qmk_firmware/keyboards/wilba_tech/wt65_xt/keymaps/zunger/keymap.c
James Young 9149402c51
Wilba Tech WT65-XT: rename LAYOUT_all to LAYOUT_65_xt_ansi_blocker_tsangan (#20873)
* info.json: apply friendly formatting

* rename LAYOUT_all to LAYOUT_65_xt_ansi_blocker_tsangan

* readme.md: update maintainer username
2023-05-12 01:02:10 -07:00

640 lines
32 KiB
C
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/* Copyright 2021 Yonatan Zunger
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include QMK_KEYBOARD_H
#include <assert.h>
// This keymap is designed to make it easy to type in a wide variety of languages, as well as
// generate mathematical symbols (à la Space Cadet), without relying on the host OS to do
// key mappings or handle accents. Why? Because different OS's do this in radically different
// ways, and don't support all of the features one often needs.
//
// LAYER MAGIC (aka, typing in many alphabets)
//
// This keyboard has three sets of "polyglot" layers: GREEK, CADET, and YIDDISH. Each of these
// is actually a pair of layers, FOO and SHIFTFOO, which are full of Unicode points that let you
// type in them. (The Greek and Yiddish keymaps selected here are very canted towards use on a
// QWERTY layout, rather than the "standard" layouts often used for those languages in monolingual
// environments. This is useful if your keyboard doesn't have legends for all of them, which in
// most cases it won't. Of course, you could easily add more.)
//
// These each have their own layer select key, which can act as a held modifier key (GREEK+s to
// produce sigma, etc). There's also a "layer lock" key; layer lock + modifier switches you into
// that layer until you hit "layer lock" again to bounce back to QWERTY.
//
// ACCENT MAGIC
//
// We want to support easy typing of diacriticals, again without relying on the host OS. (On
// MacOS, if you want Unicode to work you have to lose all the normal accent combining keys, and
// if you're in a multi-OS world, each OS has a totally different input method)
//
// The real nuance comes from the three different ways Unicode represents these. Many common
// accent + letter combinations like é have their own dedicated code points (the combined
// normal form). One can also place a "combining accent mark" after the letter's code point to
// form the decomposed normal form (NFKD); this often renders the same as the combined form, but
// many less-sophisticated apps won't realize it's the same thing as the combined form (thus messing
// up string matching), and if you backspace you need to backspace *twice* to remove the character,
// because it's literally two characters. Finally, if you want to render just the accent mark as a
// symbol of its own, that's a *third* code point. If you're simply typing, you don't want to think
// about any of this!
//
// We thus have a bunch of special keycodes for "accent requests," which live on the FUNCTION
// layer. Accent requests don't do anything immediate, but when the *next* non-modifier key is hit,
// we generate a combined code point (if possible), two uncombined points (in cases where combined
// points don't exist), or the isolated accent followed by the next character typed (in cases where
// what you typed next isn't a letterform at all, e.g. you hit the space bar). You can also hit
// shift-<accent request> to just generate the uncombined accent on its own.
//
// The current accent request codes are modeled on the ones in MacOS.
//
// fn+` Grave accent (`)
// fn+e Acute accent (´)
// fn+i Circumflex (^)
// fn+u Diaresis / umlaut / trema (¨)
// fn+c Cedilla (¸)
// fn+n Tilde (˜)
//
// Together, these functions make for a nice "polyglot" keyboard: one that can easily type in a wide
// variety of languages, which is very useful for people who, well, need to type in a bunch of
// languages.
//
// The major TODOs are:
// - Add accent support for Hebrew accents.
// - Factor the code below so that the data layers are more clearly separated from the code logic,
// so that other users of this keymap can easily add whichever alphabets they need without
// having to deeply understand the implementation. Probably something similar to
// users/drashna/keyrecords/unicode.c, but I want to see if I can do some preprocessor magic
// so that we can actually have the rendered *character* sitting in the code instead of just the
// hex code point!
//
// PLATFORM MAGIC (aka, working well on both Mac and Windows)
//
// Finally, this keyboard can switch between Mac and Windows modes, changing various macro
// combinations, the Unicode mode, and the position of the ALT and GUI keys.
enum custom_keycodes {
// We provide special layer management keys:
// GREEK triggers the Greek (aka "Front") layer, or the SHIFTGREEK layer when shift is held.
// (Because we use Unicode, we need to implement shift-handling at the firmware level,
// rather than the OS level like we do in the QWERTY layer)
// CADET or GREEK+ALT triggers the Cadet (aka "Top") layer, or the SHIFTCADET layer when
// shift is held.
