/* Copyright 2021 QMK * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #include #include #include #include "crc.h" #include "debug.h" #include "matrix.h" #include "host.h" #include "action_util.h" #include "sync_timer.h" #include "wait.h" #include "transactions.h" #include "transport.h" #include "transaction_id_define.h" #include "split_util.h" #include "synchronization_util.h" #ifdef BACKLIGHT_ENABLE # include "backlight.h" #endif #ifdef RGBLIGHT_ENABLE # include "rgblight.h" #endif #ifdef LED_MATRIX_ENABLE # include "led_matrix.h" #endif #ifdef RGB_MATRIX_ENABLE # include "rgb_matrix.h" #endif #ifdef OLED_ENABLE # include "oled_driver.h" #endif #ifdef ST7565_ENABLE # include "st7565.h" #endif #ifdef ENCODER_ENABLE # include "encoder.h" #endif #ifdef HAPTIC_ENABLE # include "haptic.h" #endif #ifdef POINTING_DEVICE_ENABLE # include "pointing_device.h" #endif #ifdef OS_DETECTION_ENABLE # include "os_detection.h" #endif #ifdef WPM_ENABLE # include "wpm.h" #endif #define SYNC_TIMER_OFFSET 2 #ifndef FORCED_SYNC_THROTTLE_MS # define FORCED_SYNC_THROTTLE_MS 100 #endif // FORCED_SYNC_THROTTLE_MS #define sizeof_member(type, member) sizeof(((type *)NULL)->member) #define trans_initiator2target_initializer_cb(member, cb) \ { sizeof_member(split_shared_memory_t, member), offsetof(split_shared_memory_t, member), 0, 0, cb } #define trans_initiator2target_initializer(member) trans_initiator2target_initializer_cb(member, NULL) #define trans_target2initiator_initializer_cb(member, cb) \ { 0, 0, sizeof_member(split_shared_memory_t, member), offsetof(split_shared_memory_t, member), cb } #define trans_target2initiator_initializer(member) trans_target2initiator_initializer_cb(member, NULL) #define trans_initiator2target_cb(cb) \ { 0, 0, 0, 0, cb } #define transport_write(id, data, length) transport_execute_transaction(id, data, length, NULL, 0) #define transport_read(id, data, length) transport_execute_transaction(id, NULL, 0, data, length) #define transport_exec(id) transport_execute_transaction(id, NULL, 0, NULL, 0) #if defined(SPLIT_TRANSACTION_IDS_KB) || defined(SPLIT_TRANSACTION_IDS_USER) // Forward-declare the RPC callback handlers void slave_rpc_info_callback(uint8_t initiator2target_buffer_size, const void *initiator2target_buffer, uint8_t target2initiator_buffer_size, void *target2initiator_buffer); void slave_rpc_exec_callback(uint8_t initiator2target_buffer_size, const void *initiator2target_buffer, uint8_t target2initiator_buffer_size, void *target2initiator_buffer); #endif // defined(SPLIT_TRANSACTION_IDS_KB) || defined(SPLIT_TRANSACTION_IDS_USER) //////////////////////////////////////////////////// // Helpers static bool transaction_handler_master(matrix_row_t master_matrix[], matrix_row_t slave_matrix[], const char *prefix, bool (*handler)(matrix_row_t master_matrix[], matrix_row_t slave_matrix[])) { int num_retries = is_transport_connected() ? 10 : 1; for (int iter = 1; iter <= num_retries; ++iter) { if (iter > 1) { for (int i = 0; i < iter * iter; ++i) { wait_us(10); } } bool this_okay = true; this_okay = handler(master_matrix, slave_matrix); if (this_okay) return true; } dprintf("Failed to execute %s\n", prefix); return false; } #define TRANSACTION_HANDLER_MASTER(prefix) \ do { \ if (!transaction_handler_master(master_matrix, slave_matrix, #prefix, &prefix##_handlers_master)) return false; \ } while (0) /** * @brief Constructs a transaction handler that doesn't acquire a lock to the * split shared memory. Therefore the locking and unlocking has to be done * manually inside the handler. Use this macro only if the handler is * non-deterministic in runtime and thus needs a manual lock unlock * implementation to hold the lock for the shortest possible time. */ #define TRANSACTION_HANDLER_SLAVE(prefix) \ do { \ prefix##_handlers_slave(master_matrix, slave_matrix); \ } while (0) /** * @brief Constructs a transaction handler that automatically acquires a lock to * safely access the split shared memory and releases the lock again after * processing the handler. Use this macro if the handler is fast and * deterministic in runtime and thus holds the lock only for a very short time. * If not fallback to manually locking and unlocking inside the handler. */ #define TRANSACTION_HANDLER_SLAVE_AUTOLOCK(prefix) \ do { \ split_shared_memory_lock(); \ prefix##_handlers_slave(master_matrix, slave_matrix); \ split_shared_memory_unlock(); \ } while (0) inline static bool read_if_checksum_mismatch(int8_t trans_id_checksum, int8_t trans_id_retrieve, uint32_t *last_update, void *destination, const void *equiv_shmem, size_t length) { uint8_t curr_checksum; bool okay = transport_read(trans_id_checksum, &curr_checksum, sizeof(curr_checksum)); if (okay && (timer_elapsed32(*last_update) >= FORCED_SYNC_THROTTLE_MS || curr_checksum != crc8(equiv_shmem, length))) { okay &= transport_read(trans_id_retrieve, destination, length); okay &= curr_checksum == crc8(equiv_shmem, length); if (okay) { *last_update = timer_read32(); } } else { memcpy(destination, equiv_shmem, length); } return