Add SNES Macropad keyboard (#22377)

Co-authored-by: jack <0x6a73@protonmail.com>
This commit is contained in:
John Barbero 2023-11-09 18:52:47 +01:00 committed by GitHub
parent daabe2d8c5
commit 39d0a14258
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
11 changed files with 682 additions and 0 deletions

View file

@ -0,0 +1,12 @@
// Copyright 2023 John Barbero Unenge (@jbarberu)
// SPDX-License-Identifier: GPL-2.0-or-later
#pragma once
#define RP2040_BOOTLOADER_DOUBLE_TAP_RESET
#define RP2040_BOOTLOADER_DOUBLE_TAP_RESET_LED GP25
#define RP2040_BOOTLOADER_DOUBLE_TAP_RESET_TIMEOUT 500U
#define I2C_DRIVER I2CD1
#define I2C1_SDA_PIN GP14
#define I2C1_SCL_PIN GP15

View file

@ -0,0 +1,8 @@
// Copyright 2023 John Barbero Unenge (@jbarberu)
// SPDX-License-Identifier: GPL-2.0-or-later
#pragma once
#define HAL_USE_I2C TRUE
#include_next <halconf.h>

View file

@ -0,0 +1,79 @@
{
"manufacturer": "JBarberU's",
"keyboard_name": "SNES Macropad",
"maintainer": "jbarberu",
"bootloader": "rp2040",
"diode_direction": "COL2ROW",
"features": {
"bootmagic": false,
"command": false,
"console": true,
"extrakey": true,
"mousekey": true,
"nkro": true,
"rgblight": true,
"oled": true
},
"ws2812": {
"pin": "GP5",
"driver": "vendor"
},
"processor": "RP2040",
"matrix_size": {
"cols": 4,
"rows": 6
},
"url": "",
"usb": {
"device_version": "1.0.0",
"pid": "0x0000",
"vid": "0xFEED"
},
"layouts": {
"LAYOUT": {
"layout": [
{"matrix": [0, 0], "x": 0, "y": 0},
{"matrix": [0, 1], "x": 1, "y": 0},
{"matrix": [0, 2], "x": 2, "y": 0},
{"matrix": [0, 3], "x": 3, "y": 0},
{"matrix": [1, 0], "x": 0, "y": 1},
{"matrix": [1, 1], "x": 1, "y": 1},
{"matrix": [1, 2], "x": 2, "y": 1},
{"matrix": [1, 3], "x": 3, "y": 1},
{"matrix": [2, 0], "x": 0, "y": 2},
{"matrix": [2, 1], "x": 1, "y": 2},
{"matrix": [2, 2], "x": 2, "y": 2},
{"matrix": [2, 3], "x": 3, "y": 2},
{"matrix": [3, 0], "x": 0, "y": 3},
{"matrix": [3, 1], "x": 1, "y": 3},
{"matrix": [3, 2], "x": 2, "y": 3},
{"matrix": [3, 3], "x": 3, "y": 3},
{"matrix": [4, 0], "x": 0, "y": 4},
{"matrix": [4, 1], "x": 1, "y": 4},
{"matrix": [4, 2], "x": 2, "y": 4},
{"matrix": [4, 3], "x": 3, "y": 4},
{"matrix": [5, 0], "x": 0, "y": 5},
{"matrix": [5, 1], "x": 1, "y": 5},
{"matrix": [5, 2], "x": 2, "y": 5},
{"matrix": [5, 3], "x": 3, "y": 5}
]
}
},
"rgblight": {
"led_count": 12,
"max_brightness": 80,
"animations": {
"alternating": true,
"breathing": true,
"christmas": true,
"knight": true,
"rainbow_mood": true,
"rainbow_swirl": true,
"rgb_test": true,
"snake": true,
"static_gradient": true,
"twinkle": true
}
}
}

