forked from mirrors/qmk_firmware
9632360caa
* Add ARRAY_SIZE and CEILING utility macros * Apply a coccinelle patch to use ARRAY_SIZE * fix up some straggling items * Fix 'make test:secure' * Enhance ARRAY_SIZE macro to reject acting on pointers The previous definition would not produce a diagnostic for ``` int *p; size_t num_elem = ARRAY_SIZE(p) ``` but the new one will. * explicitly get definition of ARRAY_SIZE * Convert to ARRAY_SIZE when const is involved The following spatch finds additional instances where the array is const and the division is by the size of the type, not the size of the first element: ``` @ rule5a using "empty.iso" @ type T; const T[] E; @@ - (sizeof(E)/sizeof(T)) + ARRAY_SIZE(E) @ rule6a using "empty.iso" @ type T; const T[] E; @@ - sizeof(E)/sizeof(T) + ARRAY_SIZE(E) ``` * New instances of ARRAY_SIZE added since initial spatch run * Use `ARRAY_SIZE` in docs (found by grep) * Manually use ARRAY_SIZE hs_set is expected to be the same size as uint16_t, though it's made of two 8-bit integers * Just like char, sizeof(uint8_t) is guaranteed to be 1 This is at least true on any plausible system where qmk is actually used. Per my understanding it's universally true, assuming that uint8_t exists: https://stackoverflow.com/questions/48655310/can-i-assume-that-sizeofuint8-t-1 * Run qmk-format on core C files touched in this branch Co-authored-by: Stefan Kerkmann <karlk90@pm.me>
825 lines
24 KiB
C
825 lines
24 KiB
C
/*
|
|
Copyright 2019 Ryan Caltabiano <https://github.com/XScorpion2>
|
|
Copyright 2022 Jose Pablo Ramirez <jp.ramangulo@gmail.com>
|
|
This program is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 2 of the License, or
|
|
(at your option) any later version.
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
#include "oled_driver.h"
|
|
#include "oled_driver_spi.h"
|
|
|
|
#include "spi_master.h"
|
|
|
|
#include <quantum.h>
|
|
#include OLED_FONT_H
|
|
#include "timer.h"
|
|
#include "print.h"
|
|
|
|
#include <string.h>
|
|
|
|
#include "progmem.h"
|
|
|
|
#include "keyboard.h"
|
|
|
|
// Used commands from spec sheet: https://cdn-shop.adafruit.com/datasheets/SSD1306.pdf
|
|
// for SH1106: https://www.velleman.eu/downloads/29/infosheets/sh1106_datasheet.pdf
|
|
|
|
// Fundamental Commands
|
|
#define CONTRAST 0x81
|
|
#define DISPLAY_ALL_ON 0xA5
|
|
#define DISPLAY_ALL_ON_RESUME 0xA4
|
|
#define NORMAL_DISPLAY 0xA6
|
|
#define INVERT_DISPLAY 0xA7
|
|
#define DISPLAY_ON 0xAF
|
|
#define DISPLAY_OFF 0xAE
|
|
#define NOP 0xE3
|
|
|
|
// Scrolling Commands
|
|
#define ACTIVATE_SCROLL 0x2F
|
|
#define DEACTIVATE_SCROLL 0x2E
|
|
#define SCROLL_RIGHT 0x26
|
|
#define SCROLL_LEFT 0x27
|
|
#define SCROLL_RIGHT_UP 0x29
|
|
#define SCROLL_LEFT_UP 0x2A
|
|
|
|
// Addressing Setting Commands
|
|
#define MEMORY_MODE 0x20
|
|
#define COLUMN_ADDR 0x21
|
|
#define PAGE_ADDR 0x22
|
|
#define PAM_SETCOLUMN_LSB 0x00
|
|
#define PAM_SETCOLUMN_MSB 0x10
|
|
#define PAM_PAGE_ADDR 0xB0 // 0xb0 -- 0xb7
|
|
|
|
// Hardware Configuration Commands
|
|
#define DISPLAY_START_LINE 0x40
|
|
#define SEGMENT_REMAP 0xA0
|
|
#define SEGMENT_REMAP_INV 0xA1
|
|
#define MULTIPLEX_RATIO 0xA8
|
|
#define COM_SCAN_INC 0xC0
|
|
#define COM_SCAN_DEC 0xC8
|
|
#define DISPLAY_OFFSET 0xD3