okay; } inline static bool send_if_condition(int8_t trans_id, uint32_t *last_update, bool condition, void *source, size_t length) { bool okay = true; if (timer_elapsed32(*last_update) >= FORCED_SYNC_THROTTLE_MS || condition) { okay &= transport_write(trans_id, source, length); if (okay) { *last_update = timer_read32(); } } return okay; } inline static bool send_if_data_mismatch(int8_t trans_id, uint32_t *last_update, void *source, const void *equiv_shmem, size_t length) { // Just run a memcmp to compare the source and equivalent shmem location return send_if_condition(trans_id, last_update, (memcmp(source, equiv_shmem, length) != 0), source, length); } //////////////////////////////////////////////////// // Slave matrix static bool slave_matrix_handlers_master(matrix_row_t master_matrix[], matrix_row_t slave_matrix[]) { static uint32_t last_update = 0; static matrix_row_t last_matrix[(MATRIX_ROWS) / 2] = {0}; // last successfully-read matrix, so we can replicate if there are checksum errors matrix_row_t temp_matrix[(MATRIX_ROWS) / 2]; // holding area while we test whether or not checksum is correct bool okay = read_if_checksum_mismatch(GET_SLAVE_MATRIX_CHECKSUM, GET_SLAVE_MATRIX_DATA, &last_update, temp_matrix, split_shmem->smatrix.matrix, sizeof(split_shmem->smatrix.matrix)); if (okay) { // Checksum matches the received data, save as the last matrix state memcpy(last_matrix, temp_matrix, sizeof(temp_matrix)); } // Copy out the last-known-good matrix state to the slave matrix memcpy(slave_matrix, last_matrix, sizeof(last_matrix)); return okay; } static void slave_matrix_handlers_slave(matrix_row_t master_matrix[], matrix_row_t slave_matrix[]) { memcpy(split_shmem->smatrix.matrix, slave_matrix, sizeof(split_shmem->smatrix.matrix)); split_shmem->smatrix.checksum = crc8(split_shmem->smatrix.matrix, sizeof(split_shmem->smatrix.matrix)); } // clang-format off #define TRANSACTIONS_SLAVE_MATRIX_MASTER() TRANSACTION_HANDLER_MASTER(slave_matrix) #define TRANSACTIONS_SLAVE_MATRIX_SLAVE() TRANSACTION_HANDLER_SLAVE_AUTOLOCK(slave_matrix) #define TRANSACTIONS_SLAVE_MATRIX_REGISTRATIONS \ [GET_SLAVE_MATRIX_CHECKSUM] = trans_target2initiator_initializer(smatrix.checksum), \ [GET_SLAVE_MATRIX_DATA] = trans_target2initiator_initializer(smatrix.matrix), // clang-format on //////////////////////////////////////////////////// // Master matrix #ifdef SPLIT_TRANSPORT_MIRROR static bool master_matrix_handlers_master(matrix_row_t master_matrix[], matrix_row_t slave_matrix[]) { static uint32_t last_update = 0; return send_if_data_mismatch(PUT_MASTER_MATRIX, &last_update, master_matrix, split_shmem->mmatrix.matrix, sizeof(split_shmem->mmatrix.matrix)); } static void master_matrix_handlers_slave(matrix_row_t master_matrix[], matrix_row_t slave_matrix[]) { // Always copy to the master matrix memcpy(master_matrix, split_shmem->mmatrix.matrix, sizeof(split_shmem->mmatrix.matrix)); } # define TRANSACTIONS_MASTER_MATRIX_MASTER() TRANSACTION_HANDLER_MASTER(master_matrix) # define TRANSACTIONS_MASTER_MATRIX_SLAVE() TRANSACTION_HANDLER_SLAVE_AUTOLOCK(master_matrix) # define TRANSACTIONS_MASTER_MATRIX_REGISTRATIONS [PUT_MASTER_MATRIX] = trans_initiator2target_initializer(mmatrix.matrix), #else // SPLIT_TRANSPORT_MIRROR # define TRANSACTIONS_MASTER_MATRIX_MASTER() # define TRANSACTIONS_MASTER_MATRIX_SLAVE() # define TRANSACTIONS_MASTER_MATRIX_REGISTRATIONS #endif // SPLIT_TRANSPORT_MIRROR //////////////////////////////////////////////////// // Encoders #ifdef ENCODER_ENABLE static bool encoder_handlers_master(matrix_row_t master_matrix[], matrix_row_t slave_matrix[]) { static uint32_t last_update = 0; static uint8_t last_checksum = 0; encoder_events_t temp_events; bool okay = read_if_checksum_mismatch(GET_ENCODERS_CHECKSUM, GET_ENCODERS_DATA, &last_update, &temp_events, &split_shmem->encoders.events, sizeof(temp_events)); if (okay) { if (last_checksum != split_shmem->encoders.checksum) { bool actioned = false; uint8_t index; bool clockwise; while (okay && encoder_dequeue_event_advanced(&split_shmem->encoders.events, &index, &clockwise)) { okay &= encoder_queue_event(index, clockwise); actioned = true; } if (actioned) { okay &= transport_exec(CMD_ENCODER_DRAIN); } last_checksum = split_shmem->encoders.checksum; } } return okay; } static void encoder_handlers_slave(matrix_row_t master_matrix[], matrix_row_t slave_matrix[]) { // Always prepare the encoder state for read. encoder_retrieve_events(&split_shmem->encoders.events); // Now update the checksum given that the encoders has been written to split_shmem->encoders.checksum = crc8(&split_shmem->encoders.events, sizeof(split_shmem->encoders.events)); } static void encoder_handlers_slave_drain(uint8_t initiator2target_buffer_size, const void *initiator2target_buffer, uint8_t target2initiator_buffer_size, void *target2initiator_buffer) { encoder_signal_queue_drain(); } // clang-format off # define TRANSACTIONS_ENCODERS_MASTER() TRANSACTION_HANDLER_MASTER(encoder) # define TRANSACTIONS_ENCODERS_SLAVE() TRANSACTION_HANDLER_SLAVE_AUTOLOCK(encoder) # define