// YIDDISH triggers a keymap designed for easy Hebrew and Yiddish, based loosely on QWERTY
// layouts.
// LAYER_LOCK locks the "base" layer (i.e., QWERTY, GREEK, or CADET) to the value which is
// pressed at the moment that it is being released. When a layer lock is set, the
// analogous layer modifier key is reversed; e.g., if you lock the GREEK layer, then the
// GREEK button bounces you back to QWERTY.
//
// We also parse the shift, alt, and caps lock keys to provide management of those which is
// compatible with these various layers.
KC_GREEK = SAFE_RANGE,
KC_CADET,
KC_YIDDISH,
KC_LAYER_LOCK,
KC_PLATFORM, // Platform select
// OS-dependent macros
KC_VC_MUTE, // Video conference mute
KC_VC_HAND, // Video conference hand-raise
KC_SCRNSHT, // Screenshot (gui-shift-S on Windows, gui-shift-4 on Mac)
// These are the keycodes generated by the various "accent request" keystrokes.
KC_ACCENT_START,
KC_CGRV = KC_ACCENT_START, // Grave accent
KC_CAGU, // Acute accent
KC_CDIA, // Diaresis / umlaut / trema
KC_CCIR, // Circumflex
KC_CCED, // Cedilla
KC_CTIL, // Tilde
KC_ACCENT_END,
};
enum layers_keymap {
_QWERTY = 0,
_FIRST_LANGUAGE_LAYER,
_YIDDISH = _FIRST_LANGUAGE_LAYER,
_SHIFTYIDDISH,
_GREEK,
_SHIFTGREEK,
_CADET,
_SHIFTCADET,
_LAST_LANGUAGE_LAYER,
// Function goes last.
_FUNCTION = _LAST_LANGUAGE_LAYER,
};
// We manage our OS mode internally, and store it in a static, rather than EEPROM, bit. That's
// because it changes as we flip machines, and there's no good reason to wear out the memory.
enum os_modes {
_WINDOWS = 0,
_MAC = 1,
_OS_MODES_MAX = 2,
};
static uint8_t os_mode = _MAC;
// Key types matter for accent handling. If there's a pending accent request and another key is
// pressed:
// - If it's a normal key, we trigger all our magic accent handling.
// - If it's a modifier key, we do nothing and let the accent request hold until the next keypress.
// - If it's a special key, we drop the accent request but don't handle it.
enum key_types {
_NORMAL_KEY,
_MODIFIER_KEY,
_SPECIAL_KEY,
};
// msec to hold the platform key to trigger a switch
#define PLATFORM_HOLD_DURATION 750
// This is so that H(xxxx) has the same width as _______, which makes the grids more legible.
#define H(x) UC(0x##x)
#define MO_FN MO(_FUNCTION)
#define KC_LLCK KC_LAYER_LOCK
// Values for our OS-dependent keys, as arrays keyed by OS mode. Use Meet shortcuts on Mac, Teams on Windows
const char *VC_MUTE_VALUES[_OS_MODES_MAX] = {SS_LCTL(SS_LSFT("m")), SS_LCMD("d")};
const char *VC_HAND_VALUES[_OS_MODES_MAX] = {SS_LCTL(SS_LSFT("k")), SS_LCTL(SS_LCMD("h"))};
const char *SCRNSHT_VALUES[_OS_MODES_MAX] = {SS_LGUI(SS_LSFT("s")), SS_LCMD(SS_LSFT("4"))};
const uint16_t PROGMEM keymaps[][MATRIX_ROWS][MATRIX_COLS] = {
[_QWERTY] = LAYOUT_65_xt_ansi_blocker_tsangan(
KC_ESC, KC_LLCK, KC_GRAVE,KC_1, KC_2, KC_3, KC_4, KC_5, KC_6, KC_7, KC_8, KC_9, KC_0, KC_MINS, KC_EQL, KC_BSPC, KC_HOME,
KC_PLATFORM, KC_MPLY, KC_TAB, KC_Q, KC_W, KC_E, KC_R, KC_T, KC_Y, KC_U, KC_I, KC_O, KC_P, KC_LBRC, KC_RBRC, KC_BSLS, KC_PGUP,
KC_SCRNSHT, KC_YIDDISH, KC_LCTL, KC_A, KC_S, KC_D, KC_F, KC_G, KC_H, KC_J, KC_K, KC_L, KC_SCLN, KC_QUOT, KC_ENT, KC_PGDN,
KC_GREEK, KC_CADET, KC_LSFT, KC_Z, KC_X, KC_C, KC_V, KC_B, KC_N, KC_M, KC_COMM, KC_DOT, KC_SLSH, KC_RSFT, KC_UP, KC_END,
KC_VC_HAND, KC_VC_MUTE, KC_LCTL, KC_LGUI, KC_LALT, KC_SPC, MO_FN, KC_LEFT, KC_DOWN, KC_RGHT),
/* The Greek and Cadet layers. Tab, backspace, the nav and modifier keys, and the control block
* are always transparent.