|
|
#define COM_PINS 0xDA
|
|
#define COM_PINS_SEQ 0x02
|
|
#define COM_PINS_ALT 0x12
|
|
#define COM_PINS_SEQ_LR 0x22
|
|
#define COM_PINS_ALT_LR 0x32
|
|
|
|
// Timing & Driving Commands
|
|
#define DISPLAY_CLOCK 0xD5
|
|
#define PRE_CHARGE_PERIOD 0xD9
|
|
#define VCOM_DETECT 0xDB
|
|
|
|
// Advance Graphic Commands
|
|
#define FADE_BLINK 0x23
|
|
#define ENABLE_FADE 0x20
|
|
#define ENABLE_BLINK 0x30
|
|
|
|
// Charge Pump Commands
|
|
#define CHARGE_PUMP 0x8D
|
|
|
|
// Misc defines
|
|
#ifndef OLED_BLOCK_COUNT
|
|
# define OLED_BLOCK_COUNT (sizeof(OLED_BLOCK_TYPE) * 8)
|
|
#endif
|
|
#ifndef OLED_BLOCK_SIZE
|
|
# define OLED_BLOCK_SIZE (OLED_MATRIX_SIZE / OLED_BLOCK_COUNT)
|
|
#endif
|
|
|
|
#define OLED_ALL_BLOCKS_MASK (((((OLED_BLOCK_TYPE)1 << (OLED_BLOCK_COUNT - 1)) - 1) << 1) | 1)
|
|
|
|
// spi defines
|
|
#define OLED_STATUS_SUCCESS SPI_STATUS_SUCCESS
|
|
|
|
void oled_spi_init(void) {
|
|
spi_init();
|
|
|
|
setPinOutput(OLED_CS_PIN);
|
|
writePinHigh(OLED_CS_PIN);
|
|
|
|
setPinOutput(OLED_DC_PIN);
|
|
writePinLow(OLED_DC_PIN);
|
|
}
|
|
|
|
void oled_spi_start(void) {
|
|
spi_start(OLED_CS_PIN, false, OLED_SPI_MODE, OLED_SPI_DIVISOR);
|
|
}
|
|
|
|
void oled_spi_stop(void) {
|
|
spi_stop();
|
|
}
|
|
|
|
// Transmit/Write Funcs.
|
|
bool oled_cmd(const uint8_t *data, uint16_t size) {
|
|
oled_spi_start();
|
|
// Command Mode
|
|
writePinLow(OLED_DC_PIN);
|
|
// Send the commands
|
|
if(spi_transmit(data, size) != OLED_STATUS_SUCCESS){
|
|
oled_spi_stop();
|
|
return false;
|
|
}
|
|
oled_spi_stop();
|
|
return true;
|
|
}
|
|
|
|
bool oled_cmd_p(const uint8_t *data, uint16_t size) {
|
|
return oled_cmd(data, size);
|
|
}
|
|
|
|
bool oled_write_reg(const uint8_t *data, uint16_t size)
|
|
{
|
|
oled_spi_start();
|
|
// Command Mode
|
|
writePinHigh(OLED_DC_PIN);
|
|
// Send the commands
|
|
if(spi_transmit(data, size) != OLED_STATUS_SUCCESS){
|
|
oled_spi_stop();
|
|
return false;
|
|
}
|
|
oled_spi_stop();
|
|
return true;
|
|
}
|
|
|
|
#define HAS_FLAGS(bits, flags) ((bits & flags) == flags)
|
|
|
|
// Display buffer's is the same as the OLED memory layout
|
|
// this is so we don't end up with rounding errors with
|
|
// parts of the display unusable or don't get cleared correctly
|
|
// and also allows for drawing & inverting
|
|
uint8_t oled_buffer[OLED_MATRIX_SIZE];
|
|
uint8_t * oled_cursor;
|
|
OLED_BLOCK_TYPE oled_dirty = 0;
|
|
bool oled_initialized = false;
|
|
bool oled_active = false;
|
|
bool oled_scrolling = false;
|
|
bool oled_inverted = false;
|
|
uint8_t oled_brightness = OLED_BRIGHTNESS;
|
|
oled_rotation_t oled_rotation = 0;
|
|
uint8_t oled_rotation_width = 0;
|
|
uint8_t oled_scroll_speed = 0; // this holds the speed after being remapped to ssd1306 internal values
|
|
uint8_t oled_scroll_start = 0;
|
|
uint8_t oled_scroll_end = 7;
|
|
#if OLED_TIMEOUT > 0
|
|
uint32_t oled_timeout;
|
|
#endif
|
|
#if OLED_SCROLL_TIMEOUT > 0
|
|
uint32_t oled_scroll_timeout;
|
|
#endif
|
|
#if OLED_UPDATE_INTERVAL > 0
|
|
uint16_t oled_update_timeout;
|
|
#endif
|
|
|
|
// Flips the rendering bits for a character at the current cursor position
|
|
static void InvertCharacter(uint8_t *cursor) {
|
|
const uint8_t *end = cursor + OLED_FONT_WIDTH;
