Update to v099r13 release

This commit is contained in:
Morten Delenk 2016-07-03 13:37:37 +02:00
parent 08337e38f5
commit 0dd66ec634
16 changed files with 350 additions and 407 deletions

View file

@ -19,7 +19,7 @@ struct AudioALSA : Audio {
struct {
bool synchronize = false;
unsigned frequency = 22050;
unsigned frequency = 48000;
unsigned latency = 60;
} settings;
@ -65,10 +65,10 @@ struct AudioALSA : Audio {
return false;
}
auto sample(uint16_t left, uint16_t right) -> void {
auto sample(int16_t left, int16_t right) -> void {
if(!device.handle) return;
buffer.data[buffer.length++] = left + (right << 16);
buffer.data[buffer.length++] = (uint16_t)left << 0 | (uint16_t)right << 16;
if(buffer.length < device.period_size) return;
snd_pcm_sframes_t avail;

View file

@ -8,7 +8,7 @@ struct AudioAO : Audio {
ao_device* audio_device = nullptr;
struct {
unsigned frequency = 22050;
unsigned frequency = 48000;
} settings;
auto cap(const string& name) -> bool {
@ -31,8 +31,8 @@ struct AudioAO : Audio {
return false;
}
auto sample(uint16_t l_sample, uint16_t r_sample) -> void {
uint32_t samp = (l_sample << 0) + (r_sample << 16);
auto sample(int16_t left, int16_t right) -> void {
uint32_t samp = (uint16_t)left << 0 | (uint16_t)right << 0;
ao_play(audio_device, (char*)&samp, 4); //This may need to be byte swapped for Big Endian
}

View file

@ -24,7 +24,7 @@ struct AudioDS : Audio {
struct {
HWND handle = nullptr;
bool synchronize = false;
uint frequency = 22050;
uint frequency = 48000;
uint latency = 120;
} settings;
@ -72,8 +72,8 @@ struct AudioDS : Audio {
return false;
}
auto sample(uint16_t left, uint16_t right) -> void {
device.buffer[device.bufferoffset++] = left + (right << 16);
auto sample(int16_t left, int16_t right) -> void {
device.buffer[device.bufferoffset++] = (uint16_t)left << 0 | (uint16_t)right << 16;
if(device.bufferoffset < device.latency) return;
device.bufferoffset = 0;

View file

@ -26,7 +26,7 @@ struct AudioOpenAL : Audio {
struct {
bool synchronize = true;
unsigned frequency = 22050;
unsigned frequency = 48000;
unsigned latency = 40;
} settings;
@ -66,8 +66,8 @@ struct AudioOpenAL : Audio {
return false;
}
auto sample(uint16_t left, uint16_t right) -> void {
buffer.data[buffer.length++] = left << 0 | right << 16;
auto sample(int16_t left, int16_t right) -> void {
buffer.data[buffer.length++] = (uint16_t)left << 0 | (uint16_t)right << 16;
if(buffer.length < buffer.size) return;
ALuint albuffer = 0;

View file

@ -11,26 +11,26 @@
//Failing that, one can disable OSS4 ioctl calls inside init() and remove the below defines
#ifndef SNDCTL_DSP_COOKEDMODE
#define SNDCTL_DSP_COOKEDMODE _IOW('P', 30, signed)
#define SNDCTL_DSP_COOKEDMODE _IOW('P', 30, int)
#endif
#ifndef SNDCTL_DSP_POLICY
#define SNDCTL_DSP_POLICY _IOW('P', 45, signed)
#define SNDCTL_DSP_POLICY _IOW('P', 45, int)
#endif
struct AudioOSS : Audio {
~AudioOSS() { term(); }
struct {
signed fd = -1;
signed format = AFMT_S16_LE;
signed channels = 2;
int fd = -1;
int format = AFMT_S16_LE;
int channels = 2;
} device;
struct {
string device = "/dev/dsp";
bool synchronize = true;
unsigned frequency = 22050;
uint frequency = 48000;
} settings;
auto cap(const string& name) -> bool {
@ -60,8 +60,8 @@ struct AudioOSS : Audio {
return true;
}
if(name == Audio::Frequency && value.is<unsigned>()) {
settings.frequency = value.get<unsigned>();
if(name == Audio::Frequency && value.is<uint>()) {
settings.frequency = value.get<uint>();
if(device.fd >= 0) init();
return true;
}
@ -69,8 +69,8 @@ struct AudioOSS : Audio {
return false;
}
auto sample(uint16_t left, uint16_t right) -> void {
uint32_t sample = left << 0 | right << 16;
auto sample(int16_t left, int16_t right) -> void {
uint32_t sample = (uint16_t)left << 0 | (uint16_t)right << 16;
auto unused = write(device.fd, &sample, 4);
}
@ -84,14 +84,14 @@ struct AudioOSS : Audio {
#if 1 //SOUND_VERSION >= 0x040000
//attempt to enable OSS4-specific features regardless of version
//OSS3 ioctl calls will silently fail, but sound will still work
signed cooked = 1, policy = 4; //policy should be 0 - 10, lower = less latency, more CPU usage
int cooked = 1, policy = 4; //policy should be 0 - 10, lower = less latency, more CPU usage
ioctl(device.fd, SNDCTL_DSP_COOKEDMODE, &cooked);
ioctl(device.fd, SNDCTL_DSP_POLICY, &policy);
#endif
signed freq = settings.frequency;
int frequency = settings.frequency;
ioctl(device.fd, SNDCTL_DSP_CHANNELS, &device.channels);
ioctl(device.fd, SNDCTL_DSP_SETFMT, &device.format);
ioctl(device.fd, SNDCTL_DSP_SPEED, &freq);
ioctl(device.fd, SNDCTL_DSP_SPEED, &frequency);
updateSynchronization();
return true;

