old-cross-binutils/sim/sh64/sh64.c
Joel Brobecker c5a5708100 Copyright year update in most files of the GDB Project.
gdb/ChangeLog:

        Copyright year update in most files of the GDB Project.
2012-01-04 08:28:28 +00:00

1155 lines
24 KiB
C

/* SH5 simulator support code
Copyright (C) 2000-2001, 2006, 2008-2012 Free Software Foundation,
Inc.
Contributed by Red Hat, Inc.
This file is part of the GNU simulators.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>. */
#define WANT_CPU
#define WANT_CPU_SH64
#include "sim-main.h"
#include "sim-fpu.h"
#include "cgen-mem.h"
#include "cgen-ops.h"
#include "gdb/callback.h"
#include "defs-compact.h"
#include "bfd.h"
/* From include/gdb/. */
#include "gdb/sim-sh.h"
#define SYS_exit 1
#define SYS_read 3
#define SYS_write 4
#define SYS_open 5
#define SYS_close 6
#define SYS_lseek 19
#define SYS_time 23
#define SYS_argc 172
#define SYS_argnlen 173
#define SYS_argn 174
IDESC * sh64_idesc_media;
IDESC * sh64_idesc_compact;
BI
sh64_endian (SIM_CPU *current_cpu)
{
return (CURRENT_TARGET_BYTE_ORDER == BIG_ENDIAN);
}
SF
sh64_fldi0 (SIM_CPU *current_cpu)
{
SF result;
sim_fpu_to32 (&result, &sim_fpu_zero);
return result;
}
SF
sh64_fldi1 (SIM_CPU *current_cpu)
{
SF result;
sim_fpu_to32 (&result, &sim_fpu_one);
return result;
}
DF
sh64_fabsd(SIM_CPU *current_cpu, DF drgh)
{
DF result;
sim_fpu f, fres;
sim_fpu_64to (&f, drgh);
sim_fpu_abs (&fres, &f);
sim_fpu_to64 (&result, &fres);
return result;
}
SF
sh64_fabss(SIM_CPU *current_cpu, SF frgh)
{
SF result;
sim_fpu f, fres;
sim_fpu_32to (&f, frgh);
sim_fpu_abs (&fres, &f);
sim_fpu_to32 (&result, &fres);
return result;
}
DF
sh64_faddd(SIM_CPU *current_cpu, DF drg, DF drh)
{
DF result;
sim_fpu f1, f2, fres;
sim_fpu_64to (&f1, drg);
sim_fpu_64to (&f2, drh);
sim_fpu_add (&fres, &f1, &f2);
sim_fpu_to64 (&result, &fres);
return result;
}
SF
sh64_fadds(SIM_CPU *current_cpu, SF frg, SF frh)
{
SF result;
sim_fpu f1, f2, fres;
sim_fpu_32to (&f1, frg);
sim_fpu_32to (&f2, frh);
sim_fpu_add (&fres, &f1, &f2);
sim_fpu_to32 (&result, &fres);
return result;
}
BI
sh64_fcmpeqd(SIM_CPU *current_cpu, DF drg, DF drh)
{
sim_fpu f1, f2;
sim_fpu_64to (&f1, drg);
sim_fpu_64to (&f2, drh);
return sim_fpu_is_eq (&f1, &f2);
}
BI
sh64_fcmpeqs(SIM_CPU *current_cpu, SF frg, SF frh)
{
sim_fpu f1, f2;
sim_fpu_32to (&f1, frg);
sim_fpu_32to (&f2, frh);
return sim_fpu_is_eq (&f1, &f2);
}
BI
sh64_fcmpged(SIM_CPU *current_cpu, DF drg, DF drh)
{
sim_fpu f1, f2;
sim_fpu_64to (&f1, drg);
sim_fpu_64to (&f2, drh);
return sim_fpu_is_ge (&f1, &f2);
}
BI
sh64_fcmpges(SIM_CPU *current_cpu, SF frg, SF frh)
{
sim_fpu f1, f2;
sim_fpu_32to (&f1, frg);