TRANSACTIONS_ENCODERS_REGISTRATIONS \ [GET_ENCODERS_CHECKSUM] = trans_target2initiator_initializer(encoders.checksum), \ [GET_ENCODERS_DATA] = trans_target2initiator_initializer(encoders.events), \ [CMD_ENCODER_DRAIN] = trans_initiator2target_cb(encoder_handlers_slave_drain), // clang-format on #else // ENCODER_ENABLE # define TRANSACTIONS_ENCODERS_MASTER() # define TRANSACTIONS_ENCODERS_SLAVE() # define TRANSACTIONS_ENCODERS_REGISTRATIONS #endif // ENCODER_ENABLE //////////////////////////////////////////////////// // Sync timer #ifndef DISABLE_SYNC_TIMER static bool sync_timer_handlers_master(matrix_row_t master_matrix[], matrix_row_t slave_matrix[]) { static uint32_t last_update = 0; bool okay = true; if (timer_elapsed32(last_update) >= FORCED_SYNC_THROTTLE_MS) { uint32_t sync_timer = sync_timer_read32() + SYNC_TIMER_OFFSET; okay &= transport_write(PUT_SYNC_TIMER, &sync_timer, sizeof(sync_timer)); if (okay) { last_update = timer_read32(); } } return okay; } static void sync_timer_handlers_slave(matrix_row_t master_matrix[], matrix_row_t slave_matrix[]) { static uint32_t last_sync_timer = 0; if (last_sync_timer != split_shmem->sync_timer) { last_sync_timer = split_shmem->sync_timer; sync_timer_update(last_sync_timer); } } # define TRANSACTIONS_SYNC_TIMER_MASTER() TRANSACTION_HANDLER_MASTER(sync_timer) # define TRANSACTIONS_SYNC_TIMER_SLAVE() TRANSACTION_HANDLER_SLAVE_AUTOLOCK(sync_timer) # define TRANSACTIONS_SYNC_TIMER_REGISTRATIONS [PUT_SYNC_TIMER] = trans_initiator2target_initializer(sync_timer), #else // DISABLE_SYNC_TIMER # define TRANSACTIONS_SYNC_TIMER_MASTER() # define TRANSACTIONS_SYNC_TIMER_SLAVE() # define TRANSACTIONS_SYNC_TIMER_REGISTRATIONS #endif // DISABLE_SYNC_TIMER //////////////////////////////////////////////////// // Layer state #if !defined(NO_ACTION_LAYER) && defined(SPLIT_LAYER_STATE_ENABLE) static bool layer_state_handlers_master(matrix_row_t master_matrix[], matrix_row_t slave_matrix[]) { static uint32_t last_layer_state_update = 0; static uint32_t last_default_layer_state_update = 0; bool okay = send_if_condition(PUT_LAYER_STATE, &last_layer_state_update, (layer_state != split_shmem->layers.layer_state), &layer_state, sizeof(layer_state)); if (okay) { okay &= send_if_condition(PUT_DEFAULT_LAYER_STATE, &last_default_layer_state_update, (default_layer_state != split_shmem->layers.default_layer_state), &default_layer_state, sizeof(default_layer_state)); } return okay; } static void layer_state_handlers_slave(matrix_row_t master_matrix[], matrix_row_t slave_matrix[]) { layer_state = split_shmem->layers.layer_state; default_layer_state = split_shmem->layers.default_layer_state; } // clang-format off # define TRANSACTIONS_LAYER_STATE_MASTER() TRANSACTION_HANDLER_MASTER(layer_state) # define TRANSACTIONS_LAYER_STATE_SLAVE() TRANSACTION_HANDLER_SLAVE_AUTOLOCK(layer_state) # define TRANSACTIONS_LAYER_STATE_REGISTRATIONS \ [PUT_LAYER_STATE] = trans_initiator2target_initializer(layers.layer_state), \ [PUT_DEFAULT_LAYER_STATE] = trans_initiator2target_initializer(layers.default_layer_state), // clang-format on #else // !defined(NO_ACTION_LAYER) && defined(SPLIT_LAYER_STATE_ENABLE) # define TRANSACTIONS_LAYER_STATE_MASTER() # define TRANSACTIONS_LAYER_STATE_SLAVE() # define TRANSACTIONS_LAYER_STATE_REGISTRATIONS #endif // !defined(NO_ACTION_LAYER) && defined(SPLIT_LAYER_STATE_ENABLE) //////////////////////////////////////////////////// // LED state #ifdef SPLIT_LED_STATE_ENABLE static bool led_state_handlers_master(matrix_row_t master_matrix[], matrix_row_t slave_matrix[]) { static uint32_t last_update = 0; uint8_t led_state = host_keyboard_leds(); return send_if_data_mismatch(PUT_LED_STATE, &last_update, &led_state, &split_shmem->led_state, sizeof(led_state)); } static void led_state_handlers_slave(matrix_row_t master_matrix[], matrix_row_t slave_matrix[]) { void set_split_host_keyboard_leds(uint8_t led_state); set_split_host_keyboard_leds(split_shmem->led_state); } # define TRANSACTIONS_LED_STATE_MASTER() TRANSACTION_HANDLER_MASTER(led_state) # define TRANSACTIONS_LED_STATE_SLAVE() TRANSACTION_HANDLER_SLAVE_AUTOLOCK(led_state) # define TRANSACTIONS_LED_STATE_REGISTRATIONS [PUT_LED_STATE] = trans_initiator2target_initializer(led_state), #else // SPLIT_LED_STATE_ENABLE # define TRANSACTIONS_LED_STATE_MASTER() # define TRANSACTIONS_LED_STATE_SLAVE() # define TRANSACTIONS_LED_STATE_REGISTRATIONS #endif // SPLIT_LED_STATE_ENABLE //////////////////////////////////////////////////// // Mods #ifdef SPLIT_MODS_ENABLE static bool mods_handlers_master(matrix_row_t master_matrix[], matrix_row_t slave_matrix[]) { static uint32_t last_update = 0; bool mods_need_sync = timer_elapsed32(last_update) >= FORCED_SYNC_THROTTLE_MS; split_mods_sync_t new_mods; new_mods.real_mods = get_mods(); if (!mods_need_sync && new_mods.real_mods != split_shmem->mods.real_mods) { mods_need_sync = true; } new_mods.weak_mods = get_weak_mods(); if (!mods_need_sync && new_mods.weak_mods != split_shmem->mods.weak_mods) { mods_need_sync = true; } # ifndef NO_ACTION_ONESHOT new_mods.oneshot_mods = get_oneshot_mods(); if (!mods_need_sync && new_mods.oneshot_mods != split_shmem->mods.oneshot_mods) { mods_need_sync = true; } # endif // NO_ACTION_ONESHOT bool okay = true; if (mods_need_sync) { okay &= transport_write(PUT_MODS, &new_mods, sizeof(new_mods)); if (okay) { last_update = timer_read32(); } } return okay; } static void mods_handlers_slave(matrix_row_t master_matrix[], matrix_row_t slave_matrix[]) { split_shared_memory_lock(); split_mods_sync_t mods; memcpy(&mods, &split_shmem->mods, sizeof(split_mods_sync_t)); split_shared_memory_unlock(); set_mods(mods.real_mods); set_weak_mods(mods.weak_mods); # ifndef NO_ACTION_ONESHOT set_oneshot_mods(mods.oneshot_mods); # endif } # define TRANSACTIONS_MODS_MASTER() TRANSACTION_HANDLER_MASTER(mods) # define TRANSACTIONS_MODS_SLAVE() TRANSACTION_HANDLER_SLAVE(mods) # define TRANSACTIONS_MODS_REGISTRATIONS [PUT_MODS] = trans_initiator2target_initializer(mods), #else // SPLIT_MODS_ENABLE # define TRANSACTIONS_MODS_MASTER() # define TRANSACTIONS_MODS_SLAVE() # define TRANSACTIONS_MODS_REGISTRATIONS #endif // SPLIT_MODS_ENABLE //////////////////////////////////////////////////// // Backlight #ifdef BACKLIGHT_ENABLE static bool backlight_handlers_master(matrix_row_t master_matrix[], matrix_row_t slave_matrix[]) { static uint32_t last_update = 0; uint8_t level = is_backlight_enabled() ? get_backlight_level() : 0; return send_if_condition(PUT_BACKLIGHT, &last_update, (level != split_shmem->backlight_level), &level, sizeof(level)); } static void backlight_handlers_slave(matrix_row_t master_matrix[], matrix_row_t slave_matrix[]) { split_shared_memory_lock(); uint8_t backlight_level = split_shmem->backlight_level; split_shared_memory_unlock(); backlight_level_noeeprom(backlight_level); } # define TRANSACTIONS_BACKLIGHT_MASTER() TRANSACTION_HANDLER_MASTER(backlight) # define TRANSACTIONS_BACKLIGHT_SLAVE() TRANSACTION_HANDLER_SLAVE(backlight) # define TRANSACTIONS_BACKLIGHT_REGISTRATIONS [PUT_BACKLIGHT] = trans_initiator2target_initializer(backlight_level), #else // BACKLIGHT_ENABLE # define TRANSACTIONS_BACKLIGHT_MASTER() # define TRANSACTIONS_BACKLIGHT_SLAVE() # define TRANSACTIONS_BACKLIGHT_REGISTRATIONS #endif // BACKLIGHT_ENABLE //////////////////////////////////////////////////// // RGBLIGHT #if defined(RGBLIGHT_ENABLE) && defined(RGBLIGHT_SPLIT) static bool rgblight_handlers_master(matrix_row_t master_matrix[], matrix_row_t slave_matrix[]) { static uint32_t last_update = 0; rgblight_syncinfo_t rgblight_sync; rgblight_get_syncinfo(&rgblight_sync); if (send_if_condition(PUT_RGBLIGHT, &last_update, (rgblight_sync.status.change_flags != 0), &rgblight_sync, sizeof(rgblight_sync))) { rgblight_clear_change_flags(); } else { return false; } return true; } static void rgblight_handlers_slave(matrix_row_t master_matrix[], matrix_row_t slave_matrix[]) { split_shared_memory_lock(); // Update the RGB with the new data rgblight_syncinfo_t rgblight_sync; memcpy(&rgblight_sync, &split_shmem->rgblight_sync, sizeof(rgblight_syncinfo_t)); split_shmem->rgblight_sync.status.change_flags = 0; split_shared_memory_unlock(); if (rgblight_sync.status.change_flags != 0) { rgblight_update_sync(&rgblight_sync, false); } } # define TRANSACTIONS_RGBLIGHT_MASTER() TRANSACTION_HANDLER_MASTER(rgblight) # define TRANSACTIONS_RGBLIGHT_SLAVE() TRANSACTION_HANDLER_SLAVE(rgblight) # define TRANSACTIONS_RGBLIGHT_REGISTRATIONS [PUT_RGBLIGHT] = trans_initiator2target_initializer(rgblight_sync), #else // defined(RGBLIGHT_ENABLE) && defined(RGBLIGHT_SPLIT) # define TRANSACTIONS_RGBLIGHT_MASTER() # define TRANSACTIONS_RGBLIGHT_SLAVE() # define TRANSACTIONS_RGBLIGHT_REGISTRATIONS #endif // defined(RGBLIGHT_ENABLE) && defined(RGBLIGHT_SPLIT) //////////////////////////////////////////////////// // LED Matrix #if defined(LED_MATRIX_ENABLE) && defined(LED_MATRIX_SPLIT) static bool led_matrix_handlers_master(matrix_row_t master_matrix[], matrix_row_t slave_matrix[]) { static uint32_t last_update = 0; led_matrix_sync_t led_matrix_sync; memcpy(&led_matrix_sync.led_matrix, &led_matrix_eeconfig, sizeof(led_eeconfig_t)); led_matrix_sync.led_suspend_state = led_matrix_get_suspend_state(); return send_if_data_mismatch(PUT_LED_MATRIX, &last_update, &led_matrix_sync, &split_shmem->led_matrix_sync, sizeof(led_matrix_sync)); } static void led_matrix_handlers_slave(matrix_row_t master_matrix[], matrix_row_t slave_matrix[]) { split_shared_memory_lock(); memcpy(&led_matrix_eeconfig, &split_shmem->led_matrix_sync.led_matrix, sizeof(led_eeconfig_t)); bool led_suspend_state = split_shmem->led_matrix_sync.led_suspend_state; split_shared_memory_unlock(); led_matrix_set_suspend_state(led_suspend_state); } # define TRANSACTIONS_LED_MATRIX_MASTER() TRANSACTION_HANDLER_MASTER(led_matrix) # define TRANSACTIONS_LED_MATRIX_SLAVE() TRANSACTION_HANDLER_SLAVE(led_matrix) # define TRANSACTIONS_LED_MATRIX_REGISTRATIONS [PUT_LED_MATRIX] = trans_initiator2target_initializer(led_matrix_sync), #else // defined(LED_MATRIX_ENABLE) && defined(LED_MATRIX_SPLIT) # define TRANSACTIONS_LED_MATRIX_MASTER() # define TRANSACTIONS_LED_MATRIX_SLAVE() # define TRANSACTIONS_LED_MATRIX_REGISTRATIONS #endif // defined(LED_MATRIX_ENABLE) && defined(LED_MATRIX_SPLIT) //////////////////////////////////////////////////// // RGB Matrix #if defined(RGB_MATRIX_ENABLE) && defined(RGB_MATRIX_SPLIT) static bool rgb_matrix_handlers_master(matrix_row_t master_matrix[], matrix_row_t slave_matrix[]) { static uint32_t last_update = 0; rgb_matrix_sync_t rgb_matrix_sync; memcpy(&rgb_matrix_sync.rgb_matrix, &rgb_matrix_config, sizeof(rgb_config_t)); rgb_matrix_sync.rgb_suspend_state = rgb_matrix_get_suspend_state(); return send_if_data_mismatch(PUT_RGB_MATRIX, &last_update, &rgb_matrix_sync, &split_shmem->rgb_matrix_sync, sizeof(rgb_matrix_sync)); } static void rgb_matrix_handlers_slave(matrix_row_t master_matrix[], matrix_row_t slave_matrix[]) { split_shared_memory_lock(); memcpy(&rgb_matrix_config, &split_shmem->rgb_matrix_sync.rgb_matrix, sizeof(rgb_config_t)); bool rgb_suspend_state = split_shmem->rgb_matrix_sync.rgb_suspend_state; split_shared_memory_unlock(); rgb_matrix_set_suspend_state(rgb_suspend_state); } # define TRANSACTIONS_RGB_MATRIX_MASTER() TRANSACTION_HANDLER_MASTER(rgb_matrix) # define TRANSACTIONS_RGB_MATRIX_SLAVE() TRANSACTION_HANDLER_SLAVE(rgb_matrix) # define TRANSACTIONS_RGB_MATRIX_REGISTRATIONS [PUT_RGB_MATRIX] = trans_initiator2target_initializer(rgb_matrix_sync), #else // defined(RGB_MATRIX_ENABLE) && defined(RGB_MATRIX_SPLIT) # define TRANSACTIONS_RGB_MATRIX_MASTER() # define TRANSACTIONS_RGB_MATRIX_SLAVE() # define TRANSACTIONS_RGB_MATRIX_REGISTRATIONS #endif // defined(RGB_MATRIX_ENABLE) && defined(RGB_MATRIX_SPLIT) //////////////////////////////////////////////////// // WPM #if defined(WPM_ENABLE) && defined(SPLIT_WPM_ENABLE) static bool wpm_handlers_master(matrix_row_t master_matrix[], matrix_row_t slave_matrix[]) { static uint32_t last_update = 0; uint8_t current_wpm = get_current_wpm(); return send_if_condition(PUT_WPM, &last_update, (current_wpm != split_shmem->current_wpm), ¤t_wpm, sizeof(current_wpm)); } static void wpm_handlers_slave(matrix_row_t master_matrix[], matrix_row_t slave_matrix[]) { set_current_wpm(split_shmem->current_wpm); } # define TRANSACTIONS_WPM_MASTER() TRANSACTION_HANDLER_MASTER(wpm) # define TRANSACTIONS_WPM_SLAVE() TRANSACTION_HANDLER_SLAVE_AUTOLOCK(wpm) # define TRANSACTIONS_WPM_REGISTRATIONS [PUT_WPM] = trans_initiator2target_initializer(current_wpm), #else // defined(WPM_ENABLE) && defined(SPLIT_WPM_ENABLE) # define TRANSACTIONS_WPM_MASTER() # define TRANSACTIONS_WPM_SLAVE() # define TRANSACTIONS_WPM_REGISTRATIONS #endif // defined(WPM_ENABLE) && defined(SPLIT_WPM_ENABLE) //////////////////////////////////////////////////// // OLED #if defined(OLED_ENABLE) && defined(SPLIT_OLED_ENABLE) static bool oled_handlers_master(matrix_row_t master_matrix[], matrix_row_t slave_matrix[]) { static uint32_t last_update = 0; bool current_oled_state = is_oled_on(); return send_if_condition(PUT_OLED, &last_update, (current_oled_state != split_shmem->current_oled_state), ¤t_oled_state, sizeof(current_oled_state)); } static void oled_handlers_slave(matrix_row_t master_matrix[], matrix_row_t slave_matrix[]) { split_shared_memory_lock(); uint8_t current_oled_state = split_shmem->current_oled_state; split_shared_memory_unlock(); if (current_oled_state) { oled_on(); } else { oled_off(); } } # define TRANSACTIONS_OLED_MASTER() TRANSACTION_HANDLER_MASTER(oled) # define TRANSACTIONS_OLED_SLAVE() TRANSACTION_HANDLER_SLAVE(oled) # define TRANSACTIONS_OLED_REGISTRATIONS [PUT_OLED] = trans_initiator2target_initializer(current_oled_state), #else // defined(OLED_ENABLE) && defined(SPLIT_OLED_ENABLE) # define TRANSACTIONS_OLED_MASTER() # define TRANSACTIONS_OLED_SLAVE() # define TRANSACTIONS_OLED_REGISTRATIONS #endif // defined(OLED_ENABLE) && defined(SPLIT_OLED_ENABLE) //////////////////////////////////////////////////// // ST7565 #if defined(ST7565_ENABLE) && defined(SPLIT_ST7565_ENABLE) static bool st7565_handlers_master(matrix_row_t master_matrix[], matrix_row_t slave_matrix[]) { static uint32_t last_update = 0; bool current_st7565_state = st7565_is_on(); return send_if_condition(PUT_ST7565, &last_update, (current_st7565_state != split_shmem->current_st7565_state), ¤t_st7565_state, sizeof(current_st7565_state)); } static void st7565_handlers_slave(matrix_row_t master_matrix[], matrix_row_t slave_matrix[]) { split_shared_memory_lock(); uint8_t current_st7565_state = split_shmem->current_st7565_state; split_shared_memory_unlock(); if (current_st7565_state) { st7565_on(); } else { st7565_off(); } } # define TRANSACTIONS_ST7565_MASTER() TRANSACTION_HANDLER_MASTER(st7565) # define TRANSACTIONS_ST7565_SLAVE() TRANSACTION_HANDLER_SLAVE(st7565) # define TRANSACTIONS_ST7565_REGISTRATIONS [PUT_ST7565] = trans_initiator2target_initializer(current_st7565_state), #else // defined(ST7565_ENABLE) && defined(SPLIT_ST7565_ENABLE) # define TRANSACTIONS_ST7565_MASTER() # define