65e82032f2
* infttrace.h: New file. * hpread.c: Include "gdb_assert.h" and "somsolib.h". (hpread_get_textlow): Detect an uninitialized dn_bufp. (hpread_read_doc_function_type): Detect an initialized type1. (hpread_quick_traverse): Initialize mod_name_string. * somsolib.h: Add #ifdef SOMSOLIB_H wrapper. (som_solib_get_solib_by_pc): Declare. (so_lib_thread_start_addr): Declare. (no_shared_libraries): Declare. * somread.c (init_import_symbols): Make static. Add forward declaration. * config/pa/nm-hppah.h: Include "infttrace.h" for parent_attach_all. (hppa_insert_hw_watchpoint): Declare. (hppa_can_use_hw_watchpoint, hppa_remove_hw_watchpoint): Declare. * hppah-nat.c: Include "gdb_string.h". (parent_attach_all): Delete extern declaration, moved to "infttrace.h". (hppa_can_use_hw_watchpoint): Change type of "type" parameter to int. (hppa_remove_hw_watchpoint, hppa_insert_hw_watchpoint): Ditto. * Makefile.in (infttrace_h): Define. (hpread.o): Update dependencies. (hppah-nat.o, hppa-hpux-tdep.o, hppa-tdep.o): Ditto. * hppa-hpux-tdep.c: Include "gdb_string.h". * hppa-tdep.c (hppa_frame_saved_pc): Initialize "old_pc". * infrun.c (handle_inferior_event): Always initialize stepped_after_stopped_by_watchpoint. Add default and remove fallthrough in switch statement. * infttrace.c (hppa_can_use_hw_watchpoint): Change type of "type" parameter to int. (hppa_remove_hw_watchpoint): Ditto.
5069 lines
161 KiB
C
5069 lines
161 KiB
C
/* Target-dependent code for the HP PA architecture, for GDB.
|
||
|
||
Copyright 1986, 1987, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
|
||
1996, 1998, 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
|
||
|
||
Contributed by the Center for Software Science at the
|
||
University of Utah (pa-gdb-bugs@cs.utah.edu).
|
||
|
||
This file is part of GDB.
|
||
|
||
This program is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 2 of the License, or
|
||
(at your option) any later version.
|
||
|
||
This program is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with this program; if not, write to the Free Software
|
||
Foundation, Inc., 59 Temple Place - Suite 330,
|
||
Boston, MA 02111-1307, USA. */
|
||
|
||
#include "defs.h"
|
||
#include "frame.h"
|
||
#include "bfd.h"
|
||
#include "inferior.h"
|
||
#include "value.h"
|
||
#include "regcache.h"
|
||
#include "completer.h"
|
||
#include "language.h"
|
||
#include "osabi.h"
|
||
#include "gdb_assert.h"
|
||
#include "infttrace.h"
|
||
/* For argument passing to the inferior */
|
||
#include "symtab.h"
|
||
|
||
#ifdef USG
|
||
#include <sys/types.h>
|
||
#endif
|
||
|
||
#include <dl.h>
|
||
#include <sys/param.h>
|
||
#include <signal.h>
|
||
|
||
#include <sys/ptrace.h>
|
||
#include <machine/save_state.h>
|
||
|
||
#ifdef COFF_ENCAPSULATE
|
||
#include "a.out.encap.h"
|
||
#else
|
||
#endif
|
||
|
||
/*#include <sys/user.h> After a.out.h */
|
||
#include <sys/file.h>
|
||
#include "gdb_stat.h"
|
||
#include "gdb_wait.h"
|
||
|
||
#include "gdbcore.h"
|
||
#include "gdbcmd.h"
|
||
#include "target.h"
|
||
#include "symfile.h"
|
||
#include "objfiles.h"
|
||
|
||
/* Some local constants. */
|
||
static const int hppa_num_regs = 128;
|
||
|
||
/* To support detection of the pseudo-initial frame
|
||
that threads have. */
|
||
#define THREAD_INITIAL_FRAME_SYMBOL "__pthread_exit"
|
||
#define THREAD_INITIAL_FRAME_SYM_LEN sizeof(THREAD_INITIAL_FRAME_SYMBOL)
|
||
|
||
static int extract_5_load (unsigned int);
|
||
|
||
static unsigned extract_5R_store (unsigned int);
|
||
|
||
static unsigned extract_5r_store (unsigned int);
|
||
|
||
static void find_dummy_frame_regs (struct frame_info *,
|
||
struct frame_saved_regs *);
|
||
|
||
static int find_proc_framesize (CORE_ADDR);
|
||
|
||
static int find_return_regnum (CORE_ADDR);
|
||
|
||
struct unwind_table_entry *find_unwind_entry (CORE_ADDR);
|
||
|
||
static int extract_17 (unsigned int);
|
||
|
||
static unsigned deposit_21 (unsigned int, unsigned int);
|
||
|
||
static int extract_21 (unsigned);
|
||
|
||
static unsigned deposit_14 (int, unsigned int);
|
||
|
||
static int extract_14 (unsigned);
|
||
|
||
static void unwind_command (char *, int);
|
||
|
||
static int low_sign_extend (unsigned int, unsigned int);
|
||
|
||
static int sign_extend (unsigned int, unsigned int);
|
||
|
||
static int restore_pc_queue (struct frame_saved_regs *);
|
||
|
||
static int hppa_alignof (struct type *);
|
||
|
||
/* To support multi-threading and stepping. */
|
||
int hppa_prepare_to_proceed ();
|
||
|
||
static int prologue_inst_adjust_sp (unsigned long);
|
||
|
||
static int is_branch (unsigned long);
|
||
|
||
static int inst_saves_gr (unsigned long);
|
||
|
||
static int inst_saves_fr (unsigned long);
|
||
|
||
static int pc_in_interrupt_handler (CORE_ADDR);
|
||
|
||
static int pc_in_linker_stub (CORE_ADDR);
|
||
|
||
static int compare_unwind_entries (const void *, const void *);
|
||
|
||
static void read_unwind_info (struct objfile *);
|
||
|
||
static void internalize_unwinds (struct objfile *,
|
||
struct unwind_table_entry *,
|
||
asection *, unsigned int,
|
||
unsigned int, CORE_ADDR);
|
||
static void pa_print_registers (char *, int, int);
|
||
static void pa_strcat_registers (char *, int, int, struct ui_file *);
|
||
static void pa_register_look_aside (char *, int, long *);
|
||
static void pa_print_fp_reg (int);
|
||
static void pa_strcat_fp_reg (int, struct ui_file *, enum precision_type);
|
||
static void record_text_segment_lowaddr (bfd *, asection *, void *);
|
||
/* FIXME: brobecker 2002-11-07: We will likely be able to make the
|
||
following functions static, once we hppa is partially multiarched. */
|
||
int hppa_reg_struct_has_addr (int gcc_p, struct type *type);
|
||
CORE_ADDR hppa_skip_prologue (CORE_ADDR pc);
|
||
CORE_ADDR hppa_skip_trampoline_code (CORE_ADDR pc);
|
||
int hppa_in_solib_call_trampoline (CORE_ADDR pc, char *name);
|
||
int hppa_in_solib_return_trampoline (CORE_ADDR pc, char *name);
|
||
CORE_ADDR hppa_saved_pc_after_call (struct frame_info *frame);
|
||
int hppa_inner_than (CORE_ADDR lhs, CORE_ADDR rhs);
|
||
CORE_ADDR hppa_stack_align (CORE_ADDR sp);
|
||
int hppa_pc_requires_run_before_use (CORE_ADDR pc);
|
||
int hppa_instruction_nullified (void);
|
||
int hppa_register_raw_size (int reg_nr);
|
||
int hppa_register_byte (int reg_nr);
|
||
struct type * hppa_register_virtual_type (int reg_nr);
|
||
void hppa_store_struct_return (CORE_ADDR addr, CORE_ADDR sp);
|
||
void hppa_extract_return_value (struct type *type, char *regbuf, char *valbuf);
|
||
