cur_frameoffset; + pifsr_tmp->framereg = pi->framereg; + +#ifdef DEBUG + printf_filtered ("Saved register r%d, offset = %d, framereg = r%d\n", + pifsr_tmp->reg, pifsr_tmp->offset, pifsr_tmp->framereg); +#endif + } + +#ifdef DEBUG + printf_filtered ("Framereg = r%d, frameoffset = %d\n", pi->framereg, pi->frameoffset); +#endif + + return current_pc; +} + +/* Function: init_extra_frame_info + Setup the frame's frame pointer, pc, and frame addresses for saved + registers. Most of the work is done in scan_prologue(). + + Note that when we are called for the last frame (currently active frame), + that fi->pc and fi->frame will already be setup. However, fi->frame will + be valid only if this routine uses FP. For previous frames, fi-frame will + always be correct (since that is derived from xfr30_frame_chain ()). + + We can be called with the PC in the call dummy under two circumstances. + First, during normal backtracing, second, while figuring out the frame + pointer just prior to calling the target function (see run_stack_dummy). */ + +void +xfr30_init_extra_frame_info (fi) + struct frame_info *fi; +{ + struct prologue_info pi; + struct pifsr pifsrs[NUM_REGS + 1], *pifsr; + int reg; + + if (fi->next) + fi->pc = FRAME_SAVED_PC (fi->next); + + memset (fi->fsr.regs, '\000', sizeof fi->fsr.regs); + + /* The call dummy doesn't save any registers on the stack, so we can return + now. */ + if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame)) + return; + + pi.pifsrs = pifsrs; + + xfr30_scan_prologue (fi->pc, &pi); + + if (!fi->next && pi.framereg == SP_REGNUM) + fi->frame = read_register (pi.framereg) - pi.frameoffset; + + for (pifsr = pifsrs; pifsr->framereg; pifsr++) + { + fi->fsr.regs[pifsr->reg] = pifsr->offset + fi->frame; + + if (pifsr->framereg == SP_REGNUM) + fi->fsr.regs[pifsr->reg] += pi.frameoffset; + } +} + +/* Function: frame_chain + Figure out the frame prior to FI. Unfortunately, this involves + scanning the prologue of the caller, which will also be done + shortly by xfr30_init_extra_frame_info. For the dummy frame, we + just return the stack pointer that was in use at the time the + function call was made. */ + +CORE_ADDR +xfr30_frame_chain (fi) + struct frame_info *fi; +{ + struct prologue_info pi; + CORE_ADDR callers_pc, fp; + + /* First, find out who called us */ + callers_pc = FRAME_SAVED_PC (fi); + /* If caller is a call-dummy, then our FP bears no relation to his FP! */ + fp = xfr30_find_callers_reg (fi, FP_RAW_REGNUM); + if (PC_IN_CALL_DUMMY(callers_pc, fp, fp)) + return fp; /* caller is call-dummy: return oldest value of FP */ + + /* Caller is NOT a call-dummy, so everything else should just work. + Even if THIS frame is a call-dummy! */ + pi.pifsrs = NULL; + + xfr30_scan_prologue (callers_pc, &pi); + + if (pi.start_function) + return 0; /* Don't chain beyond the start function */ + + if (pi.framereg == FP_RAW_REGNUM) + return xfr30_find_callers_reg (fi, pi.framereg); + + return fi->frame - pi.frameoffset; +} + +/* Function: find_callers_reg + Find REGNUM on the stack. Otherwise, it's in an active register. + One thing we might want to do here is to check REGNUM against the + clobber mask, and somehow flag it as invalid if it isn't saved on + the stack somewhere. This would provide a graceful failure mode + when trying to get the value of caller-saves registers for an inner + frame. */ + +CORE_ADDR +xfr30_find_callers_reg (fi, regnum) + struct frame_info *fi; + int regnum; +{ + for (; fi; fi = fi->next) + if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame)) + return generic_read_register_dummy (fi->pc, fi->frame, regnum); + else if (fi->fsr.regs[regnum] != 0) + return read_memory_unsigned_integer (fi->fsr.regs[regnum], + REGISTER_RAW_SIZE(regnum)); + + return read_register (regnum); +} + +/* Function: skip_prologue + Return the address of the first code past the prologue of the function. */ + +CORE_ADDR +xfr30_skip_prologue (pc) + CORE_ADDR pc; +{ + CORE_ADDR func_addr, func_end; + + /* See what the symbol table says */ + + if (find_pc_partial_function (pc, NULL, &func_addr, &func_end)) + { + struct symtab_and_line sal; + + sal = find_pc_line (func_addr, 0); + + if (sal.line != 0 && sal.end < func_end) + return sal.end; + else + /* Either there's no line info, or the line after the prologue is after + the end of the function. In this case, there probably isn't a + prologue. */ + return pc; + } + +/* We can't find the start of this function, so there's nothing we can do. */ + return pc; +} + +/* Function: pop_frame + This routine gets called when either the user uses the `return' + command, or the call dummy breakpoint gets hit. */ + +void +xfr30_pop_frame (frame) + struct frame_info *frame; +{ + int regnum; + + if (PC_IN_CALL_DUMMY(frame->pc, frame->frame, frame->frame)) + generic_pop_dummy_frame (); + else + { + write_register (PC_REGNUM, FRAME_SAVED_PC (frame)); + + for (regnum = 0; regnum < NUM_REGS; regnum++) + if (frame->fsr.regs[regnum] != 0) + write_register (regnum, + read_memory_unsigned_integer (frame->fsr.regs[regnum], + REGISTER_RAW_SIZE(regnum))); + + write_register (SP_REGNUM, FRAME_FP (frame)); + } + + flush_cached_frames (); +} + +/* Function: push_arguments + Setup arguments and RP for a call to the target. First four args + go in R6->R9, subsequent args go into sp + 16 -> sp + ... Structs + are passed by reference. 