View file

@ -0,0 +1,75 @@
// Copyright 2023 John Barbero Unenge (@jbarberu)
// SPDX-License-Identifier: GPL-2.0-or-later
#include QMK_KEYBOARD_H
enum Layer {
L_Numpad = 0,
L_Symbols,
L_RGB,
};
// clang-format off
const uint16_t PROGMEM keymaps[][MATRIX_ROWS][MATRIX_COLS] = {
/*
* Macropad Button Order
*
* 7 8 9 -
*
* 4 5 6 +
*
* 1 2 3 0
*
*
* SNES Button Order
*
* LT RT START SELECT
*
* UP DOWN LEFT RIGHT
*
* A B X Y
*
*
*/
[L_Numpad] = LAYOUT(
KC_P7, KC_P8, KC_P9, TO(L_RGB)
, KC_P4, KC_P5, KC_P6, LT(L_Symbols, KC_PCMM)
, KC_P1, KC_P2, KC_P3, KC_P0
, KC_A, KC_S, KC_ENT, KC_BSPC
, KC_UP, KC_DOWN, KC_LEFT, KC_RIGHT
, KC_X, KC_Z, LSFT(KC_F1),KC_TAB
),
[L_RGB] = LAYOUT(
RGB_M_P, RGB_M_B, RGB_TOG, KC_NO
, RGB_MOD, RGB_HUI, RGB_VAI, TO(L_Numpad)
, RGB_RMOD, RGB_HUD, RGB_VAD, KC_NO
, KC_A, KC_B, KC_C, KC_D
, KC_E, KC_F, KC_G, KC_H
, KC_I, KC_J, KC_K, KC_L
),
[L_Symbols] = LAYOUT(
KC_PPLS, KC_PMNS, KC_PEQL, KC_NO
, KC_PAST, KC_PSLS, KC_ENT, KC_TRNS
, KC_NUM, KC_NO, KC_NO, QK_BOOT
, KC_A, KC_B, KC_C, KC_D
, KC_E, KC_F, KC_G, KC_H
, KC_I, KC_J, KC_K, KC_L
)
};
// clang-format on
const char* get_layer_name_user(int layer) {
switch (layer) {
case L_Numpad:
return "Numpad";
case L_RGB:
return "RGB Controls";
case L_Symbols:
return "Symbols";
default:
return "Undef";
}
}

View file

@ -0,0 +1,99 @@
// Copyright 2023 John Barbero Unenge (@jbarberu)
// SPDX-License-Identifier: GPL-2.0-or-later
#include QMK_KEYBOARD_H
enum Layer {
L_Numpad = 0,
L_Symbols,
L_EasyEDA,
L_RGB,
L_Adjust
};
// clang-format off
const uint16_t PROGMEM keymaps[][MATRIX_ROWS][MATRIX_COLS] = {
/*
* Macropad Button Order
*
* 7 8 9 -
*
* 4 5 6 +
*
* 1 2 3 0
*
*
* SNES Button Order
*
* LT RT START SELECT
*
* UP DOWN LEFT RIGHT
*
* A B X Y
*
*
*/
[L_Numpad] = LAYOUT(
KC_P7, KC_P8, KC_P9, TO(L_EasyEDA)
, KC_P4, KC_P5, KC_P6, LT(L_Symbols, KC_PCMM)
, KC_P1, KC_P2, KC_P3, KC_P0
, KC_A, KC_S, KC_ENT, KC_BSPC
, KC_UP, KC_DOWN, KC_LEFT, KC_RIGHT
, KC_X, KC_Z, LSFT(KC_F1), KC_TAB
),
[L_EasyEDA] = LAYOUT(
KC_COMM, KC_DOT, KC_K, TO(L_RGB)
, KC_LSFT, KC_M, KC_N, TO(L_Numpad)
, KC_LCTL, KC_SPC, KC_DEL, KC_BSPC
, KC_A, KC_B, KC_C, KC_D
, QK_BOOT, KC_TRNS, KC_G, KC_H
, KC_I, KC_J, KC_K, KC_L
),
[L_RGB] = LAYOUT(
RGB_M_P, RGB_M_B, RGB_TOG, TO(L_Adjust)
, RGB_MOD, RGB_HUI, RGB_VAI, TO(L_Numpad)
, RGB_RMOD, RGB_HUD, RGB_VAD, KC_NO
, KC_A, KC_B, KC_C, KC_D
, KC_E, KC_F, KC_G, KC_H
, KC_I, KC_J, KC_K, KC_L
),
[L_Adjust] = LAYOUT(
KC_NO, KC_P8, KC_NO, KC_NO
, KC_NO, RGB_HUD, KC_NO, TO(L_Numpad)
, RGB_HUI, KC_NO, KC_TRNS, KC_NO
, KC_A, KC_B, KC_C, KC_D
, KC_E, KC_F, KC_G, KC_H
, KC_I, KC_J, KC_K, KC_L
),
[L_Symbols] = LAYOUT(
KC_PPLS, KC_PMNS, KC_PEQL, KC_NO
, KC_PAST, KC_PSLS, KC_ENT, KC_TRNS
, KC_NUM, KC_NO, KC_NO, QK_BOOT
, KC_A, KC_B, KC_C, KC_D
, KC_E, KC_F, KC_G, KC_H
, KC_I, KC_J, KC_K, KC_L
)
};
// clang-format on
const char * get_layer_name_user(int layer) {
switch (layer) {
case L_Numpad:
return "Numpad";
case L_EasyEDA:
return "EasyEDA";
case L_RGB:
return "RGB Controls";
case L_Adjust:
return "Adjust";
case L_Symbols:
return "Symbols";
default:
return "Undef";
}
}