int hppa_use_struct_convention (int gcc_p, struct type *type);
|
||
void hppa_store_return_value (struct type *type, char *valbuf);
|
||
CORE_ADDR hppa_extract_struct_value_address (char *regbuf);
|
||
int hppa_cannot_store_register (int regnum);
|
||
void hppa_init_extra_frame_info (int fromleaf, struct frame_info *frame);
|
||
CORE_ADDR hppa_frame_chain (struct frame_info *frame);
|
||
int hppa_frame_chain_valid (CORE_ADDR chain, struct frame_info *thisframe);
|
||
int hppa_frameless_function_invocation (struct frame_info *frame);
|
||
CORE_ADDR hppa_frame_saved_pc (struct frame_info *frame);
|
||
CORE_ADDR hppa_frame_args_address (struct frame_info *fi);
|
||
CORE_ADDR hppa_frame_locals_address (struct frame_info *fi);
|
||
int hppa_frame_num_args (struct frame_info *frame);
|
||
void hppa_push_dummy_frame (void);
|
||
void hppa_pop_frame (void);
|
||
CORE_ADDR hppa_fix_call_dummy (char *dummy, CORE_ADDR pc, CORE_ADDR fun,
|
||
int nargs, struct value **args,
|
||
struct type *type, int gcc_p);
|
||
CORE_ADDR hppa_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
|
||
int struct_return, CORE_ADDR struct_addr);
|
||
CORE_ADDR hppa_smash_text_address (CORE_ADDR addr);
|
||
CORE_ADDR hppa_target_read_pc (ptid_t ptid);
|
||
void hppa_target_write_pc (CORE_ADDR v, ptid_t ptid);
|
||
CORE_ADDR hppa_target_read_fp (void);
|
||
|
||
typedef struct
|
||
{
|
||
struct minimal_symbol *msym;
|
||
CORE_ADDR solib_handle;
|
||
CORE_ADDR return_val;
|
||
}
|
||
args_for_find_stub;
|
||
|
||
static int cover_find_stub_with_shl_get (void *);
|
||
|
||
static int is_pa_2 = 0; /* False */
|
||
|
||
/* This is declared in symtab.c; set to 1 in hp-symtab-read.c */
|
||
extern int hp_som_som_object_present;
|
||
|
||
/* In breakpoint.c */
|
||
extern int exception_catchpoints_are_fragile;
|
||
|
||
/* Should call_function allocate stack space for a struct return? */
|
||
|
||
int
|
||
hppa_use_struct_convention (int gcc_p, struct type *type)
|
||
{
|
||
return (TYPE_LENGTH (type) > 2 * REGISTER_SIZE);
|
||
}
|
||
|
||
|
||
/* Routines to extract various sized constants out of hppa
|
||
instructions. */
|
||
|
||
/* This assumes that no garbage lies outside of the lower bits of
|
||
value. */
|
||
|
||
static int
|
||
sign_extend (unsigned val, unsigned bits)
|
||
{
|
||
return (int) (val >> (bits - 1) ? (-1 << bits) | val : val);
|
||
}
|
||
|
||
/* For many immediate values the sign bit is the low bit! */
|
||
|
||
static int
|
||
low_sign_extend (unsigned val, unsigned bits)
|
||
{
|
||
return (int) ((val & 0x1 ? (-1 << (bits - 1)) : 0) | val >> 1);
|
||
}
|
||
|
||
/* extract the immediate field from a ld{bhw}s instruction */
|
||
|
||
static int
|
||
extract_5_load (unsigned word)
|
||
{
|
||
return low_sign_extend (word >> 16 & MASK_5, 5);
|
||
}
|
||
|
||
/* extract the immediate field from a break instruction */
|
||
|
||
static unsigned
|
||
extract_5r_store (unsigned word)
|
||
{
|
||
return (word & MASK_5);
|
||
}
|
||
|
||
/* extract the immediate field from a {sr}sm instruction */
|
||
|
||
static unsigned
|
||
extract_5R_store (unsigned word)
|
||
{
|
||
return (word >> 16 & MASK_5);
|
||
}
|
||
|
||
/* extract a 14 bit immediate field */
|
||
|
||
static int
|
||
extract_14 (unsigned word)
|
||
{
|
||
return low_sign_extend (word & MASK_14, 14);
|
||
}
|
||
|
||
/* deposit a 14 bit constant in a word */
|
||
|
||
static unsigned
|
||
deposit_14 (int opnd, unsigned word)
|
||
{
|
||
unsigned sign = (opnd < 0 ? 1 : 0);
|
||
|
||
return word | ((unsigned) opnd << 1 & MASK_14) | sign;
|
||
}
|
||
|
||
/* extract a 21 bit constant */
|
||
|
||
static int
|
||
extract_21 (unsigned word)
|
||
{
|
||
int val;
|
||
|
||
word &= MASK_21;
|
||
word <<= 11;
|
||
val = GET_FIELD (word, 20, 20);
|
||
val <<= 11;
|
||
val |= GET_FIELD (word, 9, 19);
|
||
val <<= 2;
|
||
val |= GET_FIELD (word, 5, 6);
|
||
val <<= 5;
|
||
val |= GET_FIELD (word, 0, 4);
|
||
val <<= 2;
|
||
val |= GET_FIELD (word, 7, 8);
|
||
return sign_extend (val, 21) << 11;
|
||
}
|
||
|
||
/* deposit a 21 bit constant in a word. Although 21 bit constants are
|
||
usually the top 21 bits of a 32 bit constant, we assume that only
|
||
the low 21 bits of opnd are relevant */
|
||
|
||
static unsigned
|
||
deposit_21 (unsigned opnd, unsigned word)
|
||
{
|
||
unsigned val = 0;
|
||
|
||
val |= GET_FIELD (opnd, 11 + 14, 11 + 18);
|
||
val <<= 2;
|
||
val |= GET_FIELD (opnd, 11 + 12, 11 + 13);
|
||
val <<= 2;
|
||
val |= GET_FIELD (opnd, 11 + 19, 11 + 20);
|
||
val <<= 11;
|
||
val |= GET_FIELD (opnd, 11 + 1, 11 + 11);
|
||
val <<= 1;
|
||
val |= GET_FIELD (opnd, 11 + 0, 11 + 0);
|
||
return word | val;
|
||
}
|
||
|
||
/* extract a 17 bit constant from branch instructions, returning the
|
||
19 bit signed value. */
|
||
|
||
static int
|
||
extract_17 (unsigned word)
|
||
{
|
||
return sign_extend (GET_FIELD (word, 19, 28) |
|
||
GET_FIELD (word, 29, 29) << 10 |
|
||
GET_FIELD (word, 11, 15) << 11 |
|
||
(word & 0x1) << 16, 17) << 2;
|
||
}
|
||
|
||
|
||
/* Compare the start address for two unwind entries returning 1 if
|
||
the first address is larger than the second, -1 if the second is
|
||
larger than the first, and zero if they are equal. */
|
||
|
||
static int
|
||
compare_unwind_entries (const void *arg1, const void *arg2)
|
||
{
|
||
const struct unwind_table_entry *a = arg1;
|
||
const struct unwind_table_entry *b = arg2;
|
||
|
||
if (a->region_start > b->region_start)
|
||
return 1;
|
||
else if (a->region_start < b->region_start)
|
||
return -1;
|
||
else
|
||
return 0;
|
||
}
|
||
|
||
static CORE_ADDR low_text_segment_address;
|
||
|
||
static void
|
||
record_text_segment_lowaddr (bfd *abfd, asection *section, void *ignored)
|
||
{
|
||
if (((section->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
|
||
== (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
|
||
&& section->vma < low_text_segment_address)
|
||
low_text_segment_address = section->vma;
|
||
}
|
||
|
||
static void
|
||
internalize_unwinds (struct objfile *objfile, struct unwind_table_entry *table,
|
||
asection *section, unsigned int entries, unsigned int size,
|
||
CORE_ADDR text_offset)
|
||
{
|
||
/* We will read the unwind entries into temporary memory, then
|
||
fill in the actual unwind table. */
|
||
if (size > 0)
|
||
{
|
||
unsigned long tmp;
|
||
unsigned i;
|
||
char *buf = alloca (size);
|
||
|
||
low_text_segment_address = -1;
|
||
|
||
/* If addresses are 64 bits wide, then unwinds are supposed to
|
||
be segment relative offsets instead of absolute addresses.
