qmk_firmware/quantum/painter/qp_draw_image.c

420 lines
17 KiB
C

// Copyright 2021-2023 Nick Brassel (@tzarc)
// SPDX-License-Identifier: GPL-2.0-or-later
#include "qp_internal.h"
#include "qp_draw.h"
#include "qp_comms.h"
#include "qgf.h"
#include "deferred_exec.h"
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
// QGF image handles
typedef struct qgf_image_handle_t {
painter_image_desc_t base;
bool validate_ok;
union {
qp_stream_t stream;
qp_memory_stream_t mem_stream;
#ifdef QP_STREAM_HAS_FILE_IO
qp_file_stream_t file_stream;
#endif // QP_STREAM_HAS_FILE_IO
};
} qgf_image_handle_t;
static qgf_image_handle_t image_descriptors[QUANTUM_PAINTER_NUM_IMAGES] = {0};
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
// Helper: load image from stream
static painter_image_handle_t qp_load_image_internal(bool (*stream_factory)(qgf_image_handle_t *image, void *arg), void *arg) {
qp_dprintf("qp_load_image: entry\n");
qgf_image_handle_t *image = NULL;
// Find a free slot
for (int i = 0; i < QUANTUM_PAINTER_NUM_IMAGES; ++i) {
if (!image_descriptors[i].validate_ok) {
image = &image_descriptors[i];
break;
}
}
// Drop out if not found
if (!image) {
qp_dprintf("qp_load_image: fail (no free slot)\n");
return NULL;
}
if (!stream_factory(image, arg)) {
qp_dprintf("qp_load_image: fail (could not create stream)\n");
return NULL;
}
// Now that we know the length, validate the input data
if (!qgf_validate_stream(&image->stream)) {
qp_dprintf("qp_load_image: fail (failed validation)\n");
return NULL;
}
// Fill out the QP image descriptor
qgf_read_graphics_descriptor(&image->stream, &image->base.width, &image->base.height, &image->base.frame_count, NULL);
// Validation success, we can return the handle
image->validate_ok = true;
qp_dprintf("qp_load_image: ok\n");
return (painter_image_handle_t)image;
}
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
// Quantum Painter External API: qp_load_image_mem
static inline bool image_mem_stream_factory(qgf_image_handle_t *image, void *arg) {
void *buffer = arg;
// Assume we can read the graphics descriptor
image->mem_stream = qp_make_memory_stream((void *)buffer, sizeof(qgf_graphics_descriptor_v1_t));
// Update the length of the stream to match, and rewind to the start
image->mem_stream.length = qgf_get_total_size(&image->stream);
image->mem_stream.position = 0;
return true;
}
painter_image_handle_t qp_load_image_mem(const void *buffer) {
return qp_load_image_internal(image_mem_stream_factory, (void *)buffer);
}
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
// Quantum Painter External API: qp_close_image
bool qp_close_image(painter_image_handle_t image) {
qgf_image_handle_t *qgf_image = (qgf_image_handle_t *)image;
if (!qgf_image->validate_ok) {
qp_dprintf("qp_close_image: fail (invalid image)\n");
return false;
}
// Free up this image for use elsewhere.