*
* QWERTY GREEK SGREEK CADET SCADET YID SYID
* ` ׳ 05f3 ״ 05f4
* 1 ₁ 2081 ¹ 00b9 ¡ 00a1 ¿ 00bf [transparent]
* 2 ₂ 2082 ² 00b2 « 00ab » 00bb [transparent]
* 3 ₃ 2083 ³ 00b3 £ 00a3 € 20ac [transparent]
* 4 ₄ 2084 ⁴ 2074 [transparent]
* 5 ₅ 2085 ⁵ 2075 [transparent]
* 6 ₆ 2086 ⁶ 2076 [transparent]
* 7 ₇ 2087 ⁷ 2077 [transparent]
* 8 ₈ 2088 ⁸ 2078 ° 00b0 ⊗ 2297 [transparent]
* 9 ₉ 2089 ⁹ 2079 [transparent]
* 0 ₀ 2080 ⁰ 2070 ∅ 2205 [transparent]
* - ₋ 208b ⁻ 207b ¬ 00ac ⊖ 2296 [transparent]
* = ₊ 208a ₋ 208b ≠ 2260 ⊕ 2295 [transparent]
* q θ 03b8 Θ 0398 211a ק 05e7
* w ω 03c9 Ω 03a9 ש 05e9
* e ε 03b5 Ε 0395 ∃ 2203 ∄ 2204 ע 05e2
* r ρ 03c1 Ρ 03a1 211d ר 05e8
* t τ 03c4 Τ 03a4 ט 05d8 תּ fb4a
* y ψ 03c8 Ψ 03a8 2228 ∧ 2227 ײ 05f2 ײַ fb1f
* u υ 03c5 Υ 03a5 222a ∩ 2229 ו 05d5 ױ 05f1
* i ι 03b9 Ι 0399 ∞ 221e ℵ 2135 י 05d9
* o ο 03bf Ο 039f ו 05d5 אָ fb2f
* p π 03c0 Π 03a0 ≡ 2261 ≢ 2262 פ 05e4 ף 05e3
* [ ± 00b1 ∓ 2213
* ] ≈ 2248 ≉ 2249
* \ 223c ≁ 2241
* a α 03b1 Α 0391 ∀ 2200 Å 212b א 05d0 אַ fb2e
* s σ 03c3 Σ 03a3 ∈ 2208 ∉ 2209 ס 05e1 ת 05ea
* d δ 03b4 Δ 0394 ⊂ 2282 ⊄ 2284 ד 05d3
* f φ 03c6 Φ 03a6 ⊆ 2286 ⊈ 2288 פֿ fb4e
* g γ 03b3 Γ 0393 ⊇ 2287 ⊉ 2289 ג 05d2
* h η 03b7 Η 0397 ← 2190 ⇐ 21d0 ה 05d4
* j ϑ 03d1 ↓ 2193 ⇓ 21d3 ח 05d7 כֿ fb4d
* k κ 03ba Κ 039a ↑ 2191 ⇑ 21d1 כ 05db ך 05da
* l λ 03bb Λ 039b → 2192 ⇒ 21d2 ל 05dc
* ; … 2026 ⋯ 22ef ↔ 2194 ⇔ 21d4
* ' · 00b7 • 2022 ∴ 2234 ⊙ 2299
* z ζ 03b6 Ζ 0396 2124 ז 05d6
* x ξ 03be Ξ 039e ✘ 2718 צ 05e6 ץ 05e5
* c χ 03c7 Χ 03a7 2102 כ 05db ך 05da
* v ς 03c2 ✔ 2714 √ 221a װ 05f0 בֿ fb4c
* b β 03b2 Β 0392 ב 05d1
* n ν 03bd Ν 039d 2115 נ 05e0 ן 05df
* m μ 03bc Μ 039c מ 05de ם 05dd
* , ≪ 226a ≫ 226b ∂ 2202 ∫ 222b
* . ≲ 2272 ≳ 2273 ≰ 2270 ≱ 2271
* / ⊘ 2298
*/
[_YIDDISH] = LAYOUT_65_xt_ansi_blocker_tsangan(
KC_TRNS, KC_TRNS, H(05f3), KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS,
KC_TRNS, KC_TRNS, KC_TRNS, H(05e7), H(05e9), H(05e2), H(05e8), H(05d8), H(05f2), H(05d5), H(05d9), H(05d5), H(05e4), KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS,
KC_TRNS, KC_TRNS, KC_TRNS, H(05d0), H(05e1), H(05d3), H(fb4e), H(05d2), H(05d4), H(05d7), H(05db), H(05dc), KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS,
KC_TRNS, KC_TRNS, KC_TRNS, H(05d6), H(05e6), H(05db), H(05f0), H(05d1), H(05e0), H(05de), KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS,
KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS),
[_SHIFTYIDDISH] = LAYOUT_65_xt_ansi_blocker_tsangan(
KC_TRNS, KC_TRNS, H(05f4), KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS,
KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, H(fb4a), H(fb1f), H(05f1), KC_TRNS, H(fb2f), H(05e3), KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS,