View file

@ -20,7 +20,7 @@ struct AudioPulseAudio : Audio {
struct {
bool synchronize = false;
unsigned frequency = 22050;
unsigned frequency = 48000;
unsigned latency = 60;
} settings;
@ -64,9 +64,9 @@ struct AudioPulseAudio : Audio {
return false;
}
auto sample(uint16_t left, uint16_t right) -> void {
auto sample(int16_t left, int16_t right) -> void {
pa_stream_begin_write(device.stream, (void**)&buffer.data, &buffer.size);
buffer.data[buffer.offset++] = left + (right << 16);
buffer.data[buffer.offset++] = (uint16_t)left << 0 | (uint16_t)right << 16;
if((buffer.offset + 1) * pa_frame_size(&device.spec) <= buffer.size) return;
while(true) {

View file

@ -15,7 +15,7 @@ struct AudioPulseAudioSimple : Audio {
} buffer;
struct {
unsigned frequency = 22050;
unsigned frequency = 48000;
} settings;
auto cap(const string& name) -> bool {
@ -38,10 +38,10 @@ struct AudioPulseAudioSimple : Audio {
return false;
}
auto sample(uint16_t left, uint16_t right) -> void {
auto sample(int16_t left, int16_t right) -> void {
if(!device.handle) return;
buffer.data[buffer.offset++] = left + (right << 16);
buffer.data[buffer.offset++] = (uint16_t)left << 0 | (uint16_t)right << 16;
if(buffer.offset >= 64) {
int error;
pa_simple_write(device.handle, (const void*)buffer.data, buffer.offset * sizeof(uint32_t), &error);

