mirror of
https://github.com/qmk/qmk_firmware
synced 2024-11-18 09:55:48 +00:00
b7688590b8
* Change rgblight_get_mode's return type to uint8_t. Since rgblight_get_mode() is just returning rgblight_config_t.mode, it should match rgblight_config_t.mode's type: uint8_t. * Update rgb_matrix_get_mode to return uint8_t.
926 lines
26 KiB
C
926 lines
26 KiB
C
/* Copyright 2016-2017 Yang Liu
|
|
*
|
|
* This program is free software: you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation, either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
#include <math.h>
|
|
#include <string.h>
|
|
#ifdef __AVR__
|
|
#include <avr/eeprom.h>
|
|
#include <avr/interrupt.h>
|
|
#endif
|
|
#include "wait.h"
|
|
#include "progmem.h"
|
|
#include "timer.h"
|
|
#include "rgblight.h"
|
|
#include "debug.h"
|
|
#include "led_tables.h"
|
|
|
|
#ifndef RGBLIGHT_LIMIT_VAL
|
|
#define RGBLIGHT_LIMIT_VAL 255
|
|
#endif
|
|
|
|
#define _RGBM_SINGLE_STATIC(sym) RGBLIGHT_MODE_ ## sym,
|
|
#define _RGBM_SINGLE_DYNAMIC(sym)
|
|
#define _RGBM_MULTI_STATIC(sym) RGBLIGHT_MODE_ ## sym,
|
|
#define _RGBM_MULTI_DYNAMIC(sym)
|
|
#define _RGBM_TMP_STATIC(sym) RGBLIGHT_MODE_ ## sym,
|
|
#define _RGBM_TMP_DYNAMIC(sym)
|
|
static uint8_t static_effect_table [] = {
|
|
#include "rgblight.h"
|
|
};
|
|
|
|
static inline int is_static_effect(uint8_t mode) {
|
|
return memchr(static_effect_table, mode, sizeof(static_effect_table)) != NULL;
|
|
}
|
|
|
|
#define MIN(a,b) (((a)<(b))?(a):(b))
|
|
#define MAX(a,b) (((a)>(b))?(a):(b))
|
|
|
|
#ifdef RGBLIGHT_EFFECT_STATIC_GRADIENT
|
|
__attribute__ ((weak))
|
|
const uint16_t RGBLED_GRADIENT_RANGES[] PROGMEM = {360, 240, 180, 120, 90};
|
|
#endif
|
|
|
|
rgblight_config_t rgblight_config;
|
|
|
|
LED_TYPE led[RGBLED_NUM];
|
|
bool rgblight_timer_enabled = false;
|
|
|
|
void sethsv(uint16_t hue, uint8_t sat, uint8_t val, LED_TYPE *led1) {
|
|
uint8_t r = 0, g = 0, b = 0, base, color;
|
|
|
|
if (val > RGBLIGHT_LIMIT_VAL) {
|
|
val=RGBLIGHT_LIMIT_VAL; // limit the val
|
|
}
|
|
|
|
if (sat == 0) { // Acromatic color (gray). Hue doesn't mind.
|
|
r = val;
|
|
g = val;
|
|
b = val;
|
|
} else {
|
|
base = ((255 - sat) * val) >> 8;
|
|
color = (val - base) * (hue % 60) / 60;
|
|
|
|
switch (hue / 60) {
|
|
case 0:
|
|
r = val;
|
|
g = base + color;
|
|
b = base;
|
|
break;
|
|
case 1:
|
|
r = val - color;
|
|
g = val;
|
|
b = base;
|
|
break;
|
|
case 2:
|
|
r = base;
|
|
g = val;
|
|
b = base + color;
|
|
break;
|
|
case 3:
|
|
r = base;
|
|
g = val - color;
|
|
b = val;
|
|
break;
|
|
case 4:
|
|
r = base + color;
|
|
g = base;
|
|
b = val;
|
|
break;
|
|
case 5:
|
|
r = val;
|
|
g = base;
|
|
b = val - color;
|
|
break;
|
|
}
|
|
}
|
|
r = pgm_read_byte(&CIE1931_CURVE[r]);
|
|
g = pgm_read_byte(&CIE1931_CURVE[g]);
|
|
b = pgm_read_byte(&CIE1931_CURVE[b]);
|
|
|
|
setrgb(r, g, b, led1);
|
|
}
|
|
|
|
void setrgb(uint8_t r, uint8_t g, uint8_t b, LED_TYPE *led1) {
|
|
(*led1).r = r;
|
|
(*led1).g = g;
|
|
(*led1).b = b;
|
|
}
|
|
|
|
|
|
uint32_t eeconfig_read_rgblight(void) {
|
|
#ifdef __AVR__
|
|
return eeprom_read_dword(EECONFIG_RGBLIGHT);
|
|
#else
|
|
return 0;
|
|
#endif
|
|
}
|
|
void eeconfig_update_rgblight(uint32_t val) {
|
|
#ifdef __AVR__
|
|
eeprom_update_dword(EECONFIG_RGBLIGHT, val);
|
|
#endif
|
|
}
|
|
void eeconfig_update_rgblight_default(void) {
|
|
//dprintf("eeconfig_update_rgblight_default\n");
|
|
rgblight_config.enable = 1;
|
|
rgblight_config.mode = RGBLIGHT_MODE_STATIC_LIGHT;
|
|
rgblight_config.hue = 0;
|
|
rgblight_config.sat = 255;
|
|
rgblight_config.val = RGBLIGHT_LIMIT_VAL;
|
|
rgblight_config.speed = 0;
|
|
eeconfig_update_rgblight(rgblight_config.raw);
|
|
}
|
|
void eeconfig_debug_rgblight(void) {
|
|
dprintf("rgblight_config eprom\n");
|
|
dprintf("rgblight_config.enable = %d\n", rgblight_config.enable);
|
|
dprintf("rghlight_config.mode = %d\n", rgblight_config.mode);
|
|
dprintf("rgblight_config.hue = %d\n", rgblight_config.hue);
|
|
dprintf("rgblight_config.sat = %d\n", rgblight_config.sat);
|
|
dprintf("rgblight_config.val = %d\n", rgblight_config.val);
|
|
dprintf("rgblight_config.speed = %d\n", rgblight_config.speed);
|
|
}
|
|
|
|
void rgblight_init(void) {
|
|
debug_enable = 1; // Debug ON!