KC_TRNS, KC_TRNS, KC_TRNS, H(fb2e), H(05ea), KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, H(fb4d), H(05da), KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS,
KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, H(05e5), H(05da), H(fb4c), KC_TRNS, H(05df), H(05dd), KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS,
KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS),
[_GREEK] = LAYOUT_65_xt_ansi_blocker_tsangan(
KC_TRNS, KC_TRNS, XXXXXXX, H(2081), H(2082), H(2083), H(2084), H(2085), H(2086), H(2087), H(2088), H(2089), H(2080), H(208b), H(208a), KC_TRNS, KC_TRNS,
KC_TRNS, KC_TRNS, KC_TRNS, H(03b8), H(03c9), H(03b5), H(03c1), H(03c4), H(03c8), H(03c5), H(03b9), H(03bf), H(03c0), XXXXXXX, XXXXXXX, XXXXXXX, KC_TRNS,
KC_TRNS, KC_TRNS, KC_TRNS, H(03b1), H(03c3), H(03b4), H(03c6), H(03b3), H(03b7), XXXXXXX, H(03ba), H(03bb), H(2026), H(00b7), KC_TRNS, KC_TRNS,
KC_TRNS, KC_TRNS, KC_TRNS, H(03b6), H(03be), H(03c7), XXXXXXX, H(03b2), H(03bd), H(03bc), H(226a), H(2272), XXXXXXX, KC_TRNS, KC_TRNS, KC_TRNS,
KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS),
[_SHIFTGREEK] = LAYOUT_65_xt_ansi_blocker_tsangan(
KC_TRNS, KC_TRNS, XXXXXXX, H(00b9), H(00b2), H(00b3), H(2074), H(2075), H(2076), H(2077), H(2078), H(2079), H(2070), H(207b), H(208b), KC_TRNS, KC_TRNS,
KC_TRNS, KC_TRNS, KC_TRNS, H(0398), H(03a9), H(0395), H(03a1), H(03a4), H(03a8), H(03a5), H(0399), H(039f), H(03a0), XXXXXXX, XXXXXXX, XXXXXXX, KC_TRNS,
KC_TRNS, KC_TRNS, KC_TRNS, H(0391), H(03a3), H(0394), H(03a6), H(0393), H(0397), H(03d1), H(039a), H(039b), H(22ef), H(2022), KC_TRNS, KC_TRNS,
KC_TRNS, KC_TRNS, KC_TRNS, H(0396), H(039e), H(03a7), H(03c2), H(0392), H(039d), H(039c), H(226b), H(2273), XXXXXXX, KC_TRNS, KC_TRNS, KC_TRNS,
KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS),
[_CADET] = LAYOUT_65_xt_ansi_blocker_tsangan(
KC_TRNS, KC_TRNS, XXXXXXX, H(00a1), H(00ab), H(00a3), XXXXXXX, XXXXXXX, XXXXXXX, XXXXXXX, H(00b0), XXXXXXX, H(2205), H(00ac), H(2260), KC_TRNS, KC_TRNS,
KC_TRNS, KC_TRNS, KC_TRNS, H(211a), XXXXXXX, H(2203), H(211d), XXXXXXX, H(2228), H(222a), H(221e), XXXXXXX, H(2261), H(00b1), H(2248), H(223c), KC_TRNS,
KC_TRNS, KC_TRNS, KC_TRNS, H(2200), H(2208), H(2282), H(2286), H(2287), H(2190), H(2193), H(2191), H(2192), H(2194), H(2234), KC_TRNS, KC_TRNS,
KC_TRNS, KC_TRNS, KC_TRNS, H(2124), H(2718), H(2102), H(2714), XXXXXXX, H(2115), XXXXXXX, H(2202), H(2270), XXXXXXX, KC_TRNS, KC_TRNS, KC_TRNS,
KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS),
[_SHIFTCADET] = LAYOUT_65_xt_ansi_blocker_tsangan(