View file

@ -5,19 +5,25 @@
#include <devicetopology.h>
#include <endpointvolume.h>
#include <nall/dsp.hpp>
struct AudioWASAPI : Audio {
~AudioWASAPI() { term(); }
struct {
bool exclusive = false;
bool synchronize = false;
uint frequency = 44100;
uint latency = 80;
bool synchronize = true;
} settings;
struct {
uint channels = 0;
uint frequency = 0;
uint mode = 0;
uint precision = 0;
} device;
auto cap(const string& name) -> bool {
if(name == Audio::Exclusive) return true;
if(name == Audio::Latency) return true;
if(name == Audio::Synchronize) return true;
if(name == Audio::Frequency) return true;
return false;
@ -25,145 +31,132 @@ struct AudioWASAPI : Audio {
auto get(const string& name) -> any {
if(name == Audio::Exclusive) return settings.exclusive;
if(name == Audio::Latency) return settings.latency;
if(name == Audio::Synchronize) return settings.synchronize;
if(name == Audio::Frequency) return settings.frequency;
if(name == Audio::Frequency) return device.frequency;
return {};
}
auto set(const string& name, const any& value) -> bool {
if(name == Audio::Exclusive && value.get<bool>()) {
if(audioDevice) term(), init();
settings.exclusive = value.get<bool>();
return true;
}
if(name == Audio::Latency && value.get<uint>()) {
if(audioDevice) term(), init();
settings.latency = value.get<uint>();
return true;
}
if(name == Audio::Synchronize && value.is<bool>()) {
settings.synchronize = value.get<bool>();
return true;
}
if(name == Audio::Frequency && value.is<uint>()) {
settings.frequency = value.get<uint>();
dsp.setFrequency(settings.frequency);
return true;
}
return false;
}
auto sample(uint16 left, uint16 right) -> void {
int samples[] = {(int16)left, (int16)right};
dsp.sample(samples);
while(dsp.pending()) {
dsp.read(samples);
write(samples);
auto sample(int16_t left, int16_t right) -> void {
queuedFrames.append((uint16_t)left << 0 | (uint16_t)right << 16);
if(!available() && queuedFrames.size() >= bufferSize) {
if(settings.synchronize) while(!available()); //wait for free sample slot
else queuedFrames.takeLeft(); //drop sample (run ahead)
}
uint32_t cachedFrame = 0;
for(auto n : range(available())) {
if(queuedFrames) cachedFrame = queuedFrames.takeLeft();
write(cachedFrame >> 0, cachedFrame >> 16);
}
}
auto clear() -> void {
audioClient->Stop();
renderClient->GetBuffer(bufferFrameCount, &bufferData);
renderClient->ReleaseBuffer(bufferFrameCount, 0);
audioClient->Reset();
for(auto n : range(available())) write(0, 0);
audioClient->Start();
}
auto init() -> bool {
if(CoCreateInstance(CLSID_MMDeviceEnumerator, nullptr, CLSCTX_ALL, IID_IMMDeviceEnumerator, (void**)&enumerator) != S_OK) return false;
if(enumerator->GetDefaultAudioEndpoint(eRender, eConsole, &device) != S_OK) return false;
if(device->Activate(IID_IAudioClient, CLSCTX_ALL, nullptr, (void**)&audioClient) != S_OK) return false;
if(enumerator->GetDefaultAudioEndpoint(eRender, eConsole, &audioDevice) != S_OK) return false;
if(audioDevice->Activate(IID_IAudioClient, CLSCTX_ALL, nullptr, (void**)&audioClient) != S_OK) return false;
if(settings.exclusive) {
if(device->OpenPropertyStore(STGM_READ, &propertyStore) != S_OK) return false;
if(audioDevice->OpenPropertyStore(STGM_READ, &propertyStore) != S_OK) return false;
if(propertyStore->GetValue(PKEY_AudioEngine_DeviceFormat, &propVariant) != S_OK) return false;
waveFormat = (WAVEFORMATEX*)propVariant.blob.pBlobData;
if(audioClient->GetDevicePeriod(nullptr, &devicePeriod) != S_OK) return false;
if(audioClient->Initialize(AUDCLNT_SHAREMODE_EXCLUSIVE, 0, devicePeriod, devicePeriod, waveFormat, nullptr) != S_OK) return false;
auto latency = max(devicePeriod, (REFERENCE_TIME)settings.latency * 10'000); //1ms to 100ns units
if(audioClient->Initialize(AUDCLNT_SHAREMODE_EXCLUSIVE, 0, latency, latency, waveFormat, nullptr) != S_OK) return false;
DWORD taskIndex = 0;