|
||
|
||
Note that when loading a shared library (text_offset != 0) the
|
||
unwinds are already relative to the text_offset that will be
|
||
passed in. */
|
||
if (TARGET_PTR_BIT == 64 && text_offset == 0)
|
||
{
|
||
bfd_map_over_sections (objfile->obfd,
|
||
record_text_segment_lowaddr, NULL);
|
||
|
||
/* ?!? Mask off some low bits. Should this instead subtract
|
||
out the lowest section's filepos or something like that?
|
||
This looks very hokey to me. */
|
||
low_text_segment_address &= ~0xfff;
|
||
text_offset += low_text_segment_address;
|
||
}
|
||
|
||
bfd_get_section_contents (objfile->obfd, section, buf, 0, size);
|
||
|
||
/* Now internalize the information being careful to handle host/target
|
||
endian issues. */
|
||
for (i = 0; i < entries; i++)
|
||
{
|
||
table[i].region_start = bfd_get_32 (objfile->obfd,
|
||
(bfd_byte *) buf);
|
||
table[i].region_start += text_offset;
|
||
buf += 4;
|
||
table[i].region_end = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
|
||
table[i].region_end += text_offset;
|
||
buf += 4;
|
||
tmp = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
|
||
buf += 4;
|
||
table[i].Cannot_unwind = (tmp >> 31) & 0x1;
|
||
table[i].Millicode = (tmp >> 30) & 0x1;
|
||
table[i].Millicode_save_sr0 = (tmp >> 29) & 0x1;
|
||
table[i].Region_description = (tmp >> 27) & 0x3;
|
||
table[i].reserved1 = (tmp >> 26) & 0x1;
|
||
table[i].Entry_SR = (tmp >> 25) & 0x1;
|
||
table[i].Entry_FR = (tmp >> 21) & 0xf;
|
||
table[i].Entry_GR = (tmp >> 16) & 0x1f;
|
||
table[i].Args_stored = (tmp >> 15) & 0x1;
|
||
table[i].Variable_Frame = (tmp >> 14) & 0x1;
|
||
table[i].Separate_Package_Body = (tmp >> 13) & 0x1;
|
||
table[i].Frame_Extension_Millicode = (tmp >> 12) & 0x1;
|
||
table[i].Stack_Overflow_Check = (tmp >> 11) & 0x1;
|
||
table[i].Two_Instruction_SP_Increment = (tmp >> 10) & 0x1;
|
||
table[i].Ada_Region = (tmp >> 9) & 0x1;
|
||
table[i].cxx_info = (tmp >> 8) & 0x1;
|
||
table[i].cxx_try_catch = (tmp >> 7) & 0x1;
|
||
table[i].sched_entry_seq = (tmp >> 6) & 0x1;
|
||
table[i].reserved2 = (tmp >> 5) & 0x1;
|
||
table[i].Save_SP = (tmp >> 4) & 0x1;
|
||
table[i].Save_RP = (tmp >> 3) & 0x1;
|
||
table[i].Save_MRP_in_frame = (tmp >> 2) & 0x1;
|
||
table[i].extn_ptr_defined = (tmp >> 1) & 0x1;
|
||
table[i].Cleanup_defined = tmp & 0x1;
|
||
tmp = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
|
||
buf += 4;
|
||
table[i].MPE_XL_interrupt_marker = (tmp >> 31) & 0x1;
|
||
table[i].HP_UX_interrupt_marker = (tmp >> 30) & 0x1;
|
||
table[i].Large_frame = (tmp >> 29) & 0x1;
|
||
table[i].Pseudo_SP_Set = (tmp >> 28) & 0x1;
|
||
table[i].reserved4 = (tmp >> 27) & 0x1;
|
||
table[i].Total_frame_size = tmp & 0x7ffffff;
|
||
|
||
/* Stub unwinds are handled elsewhere. */
|
||
table[i].stub_unwind.stub_type = 0;
|
||
table[i].stub_unwind.padding = 0;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Read in the backtrace information stored in the `$UNWIND_START$' section of
|
||
the object file. This info is used mainly by find_unwind_entry() to find
|
||
out the stack frame size and frame pointer used by procedures. We put
|
||
everything on the psymbol obstack in the objfile so that it automatically
|
||
gets freed when the objfile is destroyed. */
|
||
|
||
static void
|
||
read_unwind_info (struct objfile *objfile)
|
||
{
|
||
asection *unwind_sec, *stub_unwind_sec;
|
||
unsigned unwind_size, stub_unwind_size, total_size;
|
||
unsigned index, unwind_entries;
|
||
unsigned stub_entries, total_entries;
|
||
CORE_ADDR text_offset;
|
||
struct obj_unwind_info *ui;
|
||
obj_private_data_t *obj_private;
|
||
|
||
text_offset = ANOFFSET (objfile->section_offsets, 0);
|
||
ui = (struct obj_unwind_info *) obstack_alloc (&objfile->psymbol_obstack,
|
||
sizeof (struct obj_unwind_info));
|
||
|
||
ui->table = NULL;
|
||
ui->cache = NULL;
|
||
ui->last = -1;
|
||
|
||
/* For reasons unknown the HP PA64 tools generate multiple unwinder
|
||
sections in a single executable. So we just iterate over every
|
||
section in the BFD looking for unwinder sections intead of trying
|
||
to do a lookup with bfd_get_section_by_name.
|
||
|
||
First determine the total size of the unwind tables so that we
|
||
can allocate memory in a nice big hunk. */
|
||
total_entries = 0;
|
||
for (unwind_sec = objfile->obfd->sections;
|
||
unwind_sec;
|
||
unwind_sec = unwind_sec->next)
|
||
{
|
||
if (strcmp (unwind_sec->name, "$UNWIND_START$") == 0
|
||
|| strcmp (unwind_sec->name, ".PARISC.unwind") == 0)
|
||
{
|
||
unwind_size = bfd_section_size (objfile->obfd, unwind_sec);
|
||
unwind_entries = unwind_size / UNWIND_ENTRY_SIZE;
|
||
|
||
total_entries += unwind_entries;
|
||
}
|
||
}
|
||
|
||
/* Now compute the size of the stub unwinds. Note the ELF tools do not
|
||
use stub unwinds at the curren time. */
|
||
stub_unwind_sec = bfd_get_section_by_name (objfile->obfd, "$UNWIND_END$");
|
||
|
||
if (stub_unwind_sec)
|
||
{
|
||
stub_unwind_size = bfd_section_size (objfile->obfd, stub_unwind_sec);
|
||
stub_entries = stub_unwind_size / STUB_UNWIND_ENTRY_SIZE;
|
||
}
|
||
else
|
||
{
|
||
stub_unwind_size = 0;
|
||
stub_entries = 0;
|
||
}
|
||
|
||
/* Compute total number of unwind entries and their total size. */
|
||
total_entries += stub_entries;
|
||
total_size = total_entries * sizeof (struct unwind_table_entry);
|
||
|
||
/* Allocate memory for the unwind table. */
|
||
ui->table = (struct unwind_table_entry *)
|
||
obstack_alloc (&objfile->psymbol_obstack, total_size);
|
||
ui->last = total_entries - 1;
|
||
|
||
/* Now read in each unwind section and internalize the standard unwind
|
||
entries. */
|
||
index = 0;
|
||
for (unwind_sec = objfile->obfd->sections;
|
||
unwind_sec;
|
||
unwind_sec = unwind_sec->next)
|
||
{
|
||
if (strcmp (unwind_sec->name, "$UNWIND_START$") == 0
|
||
|| strcmp (unwind_sec->name, ".PARISC.unwind") == 0)
|
||
{
|
||
unwind_size = bfd_section_size (objfile->obfd, unwind_sec);
|
||
unwind_entries = unwind_size / UNWIND_ENTRY_SIZE;
|
||
|
||
internalize_unwinds (objfile, &ui->table[index], unwind_sec,
|
||
unwind_entries, unwind_size, text_offset);
|
||
index += unwind_entries;
|
||
}
|
||
}
|
||
|
||
/* Now read in and internalize the stub unwind entries. */
|
||
if (stub_unwind_size > 0)
|
||
{
|
||
unsigned int i;
|
||
char *buf = alloca (stub_unwind_size);
|
||
|
||
/* Read in the stub unwind entries. */
|
||
bfd_get_section_contents (objfile->obfd, stub_unwind_sec, buf,
|
||
0, stub_unwind_size);
|
||
|
||
/* Now convert them into regular unwind entries. */
|
||
for (i = 0; i < stub_entries; i++, index++)
|
||
{
|
||
/* Clear out the next unwind entry. */
|
||
memset (&ui->table[index], 0, sizeof (struct unwind_table_entry));
|
||
|
||
/* Convert offset & size into region_start and region_end.