|
|
while (cursor < end) {
|
|
*cursor = ~(*cursor);
|
|
cursor++;
|
|
}
|
|
}
|
|
|
|
bool oled_init(oled_rotation_t rotation) {
|
|
oled_rotation = oled_init_user(oled_init_kb(rotation));
|
|
if (!HAS_FLAGS(oled_rotation, OLED_ROTATION_90)) {
|
|
oled_rotation_width = OLED_DISPLAY_WIDTH;
|
|
} else {
|
|
oled_rotation_width = OLED_DISPLAY_HEIGHT;
|
|
}
|
|
|
|
oled_spi_init();
|
|
|
|
#ifdef OLED_RST_PIN
|
|
/* Reset device */
|
|
setPinOutput(OLED_RST_PIN);
|
|
writePinLow(OLED_RST_PIN);
|
|
wait_ms(20);
|
|
writePinHigh(OLED_RST_PIN);
|
|
wait_ms(20);
|
|
#endif
|
|
|
|
static const uint8_t PROGMEM display_setup1[] = {
|
|
DISPLAY_OFF,
|
|
DISPLAY_CLOCK,
|
|
0x80,
|
|
MULTIPLEX_RATIO,
|
|
OLED_DISPLAY_HEIGHT - 1,
|
|
DISPLAY_OFFSET,
|
|
0x00,
|
|
DISPLAY_START_LINE | 0x00,
|
|
CHARGE_PUMP,
|
|
0x14,
|
|
#if (OLED_IC != OLED_IC_SH1106)
|
|
// MEMORY_MODE is unsupported on SH1106 (Page Addressing only)
|
|
MEMORY_MODE,
|
|
0x00, // Horizontal addressing mode
|
|
#endif
|
|
};
|
|
|
|
if (!oled_cmd_p(display_setup1, ARRAY_SIZE(display_setup1))) {
|
|
print("oled_init cmd set 1 failed\n");
|
|
return false;
|
|
}
|
|
|
|
if (!HAS_FLAGS(oled_rotation, OLED_ROTATION_180)) {
|
|
static const uint8_t PROGMEM display_normal[] = {SEGMENT_REMAP_INV, COM_SCAN_DEC};
|
|
if (!oled_cmd_p(display_normal, ARRAY_SIZE(display_normal))) {
|
|
print("oled_init cmd normal rotation failed\n");
|
|
return false;
|
|
}
|
|
} else {
|
|
static const uint8_t PROGMEM display_flipped[] = {SEGMENT_REMAP, COM_SCAN_INC};
|
|
if (!oled_cmd_p(display_flipped, ARRAY_SIZE(display_flipped))) {
|
|
print("display_flipped failed\n");
|
|
return false;
|
|
}
|
|
}
|
|
|
|
static const uint8_t PROGMEM display_setup2[] = {COM_PINS, OLED_COM_PINS, CONTRAST, OLED_BRIGHTNESS, PRE_CHARGE_PERIOD, 0xF1, VCOM_DETECT, 0x20, DISPLAY_ALL_ON_RESUME, NORMAL_DISPLAY, DEACTIVATE_SCROLL, DISPLAY_ON};
|
|
if (!oled_cmd_p(display_setup2, ARRAY_SIZE(display_setup2))) {
|
|
print("display_setup2 failed\n");
|
|
return false;
|
|
}
|
|
|
|
#if OLED_TIMEOUT > 0
|
|
oled_timeout = timer_read32() + OLED_TIMEOUT;
|
|
#endif
|
|
#if OLED_SCROLL_TIMEOUT > 0
|
|
oled_scroll_timeout = timer_read32() + OLED_SCROLL_TIMEOUT;
|
|
#endif
|
|
|
|
oled_clear();
|
|
oled_initialized = true;
|
|
oled_active = true;
|
|
oled_scrolling = false;
|
|
return true;
|
|
}
|
|
|
|
__attribute__((weak)) oled_rotation_t oled_init_kb(oled_rotation_t rotation) {
|
|
return rotation;
|
|
}
|
|
__attribute__((weak)) oled_rotation_t oled_init_user(oled_rotation_t rotation) {
|
|
return rotation;
|
|
}
|
|
|
|
void oled_clear(void) {
|
|
memset(oled_buffer, 0, sizeof(oled_buffer));
|
|
oled_cursor = &oled_buffer[0];
|
|
oled_dirty = OLED_ALL_BLOCKS_MASK;
|
|
}
|
|
|
|
static void calc_bounds(uint8_t update_start, uint8_t *cmd_array) {
|
|
// Calculate commands to set memory addressing bounds.
|
|
uint8_t start_page = OLED_BLOCK_SIZE * update_start / OLED_DISPLAY_WIDTH;
|
|
uint8_t start_column = OLED_BLOCK_SIZE * update_start % OLED_DISPLAY_WIDTH;
|
|
#if (OLED_IC == OLED_IC_SH1106)
|
|
// Commands for Page Addressing Mode. Sets starting page and column; has no end bound.
|
|
// Column value must be split into high and low nybble and sent as two commands.