KC_TRNS, KC_TRNS, XXXXXXX, H(00bf), H(00bb), H(20ac), XXXXXXX, XXXXXXX, XXXXXXX, XXXXXXX, H(2297), XXXXXXX, XXXXXXX, H(2296), H(2295), KC_TRNS, KC_TRNS,
KC_TRNS, KC_TRNS, KC_TRNS, XXXXXXX, XXXXXXX, H(2204), XXXXXXX, XXXXXXX, H(2227), H(2229), H(2135), XXXXXXX, H(2262), H(2213), H(2249), H(2241), KC_TRNS,
KC_TRNS, KC_TRNS, KC_TRNS, H(212b), H(2209), H(2284), H(2288), H(2289), H(21d0), H(21d3), H(21d1), H(21d2), H(21d4), H(2299), KC_TRNS, KC_TRNS,
KC_TRNS, KC_TRNS, KC_TRNS, XXXXXXX, XXXXXXX, XXXXXXX, H(221a), XXXXXXX, XXXXXXX, XXXXXXX, H(222b), H(2271), H(2298), KC_TRNS, KC_TRNS, KC_TRNS,
KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS),
// The function layer mostly contains the accent marks, but also has a few meta-control
// operations. The accent marks are placed by analogy with Mac OS.
[_FUNCTION] = LAYOUT_65_xt_ansi_blocker_tsangan(
QK_BOOT, KC_TRNS, KC_CGRV, KC_F1, KC_F2, KC_F3, KC_F4, KC_F5, KC_F6, KC_F7, KC_F8, KC_F9, KC_F10, KC_F11, KC_F12, XXXXXXX, XXXXXXX,
KC_TRNS, KC_TRNS, KC_TRNS, XXXXXXX, XXXXXXX, KC_CAGU, XXXXXXX, XXXXXXX, XXXXXXX, KC_CDIA, KC_CCIR, XXXXXXX, XXXXXXX, XXXXXXX, XXXXXXX, XXXXXXX, XXXXXXX,
KC_TRNS, KC_TRNS, KC_TRNS, XXXXXXX, XXXXXXX, XXXXXXX, XXXXXXX, XXXXXXX, XXXXXXX, XXXXXXX, XXXXXXX, XXXXXXX, XXXXXXX, XXXXXXX, XXXXXXX, XXXXXXX,
KC_TRNS, KC_TRNS, KC_TRNS, XXXXXXX, XXXXXXX, KC_CCED, XXXXXXX, XXXXXXX, KC_CTIL, XXXXXXX, XXXXXXX, XXXXXXX, XXXXXXX, KC_TRNS, XXXXXXX, XXXXXXX,
KC_TRNS, KC_TRNS, KC_RCTL, KC_RGUI, KC_RALT, KC_TRNS, KC_TRNS, XXXXXXX, XXXXXXX, XXXXXXX),
};
////////////////////////////////////////////////////////////////////////////////////////////////////
// Accent implementation
//
// In the body of process_record_user, we store an "accent_request", which is the accent keycode if
// one was just selected, or zero otherwise. When the *next* key is hit, we look up whether the
// accent request plus that next keycode (plus the state of the shift key) together amount to an
// interesting combined (NFKC) character, and if so, emit it; otherwise, we emit the accent as a
// separate character and then process the next key normally. The resulting UI behavior is similar
// to that of the combining accent keys in MacOS.
//
// We store two arrays, depending on whether shift is or isn't held. Each is two-dimensional, with
// its outer key by the next keycode struck, and the inner key by the accent requested. The outer
// array has KC_Z + 1 as its upper bound, so that we can save memory by only coding alphabetic keys.
// The contents are either Unicode code points, or zero to indicate that we don't have a point for
// this combination.