|
||
Stuff away the stub type into "reserved" fields. */
|
||
ui->table[index].region_start = bfd_get_32 (objfile->obfd,
|
||
(bfd_byte *) buf);
|
||
ui->table[index].region_start += text_offset;
|
||
buf += 4;
|
||
ui->table[index].stub_unwind.stub_type = bfd_get_8 (objfile->obfd,
|
||
(bfd_byte *) buf);
|
||
buf += 2;
|
||
ui->table[index].region_end
|
||
= ui->table[index].region_start + 4 *
|
||
(bfd_get_16 (objfile->obfd, (bfd_byte *) buf) - 1);
|
||
buf += 2;
|
||
}
|
||
|
||
}
|
||
|
||
/* Unwind table needs to be kept sorted. */
|
||
qsort (ui->table, total_entries, sizeof (struct unwind_table_entry),
|
||
compare_unwind_entries);
|
||
|
||
/* Keep a pointer to the unwind information. */
|
||
if (objfile->obj_private == NULL)
|
||
{
|
||
obj_private = (obj_private_data_t *)
|
||
obstack_alloc (&objfile->psymbol_obstack,
|
||
sizeof (obj_private_data_t));
|
||
obj_private->unwind_info = NULL;
|
||
obj_private->so_info = NULL;
|
||
obj_private->dp = 0;
|
||
|
||
objfile->obj_private = obj_private;
|
||
}
|
||
obj_private = (obj_private_data_t *) objfile->obj_private;
|
||
obj_private->unwind_info = ui;
|
||
}
|
||
|
||
/* Lookup the unwind (stack backtrace) info for the given PC. We search all
|
||
of the objfiles seeking the unwind table entry for this PC. Each objfile
|
||
contains a sorted list of struct unwind_table_entry. Since we do a binary
|
||
search of the unwind tables, we depend upon them to be sorted. */
|
||
|
||
struct unwind_table_entry *
|
||
find_unwind_entry (CORE_ADDR pc)
|
||
{
|
||
int first, middle, last;
|
||
struct objfile *objfile;
|
||
|
||
/* A function at address 0? Not in HP-UX! */
|
||
if (pc == (CORE_ADDR) 0)
|
||
return NULL;
|
||
|
||
ALL_OBJFILES (objfile)
|
||
{
|
||
struct obj_unwind_info *ui;
|
||
ui = NULL;
|
||
if (objfile->obj_private)
|
||
ui = ((obj_private_data_t *) (objfile->obj_private))->unwind_info;
|
||
|
||
if (!ui)
|
||
{
|
||
read_unwind_info (objfile);
|
||
if (objfile->obj_private == NULL)
|
||
error ("Internal error reading unwind information.");
|
||
ui = ((obj_private_data_t *) (objfile->obj_private))->unwind_info;
|
||
}
|
||
|
||
/* First, check the cache */
|
||
|
||
if (ui->cache
|
||
&& pc >= ui->cache->region_start
|
||
&& pc <= ui->cache->region_end)
|
||
return ui->cache;
|
||
|
||
/* Not in the cache, do a binary search */
|
||
|
||
first = 0;
|
||
last = ui->last;
|
||
|
||
while (first <= last)
|
||
{
|
||
middle = (first + last) / 2;
|
||
if (pc >= ui->table[middle].region_start
|
||
&& pc <= ui->table[middle].region_end)
|
||
{
|
||
ui->cache = &ui->table[middle];
|
||
return &ui->table[middle];
|
||
}
|
||
|
||
if (pc < ui->table[middle].region_start)
|
||
last = middle - 1;
|
||
else
|
||
first = middle + 1;
|
||
}
|
||
} /* ALL_OBJFILES() */
|
||
return NULL;
|
||
}
|
||
|
||
/* Return the adjustment necessary to make for addresses on the stack
|
||
as presented by hpread.c.
|
||
|
||
This is necessary because of the stack direction on the PA and the
|
||
bizarre way in which someone (?) decided they wanted to handle
|
||
frame pointerless code in GDB. */
|
||
int
|
||
hpread_adjust_stack_address (CORE_ADDR func_addr)
|
||
{
|
||
struct unwind_table_entry *u;
|
||
|
||
u = find_unwind_entry (func_addr);
|
||
if (!u)
|
||
return 0;
|
||
else
|
||
return u->Total_frame_size << 3;
|
||
}
|
||
|
||
/* Called to determine if PC is in an interrupt handler of some
|
||
kind. */
|
||
|
||
static int
|
||
pc_in_interrupt_handler (CORE_ADDR pc)
|
||
{
|
||
struct unwind_table_entry *u;
|
||
struct minimal_symbol *msym_us;
|
||
|
||
u = find_unwind_entry (pc);
|
||
if (!u)
|
||
return 0;
|
||
|
||
/* Oh joys. HPUX sets the interrupt bit for _sigreturn even though
|
||
its frame isn't a pure interrupt frame. Deal with this. */
|
||
msym_us = lookup_minimal_symbol_by_pc (pc);
|
||
|
||
return (u->HP_UX_interrupt_marker
|
||
&& !PC_IN_SIGTRAMP (pc, DEPRECATED_SYMBOL_NAME (msym_us)));
|
||
}
|
||
|
||
/* Called when no unwind descriptor was found for PC. Returns 1 if it
|
||
appears that PC is in a linker stub.
