mirror of
https://github.com/qmk/qmk_firmware
synced 2024-11-16 08:56:11 +00:00
15e84f79f1
Co-Authored-By: Drashna Jaelre <drashna@live.com>
470 lines
12 KiB
C
470 lines
12 KiB
C
/* This is a stripped down version of the Georgi engine meant for use with
|
|
* Ginni. As such serial-Steno features are disabled, chords are 16bits and
|
|
* crap is removed where possible
|
|
*
|
|
* Do not use this on anything other then Ginny if you want to be sane
|
|
*/
|
|
#include "engine.h"
|
|
|
|
// Chord state
|
|
C_SIZE cChord = 0; // Current Chord
|
|
int chordIndex = 0; // Keys in previousachord
|
|
C_SIZE pressed = 0; // number of held keys
|
|
C_SIZE chordState[32]; // Full Chord history
|
|
#define QWERBUF 24 // Size of chords to buffer for output
|
|
|
|
bool repeatFlag = false; // Should we repeat?
|
|
C_SIZE pChord = 0; // Previous Chord
|
|
C_SIZE stickyBits = 0; // Or'd with every incoming press
|
|
int pChordIndex = 0; // Keys in previousachord
|
|
C_SIZE pChordState[32]; // Previous chord sate
|
|
|
|
// Key Dicts
|
|
extern const struct keyEntry keyDict[];
|
|
extern const struct comboEntry cmbDict[];
|
|
extern const struct funcEntry funDict[];
|
|
extern const struct stringEntry strDict[];
|
|
extern const struct specialEntry spcDict[];
|
|
extern size_t specialLen;
|
|
extern size_t stringLen;
|
|
extern size_t funcsLen;
|
|
extern size_t keyLen;
|
|
extern size_t comboLen;
|
|
|
|
// Mode state
|
|
enum MODE { STENO = 0, QWERTY, COMMAND };
|
|
enum MODE pMode;
|
|
enum MODE cMode = QWERTY;
|
|
|
|
// Command State
|
|
#define MAX_CMD_BUF 20
|
|
uint8_t CMDLEN = 0;
|
|
uint8_t CMDBUF[MAX_CMD_BUF];
|
|
|
|
// Key Repeat state
|
|
bool inChord = false;
|
|
bool repEngaged = false;
|
|
uint16_t repTimer = 0;
|
|
#define REP_INIT_DELAY 750
|
|
#define REP_DELAY 25
|
|
|
|
// Mousekeys state
|
|
bool inMouse = false;
|
|
int8_t mousePress;
|
|
|
|
// All processing done at chordUp goes through here
|
|
void processKeysUp() {
|
|
// Check for mousekeys, this is release
|
|
#ifdef MOUSEKEY_ENABLE
|
|
if (inMouse) {
|
|
inMouse = false;
|
|
mousekey_off(mousePress);
|
|
mousekey_send();
|
|
}
|
|
#endif
|
|
|
|
// handle command mode
|
|
#ifdef COMMAND_MODE
|
|
if (cChord == COMMAND_MODE) {
|
|
# ifndef NO_DEBUG
|
|
uprintf("COMMAND Toggle\n");
|
|
# endif
|
|
if (cMode != COMMAND) { // Entering Command Mode
|
|
CMDLEN = 0;
|
|
pMode = cMode;
|
|
cMode = COMMAND;
|
|
} else { // Exiting Command Mode
|
|
cMode = pMode;
|
|
|
|
// Press all and release all
|
|
for (int i = 0; i < CMDLEN; i++) {
|
|
register_code(CMDBUF[i]);
|
|
}
|
|
clear_keyboard();
|
|
}
|
|
}
|
|
#endif
|
|
|
|
// Process and reset state
|
|
processChord();
|
|
cChord = pressed;
|
|
inChord = false;
|
|
chordIndex = 0;
|
|
clear_keyboard();
|
|
repEngaged = false;
|
|
for (int i = 0; i < 32; i++) chordState[i] = 0xFFFF;
|
|
}
|
|
|
|
// Update Chord State
|
|
bool process_record_kb(uint16_t keycode, keyrecord_t *record) {
|
|
// Check if we should run at all
|
|
if (process_engine_pre(cChord, keycode, record) == false) return true;
|
|
|
|
// Everything happens in here when steno keys come in.