|
|
dprintf("rgblight_init called.\n");
|
|
dprintf("rgblight_init start!\n");
|
|
if (!eeconfig_is_enabled()) {
|
|
dprintf("rgblight_init eeconfig is not enabled.\n");
|
|
eeconfig_init();
|
|
eeconfig_update_rgblight_default();
|
|
}
|
|
rgblight_config.raw = eeconfig_read_rgblight();
|
|
if (!rgblight_config.mode) {
|
|
dprintf("rgblight_init rgblight_config.mode = 0. Write default values to EEPROM.\n");
|
|
eeconfig_update_rgblight_default();
|
|
rgblight_config.raw = eeconfig_read_rgblight();
|
|
}
|
|
eeconfig_debug_rgblight(); // display current eeprom values
|
|
|
|
#ifdef RGBLIGHT_USE_TIMER
|
|
rgblight_timer_init(); // setup the timer
|
|
#endif
|
|
|
|
if (rgblight_config.enable) {
|
|
rgblight_mode_noeeprom(rgblight_config.mode);
|
|
}
|
|
}
|
|
|
|
void rgblight_update_dword(uint32_t dword) {
|
|
rgblight_config.raw = dword;
|
|
eeconfig_update_rgblight(rgblight_config.raw);
|
|
if (rgblight_config.enable)
|
|
rgblight_mode(rgblight_config.mode);
|
|
else {
|
|
#ifdef RGBLIGHT_USE_TIMER
|
|
rgblight_timer_disable();
|
|
#endif
|
|
rgblight_set();
|
|
}
|
|
}
|
|
|
|
void rgblight_increase(void) {
|
|
uint8_t mode = 0;
|
|
if (rgblight_config.mode < RGBLIGHT_MODES) {
|
|
mode = rgblight_config.mode + 1;
|
|
}
|
|
rgblight_mode(mode);
|
|
}
|
|
void rgblight_decrease(void) {
|
|
uint8_t mode = 0;
|
|
// Mode will never be < 1. If it ever is, eeprom needs to be initialized.
|
|
if (rgblight_config.mode > RGBLIGHT_MODE_STATIC_LIGHT) {
|
|
mode = rgblight_config.mode - 1;
|
|
}
|
|
rgblight_mode(mode);
|
|
}
|
|
void rgblight_step_helper(bool write_to_eeprom) {
|
|
uint8_t mode = 0;
|
|
mode = rgblight_config.mode + 1;
|
|
if (mode > RGBLIGHT_MODES) {
|
|
mode = 1;
|
|
}
|
|
rgblight_mode_eeprom_helper(mode, write_to_eeprom);
|
|
}
|
|
void rgblight_step_noeeprom(void) {
|
|
rgblight_step_helper(false);
|
|
}
|
|
void rgblight_step(void) {
|
|
rgblight_step_helper(true);
|
|
}
|
|
void rgblight_step_reverse_helper(bool write_to_eeprom) {
|
|
uint8_t mode = 0;
|
|
mode = rgblight_config.mode - 1;
|
|
if (mode < 1) {
|
|
mode = RGBLIGHT_MODES;
|
|
}
|
|
rgblight_mode_eeprom_helper(mode, write_to_eeprom);
|
|
}
|
|
void rgblight_step_reverse_noeeprom(void) {
|
|
rgblight_step_reverse_helper(false);
|
|
}
|
|
void rgblight_step_reverse(void) {
|
|
rgblight_step_reverse_helper(true);
|
|
}
|
|
|
|
uint8_t rgblight_get_mode(void) {
|
|
if (!rgblight_config.enable) {
|
|
return false;
|
|
}
|
|
|
|
return rgblight_config.mode;
|
|
}
|
|
|
|
void rgblight_mode_eeprom_helper(uint8_t mode, bool write_to_eeprom) {
|
|
if (!rgblight_config.enable) {
|
|
return;
|
|
}
|
|
if (mode < RGBLIGHT_MODE_STATIC_LIGHT) {
|
|
rgblight_config.mode = RGBLIGHT_MODE_STATIC_LIGHT;
|
|
} else if (mode > RGBLIGHT_MODES) {
|
|
rgblight_config.mode = RGBLIGHT_MODES;
|
|
} else {
|
|
rgblight_config.mode = mode;
|
|
}
|
|
if (write_to_eeprom) {
|
|
eeconfig_update_rgblight(rgblight_config.raw);
|
|
xprintf("rgblight mode [EEPROM]: %u\n", rgblight_config.mode);
|
|
} else {
|
|
xprintf("rgblight mode [NOEEPROM]: %u\n", rgblight_config.mode);
|
|
}
|
|
if( is_static_effect(rgblight_config.mode) ) {
|
|
#ifdef RGBLIGHT_USE_TIMER
|
|
rgblight_timer_disable();
|
|
#endif
|
|
} else {
|
|
#ifdef RGBLIGHT_USE_TIMER
|
|
rgblight_timer_enable();
|
|
#endif
|
|
}
|
|
rgblight_sethsv_noeeprom(rgblight_config.hue, rgblight_config.sat, rgblight_config.val);
|
|
}
|
|
|
|
void rgblight_mode(uint8_t mode) {