|
||
|
||
?!? Need to handle stubs which appear in PA64 code. */
|
||
|
||
static int
|
||
pc_in_linker_stub (CORE_ADDR pc)
|
||
{
|
||
int found_magic_instruction = 0;
|
||
int i;
|
||
char buf[4];
|
||
|
||
/* If unable to read memory, assume pc is not in a linker stub. */
|
||
if (target_read_memory (pc, buf, 4) != 0)
|
||
return 0;
|
||
|
||
/* We are looking for something like
|
||
|
||
; $$dyncall jams RP into this special spot in the frame (RP')
|
||
; before calling the "call stub"
|
||
ldw -18(sp),rp
|
||
|
||
ldsid (rp),r1 ; Get space associated with RP into r1
|
||
mtsp r1,sp ; Move it into space register 0
|
||
be,n 0(sr0),rp) ; back to your regularly scheduled program */
|
||
|
||
/* Maximum known linker stub size is 4 instructions. Search forward
|
||
from the given PC, then backward. */
|
||
for (i = 0; i < 4; i++)
|
||
{
|
||
/* If we hit something with an unwind, stop searching this direction. */
|
||
|
||
if (find_unwind_entry (pc + i * 4) != 0)
|
||
break;
|
||
|
||
/* Check for ldsid (rp),r1 which is the magic instruction for a
|
||
return from a cross-space function call. */
|
||
if (read_memory_integer (pc + i * 4, 4) == 0x004010a1)
|
||
{
|
||
found_magic_instruction = 1;
|
||
break;
|
||
}
|
||
/* Add code to handle long call/branch and argument relocation stubs
|
||
here. */
|
||
}
|
||
|
||
if (found_magic_instruction != 0)
|
||
return 1;
|
||
|
||
/* Now look backward. */
|
||
for (i = 0; i < 4; i++)
|
||
{
|
||
/* If we hit something with an unwind, stop searching this direction. */
|
||
|
||
if (find_unwind_entry (pc - i * 4) != 0)
|
||
break;
|
||
|
||
/* Check for ldsid (rp),r1 which is the magic instruction for a
|
||
return from a cross-space function call. */
|
||
if (read_memory_integer (pc - i * 4, 4) == 0x004010a1)
|
||
{
|
||
found_magic_instruction = 1;
|
||
break;
|
||
}
|
||
/* Add code to handle long call/branch and argument relocation stubs
|
||
here. */
|
||
}
|
||
return found_magic_instruction;
|
||
}
|
||
|
||
static int
|
||
find_return_regnum (CORE_ADDR pc)
|
||
{
|
||
struct unwind_table_entry *u;
|
||
|
||
u = find_unwind_entry (pc);
|
||
|
||
if (!u)
|
||
return RP_REGNUM;
|
||
|
||
if (u->Millicode)
|
||
return 31;
|
||
|
||
return RP_REGNUM;
|
||
}
|
||
|
||
/* Return size of frame, or -1 if we should use a frame pointer. */
|
||
static int
|
||
find_proc_framesize (CORE_ADDR pc)
|
||
{
|
||
struct unwind_table_entry *u;
|
||
struct minimal_symbol *msym_us;
|
||
|
||
/* This may indicate a bug in our callers... */
|
||
if (pc == (CORE_ADDR) 0)
|
||
return -1;
|
||
|
||
u = find_unwind_entry (pc);
|
||
|
||
if (!u)
|
||
{
|
||
if (pc_in_linker_stub (pc))
|
||
/* Linker stubs have a zero size frame. */
|
||
return 0;
|
||
else
|
||
return -1;
|
||
}
|
||
|
||
msym_us = lookup_minimal_symbol_by_pc (pc);
|
||
|
||
/* If Save_SP is set, and we're not in an interrupt or signal caller,
|
||
then we have a frame pointer. Use it. */
|
||
if (u->Save_SP
|
||
&& !pc_in_interrupt_handler (pc)
|
||
&& msym_us
|
||
&& !PC_IN_SIGTRAMP (pc, DEPRECATED_SYMBOL_NAME (msym_us)))
|
||
return -1;
|
||
|
||
return u->Total_frame_size << 3;
|
||
}
|
||
|
||
/* Return offset from sp at which rp is saved, or 0 if not saved. */
|
||
static int rp_saved (CORE_ADDR);
|
||
|
||
static int
|
||
rp_saved (CORE_ADDR pc)
|
||
{
|
||
struct unwind_table_entry *u;
|
||
|
||
/* A function at, and thus a return PC from, address 0? Not in HP-UX! */
|
||
if (pc == (CORE_ADDR) 0)
|
||
return 0;
|
||
|
||
u = find_unwind_entry (pc);
|
||
|
||
if (!u)
|
||
{
|
||
if (pc_in_linker_stub (pc))
|
||
/* This is the so-called RP'. */
|
||
return -24;
|
||
else
|
||
return 0;
|
||
}
|
||
|
||
if (u->Save_RP)
|
||
return (TARGET_PTR_BIT == 64 ? -16 : -20);
|
||
else if (u->stub_unwind.stub_type != 0)
|
||
{
|
||
switch (u->stub_unwind.stub_type)
|
||
{
|
||
case EXPORT:
|
||
case IMPORT:
|
||
return -24;
|
||
case PARAMETER_RELOCATION:
|
||
return -8;
|
||
default:
|
||
return 0;
|
||
}
|
||
}
|
||
else
|
||
return 0;
|
||
}
|
||
|
||
int
|
||
hppa_frameless_function_invocation (struct frame_info *frame)
|
||
{
|
||
struct unwind_table_entry *u;
|
||
|
||
u = find_unwind_entry (frame->pc);
|
||
|
||
if (u == 0)
|
||
return 0;
|
||
|
||
return (u->Total_frame_size == 0 && u->stub_unwind.stub_type == 0);
|
||
}
|
||
|
||
/* Immediately after a function call, return the saved pc.
|
||
Can't go through the frames for this because on some machines
|
||
the new frame is not set up until the new function executes
|
||
some instructions. */
|
||
|
||
CORE_ADDR
|
||
hppa_saved_pc_after_call (struct frame_info *frame)
|
||
{
|
||
int ret_regnum;
|
||
CORE_ADDR pc;
|
||
struct unwind_table_entry *u;
|
||
|
||
ret_regnum = find_return_regnum (get_frame_pc (frame));
|
||
pc = read_register (ret_regnum) & ~0x3;
|
||
|
||
/* If PC is in a linker stub, then we need to dig the address
|
||
the stub will return to out of the stack. */
|
||
u = find_unwind_entry (pc);
|
||
if (u && u->stub_unwind.stub_type != 0)
|
||
return DEPRECATED_FRAME_SAVED_PC (frame);
|
||
else
|
||
return pc;
|
||
}
|
||
|
||
CORE_ADDR
|
||
hppa_frame_saved_pc (struct frame_info *frame)
|
||
{
|
||
CORE_ADDR pc = get_frame_pc (frame);
|
||
struct unwind_table_entry *u;
|
||
CORE_ADDR old_pc = 0;
|
||
int spun_around_loop = 0;
|
||
int rp_offset = 0;
|
||
|
||
/* BSD, HPUX & OSF1 all lay out the hardware state in the same manner
|
||
at the base of the frame in an interrupt handler. Registers within
|
||
are saved in the exact same order as GDB numbers registers. How
|
||
convienent. */
|
||
if (pc_in_interrupt_handler (pc))
|
||
return read_memory_integer (frame->frame + PC_REGNUM * 4,
|
||
TARGET_PTR_BIT / 8) & ~0x3;
|
||
|
||
if ((frame->pc >= frame->frame
|
||
&& frame->pc <= (frame->frame
|
||
/* A call dummy is sized in words, but it is
|
||
actually a series of instructions. Account
|
||
for that scaling factor. */
|
||
+ ((REGISTER_SIZE / INSTRUCTION_SIZE)
|
||
* CALL_DUMMY_LENGTH)
|
||
/* Similarly we have to account for 64bit
|
||
wide register saves. */
|
||
+ (32 * REGISTER_SIZE)
|
||
/* We always consider FP regs 8 bytes long. */
|
||
+ (NUM_REGS - FP0_REGNUM) * 8
|
||
/* Similarly we have to account for 64bit
|
||
wide register saves. */
|
||
+ (6 * REGISTER_SIZE))))
|
||
{
|
||
return read_memory_integer ((frame->frame
|
||
+ (TARGET_PTR_BIT == 64 ? -16 : -20)),
|
||
TARGET_PTR_BIT / 8) & ~0x3;
|
||
}
|
||
|
||
#ifdef FRAME_SAVED_PC_IN_SIGTRAMP
|
||
/* Deal with signal handler caller frames too. */
|
||
if ((get_frame_type (frame) == SIGTRAMP_FRAME))
|
||
{
|
||
CORE_ADDR rp;
|
||
FRAME_SAVED_PC_IN_SIGTRAMP (frame, &rp);
|
||
return rp & ~0x3;
|
||
}
|
||
#endif
|
||
|
||
if (hppa_frameless_function_invocation (frame))
|
||
{
|
||
int ret_regnum;
|
||
|
||
