Make the layer cache more efficient

Also change the internal representation to a one dimensional array
This commit is contained in:
Fred Sundvik 2018-06-29 17:10:03 +03:00
parent 3775c92ff8
commit c11c7948e6
5 changed files with 256 additions and 20 deletions

View file

@ -0,0 +1,21 @@
/* Copyright 2018 Fred Sundvik
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#pragma once
#define MATRIX_ROWS 2
#define MATRIX_COLS 2
#define PREVENT_STUCK_MODIFIERS

View file

@ -0,0 +1,24 @@
/* Copyright 2018 Fred Sundvik
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "quantum.h"
const uint16_t PROGMEM keymaps[][MATRIX_ROWS][MATRIX_COLS] = {
[0] = {
{KC_A, KC_B},
{KC_C, KC_D},
}
};

View file

@ -0,0 +1,16 @@
# Copyright 2018 Fred Sundvik
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 2 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
CUSTOM_MATRIX=yes

View file

@ -0,0 +1,140 @@
/* Copyright 2018 Fred Sundvik
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "test_common.hpp"
#if MAX_LAYER_BITS != 5
#error "Tese tests assume that the MAX_LAYER_BITS is equal to 5"
// If this is changed, change the constants below
#endif
#if MATRIX_COLS != 2 || MATRIX_ROWS !=2
#error "These tests assume that the second row starts after the second column"
#endif
namespace
{
constexpr uint8_t max_layer_value = 0b11111;
constexpr uint8_t min_layer_value = 0;
constexpr uint8_t alternating_starting_with_1 = 0b10101;
constexpr uint8_t alternating_starting_with_0 = 0b01010;
uint8_t read_cache(uint8_t col, uint8_t row) {
keypos_t key;
key.col = col;
key.row = row;
return read_source_layers_cache(key);
}
void write_cache(uint8_t col, uint8_t row, uint8_t value) {
keypos_t key;
key.col = col;
key.row = row;
return update_source_layers_cache(key, value);
}
void fill_cache() {
for (int i=0; i < MATRIX_ROWS; i++) {
for (int j=0; j < MATRIX_COLS; j++) {
write_cache(j, i, max_layer_value);
}
}
}
void clear_cache() {
for (int i=0; i < MATRIX_ROWS; i++) {
for (int j=0; j < MATRIX_COLS; j++) {
write_cache(j, i, min_layer_value);
}
}
}
}
class LayerCache : public testing::Test
{
public:
LayerCache()
{
clear_cache();
}
};
TEST_F(LayerCache, LayerCacheIsInitializedToZero) {
for (int i=0; i < MATRIX_ROWS; i++) {
for (int j=0; j < MATRIX_COLS; j++) {
EXPECT_EQ(read_cache(j, i), min_layer_value);
}
}
}
TEST_F(LayerCache, FillAndClearCache) {
fill_cache();
clear_cache();
for (int i=0; i < MATRIX_ROWS; i++) {
for (int j=0; j < MATRIX_COLS; j++) {
EXPECT_EQ(read_cache(j, i), min_layer_value);
}
}
}
TEST_F(LayerCache, WriteAndReadFirstPosMaximumValue) {
write_cache(0, 0, max_layer_value);
EXPECT_EQ(read_cache(0, 0), max_layer_value);
// The second position should not be updated
EXPECT_EQ(read_cache(1, 0), min_layer_value);
EXPECT_EQ(read_cache(0, 1), min_layer_value);
}
TEST_F(LayerCache, WriteAndReadSecondPosMaximumValue) {
write_cache(1, 0, max_layer_value);
EXPECT_EQ(read_cache(1, 0), max_layer_value);
// The surrounding positions should not be updated
EXPECT_EQ(read_cache(0, 0), min_layer_value);
EXPECT_EQ(read_cache(0, 1), min_layer_value);
}
TEST_F(LayerCache, WriteAndReadFirstPosAlternatingBitsStartingWith1) {
write_cache(0, 0, alternating_starting_with_1);
EXPECT_EQ(read_cache(0, 0), alternating_starting_with_1);
// The second position should not be updated
EXPECT_EQ(read_cache(1, 0), min_layer_value);
EXPECT_EQ(read_cache(0, 1), min_layer_value);
}
TEST_F(LayerCache, WriteAndReadSecondPosAlternatingBitsStartingWith1) {
write_cache(1, 0, alternating_starting_with_1);
EXPECT_EQ(read_cache(1, 0), alternating_starting_with_1);
// The surrounding positions should not be updated
EXPECT_EQ(read_cache(0, 0), min_layer_value);
EXPECT_EQ(read_cache(0, 1), min_layer_value);
}
TEST_F(LayerCache, WriteAndReadFirstPosAlternatingBitsStartingWith0) {
write_cache(0, 0, alternating_starting_with_0);
EXPECT_EQ(read_cache(0, 0), alternating_starting_with_0);
// The second position should not be updated
EXPECT_EQ(read_cache(1, 0), min_layer_value);
EXPECT_EQ(read_cache(0, 1), min_layer_value);
}
TEST_F(LayerCache, WriteAndReadSecondPosAlternatingBitsStartingWith0) {
write_cache(1, 0, alternating_starting_with_0);
EXPECT_EQ(read_cache(1, 0), alternating_starting_with_0);
// The surrounding positions should not be updated
EXPECT_EQ(read_cache(0, 0), min_layer_value);
EXPECT_EQ(read_cache(0, 1), min_layer_value);
}

