#pragma once #include #include namespace nall { namespace Decode { struct PNG { inline PNG(); inline ~PNG(); inline auto load(const string& filename) -> bool; inline auto load(const uint8_t* sourceData, uint sourceSize) -> bool; inline auto readbits(const uint8_t*& data) -> uint; struct Info { uint width; uint height; uint bitDepth; //colorType: //0 = L (luma) //2 = R,G,B //3 = P (palette) //4 = L,A //6 = R,G,B,A uint colorType; uint compressionMethod; uint filterType; uint interlaceMethod; uint bytesPerPixel; uint pitch; uint8_t palette[256][3]; } info; uint8_t* data = nullptr; uint size = 0; uint bitpos = 0; protected: enum class FourCC : uint { IHDR = 0x49484452, PLTE = 0x504c5445, IDAT = 0x49444154, IEND = 0x49454e44, }; inline auto interlace(uint pass, uint index) -> uint; inline auto inflateSize() -> uint; inline auto deinterlace(const uint8_t*& inputData, uint pass) -> bool; inline auto filter(uint8_t* outputData, const uint8_t* inputData, uint width, uint height) -> bool; inline auto read(const uint8_t* data, uint length) -> uint; }; PNG::PNG() { } PNG::~PNG() { if(data) delete[] data; } auto PNG::load(const string& filename) -> bool { if(auto memory = file::read(filename)) { return load(memory.data(), memory.size()); } return false; } auto PNG::load(const uint8_t* sourceData, uint sourceSize) -> bool { if(sourceSize < 8) return false; if(read(sourceData + 0, 4) != 0x89504e47) return false; if(read(sourceData + 4, 4) != 0x0d0a1a0a) return false; uint8_t* compressedData = nullptr; uint compressedSize = 0; uint offset = 8; while(offset < sourceSize) { uint length = read(sourceData + offset + 0, 4); uint fourCC = read(sourceData + offset + 4, 4); uint checksum = read(sourceData + offset + 8 + length, 4); if(fourCC == (uint)FourCC::IHDR) { info.width = read(sourceData + offset + 8, 4); info.height = read(sourceData + offset + 12, 4); info.bitDepth = read(sourceData + offset + 16, 1); info.colorType = read(sourceData + offset + 17, 1); info.compressionMethod = read(sourceData + offset + 18, 1); info.filterType = read(sourceData + offset + 19, 1); info.interlaceMethod = read(sourceData + offset + 20, 1); if(info.bitDepth == 0 || info.bitDepth > 16) return false; if(info.bitDepth & (info.bitDepth - 1)) return false; //not a power of two if(info.compressionMethod != 0) return false; if(info.filterType != 0) return false; if(info.interlaceMethod != 0 && info.interlaceMethod != 1) return false; switch(info.colorType) { case 0: info.bytesPerPixel = info.bitDepth * 1; break; //L case 2: info.bytesPerPixel = info.bitDepth * 3; break; //R,G,B case 3: info.bytesPerPixel = info.bitDepth * 1; break; //P case 4: info.bytesPerPixel = info.bitDepth * 2; break; //L,A case 6: info.bytesPerPixel = info.bitDepth * 4; break; //R,G,B,A default: return false; } if(info.colorType == 2 || info.colorType == 4 || info.colorType == 6) { if(info.bitDepth != 8 && info.bitDepth != 16) return false; } if(info.colorType == 3 && info.bitDepth == 16) return false; info.bytesPerPixel = (info.bytesPerPixel + 7) / 8; info.pitch = (int)info.width * info.bytesPerPixel; } if(fourCC == (uint)FourCC::PLTE) { if(length % 3) return false; for(uint n = 0, p = offset + 8; n < length / 3; n++) { info.palette[n][0] = sourceData[p++]; info.palette[n][1] = sourceData[p++]; info.palette[n][2] = sourceData[p++]; } } if(fourCC == (uint)FourCC::IDAT) { compressedData = (uint8_t*)realloc(compressedData, compressedSize + length); memcpy(compressedData + compressedSize, sourceData + offset + 8, length); compressedSize += length; } if(fourCC == (uint)FourCC::IEND) { break; } offset += 4 + 4 + length + 4; } uint interlacedSize = inflateSize(); auto interlacedData = new uint8_t[interlacedSize]; bool result = inflate(interlacedData, interlacedSize, compressedData + 2, compressedSize - 6); free(compressedData); if(result == false) { delete[] interlacedData; return false; } size = info.width * info.height * info.bytesPerPixel; data = new uint8_t[size]; if(info.interlaceMethod == 0) { if(filter(data, interlacedData, info.width, info.height) == false) { delete[] interlacedData; delete[] data; data = nullptr; return false; } } else { const uint8_t* passData = interlacedData; for(uint pass = 0; pass < 7; pass++) { if(deinterlace(passData, pass) == false) { delete[] interlacedData; delete[] data; data = nullptr; return false; } } } delete[] interlacedData; return true; } auto PNG::interlace(uint pass, uint index) -> uint { static const uint data[7][4] = { //x-distance, y-distance, x-origin, y-origin {8, 8, 0, 0}, {8, 8, 4, 0}, {4, 8, 0, 4}, {4, 4, 2, 0}, {2, 4, 0, 2}, {2, 2, 1, 0}, {1, 2, 0, 1}, }; return data[pass][index]; } auto PNG::inflateSize() -> uint { if(info.interlaceMethod == 0) { return info.width * info.height * info.bytesPerPixel + info.height; } uint size = 0; for(uint pass = 0; pass < 7; pass++) { uint xd = interlace(pass, 0), yd = interlace(pass, 1); uint xo = interlace(pass, 2), yo = interlace(pass, 3); uint width = (info.width + (xd - xo - 1)) / xd; uint height = (info.height + (yd - yo - 1)) / yd; if(width == 0 || height == 0) continue; size += width * height * info.bytesPerPixel + height; } return size; } auto PNG::deinterlace(const uint8_t*& inputData, uint pass) -> bool { uint xd = interlace(pass, 0), yd = interlace(pass, 1); uint xo = interlace(pass, 2), yo = interlace(pass, 3); uint width = (info.width + (xd - xo - 1)) / xd; uint height = (info.height + (yd - yo - 1)) / yd; if(width == 0 || height == 0) return true; uint outputSize = width * height * info.bytesPerPixel; auto outputData = new uint8_t[outputSize]; bool result = filter(outputData, inputData, width, height); const uint8_t* rd = outputData; for(uint y = yo; y < info.height; y += yd) { uint8_t* wr = data + y * info.pitch; for(uint x = xo; x < info.width; x += xd) { for(uint b = 0; b < info.bytesPerPixel; b++) { wr[x * info.bytesPerPixel + b] = *rd++; } } } inputData += outputSize + height; delete[] outputData; return result; } auto PNG::filter(uint8_t* outputData, const uint8_t* inputData, uint width, uint height) -> bool { uint8_t* wr = outputData; const uint8_t* rd = inputData; int bpp = info.bytesPerPixel, pitch = width * bpp; for(int y = 0; y < height; y++) { uint8_t filter = *rd++; switch(filter) { case 0x00: //None for(int x = 0; x < pitch; x++) { wr[x] = rd[x]; } break; case 0x01: //Subtract for(int x = 0; x < pitch; x++) { wr[x] = rd[x] + (x - bpp < 0 ? 0 : wr[x - bpp]); } break; case 0x02: //Above for(int x = 0; x < pitch; x++) { wr[x] = rd[x] + (y - 1 < 0 ? 0 : wr[x - pitch]); } break; case 0x03: //Average for(int x = 0; x < pitch; x++) { short a = x - bpp < 0 ? 0 : wr[x - bpp]; short b = y - 1 < 0 ? 0 : wr[x - pitch]; wr[x] = rd[x] + (uint8_t)((a + b) / 2); } break; case 0x04: //Paeth for(int x = 0; x < pitch; x++) { short a = x - bpp < 0 ? 0 : wr[x - bpp]; short b = y - 1 < 0 ? 0 : wr[x - pitch]; short c = x - bpp < 0 || y - 1 < 0 ? 0 : wr[x - pitch - bpp]; short p = a + b - c; short pa = p > a ? p - a : a - p; short pb = p > b ? p - b : b - p; short pc = p > c ? p - c : c - p; auto paeth = (uint8_t)((pa <= pb && pa <= pc) ? a : (pb <= pc) ? b : c); wr[x] = rd[x] + paeth; } break; default: //Invalid return false; } rd += pitch; wr += pitch; } return true; } auto PNG::read(const uint8_t* data, uint length) -> uint { uint result = 0; while(length--) result = (result << 8) | (*data++); return result; } auto PNG::readbits(const uint8_t*& data) -> uint { uint result = 0; switch(info.bitDepth) { case 1: result = (*data >> bitpos) & 1; bitpos++; if(bitpos == 8) { data++; bitpos = 0; } break; case 2: result = (*data >> bitpos) & 3; bitpos += 2; if(bitpos == 8) { data++; bitpos = 0; } break; case 4: result = (*data >> bitpos) & 15; bitpos += 4; if(bitpos == 8) { data++; bitpos = 0; } break; case 8: result = *data++; break; case 16: result = (data[0] << 8) | (data[1] << 0); data += 2; break; } return result; } }}