mirror of
https://github.com/openstenoproject/qmk
synced 2024-11-14 12:34:39 +00:00
28929ad017
* Eliminate separate slave loop Both master and slave run the standard keyboard_task main loop now. * Refactor i2c/serial specific code Simplify some of the preprocessor mess by using common function names. * Fix missing #endif * Move direct pin mapping support from miniaxe to split_common For boards with more pins than sense--sorry, switches. * Reordering and reformatting only * Don't run matrix_scan_quantum on slave side * Clean up the offset/slaveOffset calculations * Cut undebounced matrix size in half * Refactor debouncing * Minor fixups * Split split_common transport and debounce code into their own files Can now be replaced with custom versions per keyboard using CUSTOM_TRANSPORT = yes and CUSTOM_DEBOUNCE = yes * Refactor debounce for non-split keyboards too * Update handwired/xealous to build using new split_common * Fix debounce breaking basic test * Dodgy method to allow a split kb to only include one of i2c/serial SPLIT_TRANSPORT = serial or SPLIT_TRANSPORT = i2c will include only that driver code in the binary. SPLIT_TRANSPORT = custom (or anything else) will include neither, the keyboard must supply it's own code if SPLIT_TRANSPORT is not defined then the original behaviour (include both avr i2c and serial code) is maintained. This could be better but it would require explicitly updating all the existing split keyboards. * Enable LTO to get lets_split/sockets under the line * Add docs for SPLIT_TRANSPORT, CUSTOM_MATRIX, CUSTOM_DEBOUNCE * Remove avr-specific sei() from split matrix_setup Not needed now that slave doesn't have a separate main loop. Both sides (on avr) call sei() in lufa's main() after exiting keyboard_setup(). * Fix QUANTUM_LIB_SRC references and simplify SPLIT_TRANSPORT. * Add comments and fix formatting.
328 lines
8.4 KiB
C
328 lines
8.4 KiB
C
/*
|
|
Copyright 2012 Jun Wako <wakojun@gmail.com>
|
|
|
|
This program is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 2 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
/*
|
|
* scan matrix
|
|
*/
|
|
#include <stdint.h>
|
|
#include <stdbool.h>
|
|
#include "wait.h"
|
|
#include "util.h"
|
|
#include "matrix.h"
|
|
#include "split_util.h"
|
|
#include "config.h"
|
|
#include "split_flags.h"
|
|
#include "quantum.h"
|
|
#include "debounce.h"
|
|
#include "transport.h"
|
|
|
|
#if (MATRIX_COLS <= 8)
|
|
# define print_matrix_header() print("\nr/c 01234567\n")
|
|
# define print_matrix_row(row) print_bin_reverse8(matrix_get_row(row))
|
|
# define matrix_bitpop(i) bitpop(matrix[i])
|
|
# define ROW_SHIFTER ((uint8_t)1)
|
|
#elif (MATRIX_COLS <= 16)
|
|
# define print_matrix_header() print("\nr/c 0123456789ABCDEF\n")
|
|
# define print_matrix_row(row) print_bin_reverse16(matrix_get_row(row))
|
|
# define matrix_bitpop(i) bitpop16(matrix[i])
|
|
# define ROW_SHIFTER ((uint16_t)1)
|
|
#elif (MATRIX_COLS <= 32)
|
|
# define print_matrix_header() print("\nr/c 0123456789ABCDEF0123456789ABCDEF\n")
|
|
# define print_matrix_row(row) print_bin_reverse32(matrix_get_row(row))
|
|
# define matrix_bitpop(i) bitpop32(matrix[i])
|
|
# define ROW_SHIFTER ((uint32_t)1)
|
|
#endif
|
|
|
|
#define ERROR_DISCONNECT_COUNT 5
|
|
|
|
#define ROWS_PER_HAND (MATRIX_ROWS / 2)
|
|
|
|
#ifdef DIRECT_PINS
|
|
static pin_t direct_pins[MATRIX_ROWS][MATRIX_COLS] = DIRECT_PINS;
|
|
#else
|
|
static pin_t row_pins[MATRIX_ROWS] = MATRIX_ROW_PINS;
|
|
static pin_t col_pins[MATRIX_COLS] = MATRIX_COL_PINS;
|
|
#endif
|
|
|
|
/* matrix state(1:on, 0:off) */
|
|
static matrix_row_t matrix[MATRIX_ROWS];
|
|
static matrix_row_t raw_matrix[ROWS_PER_HAND];
|
|
|
|
// row offsets for each hand
|
|
uint8_t thisHand, thatHand;
|
|
|
|
// user-defined overridable functions
|
|
|
|
__attribute__((weak)) void matrix_init_kb(void) { matrix_init_user(); }
|
|
|
|
__attribute__((weak)) void matrix_scan_kb(void) { matrix_scan_user(); }
|
|
|
|
