Add ADC support STM32L4xx and STM32G4xx series MCUs (#22341)

* Update analog.c

* Changes to remove errors in compile

* Update analog.c

Fix for RP2040 build errors

* Revert "Merge branch 'adc-add-stm32l4xx-stm32g4xx' of https://github.com/Cipulot/qmk_firmware into adc-add-stm32l4xx-stm32g4xx"

This reverts commit b11c2970785ce41ec772689749d71a2bd0ab48e7, reversing
changes made to ed3051f94109b53eb1735882abfe7f57473bdca8.

* Update analog.c

Attempt fix for formatting CI error

* Update platforms/chibios/drivers/analog.c

Co-authored-by: Joel Challis <git@zvecr.com>

* Update platforms/chibios/drivers/analog.c

Co-authored-by: Joel Challis <git@zvecr.com>

* Update platforms/chibios/drivers/analog.c

Co-authored-by: Joel Challis <git@zvecr.com>

---------

Co-authored-by: Joel Challis <git@zvecr.com>
This commit is contained in:
Cipulot 2023-12-08 02:26:44 +01:00 committed by GitHub
parent fc61fd9ce3
commit 81cedf5fa5
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23

View file

@ -31,7 +31,15 @@
#endif #endif
#if STM32_ADCV3_OVERSAMPLING #if STM32_ADCV3_OVERSAMPLING
# error "STM32 ADCV3 Oversampling is not supported at this time." // Apparently all ADCV3 chips that support oversampling (STM32L4xx, STM32L4xx+,
// STM32G4xx, STM32WB[35]x) have errata like “Wrong ADC result if conversion
// done late after calibration or previous conversion”; the workaround is to
// perform a dummy conversion and discard its result. STM32G4xx chips also
// have the “ADC channel 0 converted instead of the required ADC channel”
// errata, one workaround for which is also to perform a dummy conversion.
# define ADC_DUMMY_CONVERSIONS_AT_START 1
#else
# define ADC_DUMMY_CONVERSIONS_AT_START 0
#endif #endif
// Otherwise assume V3 // Otherwise assume V3
@ -76,8 +84,10 @@
#ifndef ADC_COUNT #ifndef ADC_COUNT
# if defined(RP2040) || defined(STM32F0XX) || defined(STM32F1XX) || defined(STM32F4XX) || defined(GD32VF103) || defined(WB32F3G71xx) || defined(WB32FQ95xx) # if defined(RP2040) || defined(STM32F0XX) || defined(STM32F1XX) || defined(STM32F4XX) || defined(GD32VF103) || defined(WB32F3G71xx) || defined(WB32FQ95xx)
# define ADC_COUNT 1 # define ADC_COUNT 1
# elif defined(STM32F3XX) # elif defined(STM32F3XX) || defined(STM32G4XX)
# define ADC_COUNT 4 # define ADC_COUNT 4
# elif defined(STM32L4XX)
# define ADC_COUNT 3
# else # else
# error "ADC_COUNT has not been set for this ARM microcontroller." # error "ADC_COUNT has not been set for this ARM microcontroller."
# endif # endif
@ -89,13 +99,24 @@
# error "The ARM ADC implementation currently only supports reading one channel at a time." # error "The ARM ADC implementation currently only supports reading one channel at a time."
#endif #endif
// Add dummy conversions as extra channels (this would work only on chips that
// have multiple channel index fields instead of a channel mask, but all chips
// that need that workaround are like that).
#define ADC_TOTAL_CHANNELS (ADC_DUMMY_CONVERSIONS_AT_START + ADC_NUM_CHANNELS)
#ifndef ADC_BUFFER_DEPTH #ifndef ADC_BUFFER_DEPTH
# define ADC_BUFFER_DEPTH 1 # define ADC_BUFFER_DEPTH 1
#endif #endif
// For more sampling rate options, look at hal_adc_lld.h in ChibiOS // For more sampling rate options, look at hal_adc_lld.h in ChibiOS
#ifndef ADC_SAMPLING_RATE #if !defined(ADC_SAMPLING_RATE) && !defined(RP2040)
