opensteno_qmk/keyboards/dichotomy/matrix.c
dr-BEat 3c0ef04390
[Keymap] Dichotomy keymap by beat (#8279)
* Added more led helpers

* Working keymap

* Added new mouse button an made lower layer toggleable

* Small improvement to process_record_user

* Removed extra layer buttons

* Added Numpad to apply layer

* Moved buttons and added toggle for raise button

* Added Menu,PrintScreen and Windowslock buttons, and left handmouse

* Fixed Scroll Buttons

* Turned TAPPING TOGGLE to 2

* Switched Del and Ctrl on left hand

* Added Home Button to Mouse layer

* Fixed led initialization to avoid red led on boot

* Updated formatting to follow guidelines

* Used enums instead of defines and used layer_state_t type

* Added license

* Moved TAPPING settings to keymap config

* Fixed small formatting issue in keymap.c

* Use GPIO Control instead of lowlevel ports
2020-03-06 00:47:52 -08:00

225 lines
7.5 KiB
C
Executable file

/*
Copyright 2012 Jun Wako
Copyright 2014 Jack Humbert
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <stdint.h>
#include <stdbool.h>
#if defined(__AVR__)
#include <avr/io.h>
#endif
#include "wait.h"
#include "print.h"
#include "debug.h"
#include "util.h"
#include "matrix.h"
#include "timer.h"
#include "dichotomy.h"
#include "pointing_device.h"
#include "report.h"
#if (MATRIX_COLS <= 8)
# define print_matrix_header() print("\nr/c 01234567\n")
# define print_matrix_row(row) print_bin_reverse8(matrix_get_row(row))
# define matrix_bitpop(i) bitpop(matrix[i])
# define ROW_SHIFTER ((uint8_t)1)
#elif (MATRIX_COLS <= 16)
# define print_matrix_header() print("\nr/c 0123456789ABCDEF\n")
# define print_matrix_row(row) print_bin_reverse16(matrix_get_row(row))
# define matrix_bitpop(i) bitpop16(matrix[i])
# define ROW_SHIFTER ((uint16_t)1)
#elif (MATRIX_COLS <= 32)
# define print_matrix_header() print("\nr/c 0123456789ABCDEF0123456789ABCDEF\n")
# define print_matrix_row(row) print_bin_reverse32(matrix_get_row(row))
# define matrix_bitpop(i) bitpop32(matrix[i])
# define ROW_SHIFTER ((uint32_t)1)
#endif
#define MAIN_ROWMASK 0xFFF0;
#define LOWER_ROWMASK 0x3FC0;
/* matrix state(1:on, 0:off) */
static matrix_row_t matrix[MATRIX_ROWS];
__attribute__ ((weak))
void matrix_init_quantum(void) {
matrix_init_kb();
}
__attribute__ ((weak))
void matrix_scan_quantum(void) {
matrix_scan_kb();
}
__attribute__ ((weak))
void matrix_init_kb(void) {
matrix_init_user();
}
__attribute__ ((weak))
void matrix_scan_kb(void) {
matrix_scan_user();
}
__attribute__ ((weak))
void matrix_init_user(void) {
}
__attribute__ ((weak))
void matrix_scan_user(void) {
}
inline
uint8_t matrix_rows(void) {
return MATRIX_ROWS;
}
inline
uint8_t matrix_cols(void) {
return MATRIX_COLS;
}
void matrix_init(void) {
matrix_init_quantum();
}
uint8_t matrix_scan(void)
{
SERIAL_UART_INIT();
//xprintf("\r\nTRYING TO SCAN");
uint32_t timeout = 0;
//the s character requests the RF slave to send the matrix
SERIAL_UART_DATA = 's';
//trust the external keystates entirely, erase the last data
uint8_t uart_data[11] = {0};
//there are 10 bytes corresponding to 10 columns, and an end byte
for (uint8_t i = 0; i < 11; i++) {
//wait for the serial data, timeout if it's been too long
//this only happened in testing with a loose wire, but does no
//harm to leave it in here
while(!SERIAL_UART_RXD_PRESENT){
timeout++;
if (timeout > 10000){
xprintf("\r\nTime out in keyboard.");
break;
}
}
uart_data[i] = SERIAL_UART_DATA;
}
//check for the end packet, the key state bytes use the LSBs, so 0xE0
//will only show up here if the correct bytes were recieved
uint8_t checksum = 0x00;
for (uint8_t z=0; z<10; z++){
checksum = checksum^uart_data[z];
}
checksum = checksum ^ (uart_data[10] & 0xF0);