|
|
rgblight_mode_eeprom_helper(mode, true);
|
|
}
|
|
|
|
void rgblight_mode_noeeprom(uint8_t mode) {
|
|
rgblight_mode_eeprom_helper(mode, false);
|
|
}
|
|
|
|
|
|
void rgblight_toggle(void) {
|
|
xprintf("rgblight toggle [EEPROM]: rgblight_config.enable = %u\n", !rgblight_config.enable);
|
|
if (rgblight_config.enable) {
|
|
rgblight_disable();
|
|
}
|
|
else {
|
|
rgblight_enable();
|
|
}
|
|
}
|
|
|
|
void rgblight_toggle_noeeprom(void) {
|
|
xprintf("rgblight toggle [NOEEPROM]: rgblight_config.enable = %u\n", !rgblight_config.enable);
|
|
if (rgblight_config.enable) {
|
|
rgblight_disable_noeeprom();
|
|
}
|
|
else {
|
|
rgblight_enable_noeeprom();
|
|
}
|
|
}
|
|
|
|
void rgblight_enable(void) {
|
|
rgblight_config.enable = 1;
|
|
// No need to update EEPROM here. rgblight_mode() will do that, actually
|
|
//eeconfig_update_rgblight(rgblight_config.raw);
|
|
xprintf("rgblight enable [EEPROM]: rgblight_config.enable = %u\n", rgblight_config.enable);
|
|
rgblight_mode(rgblight_config.mode);
|
|
}
|
|
|
|
void rgblight_enable_noeeprom(void) {
|
|
rgblight_config.enable = 1;
|
|
xprintf("rgblight enable [NOEEPROM]: rgblight_config.enable = %u\n", rgblight_config.enable);
|
|
rgblight_mode_noeeprom(rgblight_config.mode);
|
|
}
|
|
|
|
void rgblight_disable(void) {
|
|
rgblight_config.enable = 0;
|
|
eeconfig_update_rgblight(rgblight_config.raw);
|
|
xprintf("rgblight disable [EEPROM]: rgblight_config.enable = %u\n", rgblight_config.enable);
|
|
#ifdef RGBLIGHT_USE_TIMER
|
|
rgblight_timer_disable();
|
|
#endif
|
|
wait_ms(50);
|
|
rgblight_set();
|
|
}
|
|
|
|
void rgblight_disable_noeeprom(void) {
|
|
rgblight_config.enable = 0;
|
|
xprintf("rgblight disable [noEEPROM]: rgblight_config.enable = %u\n", rgblight_config.enable);
|
|
#ifdef RGBLIGHT_USE_TIMER
|
|
rgblight_timer_disable();
|
|
#endif
|
|
_delay_ms(50);
|
|
rgblight_set();
|
|
}
|
|
|
|
|
|
// Deals with the messy details of incrementing an integer
|
|
static uint8_t increment( uint8_t value, uint8_t step, uint8_t min, uint8_t max ) {
|
|
int16_t new_value = value;
|
|
new_value += step;
|
|
return MIN( MAX( new_value, min ), max );
|
|
}
|
|
|
|
static uint8_t decrement( uint8_t value, uint8_t step, uint8_t min, uint8_t max ) {
|
|
int16_t new_value = value;
|
|
new_value -= step;
|
|
return MIN( MAX( new_value, min ), max );
|
|
}
|
|
|
|
void rgblight_increase_hue_helper(bool write_to_eeprom) {
|
|
uint16_t hue;
|
|
hue = (rgblight_config.hue+RGBLIGHT_HUE_STEP) % 360;
|
|
rgblight_sethsv_eeprom_helper(hue, rgblight_config.sat, rgblight_config.val, write_to_eeprom);
|
|
}
|
|
void rgblight_increase_hue_noeeprom(void) {
|
|
rgblight_increase_hue_helper(false);
|
|
}
|
|
void rgblight_increase_hue(void) {
|
|
rgblight_increase_hue_helper(true);
|
|
}
|
|
void rgblight_decrease_hue_helper(bool write_to_eeprom) {
|
|
uint16_t hue;
|
|
if (rgblight_config.hue-RGBLIGHT_HUE_STEP < 0) {
|
|
hue = (rgblight_config.hue + 360 - RGBLIGHT_HUE_STEP) % 360;
|
|
} else {
|
|
hue = (rgblight_config.hue - RGBLIGHT_HUE_STEP) % 360;
|
|
}
|
|
rgblight_sethsv_eeprom_helper(hue, rgblight_config.sat, rgblight_config.val, write_to_eeprom);
|
|
}
|
|
void rgblight_decrease_hue_noeeprom(void) {
|
|
rgblight_decrease_hue_helper(false);
|
|
}
|
|
void rgblight_decrease_hue(void) {
|
|
rgblight_decrease_hue_helper(true);
|
|
}
|
|
void rgblight_increase_sat_helper(bool write_to_eeprom) {
|
|
uint8_t sat;
|
|