View file

@ -0,0 +1,75 @@
// Copyright 2023 John Barbero Unenge (@jbarberu)
// SPDX-License-Identifier: GPL-2.0-or-later
#include QMK_KEYBOARD_H
enum Layer {
L_Numpad = 0,
L_Symbols,
L_RGB
};
// clang-format off
const uint16_t PROGMEM keymaps[][MATRIX_ROWS][MATRIX_COLS] = {
/*
* Macropad Button Order
*
* 7 8 9 -
*
* 4 5 6 +
*
* 1 2 3 0
*
*
* SNES Button Order
*
* LT RT START SELECT
*
* UP DOWN LEFT RIGHT
*
* A B X Y
*
*
*/
[L_Numpad] = LAYOUT(
KC_1, KC_2, KC_3, KC_4
, KC_5, KC_6, KC_7, KC_8
, KC_9, KC_0, KC_A, KC_S
, KC_A, KC_S, KC_ENT, KC_BSPC
, KC_UP, KC_DOWN, KC_LEFT, KC_RIGHT
, KC_X, KC_Z, LSFT(KC_F1),KC_TAB
),
[L_RGB] = LAYOUT(
RGB_M_P, RGB_M_B, RGB_TOG, KC_NO
, RGB_MOD, RGB_HUI, RGB_VAI, TO(L_Numpad)
, RGB_RMOD, RGB_HUD, RGB_VAD, KC_NO
, KC_A, KC_B, KC_C, KC_D
, KC_E, KC_F, KC_G, KC_H
, KC_I, KC_J, KC_K, KC_L
),
[L_Symbols] = LAYOUT(
KC_PPLS, KC_PMNS, KC_PEQL, KC_NO
, KC_PAST, KC_PSLS, KC_ENT, KC_TRNS
, KC_NUM, KC_NO, KC_NO, QK_BOOT
, KC_A, KC_B, KC_C, KC_D
, KC_E, KC_F, KC_G, KC_H
, KC_I, KC_J, KC_K, KC_L
)
};
// clang-format on
const char * get_layer_name_user(int layer) {
switch (layer) {
case L_Numpad:
return "Numpad";
case L_RGB:
return "RGB Controls";
case L_Symbols:
return "Symbols";
default:
return "Undef";
}
}