sim_fpu_32to (&f2, frh);
return sim_fpu_is_ge (&f1, &f2);
}
BI
sh64_fcmpgtd(SIM_CPU *current_cpu, DF drg, DF drh)
{
sim_fpu f1, f2;
sim_fpu_64to (&f1, drg);
sim_fpu_64to (&f2, drh);
return sim_fpu_is_gt (&f1, &f2);
}
BI
sh64_fcmpgts(SIM_CPU *current_cpu, SF frg, SF frh)
{
sim_fpu f1, f2;
sim_fpu_32to (&f1, frg);
sim_fpu_32to (&f2, frh);
return sim_fpu_is_gt (&f1, &f2);
}
BI
sh64_fcmpund(SIM_CPU *current_cpu, DF drg, DF drh)
{
sim_fpu f1, f2;
sim_fpu_64to (&f1, drg);
sim_fpu_64to (&f2, drh);
return (sim_fpu_is_nan (&f1) || sim_fpu_is_nan (&f2));
}
BI
sh64_fcmpuns(SIM_CPU *current_cpu, SF frg, SF frh)
{
sim_fpu f1, f2;
sim_fpu_32to (&f1, frg);
sim_fpu_32to (&f2, frh);
return (sim_fpu_is_nan (&f1) || sim_fpu_is_nan (&f2));
}
SF
sh64_fcnvds(SIM_CPU *current_cpu, DF drgh)
{
union {
unsigned long long ll;
double d;
} f1;
union {
unsigned long l;
float f;
} f2;
f1.ll = drgh;
f2.f = (float) f1.d;
return (SF) f2.l;
}
DF
sh64_fcnvsd(SIM_CPU *current_cpu, SF frgh)
{
DF result;
sim_fpu f;
sim_fpu_32to (&f, frgh);
sim_fpu_to64 (&result, &f);
return result;
}
DF
sh64_fdivd(SIM_CPU *current_cpu, DF drg, DF drh)
{
DF result;
sim_fpu f1, f2, fres;
sim_fpu_64to (&f1, drg);
sim_fpu_64to (&f2, drh);
sim_fpu_div (&fres, &f1, &f2);
sim_fpu_to64 (&result, &fres);
return result;
}
SF
sh64_fdivs(SIM_CPU *current_cpu, SF frg, SF frh)
{
SF result;
sim_fpu f1, f2, fres;
sim_fpu_32to (&f1, frg);
sim_fpu_32to (&f2, frh);
sim_fpu_div (&fres, &f1, &f2);
sim_fpu_to32 (&result, &fres);
return result;
}
DF
sh64_floatld(SIM_CPU *current_cpu, SF frgh)
{
DF result;
sim_fpu f;
sim_fpu_i32to (&f, frgh, sim_fpu_round_default);
sim_fpu_to64 (&result, &f);
return result;
}
SF
sh64_floatls(SIM_CPU *current_cpu, SF frgh)
{
SF result;
sim_fpu f;
sim_fpu_i32to (&f, frgh, sim_fpu_round_default);
sim_fpu_to32 (&result, &f);
return result;
}
DF
sh64_floatqd(SIM_CPU *current_cpu, DF drgh)
{
DF result;
sim_fpu f;
sim_fpu_i64to (&f, drgh, sim_fpu_round_default);
sim_fpu_to64 (&result, &f);
return result;
}
SF
sh64_floatqs(SIM_CPU *current_cpu, DF drgh)
{
SF result;
sim_fpu f;
sim_fpu_i64to (&f, drgh, sim_fpu_round_default);
sim_fpu_to32 (&result, &f);
return result;
}
SF
sh64_fmacs(SIM_CPU *current_cpu, SF fr0, SF frm, SF frn)
{
SF result;
sim_fpu m1, m2, a1, fres;
sim_fpu_32to (&m1, fr0);
sim_fpu_32to (&m2, frm);
sim_fpu_32to (&a1, frn);
sim_fpu_mul (&fres, &m1, &m2);
sim_fpu_add (&fres, &fres, &a1);
sim_fpu_to32 (&result, &fres);
return result;
}
DF
sh64_fmuld(SIM_CPU *current_cpu, DF drg, DF drh)
{
DF result;
sim_fpu f1, f2, fres;
sim_fpu_64to (&f1, drg);
sim_fpu_64to (&f2, drh);
sim_fpu_mul (&fres, &f1, &f2);
sim_fpu_to64 (&result, &fres);