|
|
cmd_array[0] = PAM_PAGE_ADDR | start_page;
|
|
cmd_array[1] = PAM_SETCOLUMN_LSB | ((OLED_COLUMN_OFFSET + start_column) & 0x0f);
|
|
cmd_array[2] = PAM_SETCOLUMN_MSB | ((OLED_COLUMN_OFFSET + start_column) >> 4 & 0x0f);
|
|
cmd_array[3] = NOP;
|
|
cmd_array[4] = NOP;
|
|
cmd_array[5] = NOP;
|
|
#else
|
|
// Commands for use in Horizontal Addressing mode.
|
|
cmd_array[1] = start_column;
|
|
cmd_array[4] = start_page;
|
|
cmd_array[2] = (OLED_BLOCK_SIZE + OLED_DISPLAY_WIDTH - 1) % OLED_DISPLAY_WIDTH + cmd_array[1];
|
|
cmd_array[5] = (OLED_BLOCK_SIZE + OLED_DISPLAY_WIDTH - 1) / OLED_DISPLAY_WIDTH - 1;
|
|
#endif
|
|
}
|
|
|
|
static void calc_bounds_90(uint8_t update_start, uint8_t *cmd_array) {
|
|
cmd_array[1] = OLED_BLOCK_SIZE * update_start / OLED_DISPLAY_HEIGHT * 8;
|
|
cmd_array[4] = OLED_BLOCK_SIZE * update_start % OLED_DISPLAY_HEIGHT;
|
|
cmd_array[2] = (OLED_BLOCK_SIZE + OLED_DISPLAY_HEIGHT - 1) / OLED_DISPLAY_HEIGHT * 8 - 1 + cmd_array[1];
|
|
;
|
|
cmd_array[5] = (OLED_BLOCK_SIZE + OLED_DISPLAY_HEIGHT - 1) % OLED_DISPLAY_HEIGHT / 8;
|
|
}
|
|
|
|
uint8_t crot(uint8_t a, int8_t n) {
|
|
const uint8_t mask = 0x7;
|
|
n &= mask;
|
|
return a << n | a >> (-n & mask);
|
|
}
|
|
|
|
static void rotate_90(const uint8_t *src, uint8_t *dest) {
|
|
for (uint8_t i = 0, shift = 7; i < 8; ++i, --shift) {
|
|
uint8_t selector = (1 << i);
|
|
for (uint8_t j = 0; j < 8; ++j) {
|
|
dest[i] |= crot(src[j] & selector, shift - (int8_t)j);
|
|
}
|
|
}
|
|
}
|
|
|
|
void oled_render(void) {
|
|
if (!oled_initialized) {
|
|
return;
|
|
}
|
|
|
|
// Do we have work to do?
|
|
oled_dirty &= OLED_ALL_BLOCKS_MASK;
|
|
if (!oled_dirty || oled_scrolling) {
|
|
return;
|
|
}
|
|
|
|
// Find first dirty block
|
|
uint8_t update_start = 0;
|
|
while (!(oled_dirty & ((OLED_BLOCK_TYPE)1 << update_start))) {
|
|
++update_start;
|
|
}
|
|
|
|
// Set column & page position
|
|
static uint8_t display_start[] = {COLUMN_ADDR, 0, OLED_DISPLAY_WIDTH - 1, PAGE_ADDR, 0, OLED_DISPLAY_HEIGHT / 8 - 1};
|
|
if (!HAS_FLAGS(oled_rotation, OLED_ROTATION_90)) {
|
|
calc_bounds(update_start, display_start);
|
|
} else {
|
|
calc_bounds_90(update_start, display_start);
|
|
}
|
|
|
|
// Send column & page position
|
|
if (!oled_cmd(display_start, ARRAY_SIZE(display_start))) {
|
|
print("oled_render offset command failed\n");
|
|
return;
|
|
}
|
|
|
|
if (!HAS_FLAGS(oled_rotation, OLED_ROTATION_90)) {
|
|
// Send render data chunk as is
|
|
if (!oled_write_reg(&oled_buffer[OLED_BLOCK_SIZE * update_start], OLED_BLOCK_SIZE)) {
|
|
print("oled_render data failed\n");
|
|
return;
|
|
}
|
|
} else {
|
|
// Rotate the render chunks
|
|
const static uint8_t source_map[] = OLED_SOURCE_MAP;
|
|
const static uint8_t target_map[] = OLED_TARGET_MAP;
|
|
|
|
static uint8_t temp_buffer[OLED_BLOCK_SIZE];
|
|
memset(temp_buffer, 0, sizeof(temp_buffer));
|
|
for (uint8_t i = 0; i < sizeof(source_map); ++i) {
|
|
rotate_90(&oled_buffer[OLED_BLOCK_SIZE * update_start + source_map[i]], &temp_buffer[target_map[i]]);
|
|
}
|
|
|
|
// Send render data chunk after rotating
|
|
if (!oled_write_reg(temp_buffer, OLED_BLOCK_SIZE)) {
|
|
print("oled_render90 data failed\n");
|
|
return;
|
|
}
|
|
}
|
|
|
|
// Turn on display if it is off
|
|
oled_on();
|
|
|
|
// Clear dirty flag
|
|
oled_dirty &= ~((OLED_BLOCK_TYPE)1 << update_start);
|
|
}
|
|
|
|
void oled_set_cursor(uint8_t col, uint8_t line) {
|
|
uint16_t index = line * oled_rotation_width + col * OLED_FONT_WIDTH;
|
|
|
|
// Out of bounds?