|
|
// Bail on keyup
|
|
|
|
// Update key repeat timers
|
|
repTimer = timer_read();
|
|
bool pr = record->event.pressed;
|
|
// Switch on the press adding to chord
|
|
switch (keycode) {
|
|
ENGINE_CONFIG
|
|
default:
|
|
return true;
|
|
}
|
|
|
|
// Handle any postprocessing
|
|
|
|
// All keys up, send it!
|
|
if (inChord && !pr && (pressed & IN_CHORD_MASK) == 0) {
|
|
processKeysUp();
|
|
return false;
|
|
}
|
|
if (pressed == 0 && !pr) {
|
|
processKeysUp();
|
|
return false;
|
|
}
|
|
|
|
cChord |= pressed;
|
|
cChord = process_engine_post(cChord, keycode, record);
|
|
inChord = (cChord & IN_CHORD_MASK) != 0;
|
|
|
|
// Store previous state for fastQWER
|
|
if (pr) {
|
|
chordState[chordIndex] = cChord;
|
|
chordIndex++;
|
|
}
|
|
|
|
#ifndef NO_DEBUG
|
|
uprintf("Chord: %u\n", cChord);
|
|
#endif
|
|
return false;
|
|
}
|
|
void matrix_scan_user(void) {
|
|
// We abuse this for early sending of key
|
|
// Key repeat only on QWER/SYMB layers
|
|
if (cMode != QWERTY || !inChord) return;
|
|
|
|
// Check timers
|
|
#ifndef NO_HOLD
|
|
if (!repEngaged && timer_elapsed(repTimer) > REP_INIT_DELAY) {
|
|
// Process Key for report
|
|
processChord();
|
|
|
|
// Send report to host
|
|
send_keyboard_report();
|
|
repEngaged = true;
|
|
}
|
|
#endif
|
|
};
|
|
|
|
// Try and match cChord
|
|
C_SIZE mapKeys(C_SIZE chord, bool lookup) {
|
|
lookup = lookup || repEngaged;
|
|
#ifndef NO_DEBUG
|
|
if (!lookup) uprint("SENT!\n");
|
|
#endif
|
|
// Single key chords
|
|
for (int i = 0; i < keyLen; i++) {
|
|
if (keyDict[i].chord == chord) {
|
|
if (!lookup) SEND(keyDict[i].key);
|
|
return chord;
|
|
}
|
|
}
|
|
|
|
// strings
|
|
for (int i = 0; i < stringLen; i++) {
|
|
struct stringEntry fromPgm;
|
|
memcpy_P(&fromPgm, &strDict[i], sizeof(stringEntry_t));
|
|
if (fromPgm.chord == chord) {
|
|
if (!lookup) {
|
|
if (get_mods() & (MOD_LSFT | MOD_RSFT)) {
|
|
set_mods(get_mods() & ~(MOD_LSFT | MOD_RSFT));
|
|
set_oneshot_mods(MOD_LSFT);
|
|
}
|
|
send_string_P((PGM_P)(fromPgm.str));
|
|
}
|
|
return chord;
|
|
}
|
|
}
|
|
|
|
// combos
|
|
for (int i = 0; i < comboLen; i++) {
|
|
struct comboEntry fromPgm;
|
|
memcpy_P(&fromPgm, &cmbDict[i], sizeof(comboEntry_t));
|
|
if (fromPgm.chord == chord) {
|
|
#ifndef NO_DEBUG
|
|
uprintf("%d found combo\n", i);
|
|
#endif
|
|
|
|
if (!lookup) {
|
|
uint8_t comboKeys[COMBO_MAX];
|
|
memcpy_P(&comboKeys, fromPgm.keys, sizeof(uint8_t) * COMBO_MAX);
|
|
for (int j = 0; j < COMBO_MAX; j++)
|
|
#ifndef NO_DEBUG
|
|
uprintf("Combo [%u]: %u\n", j, comboKeys[j]);
|
|
#endif
|
|
|
|
for (int j = 0; (j < COMBO_MAX) && (comboKeys[j] != COMBO_END); j++) {
|
|
#ifndef NO_DEBUG
|
|
uprintf("Combo [%u]: %u\n", j, comboKeys[j]);
|
|
#endif
|
|
SEND(comboKeys[j]);
|
|