if (rgblight_config.sat + RGBLIGHT_SAT_STEP > 255) {
|
|
sat = 255;
|
|
} else {
|
|
sat = rgblight_config.sat + RGBLIGHT_SAT_STEP;
|
|
}
|
|
rgblight_sethsv_eeprom_helper(rgblight_config.hue, sat, rgblight_config.val, write_to_eeprom);
|
|
}
|
|
void rgblight_increase_sat_noeeprom(void) {
|
|
rgblight_increase_sat_helper(false);
|
|
}
|
|
void rgblight_increase_sat(void) {
|
|
rgblight_increase_sat_helper(true);
|
|
}
|
|
void rgblight_decrease_sat_helper(bool write_to_eeprom) {
|
|
uint8_t sat;
|
|
if (rgblight_config.sat - RGBLIGHT_SAT_STEP < 0) {
|
|
sat = 0;
|
|
} else {
|
|
sat = rgblight_config.sat - RGBLIGHT_SAT_STEP;
|
|
}
|
|
rgblight_sethsv_eeprom_helper(rgblight_config.hue, sat, rgblight_config.val, write_to_eeprom);
|
|
}
|
|
void rgblight_decrease_sat_noeeprom(void) {
|
|
rgblight_decrease_sat_helper(false);
|
|
}
|
|
void rgblight_decrease_sat(void) {
|
|
rgblight_decrease_sat_helper(true);
|
|
}
|
|
void rgblight_increase_val_helper(bool write_to_eeprom) {
|
|
uint8_t val;
|
|
if (rgblight_config.val + RGBLIGHT_VAL_STEP > RGBLIGHT_LIMIT_VAL) {
|
|
val = RGBLIGHT_LIMIT_VAL;
|
|
} else {
|
|
val = rgblight_config.val + RGBLIGHT_VAL_STEP;
|
|
}
|
|
rgblight_sethsv_eeprom_helper(rgblight_config.hue, rgblight_config.sat, val, write_to_eeprom);
|
|
}
|
|
void rgblight_increase_val_noeeprom(void) {
|
|
rgblight_increase_val_helper(false);
|
|
}
|
|
void rgblight_increase_val(void) {
|
|
rgblight_increase_val_helper(true);
|
|
}
|
|
void rgblight_decrease_val_helper(bool write_to_eeprom) {
|
|
uint8_t val;
|
|
if (rgblight_config.val - RGBLIGHT_VAL_STEP < 0) {
|
|
val = 0;
|
|
} else {
|
|
val = rgblight_config.val - RGBLIGHT_VAL_STEP;
|
|
}
|
|
rgblight_sethsv_eeprom_helper(rgblight_config.hue, rgblight_config.sat, val, write_to_eeprom);
|
|
}
|
|
void rgblight_decrease_val_noeeprom(void) {
|
|
rgblight_decrease_val_helper(false);
|
|
}
|
|
void rgblight_decrease_val(void) {
|
|
rgblight_decrease_val_helper(true);
|
|
}
|
|
void rgblight_increase_speed(void) {
|
|
rgblight_config.speed = increment( rgblight_config.speed, 1, 0, 3 );
|
|
eeconfig_update_rgblight(rgblight_config.raw);//EECONFIG needs to be increased to support this
|
|
}
|
|
|
|
void rgblight_decrease_speed(void) {
|
|
rgblight_config.speed = decrement( rgblight_config.speed, 1, 0, 3 );
|
|
eeconfig_update_rgblight(rgblight_config.raw);//EECONFIG needs to be increased to support this
|
|
}
|
|
|
|
void rgblight_sethsv_noeeprom_old(uint16_t hue, uint8_t sat, uint8_t val) {
|
|
if (rgblight_config.enable) {
|
|
LED_TYPE tmp_led;
|
|
sethsv(hue, sat, val, &tmp_led);
|
|
// dprintf("rgblight set hue [MEMORY]: %u,%u,%u\n", inmem_config.hue, inmem_config.sat, inmem_config.val);
|
|
rgblight_setrgb(tmp_led.r, tmp_led.g, tmp_led.b);
|
|
}
|
|
}
|
|
|
|
void rgblight_sethsv_eeprom_helper(uint16_t hue, uint8_t sat, uint8_t val, bool write_to_eeprom) {
|
|
if (rgblight_config.enable) {
|
|
if (rgblight_config.mode == RGBLIGHT_MODE_STATIC_LIGHT) {
|
|
// same static color
|
|
LED_TYPE tmp_led;
|
|
sethsv(hue, sat, val, &tmp_led);
|
|
rgblight_setrgb(tmp_led.r, tmp_led.g, tmp_led.b);
|
|
} else {
|
|
// all LEDs in same color
|
|
if ( 1 == 0 ) { //dummy
|
|
}
|
|
#ifdef RGBLIGHT_EFFECT_BREATHING
|
|
else if (rgblight_config.mode >= RGBLIGHT_MODE_BREATHING &&
|
|
rgblight_config.mode <= RGBLIGHT_MODE_BREATHING_end) {
|
|
// breathing mode, ignore the change of val, use in memory value instead
|
|
val = rgblight_config.val;
|
|
}