|
|
if (index >= OLED_MATRIX_SIZE) {
|
|
index = 0;
|
|
}
|
|
|
|
oled_cursor = &oled_buffer[index];
|
|
}
|
|
|
|
void oled_advance_page(bool clearPageRemainder) {
|
|
uint16_t index = oled_cursor - &oled_buffer[0];
|
|
uint8_t remaining = oled_rotation_width - (index % oled_rotation_width);
|
|
|
|
if (clearPageRemainder) {
|
|
// Remaining Char count
|
|
remaining = remaining / OLED_FONT_WIDTH;
|
|
|
|
// Write empty character until next line
|
|
while (remaining--)
|
|
oled_write_char(' ', false);
|
|
} else {
|
|
// Next page index out of bounds?
|
|
if (index + remaining >= OLED_MATRIX_SIZE) {
|
|
index = 0;
|
|
remaining = 0;
|
|
}
|
|
|
|
oled_cursor = &oled_buffer[index + remaining];
|
|
}
|
|
}
|
|
|
|
void oled_advance_char(void) {
|
|
uint16_t nextIndex = oled_cursor - &oled_buffer[0] + OLED_FONT_WIDTH;
|
|
uint8_t remainingSpace = oled_rotation_width - (nextIndex % oled_rotation_width);
|
|
|
|
// Do we have enough space on the current line for the next character
|
|
if (remainingSpace < OLED_FONT_WIDTH) {
|
|
nextIndex += remainingSpace;
|
|
}
|
|
|
|
// Did we go out of bounds
|
|
if (nextIndex >= OLED_MATRIX_SIZE) {
|
|
nextIndex = 0;
|
|
}
|
|
|
|
// Update cursor position
|
|
oled_cursor = &oled_buffer[nextIndex];
|
|
}
|
|
|
|
// Main handler that writes character data to the display buffer
|
|
void oled_write_char(const char data, bool invert) {
|
|
// Advance to the next line if newline
|
|
if (data == '\n') {
|
|
// Old source wrote ' ' until end of line...
|
|
oled_advance_page(true);
|
|
return;
|
|
}
|
|
|
|
if (data == '\r') {
|
|
oled_advance_page(false);
|
|
return;
|
|
}
|
|
|
|
// copy the current render buffer to check for dirty after
|
|
static uint8_t oled_temp_buffer[OLED_FONT_WIDTH];
|
|
memcpy(&oled_temp_buffer, oled_cursor, OLED_FONT_WIDTH);
|
|
|
|
_Static_assert(sizeof(font) >= ((OLED_FONT_END + 1 - OLED_FONT_START) * OLED_FONT_WIDTH), "OLED_FONT_END references outside array");
|
|
|
|
// set the reder buffer data
|
|
uint8_t cast_data = (uint8_t)data; // font based on unsigned type for index
|
|
if (cast_data < OLED_FONT_START || cast_data > OLED_FONT_END) {
|
|
memset(oled_cursor, 0x00, OLED_FONT_WIDTH);
|
|
} else {
|
|
const uint8_t *glyph = &font[(cast_data - OLED_FONT_START) * OLED_FONT_WIDTH];
|
|
memcpy_P(oled_cursor, glyph, OLED_FONT_WIDTH);
|
|
}
|
|
|
|
// Invert if needed
|
|
if (invert) {
|
|
InvertCharacter(oled_cursor);
|
|
}
|
|
|
|
// Dirty check
|
|
if (memcmp(&oled_temp_buffer, oled_cursor, OLED_FONT_WIDTH)) {
|
|
uint16_t index = oled_cursor - &oled_buffer[0];
|
|
oled_dirty |= ((OLED_BLOCK_TYPE)1 << (index / OLED_BLOCK_SIZE));
|
|
// Edgecase check if the written data spans the 2 chunks
|
|
oled_dirty |= ((OLED_BLOCK_TYPE)1 << ((index + OLED_FONT_WIDTH - 1) / OLED_BLOCK_SIZE));
|
|
}
|
|
|
|
// Finally move to the next char
|
|
oled_advance_char();
|
|
}
|
|
|
|
void oled_write(const char *data, bool invert) {
|
|
const char *end = data + strlen(data);
|
|
while (data < end) {
|
|
oled_write_char(*data, invert);
|
|
data++;
|
|
}
|
|
}
|
|
|
|
void oled_write_ln(const char *data, bool invert) {
|
|
oled_write(data, invert);
|
|
oled_advance_page(true);
|
|
}
|
|
|
|
void oled_pan(bool left) {