taskHandle = AvSetMmThreadCharacteristics(L"Pro Audio", &taskIndex);
} else {
if(audioClient->GetMixFormat(&waveFormat) != S_OK) return false;
if(audioClient->GetDevicePeriod(&devicePeriod, nullptr)) return false;
if(audioClient->Initialize(AUDCLNT_SHAREMODE_SHARED, 0, devicePeriod, 0, waveFormat, nullptr) != S_OK) return false;
auto latency = max(devicePeriod, (REFERENCE_TIME)settings.latency * 10'000); //1ms to 100ns units
if(audioClient->Initialize(AUDCLNT_SHAREMODE_SHARED, 0, latency, 0, waveFormat, nullptr) != S_OK) return false;
}
if(audioClient->GetService(IID_IAudioRenderClient, (void**)&renderClient) != S_OK) return false;
if(audioClient->GetBufferSize(&bufferFrameCount) != S_OK) return false;
if(audioClient->GetBufferSize(&bufferSize) != S_OK) return false;
switch(((WAVEFORMATEXTENSIBLE*)waveFormat)->SubFormat.Data1) {
case 1: ieee = false; break; //fixed point
case 3: ieee = true; break; //floating point
default: return false; //unknown format; abort
}
dsp.setChannels(2);
dsp.setPrecision(16);
dsp.setFrequency(settings.frequency);
dsp.setResampler(DSP::ResampleEngine::Linear);
dsp.setResamplerFrequency(waveFormat->nSamplesPerSec);
dsp.setChannels(waveFormat->nChannels);
dsp.setPrecision(waveFormat->wBitsPerSample);
print("[WASAPI]\n");
print("Channels: ", waveFormat->nChannels, "\n");
print("Precision: ", waveFormat->wBitsPerSample, "\n");
print("Frequency: ", waveFormat->nSamplesPerSec, "\n");
print("IEEE-754: ", ieee, "\n");
print("Exclusive: ", settings.exclusive, "\n\n");
device.channels = waveFormat->nChannels;
device.frequency = waveFormat->nSamplesPerSec;
device.mode = ((WAVEFORMATEXTENSIBLE*)waveFormat)->SubFormat.Data1;
device.precision = waveFormat->wBitsPerSample;
audioClient->Start();
return true;
}
auto term() -> void {
if(audioClient) {
audioClient->Stop();
}
if(taskHandle) {
AvRevertMmThreadCharacteristics(taskHandle);
taskHandle = nullptr;
}
if(audioClient) audioClient->Stop();
if(renderClient) renderClient->Release(), renderClient = nullptr;
if(waveFormat) CoTaskMemFree(waveFormat), waveFormat = nullptr;
if(audioClient) audioClient->Release(), audioClient = nullptr;
if(audioDevice) audioDevice->Release(), audioDevice = nullptr;
if(taskHandle) AvRevertMmThreadCharacteristics(taskHandle), taskHandle = nullptr;
}
private:
auto write(int samples[]) -> void {
while(true) {
uint32 padding = 0;
auto available() -> uint {
uint32_t padding = 0;
audioClient->GetCurrentPadding(&padding);
if(bufferFrameCount - padding < 1) {
if(!settings.synchronize) return;
continue;
}
break;
return bufferSize - padding;
}
renderClient->GetBuffer(1, &bufferData);
auto write(int16_t left, int16_t right) -> void {
if(renderClient->GetBuffer(1, &bufferData) != S_OK) return;
if(ieee) {
if(device.channels >= 2 && device.mode == 1 && device.precision == 16) {
auto buffer = (int16_t*)bufferData;
buffer[0] = left;
buffer[1] = right;
}
if(device.channels >= 2 && device.mode == 3 && device.precision == 32) {
auto buffer = (float*)bufferData;
buffer[0] = (int16)samples[0] / 32768.0;
buffer[1] = (int16)samples[1] / 32768.0;
} else {
auto buffer = (int16*)bufferData;
buffer[0] = (int16)samples[0];
buffer[1] = (int16)samples[1];
buffer[0] = left / 32768.0;
buffer[1] = right / 32768.0;
}
renderClient->ReleaseBuffer(1, 0);
}
DSP dsp;
IMMDeviceEnumerator* enumerator = nullptr;
IMMDevice* device = nullptr;
IMMDevice* audioDevice = nullptr;
IPropertyStore* propertyStore = nullptr;
IAudioClient* audioClient = nullptr;
IAudioRenderClient* renderClient = nullptr;
WAVEFORMATEX* waveFormat = nullptr;
PROPVARIANT propVariant;
HANDLE taskHandle = nullptr;
DWORD taskIndex = 0;
REFERENCE_TIME devicePeriod = 0;
uint32 bufferFrameCount = 0;
uint8* bufferData = nullptr;
bool ieee = false;
uint32_t bufferSize = 0; //in frames
uint8_t* bufferData = nullptr;
vector<uint32_t> queuedFrames;
};