ret_regnum = find_return_regnum (pc);
|
||
|
||
/* If the next frame is an interrupt frame or a signal
|
||
handler caller, then we need to look in the saved
|
||
register area to get the return pointer (the values
|
||
in the registers may not correspond to anything useful). */
|
||
if (frame->next
|
||
&& ((get_frame_type (frame->next) == SIGTRAMP_FRAME)
|
||
|| pc_in_interrupt_handler (frame->next->pc)))
|
||
{
|
||
struct frame_saved_regs saved_regs;
|
||
|
||
deprecated_get_frame_saved_regs (frame->next, &saved_regs);
|
||
if (read_memory_integer (saved_regs.regs[FLAGS_REGNUM],
|
||
TARGET_PTR_BIT / 8) & 0x2)
|
||
{
|
||
pc = read_memory_integer (saved_regs.regs[31],
|
||
TARGET_PTR_BIT / 8) & ~0x3;
|
||
|
||
/* Syscalls are really two frames. The syscall stub itself
|
||
with a return pointer in %rp and the kernel call with
|
||
a return pointer in %r31. We return the %rp variant
|
||
if %r31 is the same as frame->pc. */
|
||
if (pc == frame->pc)
|
||
pc = read_memory_integer (saved_regs.regs[RP_REGNUM],
|
||
TARGET_PTR_BIT / 8) & ~0x3;
|
||
}
|
||
else
|
||
pc = read_memory_integer (saved_regs.regs[RP_REGNUM],
|
||
TARGET_PTR_BIT / 8) & ~0x3;
|
||
}
|
||
else
|
||
pc = read_register (ret_regnum) & ~0x3;
|
||
}
|
||
else
|
||
{
|
||
spun_around_loop = 0;
|
||
old_pc = pc;
|
||
|
||
restart:
|
||
rp_offset = rp_saved (pc);
|
||
|
||
/* Similar to code in frameless function case. If the next
|
||
frame is a signal or interrupt handler, then dig the right
|
||
information out of the saved register info. */
|
||
if (rp_offset == 0
|
||
&& frame->next
|
||
&& ((get_frame_type (frame->next) == SIGTRAMP_FRAME)
|
||
|| pc_in_interrupt_handler (frame->next->pc)))
|
||
{
|
||
struct frame_saved_regs saved_regs;
|
||
|
||
deprecated_get_frame_saved_regs (frame->next, &saved_regs);
|
||
if (read_memory_integer (saved_regs.regs[FLAGS_REGNUM],
|
||
TARGET_PTR_BIT / 8) & 0x2)
|
||
{
|
||
pc = read_memory_integer (saved_regs.regs[31],
|
||
TARGET_PTR_BIT / 8) & ~0x3;
|
||
|
||
/* Syscalls are really two frames. The syscall stub itself
|
||
with a return pointer in %rp and the kernel call with
|
||
a return pointer in %r31. We return the %rp variant
|
||
if %r31 is the same as frame->pc. */
|
||
if (pc == frame->pc)
|
||
pc = read_memory_integer (saved_regs.regs[RP_REGNUM],
|
||
TARGET_PTR_BIT / 8) & ~0x3;
|
||
}
|
||
else
|
||
pc = read_memory_integer (saved_regs.regs[RP_REGNUM],
|
||
TARGET_PTR_BIT / 8) & ~0x3;
|
||
}
|
||
else if (rp_offset == 0)
|
||
{
|
||
old_pc = pc;
|
||
pc = read_register (RP_REGNUM) & ~0x3;
|
||
}
|
||
else
|
||
{
|
||
old_pc = pc;
|
||
pc = read_memory_integer (frame->frame + rp_offset,
|
||
TARGET_PTR_BIT / 8) & ~0x3;
|
||
}
|
||
}
|
||
|
||
/* If PC is inside a linker stub, then dig out the address the stub
|
||
will return to.
|
||
|
||
Don't do this for long branch stubs. Why? For some unknown reason
|
||
_start is marked as a long branch stub in hpux10. */
|
||
u = find_unwind_entry (pc);
|
||
if (u && u->stub_unwind.stub_type != 0
|
||
&& u->stub_unwind.stub_type != LONG_BRANCH)
|
||
{
|
||
unsigned int insn;
|
||
|
||
/* If this is a dynamic executable, and we're in a signal handler,
|
||
then the call chain will eventually point us into the stub for
|
||
_sigreturn. Unlike most cases, we'll be pointed to the branch
|
||
to the real sigreturn rather than the code after the real branch!.
|
||
|
||
Else, try to dig the address the stub will return to in the normal
|
||
fashion. */
|
||
insn = read_memory_integer (pc, 4);
|
||
if ((insn & 0xfc00e000) == 0xe8000000)
|
||
return (pc + extract_17 (insn) + 8) & ~0x3;
|
||
else
|
||
{
|
||
if (old_pc == pc)
|
||
spun_around_loop++;
|
||
|
||
if (spun_around_loop > 1)
|
||
{
|
||
/* We're just about to go around the loop again with
|
||
no more hope of success. Die. */
|
||
error ("Unable to find return pc for this frame");
|
||
}
|
||
else
|
||
goto restart;
|
||
}
|
||
}
|
||
|
||
return pc;
|
||
}
|
||
|
||
/* We need to correct the PC and the FP for the outermost frame when we are
|
||
in a system call. */
|
||
|
||
void
|
||
hppa_init_extra_frame_info (int fromleaf, struct frame_info *frame)
|
||
{
|
||
int flags;
|
||
int framesize;
|
||
|
||
if (frame->next && !fromleaf)
|
||
return;
|
||
|
||
/* If the next frame represents a frameless function invocation then
|
||
we have to do some adjustments that are normally done by
|
||
DEPRECATED_FRAME_CHAIN. (DEPRECATED_FRAME_CHAIN is not called in
|
||
this case.) */
|
||
if (fromleaf)
|
||
{
|
||
/* Find the framesize of *this* frame without peeking at the PC
|
||
in the current frame structure (it isn't set yet). */
|
||
framesize = find_proc_framesize (DEPRECATED_FRAME_SAVED_PC (get_next_frame (frame)));
|
||
|
||
/* Now adjust our base frame accordingly. If we have a frame pointer
|
||
use it, else subtract the size of this frame from the current
|
||
frame. (we always want frame->frame to point at the lowest address
|
||
in the frame). */
|
||
if (framesize == -1)
|
||
frame->frame = TARGET_READ_FP ();
|
||
else
|
||
frame->frame -= framesize;
|
||
return;
|
||
}
|
||
|
||
flags = read_register (FLAGS_REGNUM);
|
||
if (flags & 2) /* In system call? */
|
||
frame->pc = read_register (31) & ~0x3;
|
||
|
||
/* The outermost frame is always derived from PC-framesize
|
||
|
||
One might think frameless innermost frames should have
|
||
a frame->frame that is the same as the parent's frame->frame.
|
||
That is wrong; frame->frame in that case should be the *high*
|
||
address of the parent's frame. It's complicated as hell to
|
||
explain, but the parent *always* creates some stack space for
|
||
the child. So the child actually does have a frame of some
|
||
sorts, and its base is the high address in its parent's frame. */
|
||
framesize = find_proc_framesize (frame->pc);
|
||
if (framesize == -1)
|
||
frame->frame = TARGET_READ_FP ();
|
||
else
|
||
frame->frame = read_register (SP_REGNUM) - framesize;
|
||
}
|
||
|
||
/* Given a GDB frame, determine the address of the calling function's
|
||
frame. This will be used to create a new GDB frame struct, and
|
||
then DEPRECATED_INIT_EXTRA_FRAME_INFO and DEPRECATED_INIT_FRAME_PC
|
||
will be called for the new frame.
|
||
|
||
This may involve searching through prologues for several functions
|
||
at boundaries where GCC calls HP C code, or where code which has
|
||
a frame pointer calls code without a frame pointer. */
|
||
|
||
CORE_ADDR
|
||
hppa_frame_chain (struct frame_info *frame)
|
||
{
|
||
int my_framesize, caller_framesize;
|
||
struct unwind_table_entry *u;
|
||
CORE_ADDR frame_base;
|
||
struct frame_info *tmp_frame;
|
||
|
||
/* A frame in the current frame list, or zero. */
|
||
struct frame_info *saved_regs_frame = 0;
|
||
/* Where the registers were saved in saved_regs_frame.