# if defined(ADC_SMPR_SMP_1P5)
# define ADC_SAMPLING_RATE ADC_SMPR_SMP_1P5 # define ADC_SAMPLING_RATE ADC_SMPR_SMP_1P5
# elif defined(ADC_SMPR_SMP_2P5) // STM32L4XX, STM32L4XXP, STM32G4XX, STM32WBXX
# define ADC_SAMPLING_RATE ADC_SMPR_SMP_2P5
# else
# error "Cannot determine the default ADC_SAMPLING_RATE for this MCU."
# endif
#endif #endif
// Options are 12, 10, 8, and 6 bit. // Options are 12, 10, 8, and 6 bit.
@ -108,7 +129,7 @@
#endif #endif
static ADCConfig adcCfg = {}; static ADCConfig adcCfg = {};
static adcsample_t sampleBuffer[ADC_NUM_CHANNELS * ADC_BUFFER_DEPTH]; static adcsample_t sampleBuffer[ADC_TOTAL_CHANNELS * ADC_BUFFER_DEPTH];
// Initialize to max number of ADCs, set to empty object to initialize all to false. // Initialize to max number of ADCs, set to empty object to initialize all to false.
static bool adcInitialized[ADC_COUNT] = {}; static bool adcInitialized[ADC_COUNT] = {};
@ -116,7 +137,7 @@ static bool adcInitialized[ADC_COUNT] = {};
// TODO: add back TR handling??? // TODO: add back TR handling???
static ADCConversionGroup adcConversionGroup = { static ADCConversionGroup adcConversionGroup = {
.circular = FALSE, .circular = FALSE,
.num_channels = (uint16_t)(ADC_NUM_CHANNELS), .num_channels = (uint16_t)(ADC_TOTAL_CHANNELS),
#if defined(USE_ADCV1) #if defined(USE_ADCV1)
.cfgr1 = ADC_CFGR1_CONT | ADC_RESOLUTION, .cfgr1 = ADC_CFGR1_CONT | ADC_RESOLUTION,
.smpr = ADC_SAMPLING_RATE, .smpr = ADC_SAMPLING_RATE,
@ -240,6 +261,74 @@ __attribute__((weak)) adc_mux pinToMux(pin_t pin) {
case C5: return TO_MUX( ADC_CHANNEL_IN15, 0 ); case C5: return TO_MUX( ADC_CHANNEL_IN15, 0 );
// STM32F103x[C-G] in 144-pin packages also have analog inputs on F6...F10, but they are on ADC3, and the // STM32F103x[C-G] in 144-pin packages also have analog inputs on F6...F10, but they are on ADC3, and the
// ChibiOS ADC driver for STM32F1xx currently supports only ADC1, therefore these pins are not usable. // ChibiOS ADC driver for STM32F1xx currently supports only ADC1, therefore these pins are not usable.
#elif defined(STM32L4XX)
case A0: return TO_MUX( ADC_CHANNEL_IN5, 0 ); // Can also be ADC2 in some cases
case A1: return TO_MUX( ADC_CHANNEL_IN6, 0 ); // Can also be ADC2 in some cases
case A2: return TO_MUX( ADC_CHANNEL_IN7, 0 ); // Can also be ADC2
case A3: return TO_MUX( ADC_CHANNEL_IN8, 0 ); // Can also be ADC2
case A4: return TO_MUX( ADC_CHANNEL_IN9, 0 ); // Can also be ADC2
case A5: return TO_MUX( ADC_CHANNEL_IN10, 0 ); // Can also be ADC2
case A6: return TO_MUX( ADC_CHANNEL_IN11, 0 ); // Can also be ADC2
case A7: return TO_MUX( ADC_CHANNEL_IN12, 0 ); // Can also be ADC2
case B0: return TO_MUX( ADC_CHANNEL_IN15, 0 ); // Can also be ADC2
case B1: return TO_MUX( ADC_CHANNEL_IN16, 0 ); // Can also be ADC2
case C0: return TO_MUX( ADC_CHANNEL_IN1, 0 ); // Can also be ADC2 or ADC3
case C1: return TO_MUX( ADC_CHANNEL_IN2, 0 ); // Can also be ADC2 or ADC3
case C2: return TO_MUX( ADC_CHANNEL_IN3, 0 ); // Can also be ADC2 or ADC3
case C3: return TO_MUX( ADC_CHANNEL_IN4, 0 ); // Can also be ADC2 or ADC3
case C4: return TO_MUX( ADC_CHANNEL_IN13, 0 ); // Can also be ADC2
case C5: return TO_MUX( ADC_CHANNEL_IN14, 0 ); // Can also be ADC2
# if STM32_HAS_GPIOF && STM32_ADC_USE_ADC3
case F3: return TO_MUX( ADC_CHANNEL_IN6, 2 );
case F4: return TO_MUX( ADC_CHANNEL_IN7, 2 );
case F5: return TO_MUX( ADC_CHANNEL_IN8, 2 );
case F6: return TO_MUX( ADC_CHANNEL_IN9, 2 );
case F7: return TO_MUX( ADC_CHANNEL_IN10, 2 );
case F8: return TO_MUX( ADC_CHANNEL_IN11, 2 );
case F9: return TO_MUX( ADC_CHANNEL_IN12, 2 );
case F10: return TO_MUX( ADC_CHANNEL_IN13, 2 );
# endif
#elif defined(STM32G4XX)