64 bit quantities (doubles and long + longs) may be split between the regs and the stack. When calling a + function that returns a struct, a pointer to the struct is passed + in as a secret first argument (always in R6). + + Stack space for the args has NOT been allocated: that job is up to us. + */ + +CORE_ADDR +xfr30_push_arguments (nargs, args, sp, struct_return, struct_addr) + int nargs; + value_ptr *args; + CORE_ADDR sp; + unsigned char struct_return; + CORE_ADDR struct_addr; +{ + int argreg; + int argnum; + int len = 0; + int stack_offset; + + /* First, just for safety, make sure stack is aligned */ + sp &= ~3; + + /* Now make space on the stack for the args. */ + for (argnum = 0; argnum < nargs; argnum++) + len += ((TYPE_LENGTH(VALUE_TYPE(args[argnum])) + 3) & ~3); + sp -= len; /* possibly over-allocating, but it works... */ + /* (you might think we could allocate 16 bytes */ + /* less, but the ABI seems to use it all! ) */ + argreg = ARG0_REGNUM; + + /* the struct_return pointer occupies the first parameter-passing reg */ + if (struct_return) + write_register (argreg++, struct_addr); + + stack_offset = 16; + /* The offset onto the stack at which we will start copying parameters + (after the registers are used up) begins at 16 rather than at zero. + I don't really know why, that's just the way it seems to work. */ + + /* Now load as many as possible of the first arguments into + registers, and push the rest onto the stack. There are 16 bytes + in four registers available. Loop thru args from first to last. */ + for (argnum = 0; argnum < nargs; argnum++) + { + int len; + char *val; + char valbuf[REGISTER_RAW_SIZE(ARG0_REGNUM)]; + + if (TYPE_CODE (VALUE_TYPE (*args)) == TYPE_CODE_STRUCT + && TYPE_LENGTH (VALUE_TYPE (*args)) > 8) + { + store_address (valbuf, 4, VALUE_ADDRESS (*args)); + len = 4; + val = valbuf; + } + else + { + len = TYPE_LENGTH (VALUE_TYPE (*args)); + val = (char *)VALUE_CONTENTS (*args); + } + + while (len > 0) + if (argreg <= ARGLAST_REGNUM) + { + CORE_ADDR regval; + + regval = extract_address (val, REGISTER_RAW_SIZE (argreg)); + write_register (argreg, regval); + + len -= REGISTER_RAW_SIZE (argreg); + val += REGISTER_RAW_SIZE (argreg); + argreg++; + } + else + { + write_memory (sp + stack_offset, val, 4); + + len -= 4; + val += 4; + stack_offset += 4; + } + args++; + } + return sp; +} + +/* Function: push_return_address (pc) + Set up the return address for the inferior function call. + Needed for targets where we don't actually execute a JSR/BSR instruction */ + +CORE_ADDR +xfr30_push_return_address (pc, sp) + CORE_ADDR pc; + CORE_ADDR sp; +{ + write_register (RP_REGNUM, CALL_DUMMY_ADDRESS ()); + return sp; +} + +/* Function: frame_saved_pc + Find the caller of this frame. We do this by seeing if RP_REGNUM + is saved in the stack anywhere, otherwise we get it from the + registers. If the inner frame is a dummy frame, return its PC + instead of RP, because that's where "caller" of the dummy-frame + will be found. */ + +CORE_ADDR +xfr30_frame_saved_pc (fi) + struct frame_info *fi; +{ + if (PC_IN_CALL_DUMMY(fi->pc, fi->frame, fi->frame)) + return generic_read_register_dummy(fi->pc, fi->frame, PC_REGNUM); + else + return xfr30_find_callers_reg (fi, RP_REGNUM); +} + +void +get_saved_register (raw_buffer, optimized, addrp, frame, regnum, lval) + char *raw_buffer; + int *optimized; + CORE_ADDR *addrp; + struct frame_info *frame; + int regnum; + enum lval_type *lval; +{ + generic_get_saved_register (raw_buffer, optimized, addrp, + frame, regnum, lval); +} + + +/* Function: fix_call_dummy + Pokes the callee function's address into the CALL_DUMMY assembly stub. + Assumes that the CALL_DUMMY looks like this: + jarl , r31 + trap + */ + +int +xfr30_fix_call_dummy (dummy, sp, fun, nargs, args, type, gcc_p) + char *dummy; + CORE_ADDR sp; + CORE_ADDR fun; + int nargs; + value_ptr *args; + struct type *type; + int gcc_p; +{ + long offset24; + + offset24 = (long) fun - (long) entry_point_address (); + offset24 &= 0x3fffff; + offset24 |= 0xff800000; /* jarl , r31 */ + + store_unsigned_integer ((unsigned int *)&dummy[2], 2, offset24 & 0xffff); + store_unsigned_integer ((unsigned int *)&dummy[0], 2, offset24 >> 16); + return 0; +} + +#endif /* Z.R. */