qgf_image->validate_ok = false;
qp_stream_close(&qgf_image->stream);
return true;
}
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
// Quantum Painter External API: qp_drawimage
bool qp_drawimage(painter_device_t device, uint16_t x, uint16_t y, painter_image_handle_t image) {
return qp_drawimage_recolor(device, x, y, image, 0, 0, 255, 0, 0, 0);
}
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
// Quantum Painter External API: qp_drawimage_recolor
typedef struct qgf_frame_info_t {
painter_compression_t compression_scheme;
uint8_t bpp;
bool has_palette;
bool is_delta;
uint16_t left;
uint16_t top;
uint16_t right;
uint16_t bottom;
uint16_t delay;
} qgf_frame_info_t;
static bool qp_drawimage_prepare_frame_for_stream_read(painter_device_t device, qgf_image_handle_t *qgf_image, uint16_t frame_number, qp_pixel_t fg_hsv888, qp_pixel_t bg_hsv888, qgf_frame_info_t *info) {
painter_driver_t *driver = (painter_driver_t *)device;
// Drop out if we can't actually place the data we read out anywhere
if (!info) {
qp_dprintf("Failed to prepare stream for read, output info buffer unavailable\n");
return false;
}
// Seek to the frame
qgf_seek_to_frame_descriptor(&qgf_image->stream, frame_number);
// Read the frame descriptor
qgf_frame_v1_t frame_descriptor;
if (qp_stream_read(&frame_descriptor, sizeof(qgf_frame_v1_t), 1, &qgf_image->stream) != 1) {
qp_dprintf("Failed to read frame_descriptor, expected length was not %d\n", (int)sizeof(qgf_frame_v1_t));
return false;
}
// Parse out the frame info
if (!qgf_parse_frame_descriptor(&frame_descriptor, &info->bpp, &info->has_palette, &info->is_delta, &info->compression_scheme, &info->delay)) {
return false;
}
// Ensure we aren't reusing any palette
qp_internal_invalidate_palette();
if (!qp_internal_bpp_capable(info->bpp)) {
qp_dprintf("qp_drawimage_recolor: fail (image bpp too high (%d), check QUANTUM_PAINTER_SUPPORTS_256_PALETTE or QUANTUM_PAINTER_SUPPORTS_NATIVE_COLORS)\n", (int)info->bpp);
qp_comms_stop(device);
return false;
}
// Handle palette if needed
const uint16_t palette_entries = 1u << info->bpp;
bool needs_pixconvert = false;
if (info->has_palette) {
// Load the palette from the stream
if (!qp_internal_load_qgf_palette((qp_stream_t *)&qgf_image->stream, info->bpp)) {
return false;
}
needs_pixconvert = true;
} else {
if (info->bpp <= 8) {
// Interpolate from fg/bg
needs_pixconvert = qp_internal_interpolate_palette(fg_hsv888, bg_hsv888, palette_entries);
}
}
if (needs_pixconvert) {
// Convert the palette to native format
if (!driver->driver_vtable->palette_convert(device, palette_entries, qp_internal_global_pixel_lookup_table)) {
qp_dprintf("qp_drawimage_recolor: fail (could not convert pixels to native)\n");
qp_comms_stop(device);
return false;
}
}
// Handle delta if needed
if (info->is_delta) {
qgf_delta_v1_t delta_descriptor;
if (qp_stream_read(&delta_descriptor, sizeof(qgf_delta_v1_t), 1, &qgf_image->stream) != 1) {
qp_dprintf("Failed to read delta_descriptor, expected length was not %d\n", (int)sizeof(qgf_delta_v1_t));
return false;
}
info->left = delta_descriptor.left;
info->top = delta_descriptor.top;
info->right = delta_descriptor.right;
info->bottom = delta_descriptor.bottom;
}
// Read the data block
qgf_data_v1_t data_descriptor;
if (qp_stream_read(&data_descriptor, sizeof(qgf_data_v1_t), 1, &qgf_image->stream) != 1) {
qp_dprintf("Failed to read data_descriptor, expected length was not %d\n", (int)sizeof(qgf_data_v1_t));
return false;
}
// Stream is now at the point of being able to read pixdata
return true;
}
static bool qp_drawimage_recolor_impl(painter_device_t device, uint16_t x, uint16_t y, painter_image_handle_t image, int frame_number, qgf_frame_info_t *frame_info, qp_pixel_t fg_hsv888, qp_pixel_t bg_hsv888) {
qp_dprintf("qp_drawimage_recolor: entry\n");
painter_driver_t *driver = (painter_driver_t *)device;
if (!driver->validate_ok) {
qp_dprintf("qp_drawimage_recolor: fail (validation_ok == false)\n");