View file

@ -0,0 +1,146 @@
// Copyright 2023 John Barbero Unenge (@jbarberu)
// SPDX-License-Identifier: GPL-2.0-or-later
#include "matrix.h"
#include "gpio.h"
#include "wait.h"
#include "string.h"
#define SNES_CLOCK GP0
#define SNES_LATCH GP1
#define SNES_D0 GP2
#define SNES_D1 GP3
#define SNES_IO GP4
#define KBD_ROW0 GP24
#define KBD_ROW1 GP23
#define KBD_ROW2 GP22
#define KBD_NUM_ROWS 3
#define KBD_COL0 GP18
#define KBD_COL1 GP19
#define KBD_COL2 GP20
#define KBD_COL3 GP21
#define KBD_ROW_SETUP_DELAY_US 5
// The real snes will clock 16 bits out of the controller, but only really has 12 bits of data
#define SNES_DATA_BITS 16
#define SNES_DATA_SETUP_DELAY_US 10
#define SNES_CLOCK_PULSE_DURATION 10
static const int kbd_pin_map[] = {
KBD_ROW0,
KBD_ROW1,
KBD_ROW2
};
void matrix_init_custom(void) {
// init snes controller
setPinInputHigh(SNES_D0);
// todo: look into protocol for other strange snes controllers that use D1 and IO
// setPinInputHigh(SNES_D1);
// setPinInputHigh(SNES_IO);
setPinOutput(SNES_CLOCK);
setPinOutput(SNES_LATCH);
writePinLow(SNES_CLOCK);
writePinLow(SNES_LATCH);
// init rows
setPinOutput(KBD_ROW0);
setPinOutput(KBD_ROW1);
setPinOutput(KBD_ROW2);
writePinHigh(KBD_ROW0);
writePinHigh(KBD_ROW1);
writePinHigh(KBD_ROW2);
// init columns
setPinInputHigh(KBD_COL0);
setPinInputHigh(KBD_COL1);
setPinInputHigh(KBD_COL2);
setPinInputHigh(KBD_COL3);
}
static matrix_row_t readRow(size_t row, int setupDelay) {
const int pin = kbd_pin_map[row];
// select the row
setPinOutput(pin);
writePinLow(pin);
wait_us(setupDelay);
// read the column data
const matrix_row_t ret =
(readPin(KBD_COL0) ? 0 : 1 << 0)
| (readPin(KBD_COL1) ? 0 : 1 << 1)
| (readPin(KBD_COL2) ? 0 : 1 << 2)
| (readPin(KBD_COL3) ? 0 : 1 << 3);
// deselect the row
setPinOutput(pin);
writePinHigh(pin);
return ret;
}
static void readKeyboard(matrix_row_t current_matrix[]) {
for (size_t row = 0; row < KBD_NUM_ROWS; ++row) {
current_matrix[row] = readRow(row, KBD_ROW_SETUP_DELAY_US);
}
}
static matrix_row_t getBits(uint16_t value, size_t bit0, size_t bit1, size_t bit2, size_t bit3) {
matrix_row_t ret = 0;
ret |= (value >> bit3) & 1;
ret <<= 1;
ret |= (value >> bit2) & 1;
ret <<= 1;
ret |= (value >> bit1) & 1;
ret <<= 1;
ret |= (value >> bit0) & 1;
return ret;
}
static void readSnesController(matrix_row_t current_matrix[]) {
uint16_t controller = 0;
writePinHigh(SNES_LATCH);
for (size_t bit = 0; bit < SNES_DATA_BITS; ++bit) {
// Wait for shift register to setup the data line
wait_us(SNES_DATA_SETUP_DELAY_US);
// Shift accumulated data and read data pin
controller <<= 1;
controller |= readPin(SNES_D0) ? 0 : 1;
// todo: maybe read D1 and IO here too
// Shift next bit in
writePinHigh(SNES_CLOCK);
wait_us(SNES_CLOCK_PULSE_DURATION);
writePinLow(SNES_CLOCK);
}
writePinLow(SNES_LATCH);
controller >>= 4;
// SNES button order is pretty random, and we'd like them to be a bit tidier
current_matrix[3] = getBits(controller, 1, 0, 8, 9);
current_matrix[4] = getBits(controller, 7, 6, 5, 4);
current_matrix[5] = getBits(controller, 3, 11, 2, 10);
}
bool matrix_scan_custom(matrix_row_t current_matrix[]) {
const size_t MATRIX_ARRAY_SIZE = MATRIX_ROWS * sizeof(matrix_row_t);
// create a copy of the current_matrix, before we read hardware state
matrix_row_t last_value[MATRIX_ROWS];
memcpy(last_value, current_matrix, MATRIX_ARRAY_SIZE);
// read hardware state into current_matrix
readKeyboard(current_matrix);
readSnesController(current_matrix);
// check if anything changed
return memcmp(last_value, current_matrix, MATRIX_ARRAY_SIZE) != 0;
}