// Smash the checksum from 1 byte into 4 bits
checksum = (checksum ^ ((checksum & 0xF0)>>4)) & 0x0F;
//xprintf("\r\nGOT RAW PACKET: \r\n%d\r\n%d\r\n%d\r\n%d\r\n%d\r\n%d\r\n%d\r\n%d\r\n%d\r\n%d\r\n%d\r\n%d",uart_data[0],uart_data[1],uart_data[2],uart_data[3],uart_data[4],uart_data[5],uart_data[6],uart_data[7],uart_data[8],uart_data[9],uart_data[10],checksum);
if ((uart_data[10] & 0x0F) == checksum) { //this is an arbitrary binary checksum (1001) (that would be 0x9.)
//xprintf("\r\nGOT PACKET: \r\n%d\r\n%d\r\n%d\r\n%d\r\n%d\r\n%d",uart_data[0],uart_data[1],uart_data[2],uart_data[3],uart_data[4],uart_data[5]);
//shifting and transferring the keystates to the QMK matrix variable
//bits 1-12 are row 1, 13-24 are row 2, 25-36 are row 3,
//bits 37-42 are row 4 (only 6 wide, 1-3 are 0, and 10-12 are 0)
//bits 43-48 are row 5 (same as row 4)
/* ASSUMING MSB FIRST */
matrix[0] = (((uint16_t) uart_data[0] << 8) | ((uint16_t) uart_data[1])) & MAIN_ROWMASK;
matrix[1] = ((uint16_t) uart_data[1] << 12) | ((uint16_t) uart_data[2] << 4);
matrix[2] = (((uint16_t) uart_data[3] << 8) | ((uint16_t) uart_data[4])) & MAIN_ROWMASK;
matrix[3] = (((uint16_t) uart_data[4] << 9) | ((uint16_t) uart_data[5] << 1)) & LOWER_ROWMASK;
matrix[4] = (((uint16_t) uart_data[5] << 7) | ((uart_data[10] & 1<<7) ? 1:0) << 13 | ((uart_data[10] & 1<<6) ? 1:0) << 6) & LOWER_ROWMASK;
/* OK, TURNS OUT THAT WAS A BAD ASSUMPTION */
for (uint8_t i = 0; i < MATRIX_ROWS; i++) {
//I've unpacked these into the mirror image of what QMK expects them to be, so...
/*uint8_t halfOne = (matrix[i]>>8);
uint8_t halfTwo = (matrix[i] & 0xFF);
halfOne = ((halfOne * 0x0802LU & 0x22110LU) | (halfOne * 0x8020LU & 0x88440LU)) * 0x10101LU >> 16;
halfTwo = ((halfTwo * 0x0802LU & 0x22110LU) | (halfTwo * 0x8020LU & 0x88440LU)) * 0x10101LU >> 16;
matrix[i] = ((halfTwo<<8) & halfOne);*/
//matrix[i] = ((matrix[i] * 0x0802LU & 0x22110LU) | (matrix[i] * 0x8020LU & 0x88440LU)) * 0x10101LU >> 16;
matrix[i] = bitrev16(matrix[i]);
//bithack mirror! Doesn't make any sense, but works - and efficiently.
}
//if (uart_data[6]!=0 || uart_data[7]!=0){
//if (maxCount<101){
// xprintf("\r\nMouse data: x=%d, y=%d",(int8_t)uart_data[6],(int8_t)uart_data[7]);
//}
report_mouse_t currentReport = {};
//check for the end packet, bytes 1-4 are movement and scroll
//but byte 5 has bits 0-3 for the scroll button state
//(1000 if pressed, 0000 if not) and bits 4-7 are always 1
//We can use this to verify the report sent properly.
currentReport = pointing_device_get_report();
//shifting and transferring the info to the mouse report varaible
//mouseReport.x = 127 max -127 min
currentReport.x = (int8_t) uart_data[6];
//mouseReport.y = 127 max -127 min
currentReport.y = (int8_t) uart_data[7];
//mouseReport.v = 127 max -127 min (scroll vertical)
currentReport.v = (int8_t) uart_data[8];
//mouseReport.h = 127 max -127 min (scroll horizontal)
currentReport.h = (int8_t) uart_data[9];
/*
currentReport.x = 0;
currentReport.y = 0;
currentReport.v = 0;
currentReport.h = 0;*/
pointing_device_set_report(currentReport);
} else {
//xprintf("\r\nRequested packet, data 10 was %d but checksum was %d",(uart_data[10] & 0x0F), (checksum & 0x0F));
}
//matrix_print();
matrix_scan_quantum();
return 1;
}
inline
bool matrix_is_on(uint8_t row, uint8_t col)
{
return (matrix[row] & ((matrix_row_t)1<<col));
}
inline
matrix_row_t matrix_get_row(uint8_t row)
{
return matrix[row];
}
void matrix_print(void)
{
print_matrix_header();
for (uint8_t row = 0; row < MATRIX_ROWS; row++) {
phex(row); print(": ");
print_matrix_row(row);
print("\n");
}
}
uint8_t matrix_key_count(void)
{
uint8_t count = 0;
for (uint8_t i = 0; i < MATRIX_ROWS; i++) {
count += matrix_bitpop(i);
}
return count;
}