|
|
#endif
|
|
#ifdef RGBLIGHT_EFFECT_RAINBOW_MOOD
|
|
else if (rgblight_config.mode >= RGBLIGHT_MODE_RAINBOW_MOOD &&
|
|
rgblight_config.mode <= RGBLIGHT_MODE_RAINBOW_MOOD_end) {
|
|
// rainbow mood, ignore the change of hue
|
|
hue = rgblight_config.hue;
|
|
}
|
|
#endif
|
|
#ifdef RGBLIGHT_EFFECT_RAINBOW_SWIRL
|
|
else if (rgblight_config.mode >= RGBLIGHT_MODE_RAINBOW_SWIRL &&
|
|
rgblight_config.mode <= RGBLIGHT_MODE_RAINBOW_SWIRL_end) {
|
|
// rainbow swirl, ignore the change of hue
|
|
hue = rgblight_config.hue;
|
|
}
|
|
#endif
|
|
#ifdef RGBLIGHT_EFFECT_STATIC_GRADIENT
|
|
else if (rgblight_config.mode >= RGBLIGHT_MODE_STATIC_GRADIENT &&
|
|
rgblight_config.mode <= RGBLIGHT_MODE_STATIC_GRADIENT_end) {
|
|
// static gradient
|
|
uint16_t _hue;
|
|
int8_t direction = ((rgblight_config.mode - RGBLIGHT_MODE_STATIC_GRADIENT) % 2) ? -1 : 1;
|
|
uint16_t range = pgm_read_word(&RGBLED_GRADIENT_RANGES[(rgblight_config.mode - RGBLIGHT_MODE_STATIC_GRADIENT) / 2]);
|
|
for (uint8_t i = 0; i < RGBLED_NUM; i++) {
|
|
_hue = (range / RGBLED_NUM * i * direction + hue + 360) % 360;
|
|
dprintf("rgblight rainbow set hsv: %u,%u,%d,%u\n", i, _hue, direction, range);
|
|
sethsv(_hue, sat, val, (LED_TYPE *)&led[i]);
|
|
}
|
|
rgblight_set();
|
|
}
|
|
#endif
|
|
}
|
|
rgblight_config.hue = hue;
|
|
rgblight_config.sat = sat;
|
|
rgblight_config.val = val;
|
|
if (write_to_eeprom) {
|
|
eeconfig_update_rgblight(rgblight_config.raw);
|
|
xprintf("rgblight set hsv [EEPROM]: %u,%u,%u\n", rgblight_config.hue, rgblight_config.sat, rgblight_config.val);
|
|
} else {
|
|
xprintf("rgblight set hsv [NOEEPROM]: %u,%u,%u\n", rgblight_config.hue, rgblight_config.sat, rgblight_config.val);
|
|
}
|
|
}
|
|
}
|
|
|
|
void rgblight_sethsv(uint16_t hue, uint8_t sat, uint8_t val) {
|
|
rgblight_sethsv_eeprom_helper(hue, sat, val, true);
|
|
}
|
|
|
|
void rgblight_sethsv_noeeprom(uint16_t hue, uint8_t sat, uint8_t val) {
|
|
rgblight_sethsv_eeprom_helper(hue, sat, val, false);
|
|
}
|
|
|
|
uint16_t rgblight_get_hue(void) {
|
|
return rgblight_config.hue;
|
|
}
|
|
|
|
uint8_t rgblight_get_sat(void) {
|
|
return rgblight_config.sat;
|
|
}
|
|
|
|
uint8_t rgblight_get_val(void) {
|
|
return rgblight_config.val;
|
|
}
|
|
|
|
void rgblight_setrgb(uint8_t r, uint8_t g, uint8_t b) {
|
|
if (!rgblight_config.enable) { return; }
|
|
|
|
for (uint8_t i = 0; i < RGBLED_NUM; i++) {
|
|
led[i].r = r;
|
|
led[i].g = g;
|
|
led[i].b = b;
|
|
}
|
|
rgblight_set();
|
|
}
|
|
|
|
void rgblight_setrgb_at(uint8_t r, uint8_t g, uint8_t b, uint8_t index) {
|
|
if (!rgblight_config.enable || index >= RGBLED_NUM) { return; }
|
|
|
|
led[index].r = r;
|
|
led[index].g = g;
|
|
led[index].b = b;
|
|
rgblight_set();
|
|
}
|
|
|
|
void rgblight_sethsv_at(uint16_t hue, uint8_t sat, uint8_t val, uint8_t index) {
|
|
if (!rgblight_config.enable) { return; }
|
|
|
|
LED_TYPE tmp_led;
|
|
sethsv(hue, sat, val, &tmp_led);
|
|
rgblight_setrgb_at(tmp_led.r, tmp_led.g, tmp_led.b, index);
|
|
}
|
|
|
|
#ifndef RGBLIGHT_CUSTOM_DRIVER
|
|
void rgblight_set(void) {
|
|
if (rgblight_config.enable) {
|
|
#ifdef RGBW
|
|
ws2812_setleds_rgbw(led, RGBLED_NUM);
|
|
#else
|
|
ws2812_setleds(led, RGBLED_NUM);
|
|
#endif
|
|
} else {
|
|
for (uint8_t i = 0; i < RGBLED_NUM; i++) {
|
|
led[i].r = 0;
|
|
led[i].g = 0;
|
|
led[i].b = 0;
|
|
}
|
|
#ifdef RGBW
|
|
ws2812_setleds_rgbw(led, RGBLED_NUM);
|
|
#else
|
|
ws2812_setleds(led, RGBLED_NUM);
|
|