__attribute__((weak)) void matrix_init_user(void) {}
|
|
|
|
__attribute__((weak)) void matrix_scan_user(void) {}
|
|
|
|
__attribute__((weak)) void matrix_slave_scan_user(void) {}
|
|
|
|
// helper functions
|
|
|
|
inline uint8_t matrix_rows(void) { return MATRIX_ROWS; }
|
|
|
|
inline uint8_t matrix_cols(void) { return MATRIX_COLS; }
|
|
|
|
bool matrix_is_modified(void) {
|
|
if (debounce_active()) return false;
|
|
return true;
|
|
}
|
|
|
|
inline bool matrix_is_on(uint8_t row, uint8_t col) { return (matrix[row] & ((matrix_row_t)1 << col)); }
|
|
|
|
inline matrix_row_t matrix_get_row(uint8_t row) { return matrix[row]; }
|
|
|
|
void matrix_print(void) {
|
|
print_matrix_header();
|
|
|
|
for (uint8_t row = 0; row < MATRIX_ROWS; row++) {
|
|
phex(row);
|
|
print(": ");
|
|
print_matrix_row(row);
|
|
print("\n");
|
|
}
|
|
}
|
|
|
|
uint8_t matrix_key_count(void) {
|
|
uint8_t count = 0;
|
|
for (uint8_t i = 0; i < MATRIX_ROWS; i++) {
|
|
count += matrix_bitpop(i);
|
|
}
|
|
return count;
|
|
}
|
|
|
|
// matrix code
|
|
|
|
#ifdef DIRECT_PINS
|
|
|
|
static void init_pins(void) {
|
|
for (int row = 0; row < MATRIX_ROWS; row++) {
|
|
for (int col = 0; col < MATRIX_COLS; col++) {
|
|
pin_t pin = direct_pins[row][col];
|
|
if (pin != NO_PIN) {
|
|
setPinInputHigh(pin);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static bool read_cols_on_row(matrix_row_t current_matrix[], uint8_t current_row) {
|
|
matrix_row_t last_row_value = current_matrix[current_row];
|
|
current_matrix[current_row] = 0;
|
|
|
|
for (uint8_t col_index = 0; col_index < MATRIX_COLS; col_index++) {
|
|
pin_t pin = direct_pins[current_row][col_index];
|
|
if (pin != NO_PIN) {
|
|
current_matrix[current_row] |= readPin(pin) ? 0 : (ROW_SHIFTER << col_index);
|
|
}
|
|
}
|
|
|
|
return (last_row_value != current_matrix[current_row]);
|
|
}
|
|
|
|
#elif (DIODE_DIRECTION == COL2ROW)
|
|
|
|
static void select_row(uint8_t row) {
|
|
writePinLow(row_pins[row]);
|
|
setPinOutput(row_pins[row]);
|
|
}
|
|
|
|
static void unselect_row(uint8_t row) { setPinInputHigh(row_pins[row]); }
|
|
|
|
static void unselect_rows(void) {
|
|
for (uint8_t x = 0; x < ROWS_PER_HAND; x++) {
|
|
setPinInputHigh(row_pins[x]);
|
|
}
|
|
}
|
|
|
|
static void init_pins(void) {
|
|
unselect_rows();
|
|
for (uint8_t x = 0; x < MATRIX_COLS; x++) {
|
|
setPinInputHigh(col_pins[x]);
|
|
}
|
|
}
|
|
|
|
static bool read_cols_on_row(matrix_row_t current_matrix[], uint8_t current_row) {
|
|
// Store last value of row prior to reading
|
|
matrix_row_t last_row_value = current_matrix[current_row];
|
|
|
|
// Clear data in matrix row
|
|
current_matrix[current_row] = 0;
|
|
|
|
// Select row and wait for row selecton to stabilize
|
|
select_row(current_row);
|
|
wait_us(30);
|
|
|
|
// For each col...
|
|
for (uint8_t col_index = 0; col_index < MATRIX_COLS; col_index++) {
|
|
// Populate the matrix row with the state of the col pin
|
|
current_matrix[current_row] |= readPin(col_pins[col_index]) ? 0 : (ROW_SHIFTER << col_index);
|
|
}
|
|
|
|
// Unselect row
|
|
unselect_row(current_row);
|
|
|
|
return (last_row_value != current_matrix[current_row]);
|
|
}
|
|
|
|
#elif (DIODE_DIRECTION == ROW2COL)
|
|
|
|
static void select_col(uint8_t col) {
|
|
writePinLow(col_pins[col]);
|
|
setPinOutput(col_pins[col]);
|
|
}
|
|
|
|
static void unselect_col(uint8_t col) { setPinInputHigh(col_pins[col]); }
|
|
|
|
static void unselect_cols(void) {
|
|
for (uint8_t x = 0; x < MATRIX_COLS; x++) {
|
|
setPinInputHigh(col_pins[x]);
|
|
}
|
|
}
|
|
|
|
static void init_pins(void) {
|
|
unselect_cols();
|
|
for (uint8_t x = 0; x < ROWS_PER_HAND; x++) {
|
|
setPinInputHigh(row_pins[x]);
|
|
}
|
|
}
|
|
|
|
static bool read_rows_on_col(matrix_row_t current_matrix[], uint8_t current_col) {
|
|
bool matrix_changed = false;
|
|
|
|
// Select col and wait for col selecton to stabilize
|
|
select_col(current_col);
|
|
wait_us(30);
|
|
|
|
// For each row...