#define KC_NUM_ACCENTS (KC_ACCENT_END - KC_ACCENT_START)
#define KC_NUM_SLOTS (KC_Z + 1)
const uint16_t PROGMEM unshifted_accents[KC_NUM_SLOTS][KC_NUM_ACCENTS] = {
// KC_CGRV, KC_CAGU, KC_CDIA, KC_CCIR, KC_CCED, KC_CTIL
[KC_A] = { 0x00e0, 0x00e1, 0x00e4, 0x00e2, 0, 0x00e3 },
[KC_E] = { 0x00e8, 0x00e9, 0x00eb, 0x00ea, 0, 0 },
[KC_I] = { 0x00ec, 0x00ed, 0x00ef, 0x00ee, 0, 0 },
[KC_O] = { 0x00f2, 0x00f3, 0x00f6, 0x00f4, 0, 0x00f5 },
[KC_U] = { 0x00f9, 0x00fa, 0x00fc, 0x00fb, 0, 0 },
[KC_Y] = { 0, 0, 0x00ff, 0, 0, 0 },
[KC_N] = { 0, 0, 0, 0, 0, 0x00f1 },
[KC_C] = { 0, 0, 0, 0, 0x00e7, 0 },
};
const uint16_t PROGMEM shifted_accents[KC_NUM_SLOTS][KC_NUM_ACCENTS] = {
// KC_CGRV, KC_CAGU, KC_CDIA, KC_CCIR, KC_CCED, KC_CTIL
[KC_A] = { 0x00c0, 0x00c1, 0x00c4, 0x00c2, 0, 0x00c3 },
[KC_E] = { 0x00c8, 0x00c9, 0x00cb, 0x00ca, 0, 0 },
[KC_I] = { 0x00cc, 0x00cd, 0x00cf, 0x00ce, 0, 0 },
[KC_O] = { 0x00d2, 0x00d3, 0x00d6, 0x00d4, 0, 0x00d5 },
[KC_U] = { 0x00d9, 0x00da, 0x00dc, 0x00db, 0, 0 },
[KC_Y] = { 0, 0, 0x00df, 0, 0, 0 },
[KC_N] = { 0, 0, 0, 0, 0, 0x00d1 },
[KC_C] = { 0, 0, 0, 0, 0x00c7, 0 },
};
// The uncombined and combined forms of the accents, for when we want to emit them as single
// characters.
const uint16_t PROGMEM uncombined_accents[KC_NUM_ACCENTS] = {
[KC_CGRV - KC_ACCENT_START] = 0x0060,
[KC_CAGU - KC_ACCENT_START] = 0x00b4,
[KC_CDIA - KC_ACCENT_START] = 0x00a8,
[KC_CCIR - KC_ACCENT_START] = 0x005e,
[KC_CCED - KC_ACCENT_START] = 0x00b8,
[KC_CTIL - KC_ACCENT_START] = 0x02dc,
};
const uint16_t PROGMEM combined_accents[KC_NUM_ACCENTS] = {
[KC_CGRV - KC_ACCENT_START] = 0x0300,
[KC_CAGU - KC_ACCENT_START] = 0x0301,
[KC_CDIA - KC_ACCENT_START] = 0x0308,
[KC_CCIR - KC_ACCENT_START] = 0x0302,
[KC_CCED - KC_ACCENT_START] = 0x0327,
[KC_CTIL - KC_ACCENT_START] = 0x0303,
};
// This function manages keypresses that happen after an accent has been selected by an earlier
// keypress.
// Args:
// accent_key: The accent key which was earlier selected. This must be in the range
// [KC_ACCENT_START, KC_ACCENT_END).
// keycode: The keycode which was just pressed.
// is_shifted: The current shift state (as set by a combination of shift and caps lock)
//
// Returns true if the keycode has been completely handled by this function (and so should not be
// processed further by process_record_user) or false otherwise.
bool process_key_after_accent(
uint16_t accent_key,
uint16_t keycode,
bool is_shifted
) {
assert(accent_key >= KC_ACCENT_START);
assert(accent_key < KC_ACCENT_END);
const int accent_index = accent_key - KC_ACCENT_START;
// If the keycode is outside A..Z, we know we shouldn't even bother with a table lookup.
if (keycode <= KC_Z) {
// Pick the correct array. Because this is progmem, we're going to need to do the
// two-dimensional array indexing by hand, and so we just cast it to a single-dimensional array.
const uint16_t *points = (const uint16_t*)(is_shifted ? shifted_accents : unshifted_accents);
const uint16_t code_point = pgm_read_word(points + KC_NUM_ACCENTS * keycode + accent_index);
if (code_point) {
register_unicode(code_point);
return true;
}
}
// If we get here, there was no accent match. Emit the accent as its own character (i.e. a
// Unicode combining accent mark) and return false so that process_record_user also registers
// whatever is appropriate for the keycode after that. The host can figure out what to do with
// combining Unicode.
register_unicode(pgm_read_word(uncombined_accents + accent_index));
return false;
}
// This is a bitmask which selects the activation bits for layers *other* than our language
// selectors.