#endif
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#ifdef RGBLIGHT_USE_TIMER
|
|
|
|
// Animation timer -- AVR Timer3
|
|
void rgblight_timer_init(void) {
|
|
// static uint8_t rgblight_timer_is_init = 0;
|
|
// if (rgblight_timer_is_init) {
|
|
// return;
|
|
// }
|
|
// rgblight_timer_is_init = 1;
|
|
// /* Timer 3 setup */
|
|
// TCCR3B = _BV(WGM32) // CTC mode OCR3A as TOP
|
|
// | _BV(CS30); // Clock selelct: clk/1
|
|
// /* Set TOP value */
|
|
// uint8_t sreg = SREG;
|
|
// cli();
|
|
// OCR3AH = (RGBLED_TIMER_TOP >> 8) & 0xff;
|
|
// OCR3AL = RGBLED_TIMER_TOP & 0xff;
|
|
// SREG = sreg;
|
|
|
|
rgblight_timer_enabled = true;
|
|
}
|
|
void rgblight_timer_enable(void) {
|
|
rgblight_timer_enabled = true;
|
|
dprintf("TIMER3 enabled.\n");
|
|
}
|
|
void rgblight_timer_disable(void) {
|
|
rgblight_timer_enabled = false;
|
|
dprintf("TIMER3 disabled.\n");
|
|
}
|
|
void rgblight_timer_toggle(void) {
|
|
rgblight_timer_enabled ^= rgblight_timer_enabled;
|
|
dprintf("TIMER3 toggled.\n");
|
|
}
|
|
|
|
void rgblight_show_solid_color(uint8_t r, uint8_t g, uint8_t b) {
|
|
rgblight_enable();
|
|
rgblight_mode(RGBLIGHT_MODE_STATIC_LIGHT);
|
|
rgblight_setrgb(r, g, b);
|
|
}
|
|
|
|
void rgblight_task(void) {
|
|
if (rgblight_timer_enabled) {
|
|
// static light mode, do nothing here
|
|
if ( 1 == 0 ) { //dummy
|
|
}
|
|
#ifdef RGBLIGHT_EFFECT_BREATHING
|
|
else if (rgblight_config.mode >= RGBLIGHT_MODE_BREATHING &&
|
|
rgblight_config.mode <= RGBLIGHT_MODE_BREATHING_end) {
|
|
// breathing mode
|
|
rgblight_effect_breathing(rgblight_config.mode - RGBLIGHT_MODE_BREATHING );
|
|
}
|
|
#endif
|
|
#ifdef RGBLIGHT_EFFECT_RAINBOW_MOOD
|
|
else if (rgblight_config.mode >= RGBLIGHT_MODE_RAINBOW_MOOD &&
|
|
rgblight_config.mode <= RGBLIGHT_MODE_RAINBOW_MOOD_end) {
|
|
// rainbow mood mode
|
|
rgblight_effect_rainbow_mood(rgblight_config.mode - RGBLIGHT_MODE_RAINBOW_MOOD);
|
|
}
|
|
#endif
|
|
#ifdef RGBLIGHT_EFFECT_RAINBOW_SWIRL
|
|
else if (rgblight_config.mode >= RGBLIGHT_MODE_RAINBOW_SWIRL &&
|
|
rgblight_config.mode <= RGBLIGHT_MODE_RAINBOW_SWIRL_end) {
|
|
// rainbow swirl mode
|
|
rgblight_effect_rainbow_swirl(rgblight_config.mode - RGBLIGHT_MODE_RAINBOW_SWIRL);
|
|
}
|
|
#endif
|
|
#ifdef RGBLIGHT_EFFECT_SNAKE
|
|
else if (rgblight_config.mode >= RGBLIGHT_MODE_SNAKE &&
|
|
rgblight_config.mode <= RGBLIGHT_MODE_SNAKE_end) {
|
|
// snake mode
|
|
rgblight_effect_snake(rgblight_config.mode - RGBLIGHT_MODE_SNAKE);
|
|
}
|
|
#endif
|
|
#ifdef RGBLIGHT_EFFECT_KNIGHT
|
|
else if (rgblight_config.mode >= RGBLIGHT_MODE_KNIGHT &&
|
|
rgblight_config.mode <= RGBLIGHT_MODE_KNIGHT_end) {
|
|
// knight mode
|
|
rgblight_effect_knight(rgblight_config.mode - RGBLIGHT_MODE_KNIGHT);
|
|
}
|
|
#endif
|
|
#ifdef RGBLIGHT_EFFECT_CHRISTMAS
|
|
else if (rgblight_config.mode == RGBLIGHT_MODE_CHRISTMAS) {
|
|
// christmas mode
|
|
rgblight_effect_christmas();
|
|
}
|
|
#endif
|
|
#ifdef RGBLIGHT_EFFECT_RGB_TEST
|
|
else if (rgblight_config.mode == RGBLIGHT_MODE_RGB_TEST) {
|
|
// RGB test mode
|
|
rgblight_effect_rgbtest();
|
|
}
|
|
#endif
|
|
#ifdef RGBLIGHT_EFFECT_ALTERNATING
|
|
else if (rgblight_config.mode == RGBLIGHT_MODE_ALTERNATING){
|
|
rgblight_effect_alternating();
|
|
}
|
|
#endif
|
|
}
|
|
}
|
|
|
|
#endif /* RGBLIGHT_USE_TIMER */
|
|
|
|
// Effects
|
|
#ifdef RGBLIGHT_EFFECT_BREATHING
|
|
__attribute__ ((weak))
|
|
const uint8_t RGBLED_BREATHING_INTERVALS[] PROGMEM = {30, 20, 10, 5};