}
|
|
}
|
|
return chord;
|
|
}
|
|
}
|
|
|
|
// functions
|
|
for (int i = 0; i < funcsLen; i++) {
|
|
if (funDict[i].chord == chord) {
|
|
if (!lookup) funDict[i].act();
|
|
return chord;
|
|
}
|
|
}
|
|
|
|
// Special handling
|
|
for (int i = 0; i < specialLen; i++) {
|
|
if (spcDict[i].chord == chord) {
|
|
if (!lookup) {
|
|
uint16_t arg = spcDict[i].arg;
|
|
switch (spcDict[i].action) {
|
|
case SPEC_STICKY:
|
|
SET_STICKY(arg);
|
|
break;
|
|
case SPEC_REPEAT:
|
|
REPEAT();
|
|
break;
|
|
case SPEC_CLICK:
|
|
CLICK_MOUSE((uint8_t)arg);
|
|
break;
|
|
case SPEC_SWITCH:
|
|
SWITCH_LAYER(arg);
|
|
break;
|
|
default:
|
|
SEND_STRING("Invalid Special in Keymap");
|
|
}
|
|
}
|
|
return chord;
|
|
}
|
|
}
|
|
|
|
if ((chord & IN_CHORD_MASK) && (chord & IN_CHORD_MASK) != chord && mapKeys((chord & IN_CHORD_MASK), true) == (chord & IN_CHORD_MASK)) {
|
|
#ifndef NO_DEBUG
|
|
uprintf("Try with ignore mask:%u\n", (chord & IN_CHORD_MASK));
|
|
#endif
|
|
mapKeys((chord & ~IN_CHORD_MASK), lookup);
|
|
mapKeys((chord & IN_CHORD_MASK), lookup);
|
|
return chord;
|
|
}
|
|
#ifndef NO_DEBUG
|
|
uprintf("Reached end\n");
|
|
#endif
|
|
return 0;
|
|
}
|
|
// Traverse the chord history to a given point
|
|
// Returns the mask to use
|
|
void processChord(void) {
|
|
// Save the clean chord state
|
|
C_SIZE savedChord = cChord;
|
|
|
|
// Apply Stick Bits if needed
|
|
if (stickyBits != 0) {
|
|
cChord |= stickyBits;
|
|
for (int i = 0; i <= chordIndex; i++) chordState[i] |= stickyBits;
|
|
}
|
|
|
|
// First we test if a whole chord was passsed
|
|
// If so we just run it handling repeat logic
|
|
if (mapKeys(cChord, true) == cChord) {
|
|
mapKeys(cChord, false);
|
|
// Repeat logic
|
|
if (repeatFlag) {
|
|
#ifndef NO_DEBUG
|
|
uprintf("repeating?\n");
|
|
#endif
|
|
restoreState();
|
|
repeatFlag = false;
|
|
processChord();
|
|
} else {
|
|
saveState(cChord);
|
|
}
|
|
return;
|
|
}
|
|
|
|
C_SIZE next = process_chord_getnext(cChord);
|
|
if (next && next != cChord) {
|
|
#ifndef NO_DEBUG
|
|
uprintf("Trying next candidate: %u\n", next);
|
|
#endif
|
|
if (mapKeys(next, true) == next) {
|
|
mapKeys(next, false);
|
|
// Repeat logic
|
|
if (repeatFlag) {
|
|
#ifndef NO_DEBUG
|
|
uprintf("repeating?\n");
|
|
#endif
|
|
restoreState();
|
|
repeatFlag = false;
|
|
processChord();
|
|
} else {
|
|
saveState(cChord);
|
|
}
|
|
return;
|
|
}
|
|
}
|
|
|
|
#ifndef NO_DEBUG
|
|
uprintf("made it past the maw\n");
|
|
#endif
|
|
|
|
// Iterate through chord picking out the individual
|
|
// and longest chords
|
|
C_SIZE bufChords[QWERBUF];
|
|
int bufLen = 0;
|
|
C_SIZE mask = 0;
|
|
|
|
// We iterate over it multiple times to catch the longest
|
|
// chord. Then that gets addded to the mask and re run.