TRANSACTIONS_ST7565_SLAVE() # define TRANSACTIONS_ST7565_REGISTRATIONS #endif // defined(ST7565_ENABLE) && defined(SPLIT_ST7565_ENABLE) //////////////////////////////////////////////////// // POINTING #if defined(POINTING_DEVICE_ENABLE) && defined(SPLIT_POINTING_ENABLE) static bool pointing_handlers_master(matrix_row_t master_matrix[], matrix_row_t slave_matrix[]) { # if defined(POINTING_DEVICE_LEFT) if (is_keyboard_left()) { return true; } # elif defined(POINTING_DEVICE_RIGHT) if (!is_keyboard_left()) { return true; } # endif static uint32_t last_update = 0; static uint16_t last_cpi = 0; report_mouse_t temp_state; uint16_t temp_cpi; bool okay = read_if_checksum_mismatch(GET_POINTING_CHECKSUM, GET_POINTING_DATA, &last_update, &temp_state, &split_shmem->pointing.report, sizeof(temp_state)); if (okay) pointing_device_set_shared_report(temp_state); temp_cpi = pointing_device_get_shared_cpi(); if (temp_cpi && last_cpi != temp_cpi) { split_shmem->pointing.cpi = temp_cpi; okay = transport_write(PUT_POINTING_CPI, &split_shmem->pointing.cpi, sizeof(split_shmem->pointing.cpi)); if (okay) { last_cpi = temp_cpi; } } return okay; } extern const pointing_device_driver_t pointing_device_driver; static void pointing_handlers_slave(matrix_row_t master_matrix[], matrix_row_t slave_matrix[]) { # if defined(POINTING_DEVICE_LEFT) if (!is_keyboard_left()) { return; } # elif defined(POINTING_DEVICE_RIGHT) if (is_keyboard_left()) { return; } # endif # if (POINTING_DEVICE_TASK_THROTTLE_MS > 0) static uint32_t last_exec = 0; if (timer_elapsed32(last_exec) < POINTING_DEVICE_TASK_THROTTLE_MS) { return; } last_exec = timer_read32(); # endif uint16_t temp_cpi = !pointing_device_driver.get_cpi ? 0 : pointing_device_driver.get_cpi(); // check for NULL split_shared_memory_lock(); split_slave_pointing_sync_t pointing; memcpy(&pointing, &split_shmem->pointing, sizeof(split_slave_pointing_sync_t)); split_shared_memory_unlock(); if (pointing.cpi && pointing.cpi != temp_cpi && pointing_device_driver.set_cpi) { pointing_device_driver.set_cpi(pointing.cpi); } pointing.report = pointing_device_driver.get_report((report_mouse_t){0}); // Now update the checksum given that the pointing has been written to pointing.checksum = crc8(&pointing.report, sizeof(report_mouse_t)); split_shared_memory_lock(); memcpy(&split_shmem->pointing, &pointing, sizeof(split_slave_pointing_sync_t)); split_shared_memory_unlock(); } # define TRANSACTIONS_POINTING_MASTER() TRANSACTION_HANDLER_MASTER(pointing) # define TRANSACTIONS_POINTING_SLAVE() TRANSACTION_HANDLER_SLAVE(pointing) # define TRANSACTIONS_POINTING_REGISTRATIONS [GET_POINTING_CHECKSUM] = trans_target2initiator_initializer(pointing.checksum), [GET_POINTING_DATA] = trans_target2initiator_initializer(pointing.report), [PUT_POINTING_CPI] = trans_initiator2target_initializer(pointing.cpi), #else // defined(POINTING_DEVICE_ENABLE) && defined(SPLIT_POINTING_ENABLE) # define TRANSACTIONS_POINTING_MASTER() # define TRANSACTIONS_POINTING_SLAVE() # define TRANSACTIONS_POINTING_REGISTRATIONS #endif // defined(POINTING_DEVICE_ENABLE) && defined(SPLIT_POINTING_ENABLE) //////////////////////////////////////////////////// // WATCHDOG #if defined(SPLIT_WATCHDOG_ENABLE) static bool watchdog_handlers_master(matrix_row_t master_matrix[], matrix_row_t slave_matrix[]) { bool okay = true; if (!split_watchdog_check()) { okay = transport_write(PUT_WATCHDOG, &okay, sizeof(okay)); split_watchdog_update(okay); } return okay; } static void watchdog_handlers_slave(matrix_row_t master_matrix[], matrix_row_t slave_matrix[]) { split_watchdog_update(split_shmem->watchdog_pinged); } # define TRANSACTIONS_WATCHDOG_MASTER() TRANSACTION_HANDLER_MASTER(watchdog) # define TRANSACTIONS_WATCHDOG_SLAVE() TRANSACTION_HANDLER_SLAVE_AUTOLOCK(watchdog) # define TRANSACTIONS_WATCHDOG_REGISTRATIONS [PUT_WATCHDOG] = trans_initiator2target_initializer(watchdog_pinged), #else // defined(SPLIT_WATCHDOG_ENABLE) # define TRANSACTIONS_WATCHDOG_MASTER() # define TRANSACTIONS_WATCHDOG_SLAVE() # define TRANSACTIONS_WATCHDOG_REGISTRATIONS #endif // defined(SPLIT_WATCHDOG_ENABLE) #if defined(HAPTIC_ENABLE) && defined(SPLIT_HAPTIC_ENABLE) uint8_t split_haptic_play = 0xFF; extern haptic_config_t haptic_config; static bool haptic_handlers_master(matrix_row_t master_matrix[], matrix_row_t slave_matrix[]) { static uint32_t last_update = 0; split_slave_haptic_sync_t haptic_sync; memcpy(&haptic_sync.haptic_config, &haptic_config, sizeof(haptic_config_t)); haptic_sync.haptic_play = split_haptic_play; bool okay = send_if_data_mismatch(PUT_HAPTIC, &last_update, &haptic_sync, &split_shmem->haptic_sync, sizeof(haptic_sync)); split_haptic_play = 0xFF; return okay; } static void haptic_handlers_slave(matrix_row_t master_matrix[], matrix_row_t slave_matrix[]) { memcpy(&haptic_config, &split_shmem->haptic_sync.haptic_config, sizeof(haptic_config_t)); if (split_shmem->haptic_sync.haptic_play != 0xFF) { haptic_set_mode(split_shmem->haptic_sync.haptic_play); haptic_play(); } } // clang-format off # define