return false;
}
qgf_image_handle_t *qgf_image = (qgf_image_handle_t *)image;
if (!qgf_image->validate_ok) {
qp_dprintf("qp_drawimage_recolor: fail (invalid image)\n");
return false;
}
// Read the frame info
if (!qp_drawimage_prepare_frame_for_stream_read(device, qgf_image, frame_number, fg_hsv888, bg_hsv888, frame_info)) {
qp_dprintf("qp_drawimage_recolor: fail (could not read frame %d)\n", frame_number);
return false;
}
if (!qp_comms_start(device)) {
qp_dprintf("qp_drawimage_recolor: fail (could not start comms)\n");
return false;
}
uint16_t l, t, r, b;
if (frame_info->is_delta) {
l = x + frame_info->left;
t = y + frame_info->top;
r = x + frame_info->right - 1;
b = y + frame_info->bottom - 1;
} else {
l = x;
t = y;
r = x + image->width - 1;
b = y + image->height - 1;
}
uint32_t pixel_count = ((uint32_t)(r - l + 1)) * (b - t + 1);
// Configure where we're going to be rendering to
if (!driver->driver_vtable->viewport(device, l, t, r, b)) {
qp_dprintf("qp_drawimage_recolor: fail (could not set viewport)\n");
qp_comms_stop(device);
return false;
}
// Set up the input state
qp_internal_byte_input_state_t input_state = {.device = device, .src_stream = &qgf_image->stream};
qp_internal_byte_input_callback input_callback = qp_internal_prepare_input_state(&input_state, frame_info->compression_scheme);
if (input_callback == NULL) {
qp_dprintf("qp_drawimage_recolor: fail (invalid image compression scheme)\n");
qp_comms_stop(device);
return false;
}
bool ret = false;
if (frame_info->bpp <= 8) {
// Set up the output state
qp_internal_pixel_output_state_t output_state = {.device = device, .pixel_write_pos = 0, .max_pixels = qp_internal_num_pixels_in_buffer(device)};
// Decode the pixel data and stream to the display
ret = qp_internal_decode_palette(device, pixel_count, frame_info->bpp, input_callback, &input_state, qp_internal_global_pixel_lookup_table, qp_internal_pixel_appender, &output_state);
// Any leftovers need transmission as well.
if (ret && output_state.pixel_write_pos > 0) {
ret &= driver->driver_vtable->pixdata(device, qp_internal_global_pixdata_buffer, output_state.pixel_write_pos);
}
} else if (frame_info->bpp != driver->native_bits_per_pixel) {
// Prevent stuff like drawing 24bpp images on 16bpp displays
qp_dprintf("Image's bpp doesn't match the target display's native_bits_per_pixel\n");
return false;
} else {
// Set up the output state
qp_internal_byte_output_state_t output_state = {.device = device, .byte_write_pos = 0, .max_bytes = qp_internal_num_pixels_in_buffer(device) * driver->native_bits_per_pixel / 8};
// Stream the raw pixel data to the display
uint32_t byte_count = pixel_count * frame_info->bpp / 8;
ret = qp_internal_send_bytes(device, byte_count, input_callback, &input_state, qp_internal_byte_appender, &output_state);
// Any leftovers need transmission as well.
if (ret && output_state.byte_write_pos > 0) {
ret &= driver->driver_vtable->pixdata(device, qp_internal_global_pixdata_buffer, output_state.byte_write_pos * 8 / driver->native_bits_per_pixel);
}
}
qp_dprintf("qp_drawimage_recolor: %s\n", ret ? "ok" : "fail");
qp_comms_stop(device);
return ret;
}
bool qp_drawimage_recolor(painter_device_t device, uint16_t x, uint16_t y, painter_image_handle_t image, uint8_t hue_fg, uint8_t sat_fg, uint8_t val_fg, uint8_t hue_bg, uint8_t sat_bg, uint8_t val_bg) {
qgf_frame_info_t frame_info = {0};
qp_pixel_t fg_hsv888 = {.hsv888 = {.h = hue_fg, .s = sat_fg, .v = val_fg}};
qp_pixel_t bg_hsv888 = {.hsv888 = {.h = hue_bg, .s = sat_bg, .v = val_bg}};
return qp_drawimage_recolor_impl(device, x, y, image, 0, &frame_info, fg_hsv888, bg_hsv888);
}
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
// Quantum Painter External API: qp_animate
deferred_token qp_animate(painter_device_t device, uint16_t x, uint16_t y, painter_image_handle_t image) {
return qp_animate_recolor(device, x, y, image, 0, 0, 255, 0, 0, 0);
}
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