|
|
uint16_t i = 0;
|
|
for (uint16_t y = 0; y < OLED_DISPLAY_HEIGHT / 8; y++) {
|
|
if (left) {
|
|
for (uint16_t x = 0; x < OLED_DISPLAY_WIDTH - 1; x++) {
|
|
i = y * OLED_DISPLAY_WIDTH + x;
|
|
oled_buffer[i] = oled_buffer[i + 1];
|
|
}
|
|
} else {
|
|
for (uint16_t x = OLED_DISPLAY_WIDTH - 1; x > 0; x--) {
|
|
i = y * OLED_DISPLAY_WIDTH + x;
|
|
oled_buffer[i] = oled_buffer[i - 1];
|
|
}
|
|
}
|
|
}
|
|
oled_dirty = OLED_ALL_BLOCKS_MASK;
|
|
}
|
|
|
|
oled_buffer_reader_t oled_read_raw(uint16_t start_index) {
|
|
if (start_index > OLED_MATRIX_SIZE) start_index = OLED_MATRIX_SIZE;
|
|
oled_buffer_reader_t ret_reader;
|
|
ret_reader.current_element = &oled_buffer[start_index];
|
|
ret_reader.remaining_element_count = OLED_MATRIX_SIZE - start_index;
|
|
return ret_reader;
|
|
}
|
|
|
|
void oled_write_raw_byte(const char data, uint16_t index) {
|
|
if (index > OLED_MATRIX_SIZE) index = OLED_MATRIX_SIZE;
|
|
if (oled_buffer[index] == data) return;
|
|
oled_buffer[index] = data;
|
|
oled_dirty |= ((OLED_BLOCK_TYPE)1 << (index / OLED_BLOCK_SIZE));
|
|
}
|
|
|
|
void oled_write_raw(const char *data, uint16_t size) {
|
|
uint16_t cursor_start_index = oled_cursor - &oled_buffer[0];
|
|
if ((size + cursor_start_index) > OLED_MATRIX_SIZE) size = OLED_MATRIX_SIZE - cursor_start_index;
|
|
for (uint16_t i = cursor_start_index; i < cursor_start_index + size; i++) {
|
|
uint8_t c = *data++;
|
|
if (oled_buffer[i] == c) continue;
|
|
oled_buffer[i] = c;
|
|
oled_dirty |= ((OLED_BLOCK_TYPE)1 << (i / OLED_BLOCK_SIZE));
|
|
}
|
|
}
|
|
|
|
void oled_write_pixel(uint8_t x, uint8_t y, bool on) {
|
|
if (x >= oled_rotation_width) {
|
|
return;
|
|
}
|
|
uint16_t index = x + (y / 8) * oled_rotation_width;
|
|
if (index >= OLED_MATRIX_SIZE) {
|
|
return;
|
|
}
|
|
uint8_t data = oled_buffer[index];
|
|
if (on) {
|
|
data |= (1 << (y % 8));
|
|
} else {
|
|
data &= ~(1 << (y % 8));
|
|
}
|
|
if (oled_buffer[index] != data) {
|
|
oled_buffer[index] = data;
|
|
oled_dirty |= ((OLED_BLOCK_TYPE)1 << (index / OLED_BLOCK_SIZE));
|
|
}
|
|
}
|
|
|
|
#if defined(__AVR__)
|
|
void oled_write_P(const char *data, bool invert) {
|
|
uint8_t c = pgm_read_byte(data);
|
|
while (c != 0) {
|
|
oled_write_char(c, invert);
|
|
c = pgm_read_byte(++data);
|
|
}
|
|
}
|
|
|
|
void oled_write_ln_P(const char *data, bool invert) {
|
|
oled_write_P(data, invert);
|
|
oled_advance_page(true);
|
|
}
|
|
|
|
void oled_write_raw_P(const char *data, uint16_t size) {
|
|
uint16_t cursor_start_index = oled_cursor - &oled_buffer[0];
|
|
if ((size + cursor_start_index) > OLED_MATRIX_SIZE) size = OLED_MATRIX_SIZE - cursor_start_index;
|
|
for (uint16_t i = cursor_start_index; i < cursor_start_index + size; i++) {
|
|
uint8_t c = pgm_read_byte(data++);
|
|
if (oled_buffer[i] == c) continue;
|
|
oled_buffer[i] = c;
|
|
oled_dirty |= ((OLED_BLOCK_TYPE)1 << (i / OLED_BLOCK_SIZE));
|
|
}
|
|
}
|
|
#endif // defined(__AVR__)
|
|
|
|
bool oled_on(void) {
|
|
if (!oled_initialized) {
|
|
return oled_active;
|
|
}
|
|
|
|
#if OLED_TIMEOUT > 0
|
|
oled_timeout = timer_read32() + OLED_TIMEOUT;
|
|
#endif
|
|
|
|
static const uint8_t PROGMEM display_on[] =
|
|
#ifdef OLED_FADE_OUT
|
|
{FADE_BLINK, 0x00};
