opensteno_qmk/keyboards/centromere/matrix.c
Tomasz Janeczko 6567b21688
Move more UART-based keyboards to use timeout correctly. (#17329)
Co-authored-by: Tomasz Janeczko <tomasz.j@hey.com>
2022-06-08 14:51:41 -07:00

70 lines
2.2 KiB
C

/*
Copyright 2012 Jun Wako
Copyright 2014 Jack Humbert
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "quantum.h"
#include "matrix.h"
#include "uart.h"
#define UART_MATRIX_RESPONSE_TIMEOUT 10000
void matrix_init_custom(void) {
uart_init(500000);
}
bool matrix_scan_custom(matrix_row_t current_matrix[]) {
uint32_t timeout = 0;
bool changed = false;
//the s character requests the RF remote slave to send the matrix information
uart_write('s');
//trust the external keystates, erase the last set of data
uint8_t uart_data[11] = {0};
//there are 10 bytes corresponding to 1w columns, and an end byte
for (uint8_t i = 0; i < 11; i++) {
//wait for the serial data, timeout if it's been too long
while (!uart_available()) {
timeout++;
if (timeout > UART_MATRIX_RESPONSE_TIMEOUT) {
break;
}
}
if (timeout < UART_MATRIX_RESPONSE_TIMEOUT) {
uart_data[i] = uart_read();
} else {
uart_data[i] = 0x00;
}
}
//check for the end packet, the key state bytes use the LSBs, so 0xE0
//will only show up here if the correct bytes were recieved
if (uart_data[10] == 0xE0) {
//shifting and transferring the keystates to the QMK matrix variable
for (uint8_t i = 0; i < MATRIX_ROWS; i++) {
matrix_row_t current_row = (uint16_t) uart_data[i * 2] | (uint16_t) uart_data[i * 2 + 1] << 5;
if (current_matrix[i] != current_row) {
changed = true;
}
current_matrix[i] = current_row;
}
}
return changed;
}