TRANSACTIONS_HAPTIC_MASTER() TRANSACTION_HANDLER_MASTER(haptic) # define TRANSACTIONS_HAPTIC_SLAVE() TRANSACTION_HANDLER_SLAVE(haptic) # define TRANSACTIONS_HAPTIC_REGISTRATIONS [PUT_HAPTIC] = trans_initiator2target_initializer(haptic_sync), // clang-format on #else // defined(HAPTIC_ENABLE) && defined(SPLIT_HAPTIC_ENABLE) # define TRANSACTIONS_HAPTIC_MASTER() # define TRANSACTIONS_HAPTIC_SLAVE() # define TRANSACTIONS_HAPTIC_REGISTRATIONS #endif // defined(HAPTIC_ENABLE) && defined(SPLIT_HAPTIC_ENABLE) #if defined(SPLIT_ACTIVITY_ENABLE) static bool activity_handlers_master(matrix_row_t master_matrix[], matrix_row_t slave_matrix[]) { static uint32_t last_update = 0; split_slave_activity_sync_t activity_sync; activity_sync.matrix_timestamp = last_matrix_activity_time(); activity_sync.encoder_timestamp = last_encoder_activity_time(); activity_sync.pointing_device_timestamp = last_pointing_device_activity_time(); return send_if_data_mismatch(PUT_ACTIVITY, &last_update, &activity_sync, &split_shmem->activity_sync, sizeof(activity_sync)); } static void activity_handlers_slave(matrix_row_t master_matrix[], matrix_row_t slave_matrix[]) { set_activity_timestamps(split_shmem->activity_sync.matrix_timestamp, split_shmem->activity_sync.encoder_timestamp, split_shmem->activity_sync.pointing_device_timestamp); } // clang-format off # define TRANSACTIONS_ACTIVITY_MASTER() TRANSACTION_HANDLER_MASTER(activity) # define TRANSACTIONS_ACTIVITY_SLAVE() TRANSACTION_HANDLER_SLAVE_AUTOLOCK(activity) # define TRANSACTIONS_ACTIVITY_REGISTRATIONS [PUT_ACTIVITY] = trans_initiator2target_initializer(activity_sync), // clang-format on #else // defined(SPLIT_ACTIVITY_ENABLE) # define TRANSACTIONS_ACTIVITY_MASTER() # define TRANSACTIONS_ACTIVITY_SLAVE() # define TRANSACTIONS_ACTIVITY_REGISTRATIONS #endif // defined(SPLIT_ACTIVITY_ENABLE) //////////////////////////////////////////////////// // Detected OS #if defined(OS_DETECTION_ENABLE) && defined(SPLIT_DETECTED_OS_ENABLE) static bool detected_os_handlers_master(matrix_row_t master_matrix[], matrix_row_t slave_matrix[]) { static uint32_t last_detected_os_update = 0; os_variant_t detected_os = detected_host_os(); bool okay = send_if_condition(PUT_DETECTED_OS, &last_detected_os_update, (detected_os != split_shmem->detected_os), &detected_os, sizeof(os_variant_t)); return okay; } static void detected_os_handlers_slave(matrix_row_t master_matrix[], matrix_row_t slave_matrix[]) { slave_update_detected_host_os(split_shmem->detected_os); } # define TRANSACTIONS_DETECTED_OS_MASTER() TRANSACTION_HANDLER_MASTER(detected_os) # define TRANSACTIONS_DETECTED_OS_SLAVE() TRANSACTION_HANDLER_SLAVE_AUTOLOCK(detected_os) # define TRANSACTIONS_DETECTED_OS_REGISTRATIONS [PUT_DETECTED_OS] = trans_initiator2target_initializer(detected_os), #else // defined(OS_DETECTION_ENABLE) && defined(SPLIT_DETECTED_OS_ENABLE) # define TRANSACTIONS_DETECTED_OS_MASTER() # define TRANSACTIONS_DETECTED_OS_SLAVE() # define TRANSACTIONS_DETECTED_OS_REGISTRATIONS #endif // defined(OS_DETECTION_ENABLE) && defined(SPLIT_DETECTED_OS_ENABLE) //////////////////////////////////////////////////// split_transaction_desc_t split_transaction_table[NUM_TOTAL_TRANSACTIONS] = { // Set defaults [0 ...(NUM_TOTAL_TRANSACTIONS - 1)] = {0, 0, 0, 0, 0}, #if 1 [I2C_EXECUTE_CALLBACK] = trans_initiator2target_initializer(transaction_id), #endif // USE_I2C // clang-format off TRANSACTIONS_SLAVE_MATRIX_REGISTRATIONS TRANSACTIONS_MASTER_MATRIX_REGISTRATIONS TRANSACTIONS_ENCODERS_REGISTRATIONS TRANSACTIONS_SYNC_TIMER_REGISTRATIONS TRANSACTIONS_LAYER_STATE_REGISTRATIONS TRANSACTIONS_LED_STATE_REGISTRATIONS TRANSACTIONS_MODS_REGISTRATIONS TRANSACTIONS_BACKLIGHT_REGISTRATIONS TRANSACTIONS_RGBLIGHT_REGISTRATIONS TRANSACTIONS_LED_MATRIX_REGISTRATIONS TRANSACTIONS_RGB_MATRIX_REGISTRATIONS TRANSACTIONS_WPM_REGISTRATIONS TRANSACTIONS_OLED_REGISTRATIONS TRANSACTIONS_ST7565_REGISTRATIONS TRANSACTIONS_POINTING_REGISTRATIONS TRANSACTIONS_WATCHDOG_REGISTRATIONS TRANSACTIONS_HAPTIC_REGISTRATIONS TRANSACTIONS_ACTIVITY_REGISTRATIONS TRANSACTIONS_DETECTED_OS_REGISTRATIONS // clang-format on #if defined(SPLIT_TRANSACTION_IDS_KB) || defined(SPLIT_TRANSACTION_IDS_USER) [PUT_RPC_INFO] = trans_initiator2target_initializer_cb(rpc_info, slave_rpc_info_callback), [PUT_RPC_REQ_DATA] = trans_initiator2target_initializer(rpc_m2s_buffer), [EXECUTE_RPC] = trans_initiator2target_initializer_cb(rpc_info.payload.transaction_id, slave_rpc_exec_callback), [GET_RPC_RESP_DATA] = trans_target2initiator_initializer(rpc_s2m_buffer), #endif // defined(SPLIT_TRANSACTION_IDS_KB) || defined(SPLIT_TRANSACTION_IDS_USER) }; bool transactions_master(matrix_row_t master_matrix[], matrix_row_t slave_matrix[]) { TRANSACTIONS_SLAVE_MATRIX_MASTER(); TRANSACTIONS_MASTER_MATRIX_MASTER(); TRANSACTIONS_ENCODERS_MASTER(); TRANSACTIONS_SYNC_TIMER_MASTER(); TRANSACTIONS_LAYER_STATE_MASTER(); TRANSACTIONS_LED_STATE_MASTER(); TRANSACTIONS_MODS_MASTER(); TRANSACTIONS_BACKLIGHT_MASTER(); TRANSACTIONS_RGBLIGHT_MASTER(); TRANSACTIONS_LED_MATRIX_MASTER(); TRANSACTIONS_RGB_MATRIX_MASTER(); TRANSACTIONS_WPM_MASTER(); TRANSACTIONS_OLED_MASTER(); TRANSACTIONS_ST7565_MASTER(); TRANSACTIONS_POINTING_MASTER(); TRANSACTIONS_WATCHDOG_MASTER(); TRANSACTIONS_HAPTIC_MASTER(); TRANSACTIONS_ACTIVITY_MASTER(); TRANSACTIONS_DETECTED_OS_MASTER(); return