View file

@ -29,7 +29,7 @@ struct AudioXAudio2 : Audio, public IXAudio2VoiceCallback {
struct {
bool synchronize = false;
unsigned frequency = 22050;
unsigned frequency = 48000;
unsigned latency = 120;
} settings;
@ -78,8 +78,8 @@ struct AudioXAudio2 : Audio, public IXAudio2VoiceCallback {
pSourceVoice->SubmitSourceBuffer(&xa2buffer);
}
auto sample(uint16_t left, uint16_t right) -> void {
device.buffer[device.writebuffer * device.latency + device.bufferoffset++] = left + (right << 16);
auto sample(int16_t left, int16_t right) -> void {
device.buffer[device.writebuffer * device.latency + device.bufferoffset++] = (uint16_t)left << 0 | (uint16_t)right << 16;
if(device.bufferoffset < device.latency) return;
device.bufferoffset = 0;

View file

@ -1,25 +1,20 @@
/*
xaudio2.hpp (2010-08-14)
author: OV2
#pragma once
ruby-specific header to provide mingw-friendly xaudio2 interfaces
*/
#ifndef XAUDIO2_RUBY_H
#define XAUDIO2_RUBY_H
//ruby-specific header to provide mingw-friendly xaudio2 interfaces
//64-bit GCC fix
#define GUID_EXT EXTERN_C
#define GUID_SECT
#include <BaseTyps.h>
#include <audioclient.h>
#include <basetyps.h>
#define DEFINE_GUID_X(n,l,w1,w2,b1,b2,b3,b4,b5,b6,b7,b8) GUID_EXT const GUID n GUID_SECT = {l,w1,w2,{b1,b2,b3,b4,b5,b6,b7,b8}}
#define DEFINE_GUID_X(n,l,w1,w2,b1,b2,b3,b4,b5,b6,b7,b8) GUID_EXT const GUID n GUID_SECT = {l, w1, w2, {b1, b2, b3, b4, b5, b6, b7, b8}}
#define DEFINE_CLSID_X(className, l, w1, w2, b1, b2, b3, b4, b5, b6, b7, b8) \
DEFINE_GUID_X(CLSID_##className, 0x##l, 0x##w1, 0x##w2, 0x##b1, 0x##b2, 0x##b3, 0x##b4, 0x##b5, 0x##b6, 0x##b7, 0x##b8)
#define DEFINE_IID_X(interfaceName, l, w1, w2, b1, b2, b3, b4, b5, b6, b7, b8) \
DEFINE_GUID_X(IID_##interfaceName, 0x##l, 0x##w1, 0x##w2, 0x##b1, 0x##b2, 0x##b3, 0x##b4, 0x##b5, 0x##b6, 0x##b7, 0x##b8)
#define X2DEFAULT(x) =x
#define X2DEFAULT(x) = x
DEFINE_CLSID_X(XAudio2, e21a7345, eb21, 468e, be, 50, 80, 4d, b9, 7c, f7, 08);
DEFINE_CLSID_X(XAudio2_Debug, f7a76c21, 53d4, 46bb, ac, 53, 8b, 45, 9c, ae, 46, bd);
@ -34,48 +29,30 @@ DECLARE_INTERFACE(IXAudio2Voice);
#define XAUDIO2_DEBUG_ENGINE 0x0001
#define XAUDIO2_VOICE_NOSRC 0x0004
typedef struct
{
WAVEFORMATEX Format;
union
{
WORD wValidBitsPerSample;
WORD wSamplesPerBlock;
WORD wReserved;
} Samples;
DWORD dwChannelMask;
GUID SubFormat;
} WAVEFORMATEXTENSIBLE, *PWAVEFORMATEXTENSIBLE, *LPPWAVEFORMATEXTENSIBLE;
typedef const WAVEFORMATEXTENSIBLE* LPCWAVEFORMATEXTENSIBLE;
typedef enum XAUDIO2_DEVICE_ROLE
{
typedef enum XAUDIO2_DEVICE_ROLE {
NotDefaultDevice = 0x0,
DefaultConsoleDevice = 0x1,
DefaultMultimediaDevice = 0x2,
DefaultCommunicationsDevice = 0x4,
DefaultGameDevice = 0x8,
GlobalDefaultDevice = 0xf,
InvalidDeviceRole = ~GlobalDefaultDevice
InvalidDeviceRole = ~GlobalDefaultDevice,
} XAUDIO2_DEVICE_ROLE;