return result;
}
SF
sh64_fmuls(SIM_CPU *current_cpu, SF frg, SF frh)
{
SF result;
sim_fpu f1, f2, fres;
sim_fpu_32to (&f1, frg);
sim_fpu_32to (&f2, frh);
sim_fpu_mul (&fres, &f1, &f2);
sim_fpu_to32 (&result, &fres);
return result;
}
DF
sh64_fnegd(SIM_CPU *current_cpu, DF drgh)
{
DF result;
sim_fpu f1, f2;
sim_fpu_64to (&f1, drgh);
sim_fpu_neg (&f2, &f1);
sim_fpu_to64 (&result, &f2);
return result;
}
SF
sh64_fnegs(SIM_CPU *current_cpu, SF frgh)
{
SF result;
sim_fpu f, fres;
sim_fpu_32to (&f, frgh);
sim_fpu_neg (&fres, &f);
sim_fpu_to32 (&result, &fres);
return result;
}
DF
sh64_fsqrtd(SIM_CPU *current_cpu, DF drgh)
{
DF result;
sim_fpu f, fres;
sim_fpu_64to (&f, drgh);
sim_fpu_sqrt (&fres, &f);
sim_fpu_to64 (&result, &fres);
return result;
}
SF
sh64_fsqrts(SIM_CPU *current_cpu, SF frgh)
{
SF result;
sim_fpu f, fres;
sim_fpu_32to (&f, frgh);
sim_fpu_sqrt (&fres, &f);
sim_fpu_to32 (&result, &fres);
return result;
}
DF
sh64_fsubd(SIM_CPU *current_cpu, DF drg, DF drh)
{
DF result;
sim_fpu f1, f2, fres;
sim_fpu_64to (&f1, drg);
sim_fpu_64to (&f2, drh);
sim_fpu_sub (&fres, &f1, &f2);
sim_fpu_to64 (&result, &fres);
return result;
}
SF
sh64_fsubs(SIM_CPU *current_cpu, SF frg, SF frh)
{
SF result;
sim_fpu f1, f2, fres;
sim_fpu_32to (&f1, frg);
sim_fpu_32to (&f2, frh);
sim_fpu_sub (&fres, &f1, &f2);
sim_fpu_to32 (&result, &fres);
return result;
}
SF
sh64_ftrcdl(SIM_CPU *current_cpu, DF drgh)
{
SI result;
sim_fpu f;
sim_fpu_64to (&f, drgh);
sim_fpu_to32i (&result, &f, sim_fpu_round_zero);
return (SF) result;
}
SF
sh64_ftrcsl(SIM_CPU *current_cpu, SF frgh)
{
SI result;
sim_fpu f;
sim_fpu_32to (&f, frgh);
sim_fpu_to32i (&result, &f, sim_fpu_round_zero);
return (SF) result;
}
DF
sh64_ftrcdq(SIM_CPU *current_cpu, DF drgh)
{
DI result;
sim_fpu f;
sim_fpu_64to (&f, drgh);
sim_fpu_to64i (&result, &f, sim_fpu_round_zero);
return (DF) result;
}
DF
sh64_ftrcsq(SIM_CPU *current_cpu, SF frgh)
{
DI result;
sim_fpu f;
sim_fpu_32to (&f, frgh);
sim_fpu_to64i (&result, &f, sim_fpu_round_zero);
return (DF) result;
}
VOID
sh64_ftrvs(SIM_CPU *cpu, unsigned g, unsigned h, unsigned f)
{
int i, j;
for (i = 0; i < 4; i++)
{
SF result;
sim_fpu sum;
sim_fpu_32to (&sum, 0);
for (j = 0; j < 4; j++)
{
sim_fpu f1, f2, temp;
sim_fpu_32to (&f1, sh64_h_fr_get (cpu, (g + i) + (j * 4)));
sim_fpu_32to (&f2, sh64_h_fr_get (cpu, h + j));
sim_fpu_mul (&temp, &f1, &f2);
sim_fpu_add (&sum, &sum, &temp);
}
sim_fpu_to32 (&result, &sum);
sh64_h_fr_set (cpu, f + i, result);
}
}
VOID
sh64_fipr (SIM_CPU *cpu, unsigned m, unsigned n)
{
SF result = sh64_fmuls (cpu, sh64_h_fvc_get (cpu, m), sh64_h_fvc_get (cpu, n));