true; } void transactions_slave(matrix_row_t master_matrix[], matrix_row_t slave_matrix[]) { TRANSACTIONS_SLAVE_MATRIX_SLAVE(); TRANSACTIONS_MASTER_MATRIX_SLAVE(); TRANSACTIONS_ENCODERS_SLAVE(); TRANSACTIONS_SYNC_TIMER_SLAVE(); TRANSACTIONS_LAYER_STATE_SLAVE(); TRANSACTIONS_LED_STATE_SLAVE(); TRANSACTIONS_MODS_SLAVE(); TRANSACTIONS_BACKLIGHT_SLAVE(); TRANSACTIONS_RGBLIGHT_SLAVE(); TRANSACTIONS_LED_MATRIX_SLAVE(); TRANSACTIONS_RGB_MATRIX_SLAVE(); TRANSACTIONS_WPM_SLAVE(); TRANSACTIONS_OLED_SLAVE(); TRANSACTIONS_ST7565_SLAVE(); TRANSACTIONS_POINTING_SLAVE(); TRANSACTIONS_WATCHDOG_SLAVE(); TRANSACTIONS_HAPTIC_SLAVE(); TRANSACTIONS_ACTIVITY_SLAVE(); TRANSACTIONS_DETECTED_OS_SLAVE(); } #if defined(SPLIT_TRANSACTION_IDS_KB) || defined(SPLIT_TRANSACTION_IDS_USER) void transaction_register_rpc(int8_t transaction_id, slave_callback_t callback) { // Prevent invoking RPC on QMK core sync data if (transaction_id <= GET_RPC_RESP_DATA) return; // Set the callback split_transaction_table[transaction_id].slave_callback = callback; split_transaction_table[transaction_id].initiator2target_offset = offsetof(split_shared_memory_t, rpc_m2s_buffer); split_transaction_table[transaction_id].target2initiator_offset = offsetof(split_shared_memory_t, rpc_s2m_buffer); } bool transaction_rpc_exec(int8_t transaction_id, uint8_t initiator2target_buffer_size, const void *initiator2target_buffer, uint8_t target2initiator_buffer_size, void *target2initiator_buffer) { // Prevent transaction attempts while transport is disconnected if (!is_transport_connected()) { return false; } // Prevent invoking RPC on QMK core sync data if (transaction_id <= GET_RPC_RESP_DATA) return false; // Prevent sizing issues if (initiator2target_buffer_size > RPC_M2S_BUFFER_SIZE) return false; if (target2initiator_buffer_size > RPC_S2M_BUFFER_SIZE) return false; // Prepare the metadata block rpc_sync_info_t info = {.payload = {.transaction_id = transaction_id, .m2s_length = initiator2target_buffer_size, .s2m_length = target2initiator_buffer_size}}; info.checksum = crc8(&info.payload, sizeof(info.payload)); // Make sure the local side knows that we're not sending the full block of data split_transaction_table[PUT_RPC_REQ_DATA].initiator2target_buffer_size = initiator2target_buffer_size; split_transaction_table[GET_RPC_RESP_DATA].target2initiator_buffer_size = target2initiator_buffer_size; // Run through the sequence: // * set the transaction ID and lengths // * send the request data // * execute RPC callback // * retrieve the response data if (!transport_write(PUT_RPC_INFO, &info, sizeof(info))) { return false; } if (!transport_write(PUT_RPC_REQ_DATA, initiator2target_buffer, initiator2target_buffer_size)) { return false; } if (!transport_write(EXECUTE_RPC, &transaction_id, sizeof(transaction_id))) { return false; } if (!transport_read(GET_RPC_RESP_DATA, target2initiator_buffer, target2initiator_buffer_size)) { return false; } return true; } void slave_rpc_info_callback(uint8_t initiator2target_buffer_size, const void *initiator2target_buffer, uint8_t target2initiator_buffer_size, void *target2initiator_buffer) { // The RPC info block contains the intended transaction ID, as well as the sizes for both inbound and outbound data. // Ignore the args -- the `split_shmem` already has the info, we just need to act upon it. // We must keep the `split_transaction_table` non-const, so that it is able to be modified at runtime. split_transaction_table[PUT_RPC_REQ_DATA].initiator2target_buffer_size = split_shmem->rpc_info.payload.m2s_length; split_transaction_table[GET_RPC_RESP_DATA].target2initiator_buffer_size = split_shmem->rpc_info.payload.s2m_length; } void slave_rpc_exec_callback(uint8_t initiator2target_buffer_size, const void *initiator2target_buffer, uint8_t target2initiator_buffer_size, void *target2initiator_buffer) { // We can assume that the buffer lengths are correctly set, now, given that sequentially the rpc_info callback was already executed. // Go through the rpc_info and execute _that_ transaction's callback, with the scratch buffers as inputs. // As a safety precaution we check that the received payload matches its checksum first. if (crc8(&split_shmem->rpc_info.payload, sizeof(split_shmem->rpc_info.payload)) != split_shmem->rpc_info.checksum) { return; } int8_t transaction_id = split_shmem->rpc_info.payload.transaction_id; if (transaction_id < NUM_TOTAL_TRANSACTIONS) { split_transaction_desc_t *trans = &split_transaction_table[transaction_id]; if (trans->slave_callback) { trans->slave_callback(split_shmem->rpc_info.payload.m2s_length, split_shmem->rpc_m2s_buffer, split_shmem->rpc_info.payload.s2m_length, split_shmem->rpc_s2m_buffer); } } } #endif // defined(SPLIT_TRANSACTION_IDS_KB) || defined(SPLIT_TRANSACTION_IDS_USER)