#define NON_LANGUAGE_LAYERS ~(((1UL << _LAST_LANGUAGE_LAYER) - 1) - ((1UL << _FIRST_LANGUAGE_LAYER) - 1))
// Update the current layer state and return the layer we're in.
uint8_t update_layer(
uint8_t layer_lock,
uint8_t layer_select_held,
bool shifted
) {
uint8_t current_layer = layer_lock;
layer_state_t language_layers = 0;
// If there's a layer select being held right now, then it updates the current layer.
// (If it's the layer select for the currently locked layer, then instead it's a toggle
// back to _QWERTY!)
if (layer_select_held != _QWERTY) {
current_layer = (layer_lock == layer_select_held ? _QWERTY : layer_select_held);
}
language_layers |= (1UL << current_layer);
// If we're shifted (with either shift or caps lock), and we're in one of our special
// layers, bump up to the SHIFTED version of that layer. We don't do this for QWERTY;
// there we just emit USB HID codes and let the host deal with shift.
if (shifted && current_layer != _QWERTY) {
++current_layer;
language_layers |= (1UL << current_layer);
}
// Update the QMK layer state by stomping just the language layer bits.
const layer_state_t new_layer_state = (layer_state & NON_LANGUAGE_LAYERS) | language_layers;
if (new_layer_state != layer_state) {
layer_state_set(new_layer_state);
}
return current_layer;
}
void set_os_mode(uint8_t new_mode) {
os_mode = new_mode;
// NB: We set unicode_config.input_mode directly, rather than calling
// set_unicode_input_mode, because we don't want to persist this and so we shouldn't put
// extra load on the EEPROMs.
unicode_config.input_mode = (os_mode == _MAC ? UNICODE_MODE_MACOS : UNICODE_MODE_WINCOMPOSE);
// Swap LALT and LGUI depending on Mac/Windows.
keymap_config.swap_lalt_lgui = (os_mode == _MAC);
// This would be a great moment for some auditory or visual feedback, but this keyboard
// doesn't support it. :(
}
void toggle_os_mode(void) {
set_os_mode((os_mode + 1) % _OS_MODES_MAX);
}
void keyboard_post_init_user(void) {
set_os_mode(_WINDOWS);
}
bool process_record_user(uint16_t keycode, keyrecord_t *record) {
// We track these persistent globals and manage them on our own, rather than trying to rely on
// get_mods or the like, because this function is called *before* that's updated!
static bool shift_held = false;
static bool alt_held = false;
static bool ctrl_held = false;
static bool super_held = false;
// These are where we remember the values of lock states.
static bool shift_lock = false;
static uint8_t layer_lock = _QWERTY; // The currently locked layer
static uint8_t next_layer_lock = _QWERTY; // Used when layer_lock is held
// Which layer select key is currently being held down. _QWERTY is equivalent to "none."
static uint8_t layer_select_held = _QWERTY;
// When the hold on the platform key started
static uint16_t platform_hold_start = 0;
// The accent request, or zero if there isn't one.
static uint16_t accent_request = 0;
// What kind of key we're striking right now, so that we know what to do if any accent requests
// are hanging around.
uint8_t key_type = _NORMAL_KEY;
// The layer selection and locking logic is:
// * By default, the current layer is given by saved value layer_lock.
// * If a layer select key is held down, we update the current layer to that value.
// (But special thing: If the current layer lock is <layer> and you hit the select key
// for <layer>, it instead toggles the current layer back to _QWERTY! That way you can
// insert some QWERTY keys in the midst of other-layer text.)
// * If the KC_LAYER_LOCK key is held down and a layer select key gets pressed, we update
// next_layer_lock to that selected layer. When KC_LAYER_LOCK is released, we update
// layer_lock to next_layer_lock. Note that that simply tapping KC_LAYER_LOCK resets
// layer_lock to _QWERTY.
// * After all of this is done, we check if shift is held (via either shift or caps lock);
// if it is, and our current layer isn't _QWERTY, then we bump the current layer ID by 1
// to get the shifted layer.
