old-cross-binutils/sim/ppc/core.c
1995-09-06 14:00:16 +00:00

379 lines
9.8 KiB
C

/* This file is part of the program psim.
Copyright (C) 1994-1995, Andrew Cagney <cagney@highland.com.au>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*/
#ifndef _CORE_C_
#define _CORE_C_
#ifndef STATIC_INLINE_CORE
#define STATIC_INLINE_CORE STATIC_INLINE
#endif
#include "basics.h"
#include "device_tree.h"
#include "memory_map.h"
#include "core.h"
struct _core {
/* attached devices */
device_node *device_tree;
/* different memory maps */
memory_map *readable; /* really everything */
memory_map *writeable;
memory_map *executable;
/* VEA model requires additional memory information */
unsigned_word data_upper_bound;
unsigned_word data_high_water;
unsigned_word stack_upper_bound;
unsigned_word stack_lower_bound;
unsigned_word stack_low_water;
/* misc */
int trace;
};
STATIC_INLINE_CORE void
create_core_from_addresses(device_node *device,
void *data)
{
core *memory = (core*)data;
device_address *address;
for (address = device->addresses;
address != NULL;
address = address->next_address) {
switch (device->type) {
case memory_device:
{
void *ram = zalloc(address->size);
TRACE(trace_core,
("create_core_from_addresses() adding memory at 0x%.8x-0x%.8x, size %8d\n",
address->lower_bound, address->lower_bound + address->size - 1, address->size));
core_add_raw_memory(memory,
ram,
address->lower_bound,
address->size,
address->access);
}
break;
case sequential_device:
case block_device:
case bus_device:
case other_device:
{
TRACE(trace_core,
("create_core_from_addresses() adding device at 0x%.8x-0x%.8x, size %8d\n",
address->lower_bound, address->lower_bound + address->size - 1, address->size));
ASSERT(device->callbacks != NULL);
core_add_callback_memory(memory,
device,
device->callbacks->read_callback,
device->callbacks->write_callback,
address->lower_bound,
address->size,
address->access);
}
break;
default:
TRACE(trace_core,
("create_core_from_addresses() unknown type %d\n", (int)device->type));
break;
/* nothing happens here */
}
}
}
INLINE_CORE core *
core_create(device_node *root,
int trace)
{
core *memory;
/* Initialize things */
memory = ZALLOC(core);
memory->trace = trace;
memory->device_tree = root;
/* allocate space for the separate virtual to physical maps */
memory->executable = new_memory_map();
memory->readable = new_memory_map();
memory->writeable = new_memory_map();
/* initial values for the water marks */
memory->data_high_water = 0;
memory->stack_low_water = memory->data_high_water - sizeof(unsigned_word);
/* go over the device tree looking for address ranges to add to
memory */
device_tree_traverse(root,
create_core_from_addresses,
NULL,
memory);
/* return the created core object */
return memory;
}
STATIC_INLINE_CORE void
zero_core_from_addresses(device_node *device,
void *data)
{
core *memory = (core*)data;
device_address *address;
/* for memory nodes, copy or zero any data */
if (device->type == memory_device) {
for (address = device->addresses;
address != NULL;
address = address->next_address) {
if (memory_map_zero(memory->readable,
address->lower_bound,
address->size) != address->size)
error("init_core_from_addresses() - zero failed\n");
/* adjust high water mark (sbrk) */
if (memory->data_upper_bound < address->upper_bound)
memory->data_upper_bound = address->upper_bound;
}
}
}
STATIC_INLINE_CORE void
load_core_from_addresses(device_node *device,
void *data)
{
core *memory = (core*)data;
device_address *address;
/* initialize the address range with the value attached to the
address. Even works for devices! */
for (address = device->addresses;
address != NULL;
address = address->next_address) {
/* (re)init the address range. I don't want to think about what
this is doing to callback devices! */
if (address->init) {
if (memory_map_write_buffer(memory->readable,
address->init,
address->lower_bound,
address->size,
raw_transfer) != address->size)
error("init_core_from_addresses() - write failed\n");
}
}
}
INLINE_CORE void
core_init(core *memory)
{
unsigned nr_cleared;
unsigned_word clear_base;
unsigned_word clear_bound;
/* for vea, several memory break points */
memory->data_upper_bound = 0;