case A0: return TO_MUX( ADC_CHANNEL_IN1, 0 ); // Can also be ADC2
case A1: return TO_MUX( ADC_CHANNEL_IN2, 0 ); // Can also be ADC2
case A2: return TO_MUX( ADC_CHANNEL_IN3, 0 );
case A3: return TO_MUX( ADC_CHANNEL_IN4, 0 );
case A4: return TO_MUX( ADC_CHANNEL_IN17, 1 );
case A5: return TO_MUX( ADC_CHANNEL_IN13, 1 );
case A6: return TO_MUX( ADC_CHANNEL_IN3, 1 );
case A7: return TO_MUX( ADC_CHANNEL_IN4, 1 );
case B0: return TO_MUX( ADC_CHANNEL_IN15, 0 ); // Can also be ADC3
case B1: return TO_MUX( ADC_CHANNEL_IN12, 0 ); // Can also be ADC3
case B2: return TO_MUX( ADC_CHANNEL_IN12, 1 );
case B11: return TO_MUX( ADC_CHANNEL_IN14, 0 ); // Can also be ADC2
case B12: return TO_MUX( ADC_CHANNEL_IN11, 0 ); // Can also be ADC4
case B13: return TO_MUX( ADC_CHANNEL_IN5, 2 );
case B14: return TO_MUX( ADC_CHANNEL_IN5, 0 ); // Can also be ADC4
case B15: return TO_MUX( ADC_CHANNEL_IN15, 1 ); // Can also be ADC4
case C0: return TO_MUX( ADC_CHANNEL_IN6, 0 ); // Can also be ADC2
case C1: return TO_MUX( ADC_CHANNEL_IN7, 0 ); // Can also be ADC2
case C2: return TO_MUX( ADC_CHANNEL_IN8, 0 ); // Can also be ADC2
case C3: return TO_MUX( ADC_CHANNEL_IN9, 0 ); // Can also be ADC2
case C4: return TO_MUX( ADC_CHANNEL_IN5, 1 );
case C5: return TO_MUX( ADC_CHANNEL_IN11, 1 );
case D8: return TO_MUX( ADC_CHANNEL_IN12, 3 );
case D9: return TO_MUX( ADC_CHANNEL_IN13, 3 );
case D10: return TO_MUX( ADC_CHANNEL_IN7, 2 ); // Can also be ADC4
case D11: return TO_MUX( ADC_CHANNEL_IN8, 2 ); // Can also be ADC4
case D12: return TO_MUX( ADC_CHANNEL_IN9, 2 ); // Can also be ADC4
case D13: return TO_MUX( ADC_CHANNEL_IN10, 2 ); // Can also be ADC4
case D14: return TO_MUX( ADC_CHANNEL_IN11, 2 ); // Can also be ADC4
case E5: return TO_MUX( ADC_CHANNEL_IN2, 3 );
case E7: return TO_MUX( ADC_CHANNEL_IN4, 2 );
case E8: return TO_MUX( ADC_CHANNEL_IN6, 2 ); // Can also be ADC4
case E9: return TO_MUX( ADC_CHANNEL_IN2, 2 );
case E10: return TO_MUX( ADC_CHANNEL_IN14, 2 ); // Can also be ADC4
case E11: return TO_MUX( ADC_CHANNEL_IN15, 2 ); // Can also be ADC4
case E12: return TO_MUX( ADC_CHANNEL_IN16, 2 ); // Can also be ADC4
case E13: return TO_MUX( ADC_CHANNEL_IN3, 2 );
case E14: return TO_MUX( ADC_CHANNEL_IN1, 3 );
case F0: return TO_MUX( ADC_CHANNEL_IN10, 0 );
case F1: return TO_MUX( ADC_CHANNEL_IN10, 1 );
#elif defined(RP2040) #elif defined(RP2040)
case 26U: return TO_MUX(0, 0); case 26U: return TO_MUX(0, 0);
case 27U: return TO_MUX(1, 0); case 27U: return TO_MUX(1, 0);
@ -306,7 +395,11 @@ int16_t adc_read(adc_mux mux) {
#elif defined(RP2040) #elif defined(RP2040)
adcConversionGroup.channel_mask = 1 << mux.input; adcConversionGroup.channel_mask = 1 << mux.input;
#else #else
adcConversionGroup.sqr[0] = ADC_SQR1_SQ1_N(mux.input); adcConversionGroup.sqr[0] = ADC_SQR1_SQ1_N(mux.input)
# if ADC_DUMMY_CONVERSIONS_AT_START >= 1
| ADC_SQR1_SQ2_N(mux.input)
# endif
;
#endif #endif
ADCDriver* targetDriver = intToADCDriver(mux.adc); ADCDriver* targetDriver = intToADCDriver(mux.adc);
@ -321,9 +414,9 @@ int16_t adc_read(adc_mux mux) {
#if defined(USE_ADCV2) || defined(RP2040) #if defined(USE_ADCV2) || defined(RP2040)
// fake 12-bit -> N-bit scale // fake 12-bit -> N-bit scale
return (*sampleBuffer) >> (12 - ADC_RESOLUTION); return (sampleBuffer[ADC_DUMMY_CONVERSIONS_AT_START]) >> (12 - ADC_RESOLUTION);
#else #else
// already handled as part of adcConvert // already handled as part of adcConvert
return *sampleBuffer; return sampleBuffer[ADC_DUMMY_CONVERSIONS_AT_START];
#endif #endif
} }