View file

@ -0,0 +1,18 @@
// Copyright 2023 John Barbero Unenge (@jbarberu)
// SPDX-License-Identifier: GPL-2.0-or-later
#pragma once
#include_next <mcuconf.h>
#undef RP_PWM_USE_PWM0
#define RP_PWM_USE_PWM0 TRUE
#undef RP_PWM_USE_PWM4
#define RP_PWM_USE_PWM4 TRUE
#undef RP_I2C_USE_I2C0
#define RP_I2C_USE_I2C0 FALSE
#undef RP_I2C_USE_I2C1
#define RP_I2C_USE_I2C1 TRUE

View file

@ -0,0 +1,36 @@
# snes_macropad
![Completed Build](https://i.imgur.com/WzzPJ3Yh.jpg)
*Completed Build*
![Completed Build, closer with RGB off](https://i.imgur.com/D7ki7Kkh.jpg)
*Completed Build, closer with RGB off*
![PCB and FR4 top/bottom plates](https://i.imgur.com/TgOev7lh.jpg)
*PCB and FR4 top/bottom plates*
The SNES Macropad is, as it sounds, a macropad that features a SNES connector. In addition it has a qwiic connector and a 3.5mm jack for 3.3V I2C (not audio), allowing additional expansion.
This QMK implementation exposes the SNES controller as a part of the keyboard, meaning you can map the controller to do anything a qmk keyboard can. The layout is thus a 4x6 keyboard logically, split with the 3 first rows being on the macro pad and the 3 following being buttons on the snes controller.
* Keyboard Maintainer: [JBarberU](https://github.com/jbarberu)
* Hardware Supported: SNES Macropad Rev 1, with a Raspberry Pi Pico Lite (AliExpress clone of Raspberry Pico with fewer grounds and all GPIO's exposed on the headers)
* Hardware Availability: The SNES Macro pad can be found [here](https://www.tindie.com/products/jbarberu/snes-macropad/) either as a kit, partially built or fully built.
Make example for this keyboard (after setting up your build environment):
make snes_macropad:default
Flashing example for this keyboard:
make snes_macropad:default:flash
See the [build environment setup](https://docs.qmk.fm/#/getting_started_build_tools) and the [make instructions](https://docs.qmk.fm/#/getting_started_make_guide) for more information. Brand new to QMK? Start with our [Complete Newbs Guide](https://docs.qmk.fm/#/newbs).
## Bootloader
Enter the bootloader in 3 ways:
* **Physical bootsel button**: Hold down the bootsel button on the RPi Pico while plugging in the keyboard, or while pressing the reset button
* **Physical reset button**: Quickly double press the reset button
* **Keycode in layout**: Press the key mapped to `QK_BOOT` if it is available