|
||
If saved_regs_frame is zero, this is garbage. */
|
||
struct frame_saved_regs saved_regs;
|
||
|
||
CORE_ADDR caller_pc;
|
||
|
||
struct minimal_symbol *min_frame_symbol;
|
||
struct symbol *frame_symbol;
|
||
char *frame_symbol_name;
|
||
|
||
/* If this is a threaded application, and we see the
|
||
routine "__pthread_exit", treat it as the stack root
|
||
for this thread. */
|
||
min_frame_symbol = lookup_minimal_symbol_by_pc (frame->pc);
|
||
frame_symbol = find_pc_function (frame->pc);
|
||
|
||
if ((min_frame_symbol != 0) /* && (frame_symbol == 0) */ )
|
||
{
|
||
/* The test above for "no user function name" would defend
|
||
against the slim likelihood that a user might define a
|
||
routine named "__pthread_exit" and then try to debug it.
|
||
|
||
If it weren't commented out, and you tried to debug the
|
||
pthread library itself, you'd get errors.
|
||
|
||
So for today, we don't make that check. */
|
||
frame_symbol_name = DEPRECATED_SYMBOL_NAME (min_frame_symbol);
|
||
if (frame_symbol_name != 0)
|
||
{
|
||
if (0 == strncmp (frame_symbol_name,
|
||
THREAD_INITIAL_FRAME_SYMBOL,
|
||
THREAD_INITIAL_FRAME_SYM_LEN))
|
||
{
|
||
/* Pretend we've reached the bottom of the stack. */
|
||
return (CORE_ADDR) 0;
|
||
}
|
||
}
|
||
} /* End of hacky code for threads. */
|
||
|
||
/* Handle HPUX, BSD, and OSF1 style interrupt frames first. These
|
||
are easy; at *sp we have a full save state strucutre which we can
|
||
pull the old stack pointer from. Also see frame_saved_pc for
|
||
code to dig a saved PC out of the save state structure. */
|
||
if (pc_in_interrupt_handler (frame->pc))
|
||
frame_base = read_memory_integer (frame->frame + SP_REGNUM * 4,
|
||
TARGET_PTR_BIT / 8);
|
||
#ifdef FRAME_BASE_BEFORE_SIGTRAMP
|
||
else if ((get_frame_type (frame) == SIGTRAMP_FRAME))
|
||
{
|
||
FRAME_BASE_BEFORE_SIGTRAMP (frame, &frame_base);
|
||
}
|
||
#endif
|
||
else
|
||
frame_base = frame->frame;
|
||
|
||
/* Get frame sizes for the current frame and the frame of the
|
||
caller. */
|
||
my_framesize = find_proc_framesize (frame->pc);
|
||
caller_pc = DEPRECATED_FRAME_SAVED_PC (frame);
|
||
|
||
/* If we can't determine the caller's PC, then it's not likely we can
|
||
really determine anything meaningful about its frame. We'll consider
|
||
this to be stack bottom. */
|
||
if (caller_pc == (CORE_ADDR) 0)
|
||
return (CORE_ADDR) 0;
|
||
|
||
caller_framesize = find_proc_framesize (DEPRECATED_FRAME_SAVED_PC (frame));
|
||
|
||
/* If caller does not have a frame pointer, then its frame
|
||
can be found at current_frame - caller_framesize. */
|
||
if (caller_framesize != -1)
|
||
{
|
||
return frame_base - caller_framesize;
|
||
}
|
||
/* Both caller and callee have frame pointers and are GCC compiled
|
||
(SAVE_SP bit in unwind descriptor is on for both functions.
|
||
The previous frame pointer is found at the top of the current frame. */
|
||
if (caller_framesize == -1 && my_framesize == -1)
|
||
{
|
||
return read_memory_integer (frame_base, TARGET_PTR_BIT / 8);
|
||
}
|
||
/* Caller has a frame pointer, but callee does not. This is a little
|
||
more difficult as GCC and HP C lay out locals and callee register save
|
||
areas very differently.
|
||
|
||
The previous frame pointer could be in a register, or in one of
|
||
several areas on the stack.
|
||
|
||
Walk from the current frame to the innermost frame examining
|
||
unwind descriptors to determine if %r3 ever gets saved into the
|
||
stack. If so return whatever value got saved into the stack.
|
||
If it was never saved in the stack, then the value in %r3 is still
|
||
valid, so use it.
|
||
|
||
We use information from unwind descriptors to determine if %r3
|
||
is saved into the stack (Entry_GR field has this information). */
|
||
|
||
for (tmp_frame = frame; tmp_frame; tmp_frame = tmp_frame->next)
|
||
{
|
||
u = find_unwind_entry (tmp_frame->pc);
|
||
|
||
if (!u)
|
||
{
|
||
/* We could find this information by examining prologues. I don't
|
||
think anyone has actually written any tools (not even "strip")
|
||
which leave them out of an executable, so maybe this is a moot
|
||
point. */
|
||
/* ??rehrauer: Actually, it's quite possible to stepi your way into
|
||
code that doesn't have unwind entries. For example, stepping into
|
||
the dynamic linker will give you a PC that has none. Thus, I've
|
||
disabled this warning. */
|
||
#if 0
|
||
warning ("Unable to find unwind for PC 0x%x -- Help!", tmp_frame->pc);
|
||
#endif
|
||
return (CORE_ADDR) 0;
|
||
}
|
||
|
||
if (u->Save_SP
|
||
|| (get_frame_type (tmp_frame) == SIGTRAMP_FRAME)
|
||
|| pc_in_interrupt_handler (tmp_frame->pc))
|
||
break;
|
||
|
||
/* Entry_GR specifies the number of callee-saved general registers
|
||
saved in the stack. It starts at %r3, so %r3 would be 1. */
|
||
if (u->Entry_GR >= 1)
|
||
{
|
||
/* The unwind entry claims that r3 is saved here. However,
|
||
in optimized code, GCC often doesn't actually save r3.
|
||
We'll discover this if we look at the prologue. */
|
||
deprecated_get_frame_saved_regs (tmp_frame, &saved_regs);
|
||
saved_regs_frame = tmp_frame;
|
||
|
||
/* If we have an address for r3, that's good. */
|
||
if (saved_regs.regs[FP_REGNUM])
|
||
break;
|
||
}
|
||
}
|
||
|
||
if (tmp_frame)
|
||
{
|
||
/* We may have walked down the chain into a function with a frame
|
||
pointer. */
|
||
if (u->Save_SP
|
||
&& !(get_frame_type (tmp_frame) == SIGTRAMP_FRAME)
|
||
&& !pc_in_interrupt_handler (tmp_frame->pc))
|
||
{
|
||
return read_memory_integer (tmp_frame->frame, TARGET_PTR_BIT / 8);
|
||
}
|
||
/* %r3 was saved somewhere in the stack. Dig it out. */
|
||
else
|
||
{
|
||
/* Sick.
|
||
|
||
For optimization purposes many kernels don't have the
|
||
callee saved registers into the save_state structure upon
|
||
entry into the kernel for a syscall; the optimization
|
||
is usually turned off if the process is being traced so
|
||
that the debugger can get full register state for the
|
||
process.
|
||
|
||
This scheme works well except for two cases:
|
||
|
||
* Attaching to a process when the process is in the
|
||
kernel performing a system call (debugger can't get
|
||
full register state for the inferior process since
|
||
the process wasn't being traced when it entered the
|
||
system call).
|
||
|
||
* Register state is not complete if the system call
|
||
causes the process to core dump.