result = sh64_fadds (cpu, result, sh64_fmuls (cpu, sh64_h_frc_get (cpu, m + 1), sh64_h_frc_get (cpu, n + 1)));
result = sh64_fadds (cpu, result, sh64_fmuls (cpu, sh64_h_frc_get (cpu, m + 2), sh64_h_frc_get (cpu, n + 2)));
result = sh64_fadds (cpu, result, sh64_fmuls (cpu, sh64_h_frc_get (cpu, m + 3), sh64_h_frc_get (cpu, n + 3)));
sh64_h_frc_set (cpu, n + 3, result);
}
SF
sh64_fiprs (SIM_CPU *cpu, unsigned g, unsigned h)
{
SF temp = sh64_fmuls (cpu, sh64_h_fr_get (cpu, g), sh64_h_fr_get (cpu, h));
temp = sh64_fadds (cpu, temp, sh64_fmuls (cpu, sh64_h_fr_get (cpu, g + 1), sh64_h_fr_get (cpu, h + 1)));
temp = sh64_fadds (cpu, temp, sh64_fmuls (cpu, sh64_h_fr_get (cpu, g + 2), sh64_h_fr_get (cpu, h + 2)));
temp = sh64_fadds (cpu, temp, sh64_fmuls (cpu, sh64_h_fr_get (cpu, g + 3), sh64_h_fr_get (cpu, h + 3)));
return temp;
}
VOID
sh64_fldp (SIM_CPU *cpu, PCADDR pc, DI rm, DI rn, unsigned f)
{
sh64_h_fr_set (cpu, f, GETMEMSF (cpu, pc, rm + rn));
sh64_h_fr_set (cpu, f + 1, GETMEMSF (cpu, pc, rm + rn + 4));
}
VOID
sh64_fstp (SIM_CPU *cpu, PCADDR pc, DI rm, DI rn, unsigned f)
{
SETMEMSF (cpu, pc, rm + rn, sh64_h_fr_get (cpu, f));
SETMEMSF (cpu, pc, rm + rn + 4, sh64_h_fr_get (cpu, f + 1));
}
VOID
sh64_ftrv (SIM_CPU *cpu, UINT ignored)
{
/* TODO: Unimplemented. */
}
VOID
sh64_pref (SIM_CPU *cpu, SI addr)
{
/* TODO: Unimplemented. */
}
/* Count the number of arguments. */
static int
count_argc (cpu)
SIM_CPU *cpu;
{
int i = 0;
if (! STATE_PROG_ARGV (CPU_STATE (cpu)))
return -1;
while (STATE_PROG_ARGV (CPU_STATE (cpu)) [i] != NULL)
++i;
return i;
}
/* Read a null terminated string from memory, return in a buffer */
static char *
fetch_str (current_cpu, pc, addr)
SIM_CPU *current_cpu;
PCADDR pc;
DI addr;
{
char *buf;
int nr = 0;
while (sim_core_read_1 (current_cpu,
pc, read_map, addr + nr) != 0)
nr++;
buf = NZALLOC (char, nr + 1);
sim_read (CPU_STATE (current_cpu), addr, buf, nr);
return buf;
}
static void
trap_handler (SIM_CPU *current_cpu, int shmedia_abi_p, UQI trapnum, PCADDR pc)
{
char ch;
switch (trapnum)
{
case 1:
ch = GET_H_GRC (0);
sim_io_write_stdout (CPU_STATE (current_cpu), &ch, 1);
fflush (stdout);
break;
case 2:
sim_engine_halt (CPU_STATE (current_cpu), current_cpu, NULL, pc, sim_stopped, SIM_SIGTRAP);
break;
case 34:
{
int i;
int ret_reg = (shmedia_abi_p) ? 2 : 0;
char *buf;
DI PARM1 = GET_H_GR ((shmedia_abi_p) ? 3 : 5);
DI PARM2 = GET_H_GR ((shmedia_abi_p) ? 4 : 6);
DI PARM3 = GET_H_GR ((shmedia_abi_p) ? 5 : 7);
switch (GET_H_GR ((shmedia_abi_p) ? 2 : 4))
{
case SYS_write:
buf = zalloc (PARM3);
sim_read (CPU_STATE (current_cpu), PARM2, buf, PARM3);
SET_H_GR (ret_reg,
sim_io_write (CPU_STATE (current_cpu),