typedef struct XAUDIO2_DEVICE_DETAILS
{
typedef struct XAUDIO2_DEVICE_DETAILS {
WCHAR DeviceID[256];
WCHAR DisplayName[256];
XAUDIO2_DEVICE_ROLE Role;
WAVEFORMATEXTENSIBLE OutputFormat;
} XAUDIO2_DEVICE_DETAILS;
typedef struct XAUDIO2_VOICE_DETAILS
{
typedef struct XAUDIO2_VOICE_DETAILS {
UINT32 CreationFlags;
UINT32 InputChannels;
UINT32 InputSampleRate;
} XAUDIO2_VOICE_DETAILS;
typedef enum XAUDIO2_WINDOWS_PROCESSOR_SPECIFIER
{
typedef enum XAUDIO2_WINDOWS_PROCESSOR_SPECIFIER {
Processor1 = 0x00000001,
Processor2 = 0x00000002,
Processor3 = 0x00000004,
@ -109,45 +86,38 @@ typedef enum XAUDIO2_WINDOWS_PROCESSOR_SPECIFIER
Processor31 = 0x40000000,
Processor32 = 0x80000000,
XAUDIO2_ANY_PROCESSOR = 0xffffffff,
XAUDIO2_DEFAULT_PROCESSOR = XAUDIO2_ANY_PROCESSOR
XAUDIO2_DEFAULT_PROCESSOR = XAUDIO2_ANY_PROCESSOR,
} XAUDIO2_WINDOWS_PROCESSOR_SPECIFIER, XAUDIO2_PROCESSOR;
typedef struct XAUDIO2_VOICE_SENDS
{
typedef struct XAUDIO2_VOICE_SENDS {
UINT32 OutputCount;
IXAudio2Voice** pOutputVoices;
} XAUDIO2_VOICE_SENDS;
typedef struct XAUDIO2_EFFECT_DESCRIPTOR
{
typedef struct XAUDIO2_EFFECT_DESCRIPTOR {
IUnknown* pEffect;
BOOL InitialState;
UINT32 OutputChannels;
} XAUDIO2_EFFECT_DESCRIPTOR;
typedef struct XAUDIO2_EFFECT_CHAIN
{
typedef struct XAUDIO2_EFFECT_CHAIN {
UINT32 EffectCount;
const XAUDIO2_EFFECT_DESCRIPTOR* pEffectDescriptors;
} XAUDIO2_EFFECT_CHAIN;
typedef enum XAUDIO2_FILTER_TYPE
{
typedef enum XAUDIO2_FILTER_TYPE {
LowPassFilter,
BandPassFilter,
HighPassFilter
HighPassFilter,
} XAUDIO2_FILTER_TYPE;
typedef struct XAUDIO2_FILTER_PARAMETERS
{
typedef struct XAUDIO2_FILTER_PARAMETERS {
XAUDIO2_FILTER_TYPE Type;
float Frequency;
float OneOverQ;
} XAUDIO2_FILTER_PARAMETERS;
typedef struct XAUDIO2_BUFFER
{
typedef struct XAUDIO2_BUFFER {
UINT32 Flags;
UINT32 AudioBytes;
const BYTE* pAudioData;
@ -159,21 +129,18 @@ typedef struct XAUDIO2_BUFFER
void* pContext;
} XAUDIO2_BUFFER;
typedef struct XAUDIO2_BUFFER_WMA
{
typedef struct XAUDIO2_BUFFER_WMA {
const UINT32* pDecodedPacketCumulativeBytes;
UINT32 PacketCount;
} XAUDIO2_BUFFER_WMA;
typedef struct XAUDIO2_VOICE_STATE
{
typedef struct XAUDIO2_VOICE_STATE {
void* pCurrentBufferContext;
UINT32 BuffersQueued;
UINT64 SamplesPlayed;
} XAUDIO2_VOICE_STATE;
typedef struct XAUDIO2_PERFORMANCE_DATA
{
typedef struct XAUDIO2_PERFORMANCE_DATA {
UINT64 AudioCyclesSinceLastQuery;
UINT64 TotalCyclesSinceLastQuery;
UINT32 MinimumCyclesPerQuantum;
@ -189,8 +156,7 @@ typedef struct XAUDIO2_PERFORMANCE_DATA
UINT32 ActiveXmaStreams;
} XAUDIO2_PERFORMANCE_DATA;
typedef struct XAUDIO2_DEBUG_CONFIGURATION
{
typedef struct XAUDIO2_DEBUG_CONFIGURATION {
UINT32 TraceMask;
UINT32 BreakMask;
BOOL LogThreadID;
@ -199,15 +165,13 @@ typedef struct XAUDIO2_DEBUG_CONFIGURATION
BOOL LogTiming;