|
|
|
|
void rgblight_effect_breathing(uint8_t interval) {
|
|
static uint8_t pos = 0;
|
|
static uint16_t last_timer = 0;
|
|
float val;
|
|
|
|
if (timer_elapsed(last_timer) < pgm_read_byte(&RGBLED_BREATHING_INTERVALS[interval])) {
|
|
return;
|
|
}
|
|
last_timer = timer_read();
|
|
|
|
// http://sean.voisen.org/blog/2011/10/breathing-led-with-arduino/
|
|
val = (exp(sin((pos/255.0)*M_PI)) - RGBLIGHT_EFFECT_BREATHE_CENTER/M_E)*(RGBLIGHT_EFFECT_BREATHE_MAX/(M_E-1/M_E));
|
|
rgblight_sethsv_noeeprom_old(rgblight_config.hue, rgblight_config.sat, val);
|
|
pos = (pos + 1) % 256;
|
|
}
|
|
#endif
|
|
|
|
#ifdef RGBLIGHT_EFFECT_RAINBOW_MOOD
|
|
__attribute__ ((weak))
|
|
const uint8_t RGBLED_RAINBOW_MOOD_INTERVALS[] PROGMEM = {120, 60, 30};
|
|
|
|
void rgblight_effect_rainbow_mood(uint8_t interval) {
|
|
static uint16_t current_hue = 0;
|
|
static uint16_t last_timer = 0;
|
|
|
|
if (timer_elapsed(last_timer) < pgm_read_byte(&RGBLED_RAINBOW_MOOD_INTERVALS[interval])) {
|
|
return;
|
|
}
|
|
last_timer = timer_read();
|
|
rgblight_sethsv_noeeprom_old(current_hue, rgblight_config.sat, rgblight_config.val);
|
|
current_hue = (current_hue + 1) % 360;
|
|
}
|
|
#endif
|
|
|
|
#ifdef RGBLIGHT_EFFECT_RAINBOW_SWIRL
|
|
#ifndef RGBLIGHT_RAINBOW_SWIRL_RANGE
|
|
#define RGBLIGHT_RAINBOW_SWIRL_RANGE 360
|
|
#endif
|
|
|
|
__attribute__ ((weak))
|
|
const uint8_t RGBLED_RAINBOW_SWIRL_INTERVALS[] PROGMEM = {100, 50, 20};
|
|
|
|
void rgblight_effect_rainbow_swirl(uint8_t interval) {
|
|
static uint16_t current_hue = 0;
|
|
static uint16_t last_timer = 0;
|
|
uint16_t hue;
|
|
uint8_t i;
|
|
if (timer_elapsed(last_timer) < pgm_read_byte(&RGBLED_RAINBOW_SWIRL_INTERVALS[interval / 2])) {
|
|
return;
|
|
}
|
|
last_timer = timer_read();
|
|
for (i = 0; i < RGBLED_NUM; i++) {
|
|
hue = (RGBLIGHT_RAINBOW_SWIRL_RANGE / RGBLED_NUM * i + current_hue) % 360;
|
|
sethsv(hue, rgblight_config.sat, rgblight_config.val, (LED_TYPE *)&led[i]);
|
|
}
|
|
rgblight_set();
|
|
|
|
if (interval % 2) {
|
|
current_hue = (current_hue + 1) % 360;
|
|
} else {
|
|
if (current_hue - 1 < 0) {
|
|
current_hue = 359;
|
|
} else {
|
|
current_hue = current_hue - 1;
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#ifdef RGBLIGHT_EFFECT_SNAKE
|
|
__attribute__ ((weak))
|
|
const uint8_t RGBLED_SNAKE_INTERVALS[] PROGMEM = {100, 50, 20};
|
|
|
|
void rgblight_effect_snake(uint8_t interval) {
|
|
static uint8_t pos = 0;
|
|
static uint16_t last_timer = 0;
|
|
uint8_t i, j;
|
|
int8_t k;
|
|
int8_t increment = 1;
|
|
if (interval % 2) {
|
|
increment = -1;
|
|
}
|
|
if (timer_elapsed(last_timer) < pgm_read_byte(&RGBLED_SNAKE_INTERVALS[interval / 2])) {
|
|
return;
|
|
}
|
|
last_timer = timer_read();
|
|
for (i = 0; i < RGBLED_NUM; i++) {
|
|
led[i].r = 0;
|
|
led[i].g = 0;
|
|
led[i].b = 0;
|
|
for (j = 0; j < RGBLIGHT_EFFECT_SNAKE_LENGTH; j++) {
|
|
k = pos + j * increment;
|
|
if (k < 0) {
|
|
k = k + RGBLED_NUM;
|
|
}
|
|
if (i == k) {
|
|
sethsv(rgblight_config.hue, rgblight_config.sat, (uint8_t)(rgblight_config.val*(RGBLIGHT_EFFECT_SNAKE_LENGTH-j)/RGBLIGHT_EFFECT_SNAKE_LENGTH), (LED_TYPE *)&led[i]);
|
|
}
|
|
}
|
|
}
|
|
rgblight_set();
|
|
if (increment == 1) {
|
|
if (pos - 1 < 0) {
|
|
pos = RGBLED_NUM - 1;
|
|
} else {
|
|
pos -= 1;
|
|
}
|
|
} else {
|
|
pos = (pos + 1) % RGBLED_NUM;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#ifdef RGBLIGHT_EFFECT_KNIGHT
|
|
__attribute__ ((weak))
|