PARM1, buf, PARM3));
free (buf);
break;
case SYS_lseek:
SET_H_GR (ret_reg,
sim_io_lseek (CPU_STATE (current_cpu),
PARM1, PARM2, PARM3));
break;
case SYS_exit:
sim_engine_halt (CPU_STATE (current_cpu), current_cpu,
NULL, pc, sim_exited, PARM1);
break;
case SYS_read:
buf = zalloc (PARM3);
SET_H_GR (ret_reg,
sim_io_read (CPU_STATE (current_cpu),
PARM1, buf, PARM3));
sim_write (CPU_STATE (current_cpu), PARM2, buf, PARM3);
free (buf);
break;
case SYS_open:
buf = fetch_str (current_cpu, pc, PARM1);
SET_H_GR (ret_reg,
sim_io_open (CPU_STATE (current_cpu),
buf, PARM2));
free (buf);
break;
case SYS_close:
SET_H_GR (ret_reg,
sim_io_close (CPU_STATE (current_cpu), PARM1));
break;
case SYS_time:
SET_H_GR (ret_reg, time (0));
break;
case SYS_argc:
SET_H_GR (ret_reg, count_argc (current_cpu));
break;
case SYS_argnlen:
if (PARM1 < count_argc (current_cpu))
SET_H_GR (ret_reg,
strlen (STATE_PROG_ARGV (CPU_STATE (current_cpu)) [PARM1]));
else
SET_H_GR (ret_reg, -1);
break;
case SYS_argn:
if (PARM1 < count_argc (current_cpu))
{
/* Include the NULL byte. */
i = strlen (STATE_PROG_ARGV (CPU_STATE (current_cpu)) [PARM1]) + 1;
sim_write (CPU_STATE (current_cpu),
PARM2,
STATE_PROG_ARGV (CPU_STATE (current_cpu)) [PARM1],
i);
/* Just for good measure. */
SET_H_GR (ret_reg, i);
break;
}
else
SET_H_GR (ret_reg, -1);
break;
default:
SET_H_GR (ret_reg, -1);
}
}
break;
case 253:
puts ("pass");
exit (0);
case 254:
puts ("fail");
exit (1);
case 0xc3:
/* fall through. */
case 255:
sim_engine_halt (CPU_STATE (current_cpu), current_cpu, NULL, pc, sim_stopped, SIM_SIGTRAP);
break;
}
}
void
sh64_trapa (SIM_CPU *current_cpu, DI rm, PCADDR pc)
{
trap_handler (current_cpu, 1, (UQI) rm & 0xff, pc);
}
void
sh64_compact_trapa (SIM_CPU *current_cpu, UQI trapnum, PCADDR pc)
{
int mach_sh5_p;
/* If this is an SH5 executable, this is SHcompact code running in
the SHmedia ABI. */
mach_sh5_p =
(bfd_get_mach (STATE_PROG_BFD (CPU_STATE (current_cpu))) == bfd_mach_sh5);
trap_handler (current_cpu, mach_sh5_p, trapnum, pc);
}
DI
sh64_nsb (SIM_CPU *current_cpu, DI rm)
{
int result = 0, count;
UDI source = (UDI) rm;
if ((source >> 63))
source = ~source;
source <<= 1;
for (count = 32; count; count >>= 1)
{
UDI newval = source << count;
if ((newval >> count) == source)
{
result |= count;
source = newval;
}
}
return result;
}
void
sh64_break (SIM_CPU *current_cpu, PCADDR pc)
{
SIM_DESC sd = CPU_STATE (current_cpu);
sim_engine_halt (sd, current_cpu, NULL, pc, sim_stopped, SIM_SIGTRAP);
}
SI
sh64_movua (SIM_CPU *current_cpu, PCADDR pc, SI rn)
{
SI v;
int i;
/* Move the data one byte at a time to avoid alignment problems.