memory->stack_upper_bound = device_tree_find_int(memory->device_tree,
"/options/stack-pointer");;
memory->stack_lower_bound = memory->stack_upper_bound;
/* (re) clear all of memory that is specified by memory-address
entries. While we're at it determine the upper bound for memory
areas */
device_tree_traverse(memory->device_tree,
NULL,
zero_core_from_addresses,
memory);
/* May have grown the data sectioin (vea model), zero that too if
present */
clear_base = memory->data_upper_bound;
clear_bound = memory->data_high_water;
if (clear_bound > clear_base) {
while ((nr_cleared = memory_map_zero(memory->readable,
clear_base,
clear_bound - clear_base)) > 0) {
clear_base += nr_cleared;
}
}
/* clear any part of the stack that was dynamically allocated */
clear_base = memory->stack_low_water;
clear_bound = memory->stack_upper_bound;
if (clear_bound > clear_base) {
while ((nr_cleared = memory_map_zero(memory->readable,
clear_base,
clear_bound - clear_base)) > 0) {
clear_base += nr_cleared;
}
}
/* with everything zero'ed, now (re) load any data sections */
device_tree_traverse(memory->device_tree,
NULL,
load_core_from_addresses,
memory);
}
INLINE_CORE void
core_add_raw_memory(core *memory,
void *buffer,
unsigned_word base,
unsigned size,
device_access access)
{
if (access & device_is_readable)
memory_map_add_raw_memory(memory->readable,
buffer, base, size);
if (access & device_is_writeable)
memory_map_add_raw_memory(memory->writeable,
buffer, base, size);
if (access & device_is_executable)
memory_map_add_raw_memory(memory->executable,
buffer, base, size);
}
INLINE_CORE void
core_add_callback_memory(core *memory,
device_node *device,
device_reader_callback *reader,
device_writer_callback *writer,
unsigned_word base,
unsigned size,
device_access access)
{
if (access & device_is_readable)
memory_map_add_callback_memory(memory->readable,
device, reader, writer,
base, size);
if (access & device_is_writeable)
memory_map_add_callback_memory(memory->writeable,
device, reader, writer,
base, size);
if (access & device_is_executable)
memory_map_add_callback_memory(memory->executable,
device, reader, writer,
base, size);
}
STATIC_INLINE_CORE void
malloc_core_memory(core *memory,
unsigned_word base,
unsigned size,
device_access access)
{
void *buffer = (void*)zalloc(size);
core_add_raw_memory(memory, buffer, base, size, access);
}
INLINE_CORE unsigned_word
core_data_upper_bound(core *memory)
{
return memory->data_upper_bound;
}
INLINE_CORE unsigned_word
core_stack_lower_bound(core *memory)
{
return memory->stack_lower_bound;
}
INLINE_CORE unsigned_word
core_stack_size(core *memory)
{
return (memory->stack_upper_bound - memory->stack_lower_bound);
}
INLINE_CORE void
core_add_data(core *memory, unsigned_word incr)
{
unsigned_word new_upper_bound = memory->data_upper_bound + incr;
if (new_upper_bound > memory->data_high_water) {
if (memory->data_upper_bound >= memory->data_high_water)
/* all the memory is new */
malloc_core_memory(memory,
memory->data_upper_bound,
incr,
device_is_readable | device_is_writeable);
else
/* some of the memory was already allocated, only need to add
missing bit */
malloc_core_memory(memory,
memory->data_high_water,
new_upper_bound - memory->data_high_water,
device_is_readable | device_is_writeable);
memory->data_high_water = new_upper_bound;
}
memory->data_upper_bound = new_upper_bound;
}
INLINE_CORE void
core_add_stack(core *memory, unsigned_word incr)
{
unsigned_word new_lower_bound = memory->stack_lower_bound - incr;
if (new_lower_bound < memory->stack_low_water) {
if (memory->stack_lower_bound <= memory->stack_low_water)
/* all the memory is new */
malloc_core_memory(memory,
new_lower_bound,
incr,
device_is_readable | device_is_writeable);
else
/* allocate only the extra bit */
malloc_core_memory(memory,
new_lower_bound,
memory->stack_low_water - new_lower_bound,
device_is_readable | device_is_writeable);
memory->stack_low_water = new_lower_bound;
}
memory->stack_lower_bound = new_lower_bound;
}
INLINE_CORE memory_map *
core_readable(core *core)
{
return core->readable;
}
INLINE_CORE memory_map *
core_writeable(core *core)
{
return core->writeable;
}
INLINE_CORE memory_map *
core_executable(core *core)
{
return core->executable;
}
#endif /* _CORE_ */