|
|
#else
|
|
{DISPLAY_ON};
|
|
#endif
|
|
|
|
if (!oled_active) {
|
|
if (!oled_cmd_p(display_on, ARRAY_SIZE(display_on))) {
|
|
print("oled_on cmd failed\n");
|
|
return oled_active;
|
|
}
|
|
oled_active = true;
|
|
}
|
|
return oled_active;
|
|
}
|
|
|
|
bool oled_off(void) {
|
|
if (!oled_initialized) {
|
|
return !oled_active;
|
|
}
|
|
|
|
static const uint8_t PROGMEM display_off[] =
|
|
#ifdef OLED_FADE_OUT
|
|
{FADE_BLINK, ENABLE_FADE | OLED_FADE_OUT_INTERVAL};
|
|
#else
|
|
{DISPLAY_OFF};
|
|
#endif
|
|
|
|
if (oled_active) {
|
|
if (!oled_cmd_p(display_off, ARRAY_SIZE(display_off))) {
|
|
print("oled_off cmd failed\n");
|
|
return oled_active;
|
|
}
|
|
oled_active = false;
|
|
}
|
|
return !oled_active;
|
|
}
|
|
|
|
bool is_oled_on(void) {
|
|
return oled_active;
|
|
}
|
|
|
|
uint8_t oled_set_brightness(uint8_t level) {
|
|
if (!oled_initialized) {
|
|
return oled_brightness;
|
|
}
|
|
|
|
uint8_t set_contrast[] = { CONTRAST, level};
|
|
if (oled_brightness != level) {
|
|
if (!oled_cmd(set_contrast, ARRAY_SIZE(set_contrast))) {
|
|
print("set_brightness cmd failed\n");
|
|
return oled_brightness;
|
|
}
|
|
oled_brightness = level;
|
|
}
|
|
return oled_brightness;
|
|
}
|
|
|
|
uint8_t oled_get_brightness(void) {
|
|
return oled_brightness;
|
|
}
|
|
|
|
// Set the specific 8 lines rows of the screen to scroll.
|
|
// 0 is the default for start, and 7 for end, which is the entire
|
|
// height of the screen. For 128x32 screens, rows 4-7 are not used.
|
|
void oled_scroll_set_area(uint8_t start_line, uint8_t end_line) {
|
|
oled_scroll_start = start_line;
|
|
oled_scroll_end = end_line;
|
|
}
|
|
|
|
void oled_scroll_set_speed(uint8_t speed) {
|
|
// Sets the speed for scrolling... does not take effect
|
|
// until scrolling is either started or restarted
|
|
// the ssd1306 supports 8 speeds
|
|
// FrameRate2 speed = 7
|
|
// FrameRate3 speed = 4
|
|
// FrameRate4 speed = 5
|
|
// FrameRate5 speed = 0
|
|
// FrameRate25 speed = 6
|
|
// FrameRate64 speed = 1
|
|
// FrameRate128 speed = 2
|
|
// FrameRate256 speed = 3
|
|
// for ease of use these are remaped here to be in order
|
|
static const uint8_t scroll_remap[8] = {7, 4, 5, 0, 6, 1, 2, 3};
|
|
oled_scroll_speed = scroll_remap[speed];
|
|
}
|
|
|
|
bool oled_scroll_right(void) {
|
|
if (!oled_initialized) {
|
|
return oled_scrolling;
|
|
}
|
|
|
|
// Dont enable scrolling if we need to update the display
|
|
// This prevents scrolling of bad data from starting the scroll too early after init
|
|
if (!oled_dirty && !oled_scrolling) {
|
|
uint8_t display_scroll_right[] = {SCROLL_RIGHT, 0x00, oled_scroll_start, oled_scroll_speed, oled_scroll_end, 0x00, 0xFF, ACTIVATE_SCROLL};
|
|
if (!oled_cmd(display_scroll_right, ARRAY_SIZE(display_scroll_right))) {
|
|
print("oled_scroll_right cmd failed\n");
|
|
return oled_scrolling;
|
|
}
|
|
oled_scrolling = true;
|
|
}
|
|
return oled_scrolling;
|
|
}
|
|
|
|
bool oled_scroll_left(void) {
|
|
if (!oled_initialized) {
|
|
return oled_scrolling;
|
|
}
|
|
|
|
// Dont enable scrolling if we need to update the display
|
|
// This prevents scrolling of bad data from starting the scroll too early after init
|
|
if (!oled_dirty && !oled_scrolling) {