Be aware of endianness. */
v = 0;
for (i = 0; i < 4; ++i)
v = (v << 8) | (GETMEMQI (current_cpu, pc, rn + i) & 0xff);
v = T2H_4 (v);
return v;
}
void
set_isa (SIM_CPU *current_cpu, int mode)
{
/* Do nothing. */
}
/* The semantic code invokes this for invalid (unrecognized) instructions. */
SEM_PC
sim_engine_invalid_insn (SIM_CPU *current_cpu, IADDR cia, SEM_PC vpc)
{
SIM_DESC sd = CPU_STATE (current_cpu);
sim_engine_halt (sd, current_cpu, NULL, cia, sim_stopped, SIM_SIGILL);
return vpc;
}
/* Process an address exception. */
void
sh64_core_signal (SIM_DESC sd, SIM_CPU *current_cpu, sim_cia cia,
unsigned int map, int nr_bytes, address_word addr,
transfer_type transfer, sim_core_signals sig)
{
sim_core_signal (sd, current_cpu, cia, map, nr_bytes, addr,
transfer, sig);
}
/* Initialize cycle counting for an insn.
FIRST_P is non-zero if this is the first insn in a set of parallel
insns. */
void
sh64_compact_model_insn_before (SIM_CPU *cpu, int first_p)
{
/* Do nothing. */
}
void
sh64_media_model_insn_before (SIM_CPU *cpu, int first_p)
{
/* Do nothing. */
}
/* Record the cycles computed for an insn.
LAST_P is non-zero if this is the last insn in a set of parallel insns,
and we update the total cycle count.
CYCLES is the cycle count of the insn. */
void
sh64_compact_model_insn_after(SIM_CPU *cpu, int last_p, int cycles)
{
/* Do nothing. */
}
void
sh64_media_model_insn_after(SIM_CPU *cpu, int last_p, int cycles)
{
/* Do nothing. */
}
int
sh64_fetch_register (SIM_CPU *cpu, int nr, unsigned char *buf, int len)
{
/* Fetch general purpose registers. */
if (nr >= SIM_SH64_R0_REGNUM
&& nr < (SIM_SH64_R0_REGNUM + SIM_SH64_NR_R_REGS)
&& len == 8)
{
*((unsigned64*) buf) =
H2T_8 (sh64_h_gr_get (cpu, nr - SIM_SH64_R0_REGNUM));
return len;
}
/* Fetch PC. */
if (nr == SIM_SH64_PC_REGNUM && len == 8)
{
*((unsigned64*) buf) = H2T_8 (sh64_h_pc_get (cpu) | sh64_h_ism_get (cpu));
return len;
}
/* Fetch status register (SR). */
if (nr == SIM_SH64_SR_REGNUM && len == 8)
{
*((unsigned64*) buf) = H2T_8 (sh64_h_sr_get (cpu));
return len;
}
/* Fetch saved status register (SSR) and PC (SPC). */
if ((nr == SIM_SH64_SSR_REGNUM || nr == SIM_SH64_SPC_REGNUM)
&& len == 8)
{
*((unsigned64*) buf) = 0;
return len;
}
/* Fetch target registers. */
if (nr >= SIM_SH64_TR0_REGNUM
&& nr < (SIM_SH64_TR0_REGNUM + SIM_SH64_NR_TR_REGS)
&& len == 8)
{
*((unsigned64*) buf) =
H2T_8 (sh64_h_tr_get (cpu, nr - SIM_SH64_TR0_REGNUM));
return len;
}
/* Fetch floating point registers. */
if (nr >= SIM_SH64_FR0_REGNUM
&& nr < (SIM_SH64_FR0_REGNUM + SIM_SH64_NR_FP_REGS)
&& len == 4)
{
*((unsigned32*) buf) =
H2T_4 (sh64_h_fr_get (cpu, nr - SIM_SH64_FR0_REGNUM));
return len;
}
/* We should never get here. */
return 0;
}
int
sh64_store_register (SIM_CPU *cpu, int nr, unsigned char *buf, int len)