} XAUDIO2_DEBUG_CONFIGURATION;
DECLARE_INTERFACE(IXAudio2EngineCallback)
{
DECLARE_INTERFACE(IXAudio2EngineCallback) {
STDMETHOD_(void, OnProcessingPassStart) (THIS) PURE;
STDMETHOD_(void, OnProcessingPassEnd) (THIS) PURE;
STDMETHOD_(void, OnCriticalError) (THIS_ HRESULT Error) PURE;
};
DECLARE_INTERFACE(IXAudio2VoiceCallback)
{
DECLARE_INTERFACE(IXAudio2VoiceCallback) {
STDMETHOD_(void, OnVoiceProcessingPassStart) (THIS_ UINT32 BytesRequired) PURE;
STDMETHOD_(void, OnVoiceProcessingPassEnd) (THIS) PURE;
STDMETHOD_(void, OnStreamEnd) (THIS) PURE;
@ -217,8 +181,7 @@ DECLARE_INTERFACE(IXAudio2VoiceCallback)
STDMETHOD_(void, OnVoiceError) (THIS_ void* pBufferContext, HRESULT Error) PURE;
};
DECLARE_INTERFACE(IXAudio2Voice)
{
DECLARE_INTERFACE(IXAudio2Voice) {
#define Declare_IXAudio2Voice_Methods() \
STDMETHOD_(void, GetVoiceDetails) (THIS_ XAUDIO2_VOICE_DETAILS* pVoiceDetails) PURE; \
STDMETHOD(SetOutputVoices) (THIS_ const XAUDIO2_VOICE_SENDS* pSendList) PURE; \
@ -255,19 +218,15 @@ DECLARE_INTERFACE(IXAudio2Voice)
Declare_IXAudio2Voice_Methods();
};
DECLARE_INTERFACE_(IXAudio2MasteringVoice, IXAudio2Voice)
{
DECLARE_INTERFACE_(IXAudio2MasteringVoice, IXAudio2Voice) {
Declare_IXAudio2Voice_Methods();
};
DECLARE_INTERFACE_(IXAudio2SubmixVoice, IXAudio2Voice)
{
DECLARE_INTERFACE_(IXAudio2SubmixVoice, IXAudio2Voice) {
Declare_IXAudio2Voice_Methods();
};
DECLARE_INTERFACE_(IXAudio2SourceVoice, IXAudio2Voice)
{
DECLARE_INTERFACE_(IXAudio2SourceVoice, IXAudio2Voice) {
Declare_IXAudio2Voice_Methods();
STDMETHOD(Start) (THIS_ UINT32 Flags, UINT32 OperationSet X2DEFAULT(XAUDIO2_COMMIT_NOW)) PURE;
STDMETHOD(Stop) (THIS_ UINT32 Flags, UINT32 OperationSet X2DEFAULT(XAUDIO2_COMMIT_NOW)) PURE;
@ -281,8 +240,7 @@ DECLARE_INTERFACE_(IXAudio2SourceVoice, IXAudio2Voice)
STDMETHOD_(void, GetFrequencyRatio) (THIS_ float* pRatio) PURE;
};
DECLARE_INTERFACE_(IXAudio2, IUnknown)
{
DECLARE_INTERFACE_(IXAudio2, IUnknown) {
STDMETHOD(QueryInterface) (THIS_ REFIID riid, void** ppvInterface) PURE;
STDMETHOD_(ULONG, AddRef) (THIS) PURE;
STDMETHOD_(ULONG, Release) (THIS) PURE;
@ -318,23 +276,17 @@ DECLARE_INTERFACE_(IXAudio2, IUnknown)
};
__inline HRESULT XAudio2Create(IXAudio2** ppXAudio2, UINT32 Flags X2DEFAULT(0),
XAUDIO2_PROCESSOR XAudio2Processor X2DEFAULT(XAUDIO2_DEFAULT_PROCESSOR))
{
XAUDIO2_PROCESSOR XAudio2Processor X2DEFAULT(XAUDIO2_DEFAULT_PROCESSOR)) {
IXAudio2* pXAudio2;
HRESULT hr = CoCreateInstance((Flags & XAUDIO2_DEBUG_ENGINE) ? CLSID_XAudio2_Debug : CLSID_XAudio2,
NULL, CLSCTX_INPROC_SERVER, IID_IXAudio2, (void**)&pXAudio2);
if (SUCCEEDED(hr))
{
if(SUCCEEDED(hr)) {
hr = pXAudio2->Initialize(Flags, XAudio2Processor);
if (SUCCEEDED(hr))
{
if(SUCCEEDED(hr)) {
*ppXAudio2 = pXAudio2;
}
else
{
} else {
pXAudio2->Release();
}
}
return hr;
}
#endif