|
|
while (savedChord != mask) {
|
|
C_SIZE test = 0;
|
|
C_SIZE longestChord = 0;
|
|
|
|
for (int i = 0; i <= chordIndex; i++) {
|
|
cChord = chordState[i] & ~mask;
|
|
if (cChord == 0) continue;
|
|
|
|
test = mapKeys(cChord, true);
|
|
if (test != 0) {
|
|
longestChord = test;
|
|
}
|
|
}
|
|
|
|
mask |= longestChord;
|
|
bufChords[bufLen] = longestChord;
|
|
bufLen++;
|
|
|
|
// That's a loop of sorts, halt processing
|
|
if (bufLen >= QWERBUF) {
|
|
#ifndef NO_DEBUG
|
|
uprintf("looped. exiting");
|
|
#endif
|
|
return;
|
|
}
|
|
}
|
|
|
|
// Now that the buffer is populated, we run it
|
|
for (int i = 0; i < bufLen; i++) {
|
|
cChord = bufChords[i];
|
|
#ifndef NO_DEBUG
|
|
uprintf("sending: %u\n", cChord);
|
|
#endif
|
|
mapKeys(cChord, false);
|
|
}
|
|
|
|
// Save state in case of repeat
|
|
if (!repeatFlag) {
|
|
saveState(savedChord);
|
|
}
|
|
|
|
// Restore cChord for held repeat
|
|
cChord = savedChord;
|
|
return;
|
|
}
|
|
void saveState(C_SIZE cleanChord) {
|
|
pChord = cleanChord;
|
|
pChordIndex = chordIndex;
|
|
for (int i = 0; i < 32; i++) pChordState[i] = chordState[i];
|
|
}
|
|
void restoreState() {
|
|
cChord = pChord;
|
|
chordIndex = pChordIndex;
|
|
for (int i = 0; i < 32; i++) chordState[i] = pChordState[i];
|
|
}
|
|
|
|
// Macros for calling from keymap.c
|
|
void SEND(uint8_t kc) {
|
|
// Send Keycode, Does not work for Quantum Codes
|
|
if (cMode == COMMAND && CMDLEN < MAX_CMD_BUF) {
|
|
#ifndef NO_DEBUG
|
|
uprintf("CMD LEN: %d BUF: %d\n", CMDLEN, MAX_CMD_BUF);
|
|
#endif
|
|
CMDBUF[CMDLEN] = kc;
|
|
CMDLEN++;
|
|
}
|
|
|
|
if (cMode != COMMAND) register_code(kc);
|
|
return;
|
|
}
|
|
void REPEAT(void) {
|
|
if (cMode != QWERTY) return;
|
|
|
|
repeatFlag = true;
|
|
return;
|
|
}
|
|
void SET_STICKY(C_SIZE stick) {
|
|
stickyBits ^= stick;
|
|
return;
|
|
}
|
|
void CLICK_MOUSE(uint8_t kc) {
|
|
#ifdef MOUSEKEY_ENABLE
|
|
mousekey_on(kc);
|
|
mousekey_send();
|
|
|
|
// Store state for later use
|
|
inMouse = true;
|
|
mousePress = kc;
|
|
#endif
|
|
}
|
|
void SWITCH_LAYER(int layer) {
|
|
#ifndef NO_ACTION_LAYER
|
|
if (keymapsCount >= layer) {
|
|
layer_clear();
|
|
layer_on(layer);
|
|
}
|
|
#endif
|
|
}
|
|
uint8_t bitpop_v(C_SIZE val) {
|
|
#if C_SIZE == uint8_t
|
|
return bitpop(val);
|
|
#elif C_SIZE == uint16_t
|
|
return bitpop16(val);
|
|
#elif C_SIZE == uint32_t
|
|
return bitpop32(val);
|
|
#elif C_SIZE == uint64_t
|
|
uint8_t n = 0;
|
|
if (bits >> 32) {
|
|
bits >>= 32;
|
|
n += 32;
|
|
}
|
|
if (bits >> 16) {
|
|
bits >>= 16;
|
|
n += 16;
|
|
}
|
|
if (bits >> 8) {
|
|
bits >>= 8;
|
|
n += 8;
|
|
}
|
|
if (bits >> 4) {
|
|
bits >>= 4;
|
|
n += 4;
|
|
}
|
|
if (bits >> 2) {
|
|
bits >>= 2;
|
|
n += 2;
|
|
}
|
|
if (bits >> 1) {
|
|
bits >>= 1;
|
|
n += 1;
|
|
}
|
|
return n;
|
|
#else
|
|
# error unsupported C_SIZE
|
|
#endif
|
|
}
|
|
|
|
// See engine.h for what these hooks do
|
|
__attribute__((weak)) C_SIZE process_engine_post(C_SIZE cur_chord, uint16_t keycode, keyrecord_t *record) { return cur_chord; }
|
|
__attribute__((weak)) C_SIZE process_engine_pre(C_SIZE cur_chord, uint16_t keycode, keyrecord_t *record) { return true; }
|
|
__attribute__((weak)) C_SIZE process_chord_getnext(C_SIZE cur_chord) { return 0; }
|