{
/* Store general purpose registers. */
if (nr >= SIM_SH64_R0_REGNUM
&& nr < (SIM_SH64_R0_REGNUM + SIM_SH64_NR_R_REGS)
&& len == 8)
{
sh64_h_gr_set (cpu, nr - SIM_SH64_R0_REGNUM, T2H_8 (*((unsigned64*)buf)));
return len;
}
/* Store PC. */
if (nr == SIM_SH64_PC_REGNUM && len == 8)
{
unsigned64 new_pc = T2H_8 (*((unsigned64*)buf));
sh64_h_pc_set (cpu, new_pc);
return len;
}
/* Store status register (SR). */
if (nr == SIM_SH64_SR_REGNUM && len == 8)
{
sh64_h_sr_set (cpu, T2H_8 (*((unsigned64*)buf)));
return len;
}
/* Store saved status register (SSR) and PC (SPC). */
if (nr == SIM_SH64_SSR_REGNUM || nr == SIM_SH64_SPC_REGNUM)
{
/* Do nothing. */
return len;
}
/* Store target registers. */
if (nr >= SIM_SH64_TR0_REGNUM
&& nr < (SIM_SH64_TR0_REGNUM + SIM_SH64_NR_TR_REGS)
&& len == 8)
{
sh64_h_tr_set (cpu, nr - SIM_SH64_TR0_REGNUM, T2H_8 (*((unsigned64*)buf)));
return len;
}
/* Store floating point registers. */
if (nr >= SIM_SH64_FR0_REGNUM
&& nr < (SIM_SH64_FR0_REGNUM + SIM_SH64_NR_FP_REGS)
&& len == 4)
{
sh64_h_fr_set (cpu, nr - SIM_SH64_FR0_REGNUM, T2H_4 (*((unsigned32*)buf)));
return len;
}
/* We should never get here. */
return 0;
}
void
sh64_engine_run_full(SIM_CPU *cpu)
{
if (sh64_h_ism_get (cpu) == ISM_MEDIA)
{
if (!sh64_idesc_media)
{
sh64_media_init_idesc_table (cpu);
sh64_idesc_media = CPU_IDESC (cpu);
}
else
CPU_IDESC (cpu) = sh64_idesc_media;
sh64_media_engine_run_full (cpu);
}
else
{
if (!sh64_idesc_compact)
{
sh64_compact_init_idesc_table (cpu);
sh64_idesc_compact = CPU_IDESC (cpu);
}
else
CPU_IDESC (cpu) = sh64_idesc_compact;
sh64_compact_engine_run_full (cpu);
}
}
void
sh64_engine_run_fast (SIM_CPU *cpu)
{
if (sh64_h_ism_get (cpu) == ISM_MEDIA)
{
if (!sh64_idesc_media)
{
sh64_media_init_idesc_table (cpu);
sh64_idesc_media = CPU_IDESC (cpu);
}
else
CPU_IDESC (cpu) = sh64_idesc_media;
sh64_media_engine_run_fast (cpu);
}
else
{
if (!sh64_idesc_compact)
{
sh64_compact_init_idesc_table (cpu);
sh64_idesc_compact = CPU_IDESC (cpu);
}
else
CPU_IDESC (cpu) = sh64_idesc_compact;
sh64_compact_engine_run_fast (cpu);
}
}
static void
sh64_prepare_run (SIM_CPU *cpu)
{
/* Nothing. */
}
static const CGEN_INSN *
sh64_get_idata (SIM_CPU *cpu, int inum)
{
return CPU_IDESC (cpu) [inum].idata;
}
static void
sh64_init_cpu (SIM_CPU *cpu)
{
CPU_REG_FETCH (cpu) = sh64_fetch_register;
CPU_REG_STORE (cpu) = sh64_store_register;
CPU_PC_FETCH (cpu) = sh64_h_pc_get;
CPU_PC_STORE (cpu) = sh64_h_pc_set;
CPU_GET_IDATA (cpu) = sh64_get_idata;
/* Only used by profiling. 0 disables it. */
CPU_MAX_INSNS (cpu) = 0;
CPU_INSN_NAME (cpu) = cgen_insn_name;
CPU_FULL_ENGINE_FN (cpu) = sh64_engine_run_full;
#if WITH_FAST
CPU_FAST_ENGINE_FN (cpu) = sh64_engine_run_fast;
#else
CPU_FAST_ENGINE_FN (cpu) = sh64_engine_run_full;
#endif
}