|
|
uint8_t display_scroll_left[] = {SCROLL_LEFT, 0x00, oled_scroll_start, oled_scroll_speed, oled_scroll_end, 0x00, 0xFF, ACTIVATE_SCROLL};
|
|
if (!oled_cmd(display_scroll_left, ARRAY_SIZE(display_scroll_left))) {
|
|
print("oled_scroll_left cmd failed\n");
|
|
return oled_scrolling;
|
|
}
|
|
oled_scrolling = true;
|
|
}
|
|
return oled_scrolling;
|
|
}
|
|
|
|
bool oled_scroll_off(void) {
|
|
if (!oled_initialized) {
|
|
return !oled_scrolling;
|
|
}
|
|
|
|
if (oled_scrolling) {
|
|
static const uint8_t PROGMEM display_scroll_off[] = {DEACTIVATE_SCROLL};
|
|
if (!oled_cmd_p(display_scroll_off, ARRAY_SIZE(display_scroll_off))) {
|
|
print("oled_scroll_off cmd failed\n");
|
|
return oled_scrolling;
|
|
}
|
|
oled_scrolling = false;
|
|
oled_dirty = OLED_ALL_BLOCKS_MASK;
|
|
}
|
|
return !oled_scrolling;
|
|
}
|
|
|
|
bool is_oled_scrolling(void) {
|
|
return oled_scrolling;
|
|
}
|
|
|
|
bool oled_invert(bool invert) {
|
|
if (!oled_initialized) {
|
|
return oled_inverted;
|
|
}
|
|
|
|
if (invert && !oled_inverted) {
|
|
static const uint8_t PROGMEM display_inverted[] = {INVERT_DISPLAY};
|
|
if (!oled_cmd_p(display_inverted, ARRAY_SIZE(display_inverted))) {
|
|
print("oled_invert cmd failed\n");
|
|
return oled_inverted;
|
|
}
|
|
oled_inverted = true;
|
|
} else if (!invert && oled_inverted) {
|
|
static const uint8_t PROGMEM display_normal[] = {NORMAL_DISPLAY};
|
|
if (!oled_cmd_p(display_normal, ARRAY_SIZE(display_normal))) {
|
|
print("oled_invert cmd failed\n");
|
|
return oled_inverted;
|
|
}
|
|
oled_inverted = false;
|
|
}
|
|
|
|
return oled_inverted;
|
|
}
|
|
|
|
uint8_t oled_max_chars(void) {
|
|
if (!HAS_FLAGS(oled_rotation, OLED_ROTATION_90)) {
|
|
return OLED_DISPLAY_WIDTH / OLED_FONT_WIDTH;
|
|
}
|
|
return OLED_DISPLAY_HEIGHT / OLED_FONT_WIDTH;
|
|
}
|
|
|
|
uint8_t oled_max_lines(void) {
|
|
if (!HAS_FLAGS(oled_rotation, OLED_ROTATION_90)) {
|
|
return OLED_DISPLAY_HEIGHT / OLED_FONT_HEIGHT;
|
|
}
|
|
return OLED_DISPLAY_WIDTH / OLED_FONT_HEIGHT;
|
|
}
|
|
|
|
void oled_task(void) {
|
|
if (!oled_initialized) {
|
|
return;
|
|
}
|
|
|
|
#if OLED_UPDATE_INTERVAL > 0
|
|
if (timer_elapsed(oled_update_timeout) >= OLED_UPDATE_INTERVAL) {
|
|
oled_update_timeout = timer_read();
|
|
oled_set_cursor(0, 0);
|
|
oled_task_kb();
|
|
}
|
|
#else
|
|
oled_set_cursor(0, 0);
|
|
oled_task_kb();
|
|
#endif
|
|
|
|
#if OLED_SCROLL_TIMEOUT > 0
|
|
if (oled_dirty && oled_scrolling) {
|
|
oled_scroll_timeout = timer_read32() + OLED_SCROLL_TIMEOUT;
|
|
oled_scroll_off();
|
|
}
|
|
#endif
|
|
|
|
// Smart render system, no need to check for dirty
|
|
oled_render();
|
|
|
|
// Display timeout check
|
|
#if OLED_TIMEOUT > 0
|
|
if (oled_active && timer_expired32(timer_read32(), oled_timeout)) {
|
|
oled_off();
|
|
}
|
|
#endif
|
|
|
|
#if OLED_SCROLL_TIMEOUT > 0
|
|
if (!oled_scrolling && timer_expired32(timer_read32(), oled_scroll_timeout)) {
|
|
# ifdef OLED_SCROLL_TIMEOUT_RIGHT
|
|
oled_scroll_right();
|
|
# else
|
|
oled_scroll_left();
|
|
# endif
|
|
}
|
|
#endif
|
|
}
|
|
|
|
__attribute__((weak)) bool oled_task_kb(void) {
|
|
return oled_task_user();
|
|
}
|
|
__attribute__((weak)) bool oled_task_user(void) {
|
|
return true;
|
|
}
|