View file

@ -0,0 +1,4 @@
# Enable features
CUSTOM_MATRIX = lite
SRC += matrix.c

View file

@ -0,0 +1,130 @@
// Copyright 2023 John Barbero Unenge (@jbarberu)
// SPDX-License-Identifier: GPL-2.0-or-later
#include "quantum.h"
// oled keylog rendering has been kindly borrowed from crkbd <3
char key_name = ' ';
uint16_t last_keycode;
uint8_t last_row;
uint8_t last_col;
static const char PROGMEM code_to_name[60] = {' ', ' ', ' ', ' ', 'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z', '1', '2', '3', '4', '5', '6', '7', '8', '9', '0', 'R', 'E', 'B', 'T', '_', '-', '=', '[', ']', '\\', '#', ';', '\'', '`', ',', '.', '/', ' ', ' ', ' '};
static void set_keylog(uint16_t keycode, keyrecord_t *record) {
last_row = record->event.key.row;
last_col = record->event.key.col;
key_name = ' ';
last_keycode = keycode;
if (IS_QK_MOD_TAP(keycode)) {
if (record->tap.count) {
keycode = QK_MOD_TAP_GET_TAP_KEYCODE(keycode);
} else {
keycode = 0xE0 + biton(QK_MOD_TAP_GET_MODS(keycode) & 0xF) + biton(QK_MOD_TAP_GET_MODS(keycode) & 0x10);
}
} else if (IS_QK_LAYER_TAP(keycode) && record->tap.count) {
keycode = QK_LAYER_TAP_GET_TAP_KEYCODE(keycode);
} else if (IS_QK_MODS(keycode)) {
keycode = QK_MODS_GET_BASIC_KEYCODE(keycode);
} else if (IS_QK_ONE_SHOT_MOD(keycode)) {
keycode = 0xE0 + biton(QK_ONE_SHOT_MOD_GET_MODS(keycode) & 0xF) + biton(QK_ONE_SHOT_MOD_GET_MODS(keycode) & 0x10);
}
if (keycode > ARRAY_SIZE(code_to_name)) {
return;
}
// update keylog
key_name = pgm_read_byte(&code_to_name[keycode]);
}
static const char *depad_str(const char *depad_str, char depad_char) {
while (*depad_str == depad_char) {
++depad_str;
}
return depad_str;
}
static void oled_render_keylog(void) {
oled_write_char('0' + last_row, false);
oled_write("x", false);
oled_write_char('0' + last_col, false);
oled_write(", k", false);
const char *last_keycode_str = get_u16_str(last_keycode, ' ');
oled_write(depad_str(last_keycode_str, ' '), false);
oled_write(":", false);
oled_write_char(key_name, false);
}
__attribute__((weak)) const char * get_layer_name_user(int layer) {
return "Unknown";
}
static void oled_render_layer(void) {
oled_write("Layer: ", false);
oled_write_ln(get_layer_name_user(get_highest_layer(layer_state)), false);
}
bool oled_task_kb(void) {
if (!oled_task_user()) {
return false;
}
oled_render_layer();
oled_render_keylog();
oled_advance_page(true);
return false;
}
static void setupForFlashing(void) {
oled_clear();
oled_write(" ", false);
oled_write(" In flash mode... ", false);
oled_write(" ", false);
oled_write(" ", false);
// QMK is clever about only rendering a certain number of chunks per frame,
// but since the device will go into flash mode right after this call,
// we want to override this behavior and force all the chunks to be sent to
// the display immediately.
const size_t numIterations = OLED_DISPLAY_WIDTH * OLED_DISPLAY_HEIGHT / OLED_UPDATE_PROCESS_LIMIT;
for (size_t num = 0; num < numIterations; ++num) {
oled_render();
}
// todo: Replace the above hack with this, once develop branch is merged at the end of November 2023
// oled_render_dirty(true);
// Set alternating backlight colors
const uint8_t max = 20;
rgblight_mode_noeeprom(RGBLIGHT_MODE_STATIC_LIGHT);
for (size_t i = 0; i < RGBLED_NUM; ++i) {
LED_TYPE *led_ = (LED_TYPE *)&led[i];
switch (i % 2) {
case 0:
setrgb(max, 0, max, led_);
break;
case 1:
setrgb(0, max, max, led_);
break;
}
}
rgblight_set();
}
bool process_record_kb(uint16_t keycode, keyrecord_t *record) {
if (record->event.pressed) {
set_keylog(keycode, record);
}
if (keycode == QK_BOOT) {
setupForFlashing();
}
return process_record_user(keycode, record);
}
void keyboard_post_init_kb(void) {
rgblight_enable_noeeprom();
rgblight_sethsv_noeeprom(HSV_MAGENTA);
rgblight_mode_noeeprom(RGBLIGHT_MODE_RAINBOW_SWIRL);
keyboard_post_init_user();
}