// Quantum Painter External API: qp_animate_recolor
typedef struct animation_state_t {
painter_device_t device;
uint16_t x;
uint16_t y;
painter_image_handle_t image;
qp_pixel_t fg_hsv888;
qp_pixel_t bg_hsv888;
uint16_t frame_number;
deferred_token defer_token;
} animation_state_t;
static deferred_executor_t animation_executors[QUANTUM_PAINTER_CONCURRENT_ANIMATIONS] = {0};
static animation_state_t animation_states[QUANTUM_PAINTER_CONCURRENT_ANIMATIONS] = {0};
static deferred_token qp_render_animation_state(animation_state_t *state, uint16_t *delay_ms) {
qgf_frame_info_t frame_info = {0};
qp_dprintf("qp_render_animation_state: entry (frame #%d)\n", (int)state->frame_number);
bool ret = qp_drawimage_recolor_impl(state->device, state->x, state->y, state->image, state->frame_number, &frame_info, state->fg_hsv888, state->bg_hsv888);
if (ret) {
++state->frame_number;
if (state->frame_number >= state->image->frame_count) {
state->frame_number = 0;
}
*delay_ms = frame_info.delay;
}
qp_dprintf("qp_render_animation_state: %s (delay %dms)\n", ret ? "ok" : "fail", (int)(*delay_ms));
return ret;
}
static uint32_t animation_callback(uint32_t trigger_time, void *cb_arg) {
animation_state_t *state = (animation_state_t *)cb_arg;
uint16_t delay_ms;
bool ret = qp_render_animation_state(state, &delay_ms);
if (!ret) {
// Setting the device to NULL clears the animation slot
state->device = NULL;
}
// If we're successful, keep animating -- returning 0 cancels the deferred execution
return ret ? delay_ms : 0;
}
deferred_token qp_animate_recolor(painter_device_t device, uint16_t x, uint16_t y, painter_image_handle_t image, uint8_t hue_fg, uint8_t sat_fg, uint8_t val_fg, uint8_t hue_bg, uint8_t sat_bg, uint8_t val_bg) {
qp_dprintf("qp_animate_recolor: entry\n");
animation_state_t *anim_state = NULL;
for (int i = 0; i < QUANTUM_PAINTER_CONCURRENT_ANIMATIONS; ++i) {
if (animation_states[i].device == NULL) {
anim_state = &animation_states[i];
break;
}
}
if (!anim_state) {
qp_dprintf("qp_animate_recolor: fail (could not find free animation slot)\n");
return INVALID_DEFERRED_TOKEN;
}
// Prepare the animation state
anim_state->device = device;
anim_state->x = x;
anim_state->y = y;
anim_state->image = image;
anim_state->fg_hsv888 = (qp_pixel_t){.hsv888 = {.h = hue_fg, .s = sat_fg, .v = val_fg}};
anim_state->bg_hsv888 = (qp_pixel_t){.hsv888 = {.h = hue_bg, .s = sat_bg, .v = val_bg}};
anim_state->frame_number = 0;
// Draw the first frame
uint16_t delay_ms;
if (!qp_render_animation_state(anim_state, &delay_ms)) {
anim_state->device = NULL; // disregard the allocated animation slot
qp_dprintf("qp_animate_recolor: fail (could not render first frame)\n");
return INVALID_DEFERRED_TOKEN;
}
// Set up the timer
anim_state->defer_token = defer_exec_advanced(animation_executors, QUANTUM_PAINTER_CONCURRENT_ANIMATIONS, delay_ms, animation_callback, anim_state);
if (anim_state->defer_token == INVALID_DEFERRED_TOKEN) {
anim_state->device = NULL; // disregard the allocated animation slot
qp_dprintf("qp_animate_recolor: fail (could not set up animation executor)\n");
return INVALID_DEFERRED_TOKEN;
}
qp_dprintf("qp_animate_recolor: ok (deferred token = %d)\n", (int)anim_state->defer_token);
return anim_state->defer_token;
}
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
// Quantum Painter External API: qp_stop_animation
void qp_stop_animation(deferred_token anim_token) {
for (int i = 0; i < QUANTUM_PAINTER_CONCURRENT_ANIMATIONS; ++i) {
if (animation_states[i].defer_token == anim_token) {
cancel_deferred_exec_advanced(animation_executors, QUANTUM_PAINTER_CONCURRENT_ANIMATIONS, anim_token);
animation_states[i].device = NULL;
return;
}
}
}
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
// Quantum Painter Core API: qp_internal_animation_tick
void qp_internal_animation_tick(void) {
static uint32_t last_anim_exec = 0;
deferred_exec_advanced_task(animation_executors, QUANTUM_PAINTER_CONCURRENT_ANIMATIONS, &last_anim_exec);
}