|
const uint8_t RGBLED_KNIGHT_INTERVALS[] PROGMEM = {127, 63, 31};
|
|
|
|
void rgblight_effect_knight(uint8_t interval) {
|
|
static uint16_t last_timer = 0;
|
|
if (timer_elapsed(last_timer) < pgm_read_byte(&RGBLED_KNIGHT_INTERVALS[interval])) {
|
|
return;
|
|
}
|
|
last_timer = timer_read();
|
|
|
|
static int8_t low_bound = 0;
|
|
static int8_t high_bound = RGBLIGHT_EFFECT_KNIGHT_LENGTH - 1;
|
|
static int8_t increment = 1;
|
|
uint8_t i, cur;
|
|
|
|
// Set all the LEDs to 0
|
|
for (i = 0; i < RGBLED_NUM; i++) {
|
|
led[i].r = 0;
|
|
led[i].g = 0;
|
|
led[i].b = 0;
|
|
}
|
|
// Determine which LEDs should be lit up
|
|
for (i = 0; i < RGBLIGHT_EFFECT_KNIGHT_LED_NUM; i++) {
|
|
cur = (i + RGBLIGHT_EFFECT_KNIGHT_OFFSET) % RGBLED_NUM;
|
|
|
|
if (i >= low_bound && i <= high_bound) {
|
|
sethsv(rgblight_config.hue, rgblight_config.sat, rgblight_config.val, (LED_TYPE *)&led[cur]);
|
|
} else {
|
|
led[cur].r = 0;
|
|
led[cur].g = 0;
|
|
led[cur].b = 0;
|
|
}
|
|
}
|
|
rgblight_set();
|
|
|
|
// Move from low_bound to high_bound changing the direction we increment each
|
|
// time a boundary is hit.
|
|
low_bound += increment;
|
|
high_bound += increment;
|
|
|
|
if (high_bound <= 0 || low_bound >= RGBLIGHT_EFFECT_KNIGHT_LED_NUM - 1) {
|
|
increment = -increment;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#ifdef RGBLIGHT_EFFECT_CHRISTMAS
|
|
void rgblight_effect_christmas(void) {
|
|
static uint16_t current_offset = 0;
|
|
static uint16_t last_timer = 0;
|
|
uint16_t hue;
|
|
uint8_t i;
|
|
if (timer_elapsed(last_timer) < RGBLIGHT_EFFECT_CHRISTMAS_INTERVAL) {
|
|
return;
|
|
}
|
|
last_timer = timer_read();
|
|
current_offset = (current_offset + 1) % 2;
|
|
for (i = 0; i < RGBLED_NUM; i++) {
|
|
hue = 0 + ((i/RGBLIGHT_EFFECT_CHRISTMAS_STEP + current_offset) % 2) * 120;
|
|
sethsv(hue, rgblight_config.sat, rgblight_config.val, (LED_TYPE *)&led[i]);
|
|
}
|
|
rgblight_set();
|
|
}
|
|
#endif
|
|
|
|
#ifdef RGBLIGHT_EFFECT_RGB_TEST
|
|
__attribute__ ((weak))
|
|
const uint16_t RGBLED_RGBTEST_INTERVALS[] PROGMEM = {1024};
|
|
|
|
void rgblight_effect_rgbtest(void) {
|
|
static uint8_t pos = 0;
|
|
static uint16_t last_timer = 0;
|
|
static uint8_t maxval = 0;
|
|
uint8_t g; uint8_t r; uint8_t b;
|
|
|
|
if (timer_elapsed(last_timer) < pgm_read_word(&RGBLED_RGBTEST_INTERVALS[0])) {
|
|
return;
|
|
}
|
|
|
|
if( maxval == 0 ) {
|
|
LED_TYPE tmp_led;
|
|
sethsv(0, 255, RGBLIGHT_LIMIT_VAL, &tmp_led);
|
|
maxval = tmp_led.r;
|
|
}
|
|
last_timer = timer_read();
|
|
g = r = b = 0;
|
|
switch( pos ) {
|
|
case 0: r = maxval; break;
|
|
case 1: g = maxval; break;
|
|
case 2: b = maxval; break;
|
|
}
|
|
rgblight_setrgb(r, g, b);
|
|
pos = (pos + 1) % 3;
|
|
}
|
|
#endif
|
|
|
|
#ifdef RGBLIGHT_EFFECT_ALTERNATING
|
|
void rgblight_effect_alternating(void){
|
|
static uint16_t last_timer = 0;
|
|
static uint16_t pos = 0;
|
|
if (timer_elapsed(last_timer) < 500) {
|
|
return;
|
|
}
|
|
last_timer = timer_read();
|
|
|
|
for(int i = 0; i<RGBLED_NUM; i++){
|
|
if(i<RGBLED_NUM/2 && pos){
|
|
sethsv(rgblight_config.hue, rgblight_config.sat, rgblight_config.val, (LED_TYPE *)&led[i]);
|
|
}else if (i>=RGBLED_NUM/2 && !pos){
|
|
sethsv(rgblight_config.hue, rgblight_config.sat, rgblight_config.val, (LED_TYPE *)&led[i]);
|
|
}else{
|
|
sethsv(rgblight_config.hue, rgblight_config.sat, 0, (LED_TYPE *)&led[i]);
|
|
}
|
|
}
|
|
rgblight_set();
|
|
pos = (pos + 1) % 2;
|
|
}
|
|
#endif
|