View file

@ -220,37 +220,72 @@ void layer_debug(void)
#endif
#if !defined(NO_ACTION_LAYER) && defined(PREVENT_STUCK_MODIFIERS)
uint8_t source_layers_cache[(MATRIX_ROWS * MATRIX_COLS + 7) / 8][MAX_LAYER_BITS] = {{0}};
uint8_t source_layers_cache[(MATRIX_ROWS * MATRIX_COLS * MAX_LAYER_BITS + 7) / 8] = {0};
static const uint8_t layer_cache_mask = (1u << MAX_LAYER_BITS) - 1;
void update_source_layers_cache(keypos_t key, uint8_t layer)
{
const uint8_t key_number = key.col + (key.row * MATRIX_COLS);
const uint8_t storage_row = key_number / 8;
const uint8_t storage_bit = key_number % 8;
const uint16_t key_number = key.col + (key.row * MATRIX_COLS);
const uint32_t bit_number = key_number * MAX_LAYER_BITS;
const uint16_t byte_number = bit_number / 8;
if (byte_number >= sizeof(source_layers_cache)) {
return;
}
const uint8_t bit_position = bit_number % 8;
int8_t shift = 16 - MAX_LAYER_BITS - bit_position;
for (uint8_t bit_number = 0; bit_number < MAX_LAYER_BITS; bit_number++) {
source_layers_cache[storage_row][bit_number] ^=
(-((layer & (1U << bit_number)) != 0)
^ source_layers_cache[storage_row][bit_number])
& (1U << storage_bit);
if (shift > 8 ) {
// We need to write only one byte
shift -= 8;
const uint8_t mask = layer_cache_mask << shift;
const uint8_t shifted_layer = layer << shift;
source_layers_cache[byte_number] = (shifted_layer & mask) | (source_layers_cache[byte_number] & (~mask));
} else {
if (byte_number + 1 >= sizeof(source_layers_cache)) {
return;
}
// We need to write two bytes
uint16_t value = layer;
uint16_t mask = layer_cache_mask;
value <<= shift;
mask <<= shift;
uint16_t masked_value = value & mask;
uint16_t inverse_mask = ~mask;
// This could potentially be done with a single write, but then we have to assume the endian
source_layers_cache[byte_number + 1] = masked_value | (source_layers_cache[byte_number + 1] & (inverse_mask));
masked_value >>= 8;
inverse_mask >>= 8;
source_layers_cache[byte_number] = masked_value | (source_layers_cache[byte_number] & (inverse_mask));
}
}
uint8_t read_source_layers_cache(keypos_t key)
{
const uint8_t key_number = key.col + (key.row * MATRIX_COLS);
const uint8_t storage_row = key_number / 8;
const uint8_t storage_bit = key_number % 8;
uint8_t layer = 0;
const uint16_t key_number = key.col + (key.row * MATRIX_COLS);
const uint32_t bit_number = key_number * MAX_LAYER_BITS;
const uint16_t byte_number = bit_number / 8;
if (byte_number >= sizeof(source_layers_cache)) {
return 0;
}
const uint8_t bit_position = bit_number % 8;
for (uint8_t bit_number = 0; bit_number < MAX_LAYER_BITS; bit_number++) {
layer |=
((source_layers_cache[storage_row][bit_number]
& (1U << storage_bit)) != 0)
<< bit_number;
int8_t shift = 16 - MAX_LAYER_BITS - bit_position;
if (shift > 8 ) {
// We need to read only one byte
shift -= 8;
return (source_layers_cache[byte_number] >> shift) & layer_cache_mask;
} else {
if (byte_number + 1 >= sizeof(source_layers_cache)) {
return 0;
}
return layer;
// Otherwise read two bytes
// This could potentially be done with a single read, but then we have to assume the endian
uint16_t value = source_layers_cache[byte_number] << 8 | source_layers_cache[byte_number + 1];
return (value >> shift) & layer_cache_mask;
}
}
#endif