View file

@ -3,10 +3,10 @@
/* ruby
* author: byuu
* license: ISC
* version: 0.14 (2015-11-19)
* version: 0.15 (2016-04-18)
*
* ruby is a cross-platform hardware abstraction layer
* it provides a common interface to video, audio and input devices
* ruby is a cross-platform hardware abstraction layer.
* it provides a common interface to video, audio and input devices.
*/
#include <nall/nall.hpp>
@ -62,7 +62,7 @@ struct Audio {
virtual auto get(const nall::string& name) -> nall::any { return false; }
virtual auto set(const nall::string& name, const nall::any& value) -> bool { return false; }
virtual auto sample(uint16_t left, uint16_t right) -> void {}
virtual auto sample(int16_t left, int16_t right) -> void {}
virtual auto clear() -> void {}
virtual auto init() -> bool { return true; }

View file

@ -82,14 +82,14 @@ struct VideoGLX : Video, OpenGL {
if(name == Video::Filter && value.is<unsigned>()) {
settings.filter = value.get<unsigned>();
if(settings.shader.empty()) OpenGL::filter = settings.filter ? GL_LINEAR : GL_NEAREST;
if(!settings.shader) OpenGL::filter = settings.filter ? GL_LINEAR : GL_NEAREST;
return true;
}
if(name == Video::Shader && value.is<string>()) {
settings.shader = value.get<string>();
OpenGL::shader(settings.shader);
if(settings.shader.empty()) OpenGL::filter = settings.filter ? GL_LINEAR : GL_NEAREST;
if(!settings.shader) OpenGL::filter = settings.filter ? GL_LINEAR : GL_NEAREST;
return true;
}
@ -182,7 +182,6 @@ struct VideoGLX : Video, OpenGL {
//glXSwapInterval is used to toggle Vsync
//note that the ordering is very important! MESA declares SGI, but the SGI function does nothing
glXSwapInterval = (signed (*)(signed))glGetProcAddress("glXSwapIntervalEXT");
if(!glXSwapInterval) glXSwapInterval = (signed (*)(signed))glGetProcAddress("glXSwapIntervalMESA");
if(!glXSwapInterval) glXSwapInterval = (signed (*)(signed))glGetProcAddress("glXSwapIntervalSGI");

View file

@ -163,7 +163,6 @@ struct VideoGLX2 : Video {
glxcontext = glXCreateContext(display, vi, 0, GL_TRUE);
glXMakeCurrent(display, glxwindow = xwindow, glxcontext);
glXSwapInterval = (signed (*)(signed))glGetProcAddress("glXSwapIntervalEXT");
if(!glXSwapInterval) glXSwapInterval = (signed (*)(signed))glGetProcAddress("glXSwapIntervalMESA");
if(!glXSwapInterval) glXSwapInterval = (signed (*)(signed))glGetProcAddress("glXSwapIntervalSGI");

View file

@ -28,11 +28,11 @@ auto OpenGL::shader(const string& pathname) -> void {
for(auto node : document["output"]) {
string text = node.text();
if(node.name() == "width") {
if(text.endsWith("%")) relativeWidth = real(text.rtrim("%", 1L)) / 100.0;
if(text.endsWith("%")) relativeWidth = real(text.trimRight("%", 1L)) / 100.0;
else absoluteWidth = text.natural();
}
if(node.name() == "height") {
if(text.endsWith("%")) relativeHeight = real(text.rtrim("%", 1L)) / 100.0;
if(text.endsWith("%")) relativeHeight = real(text.trimRight("%", 1L)) / 100.0;
else absoluteHeight = text.natural();
}
}
@ -167,7 +167,7 @@ auto OpenGL::refresh() -> void {
render(sources[0].width, sources[0].height, outputWidth, outputHeight);
if(history.size() > 0) {
OpenGLTexture frame = history.takeLast();
OpenGLTexture frame = history.takeRight();
glBindTexture(GL_TEXTURE_2D, frame.texture);
if(width == frame.width && height == frame.height) {

View file

@ -4,9 +4,9 @@ auto OpenGLProgram::bind(OpenGL* instance, const Markup::Node& node, const strin
modulo = glrModulo(node["modulo"].integer());
string w = node["width"].text(), h = node["height"].text();
if(w.endsWith("%")) relativeWidth = real(w.rtrim("%", 1L)) / 100.0;
if(w.endsWith("%")) relativeWidth = real(w.trimRight("%", 1L)) / 100.0;
else absoluteWidth = w.natural();
if(h.endsWith("%")) relativeHeight = real(h.rtrim("%", 1L)) / 100.0;
if(h.endsWith("%")) relativeHeight = real(h.trimRight("%", 1L)) / 100.0;
else absoluteHeight = h.natural();
format = glrFormat(node["format"].text());
@ -41,8 +41,8 @@ auto OpenGLProgram::bind(OpenGL* instance, const Markup::Node& node, const strin
for(auto& leaf : node.find("pixmap")) {
nall::image image({pathname, leaf.text()});
if(!image) continue;
image.transform();
if(image.empty()) continue;
GLuint texture;
glGenTextures(1, &texture);
@ -78,7 +78,7 @@ auto OpenGLProgram::parse(OpenGL* instance, string& source) -> void {
if(auto position = s.find("//")) s.resize(position()); //strip comments
s.strip(); //remove extraneous whitespace
if(s.match("#in ?*")) {
s.ltrim("#in ", 1L).strip();
s.trimLeft("#in ", 1L).strip();
if(auto setting = instance->settings.find({s})) {
line = {"#define ", setting().name, " ", setting().value};
} else {

View file

@ -48,7 +48,7 @@ struct VideoWGL : Video, OpenGL {
if(wglcontext) {
init();
OpenGL::shader(settings.shader);
if(settings.shader.empty()) OpenGL::filter = settings.filter ? GL_LINEAR : GL_NEAREST;
if(!settings.shader) OpenGL::filter = settings.filter ? GL_LINEAR : GL_NEAREST;
}
}
}