// Step 1: Process various interesting keycodes, especially ones that update our running
// state variables.
switch (keycode) {
// Monitoring the modifier keys, because we'll need them for our logic!
case KC_LSFT:
case KC_RSFT:
shift_held = record->event.pressed;
key_type = _MODIFIER_KEY;
break;
case KC_CAPS:
// If we're in QWERTY mode, caps lock is already going to be managed by the host OS, but by
// tracking it ourselves we can also usefully apply it to the GREEK and CADET layers.
shift_lock = !shift_lock;
key_type = _MODIFIER_KEY;
break;
case KC_LALT:
case KC_RALT:
alt_held = record->event.pressed;
key_type = _MODIFIER_KEY;
break;
case KC_LCTL:
case KC_RCTL:
ctrl_held = record->event.pressed;
key_type = _MODIFIER_KEY;
break;
case KC_LGUI:
case KC_RGUI:
super_held = record->event.pressed;
key_type = _MODIFIER_KEY;
break;
case KC_LAYER_LOCK:
if (record->event.pressed) {
// On press, get ready for a layer selection.
next_layer_lock = _QWERTY;
} else {
// On release, propagate next_layer_lock to layer_lock.
layer_lock = next_layer_lock;
}
key_type = _MODIFIER_KEY;
break;
// Layer selectors
case KC_GREEK:
if (record->event.pressed) {
layer_select_held = _GREEK;
next_layer_lock = _GREEK;
} else {
layer_select_held = _QWERTY;
}
key_type = _MODIFIER_KEY;
break;
case KC_CADET:
if (record->event.pressed) {
layer_select_held = _CADET;
next_layer_lock = _CADET;
} else {
layer_select_held = _QWERTY;
}
key_type = _MODIFIER_KEY;
break;
case KC_YIDDISH:
if (record->event.pressed) {
layer_select_held = _YIDDISH;
next_layer_lock = _YIDDISH;
} else {
layer_select_held = _QWERTY;
}
key_type = _MODIFIER_KEY;
break;
// Accent selectors
case KC_CGRV:
case KC_CAGU:
case KC_CDIA:
case KC_CCIR:
case KC_CCED:
case KC_CTIL:
// The accent request keys normally update accent_request (whose effect will trigger the next
// time we see a "normal" key pressed). However, shift+accent request will instead immediately
// generate the Unicode combining accent symbol instead.
if (shift_held) {
register_unicode(pgm_read_word(combined_accents + keycode - KC_ACCENT_START));
return false;
} else {
accent_request = keycode;
}
key_type = _MODIFIER_KEY;
break;
// Our special keycodes
case KC_PLATFORM:
if (record->event.pressed) {
platform_hold_start = record->event.time;
} else if (platform_hold_start != 0 && record->event.time - platform_hold_start > PLATFORM_HOLD_DURATION) {
toggle_os_mode();
}
key_type = _SPECIAL_KEY;
return true;
case KC_VC_MUTE:
if (record->event.pressed) {
send_string(VC_MUTE_VALUES[os_mode]);
return true;
}
key_type = _SPECIAL_KEY;
break;
case KC_VC_HAND:
if (record->event.pressed) {
send_string(VC_HAND_VALUES[os_mode]);
return true;
}
key_type = _SPECIAL_KEY;
break;
case KC_SCRNSHT:
if (record->event.pressed) {
send_string(SCRNSHT_VALUES[os_mode]);
return true;
}
key_type = _SPECIAL_KEY;
break;
case QK_BOOT:
key_type = _SPECIAL_KEY;
break;
}
// Step 2: Finalize current_layer and update the QMK layer state.
const bool shifted = (shift_held != shift_lock);
const uint8_t current_layer = update_layer(layer_lock, layer_select_held, shifted);
// Step 3: Handle accents.
bool handled = false;
if (accent_request && record->event.pressed) {
// If we're in any layer other than _QWERTY, or a modifier key is being held down,
// then we're actually generating a special key, not a normal one.
if (key_type == _NORMAL_KEY &&
(current_layer != _QWERTY || ctrl_held || super_held || alt_held)) {
key_type = _SPECIAL_KEY;
}
switch (key_type) {
case _NORMAL_KEY:
handled = process_key_after_accent(accent_request, keycode, shifted);
accent_request = 0;
break;
case _SPECIAL_KEY:
accent_request = 0;
break;
case _MODIFIER_KEY:
break;
}
}
return !handled;
}