static void
shmedia_init_cpu (SIM_CPU *cpu)
{
sh64_init_cpu (cpu);
}
static void
shcompact_init_cpu (SIM_CPU *cpu)
{
sh64_init_cpu (cpu);
}
static void
sh64_model_init()
{
/* Do nothing. */
}
static const MODEL sh_models [] =
{
{ "sh2", & sh2_mach, MODEL_SH5, NULL, sh64_model_init },
{ "sh2e", & sh2e_mach, MODEL_SH5, NULL, sh64_model_init },
{ "sh2a", & sh2a_fpu_mach, MODEL_SH5, NULL, sh64_model_init },
{ "sh2a_nofpu", & sh2a_nofpu_mach, MODEL_SH5, NULL, sh64_model_init },
{ "sh3", & sh3_mach, MODEL_SH5, NULL, sh64_model_init },
{ "sh3e", & sh3_mach, MODEL_SH5, NULL, sh64_model_init },
{ "sh4", & sh4_mach, MODEL_SH5, NULL, sh64_model_init },
{ "sh4_nofpu", & sh4_nofpu_mach, MODEL_SH5, NULL, sh64_model_init },
{ "sh4a", & sh4a_mach, MODEL_SH5, NULL, sh64_model_init },
{ "sh4a_nofpu", & sh4a_nofpu_mach, MODEL_SH5, NULL, sh64_model_init },
{ "sh4al", & sh4al_mach, MODEL_SH5, NULL, sh64_model_init },
{ "sh5", & sh5_mach, MODEL_SH5, NULL, sh64_model_init },
{ 0 }
};
static const MACH_IMP_PROPERTIES sh5_imp_properties =
{
sizeof (SIM_CPU),
#if WITH_SCACHE
sizeof (SCACHE)
#else
0
#endif
};
const MACH sh2_mach =
{
"sh2", "sh2", MACH_SH5,
16, 16, &sh_models[0], &sh5_imp_properties,
shcompact_init_cpu,
sh64_prepare_run
};
const MACH sh2e_mach =
{
"sh2e", "sh2e", MACH_SH5,
16, 16, &sh_models[1], &sh5_imp_properties,
shcompact_init_cpu,
sh64_prepare_run
};
const MACH sh2a_fpu_mach =
{
"sh2a", "sh2a", MACH_SH5,
16, 16, &sh_models[2], &sh5_imp_properties,
shcompact_init_cpu,
sh64_prepare_run
};
const MACH sh2a_nofpu_mach =
{
"sh2a_nofpu", "sh2a_nofpu", MACH_SH5,
16, 16, &sh_models[3], &sh5_imp_properties,
shcompact_init_cpu,
sh64_prepare_run
};
const MACH sh3_mach =
{
"sh3", "sh3", MACH_SH5,
16, 16, &sh_models[4], &sh5_imp_properties,
shcompact_init_cpu,
sh64_prepare_run
};
const MACH sh3e_mach =
{
"sh3e", "sh3e", MACH_SH5,
16, 16, &sh_models[5], &sh5_imp_properties,
shcompact_init_cpu,
sh64_prepare_run
};
const MACH sh4_mach =
{
"sh4", "sh4", MACH_SH5,
16, 16, &sh_models[6], &sh5_imp_properties,
shcompact_init_cpu,
sh64_prepare_run
};
const MACH sh4_nofpu_mach =
{
"sh4_nofpu", "sh4_nofpu", MACH_SH5,
16, 16, &sh_models[7], &sh5_imp_properties,
shcompact_init_cpu,
sh64_prepare_run
};
const MACH sh4a_mach =
{
"sh4a", "sh4a", MACH_SH5,
16, 16, &sh_models[8], &sh5_imp_properties,
shcompact_init_cpu,
sh64_prepare_run
};
const MACH sh4a_nofpu_mach =
{
"sh4a_nofpu", "sh4a_nofpu", MACH_SH5,
16, 16, &sh_models[9], &sh5_imp_properties,
shcompact_init_cpu,
sh64_prepare_run
};
const MACH sh4al_mach =
{
"sh4al", "sh4al", MACH_SH5,
16, 16, &sh_models[10], &sh5_imp_properties,
shcompact_init_cpu,
sh64_prepare_run
};
const MACH sh5_mach =
{
"sh5", "sh5", MACH_SH5,
32, 32, &sh_models[11], &sh5_imp_properties,
shmedia_init_cpu,
sh64_prepare_run
};