|
|
for (uint8_t row_index = 0; row_index < ROWS_PER_HAND; row_index++) {
|
|
// Store last value of row prior to reading
|
|
matrix_row_t last_row_value = current_matrix[row_index];
|
|
|
|
// Check row pin state
|
|
if (readPin(row_pins[row_index])) {
|
|
// Pin HI, clear col bit
|
|
current_matrix[row_index] &= ~(ROW_SHIFTER << current_col);
|
|
} else {
|
|
// Pin LO, set col bit
|
|
current_matrix[row_index] |= (ROW_SHIFTER << current_col);
|
|
}
|
|
|
|
// Determine if the matrix changed state
|
|
if ((last_row_value != current_matrix[row_index]) && !(matrix_changed)) {
|
|
matrix_changed = true;
|
|
}
|
|
}
|
|
|
|
// Unselect col
|
|
unselect_col(current_col);
|
|
|
|
return matrix_changed;
|
|
}
|
|
|
|
#endif
|
|
|
|
void matrix_init(void) {
|
|
debug_enable = true;
|
|
debug_matrix = true;
|
|
debug_mouse = true;
|
|
|
|
// Set pinout for right half if pinout for that half is defined
|
|
if (!isLeftHand) {
|
|
#ifdef MATRIX_ROW_PINS_RIGHT
|
|
const uint8_t row_pins_right[MATRIX_ROWS] = MATRIX_ROW_PINS_RIGHT;
|
|
for (uint8_t i = 0; i < MATRIX_ROWS; i++) {
|
|
row_pins[i] = row_pins_right[i];
|
|
}
|
|
#endif
|
|
#ifdef MATRIX_COL_PINS_RIGHT
|
|
const uint8_t col_pins_right[MATRIX_COLS] = MATRIX_COL_PINS_RIGHT;
|
|
for (uint8_t i = 0; i < MATRIX_COLS; i++) {
|
|
col_pins[i] = col_pins_right[i];
|
|
}
|
|
#endif
|
|
}
|
|
|
|
thisHand = isLeftHand ? 0 : (ROWS_PER_HAND);
|
|
thatHand = ROWS_PER_HAND - thisHand;
|
|
|
|
// initialize key pins
|
|
init_pins();
|
|
|
|
// initialize matrix state: all keys off
|
|
for (uint8_t i = 0; i < MATRIX_ROWS; i++) {
|
|
matrix[i] = 0;
|
|
}
|
|
|
|
debounce_init(ROWS_PER_HAND);
|
|
|
|
matrix_init_quantum();
|
|
}
|
|
|
|
uint8_t _matrix_scan(void) {
|
|
bool changed = false;
|
|
|
|
#if defined(DIRECT_PINS) || (DIODE_DIRECTION == COL2ROW)
|
|
// Set row, read cols
|
|
for (uint8_t current_row = 0; current_row < ROWS_PER_HAND; current_row++) {
|
|
changed |= read_cols_on_row(raw_matrix, current_row);
|
|
}
|
|
#elif (DIODE_DIRECTION == ROW2COL)
|
|
// Set col, read rows
|
|
for (uint8_t current_col = 0; current_col < MATRIX_COLS; current_col++) {
|
|
changed |= read_rows_on_col(raw_matrix, current_col);
|
|
}
|
|
#endif
|
|
|
|
debounce(raw_matrix, matrix + thisHand, ROWS_PER_HAND, changed);
|
|
|
|
return 1;
|
|
}
|
|
|
|
uint8_t matrix_scan(void) {
|
|
uint8_t ret = _matrix_scan();
|
|
|
|
if (is_keyboard_master()) {
|
|
static uint8_t error_count;
|
|
|
|
if (!transport_master(matrix + thatHand)) {
|
|
error_count++;
|
|
|
|
if (error_count > ERROR_DISCONNECT_COUNT) {
|
|
// reset other half if disconnected
|
|
for (int i = 0; i < ROWS_PER_HAND; ++i) {
|
|
matrix[thatHand + i] = 0;
|
|
}
|
|
}
|
|
} else {
|
|
error_count = 0;
|
|
}
|
|
|
|
matrix_scan_quantum();
|
|
} else {
|
|
transport_slave(matrix + thisHand);
|
|
matrix_slave_scan_user();
|
|
}
|
|
|
|
return ret;
|
|
}
|