|
||
|
||
|
||
The following heinous code is an attempt to deal with
|
||
the lack of register state in a core dump. It will
|
||
fail miserably if the function which performs the
|
||
system call has a variable sized stack frame. */
|
||
|
||
if (tmp_frame != saved_regs_frame)
|
||
deprecated_get_frame_saved_regs (tmp_frame, &saved_regs);
|
||
|
||
/* Abominable hack. */
|
||
if (current_target.to_has_execution == 0
|
||
&& ((saved_regs.regs[FLAGS_REGNUM]
|
||
&& (read_memory_integer (saved_regs.regs[FLAGS_REGNUM],
|
||
TARGET_PTR_BIT / 8)
|
||
& 0x2))
|
||
|| (saved_regs.regs[FLAGS_REGNUM] == 0
|
||
&& read_register (FLAGS_REGNUM) & 0x2)))
|
||
{
|
||
u = find_unwind_entry (DEPRECATED_FRAME_SAVED_PC (frame));
|
||
if (!u)
|
||
{
|
||
return read_memory_integer (saved_regs.regs[FP_REGNUM],
|
||
TARGET_PTR_BIT / 8);
|
||
}
|
||
else
|
||
{
|
||
return frame_base - (u->Total_frame_size << 3);
|
||
}
|
||
}
|
||
|
||
return read_memory_integer (saved_regs.regs[FP_REGNUM],
|
||
TARGET_PTR_BIT / 8);
|
||
}
|
||
}
|
||
else
|
||
{
|
||
/* Get the innermost frame. */
|
||
tmp_frame = frame;
|
||
while (tmp_frame->next != NULL)
|
||
tmp_frame = tmp_frame->next;
|
||
|
||
if (tmp_frame != saved_regs_frame)
|
||
deprecated_get_frame_saved_regs (tmp_frame, &saved_regs);
|
||
|
||
/* Abominable hack. See above. */
|
||
if (current_target.to_has_execution == 0
|
||
&& ((saved_regs.regs[FLAGS_REGNUM]
|
||
&& (read_memory_integer (saved_regs.regs[FLAGS_REGNUM],
|
||
TARGET_PTR_BIT / 8)
|
||
& 0x2))
|
||
|| (saved_regs.regs[FLAGS_REGNUM] == 0
|
||
&& read_register (FLAGS_REGNUM) & 0x2)))
|
||
{
|
||
u = find_unwind_entry (DEPRECATED_FRAME_SAVED_PC (frame));
|
||
if (!u)
|
||
{
|
||
return read_memory_integer (saved_regs.regs[FP_REGNUM],
|
||
TARGET_PTR_BIT / 8);
|
||
}
|
||
else
|
||
{
|
||
return frame_base - (u->Total_frame_size << 3);
|
||
}
|
||
}
|
||
|
||
/* The value in %r3 was never saved into the stack (thus %r3 still
|
||
holds the value of the previous frame pointer). */
|
||
return TARGET_READ_FP ();
|
||
}
|
||
}
|
||
|
||
|
||
/* To see if a frame chain is valid, see if the caller looks like it
|
||
was compiled with gcc. */
|
||
|
||
int
|
||
hppa_frame_chain_valid (CORE_ADDR chain, struct frame_info *thisframe)
|
||
{
|
||
struct minimal_symbol *msym_us;
|
||
struct minimal_symbol *msym_start;
|
||
struct unwind_table_entry *u, *next_u = NULL;
|
||
struct frame_info *next;
|
||
|
||
u = find_unwind_entry (thisframe->pc);
|
||
|
||
if (u == NULL)
|
||
return 1;
|
||
|
||
/* We can't just check that the same of msym_us is "_start", because
|
||
someone idiotically decided that they were going to make a Ltext_end
|
||
symbol with the same address. This Ltext_end symbol is totally
|
||
indistinguishable (as nearly as I can tell) from the symbol for a function
|
||
which is (legitimately, since it is in the user's namespace)
|
||
named Ltext_end, so we can't just ignore it. */
|
||
msym_us = lookup_minimal_symbol_by_pc (DEPRECATED_FRAME_SAVED_PC (thisframe));
|
||
msym_start = lookup_minimal_symbol ("_start", NULL, NULL);
|
||
if (msym_us
|
||
&& msym_start
|
||
&& SYMBOL_VALUE_ADDRESS (msym_us) == SYMBOL_VALUE_ADDRESS (msym_start))
|
||
return 0;
|
||
|
||
/* Grrrr. Some new idiot decided that they don't want _start for the
|
||
PRO configurations; $START$ calls main directly.... Deal with it. */
|
||
msym_start = lookup_minimal_symbol ("$START$", NULL, NULL);
|
||
if (msym_us
|
||
&& msym_start
|
||
&& SYMBOL_VALUE_ADDRESS (msym_us) == SYMBOL_VALUE_ADDRESS (msym_start))
|
||
return 0;
|
||
|
||
next = get_next_frame (thisframe);
|
||
if (next)
|
||
next_u = find_unwind_entry (next->pc);
|
||
|
||
/* If this frame does not save SP, has no stack, isn't a stub,
|
||
and doesn't "call" an interrupt routine or signal handler caller,
|
||
then its not valid. */
|
||
if (u->Save_SP || u->Total_frame_size || u->stub_unwind.stub_type != 0
|
||
|| (thisframe->next && (get_frame_type (thisframe->next) == SIGTRAMP_FRAME))
|
||
|| (next_u && next_u->HP_UX_interrupt_marker))
|
||
return 1;
|
||
|
||
if (pc_in_linker_stub (thisframe->pc))
|
||
return 1;
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* These functions deal with saving and restoring register state
|
||
around a function call in the inferior. They keep the stack
|
||
double-word aligned; eventually, on an hp700, the stack will have
|
||
to be aligned to a 64-byte boundary. */
|
||
|
||
void
|
||
hppa_push_dummy_frame (void)
|
||
{
|
||
CORE_ADDR sp, pc, pcspace;
|
||
register int regnum;
|
||
CORE_ADDR int_buffer;
|
||
double freg_buffer;
|
||
|
||
pc = hppa_target_read_pc (inferior_ptid);
|
||
int_buffer = read_register (FLAGS_REGNUM);
|
||
if (int_buffer & 0x2)
|
||
{
|
||
const unsigned int sid = (pc >> 30) & 0x3;
|
||
if (sid == 0)
|
||
pcspace = read_register (SR4_REGNUM);
|
||
else
|
||
pcspace = read_register (SR4_REGNUM + 4 + sid);
|
||
}
|
||
else
|
||
pcspace = read_register (PCSQ_HEAD_REGNUM);
|
||
|
||
/* Space for "arguments"; the RP goes in here. */
|
||
sp = read_register (SP_REGNUM) + 48;
|
||
int_buffer = read_register (RP_REGNUM) | 0x3;
|
||
|
||
/* The 32bit and 64bit ABIs save the return pointer into different
|
||
stack slots. */
|
||
if (REGISTER_SIZE == 8)
|
||
write_memory (sp - 16, (char *) &int_buffer, REGISTER_SIZE);
|
||
else
|
||
write_memory (sp - 20, (char *) &int_buffer, REGISTER_SIZE);
|
||
|
||
int_buffer = TARGET_READ_FP ();
|
||
write_memory (sp, (char *) &int_buffer, REGISTER_SIZE);
|
||
|
||
write_register (FP_REGNUM, sp);
|
||
|
||
sp += 2 * REGISTER_SIZE;
|
||
|
||
for (regnum = 1; regnum < 32; regnum++)
|
||
if (regnum != RP_REGNUM && regnum != FP_REGNUM)
|
||
sp = push_word (sp, read_register (regnum));
|
||
|
||
/* This is not necessary for the 64bit ABI. In fact it is dangerous. */
|
||
if (REGISTER_SIZE != 8)
|
||
sp += 4;
|
||
|
||
for (regnum = FP0_REGNUM; regnum < NUM_REGS; regnum++)
|
||
{
|
||
deprecated_read_register_bytes (REGISTER_BYTE (regnum),
|
||
(char *) &freg_buffer, 8);
|
||
sp = push_bytes (sp, (char *) &freg_buffer, 8);
|
||
}
|
||
sp = push_word (sp, read_register (IPSW_REGNUM));
|
||
sp = push_word (sp, read_register (SAR_REGNUM));
|
||
sp = push_word (sp, pc);
|
||
sp = push_word (sp, pcspace);
|
||
sp = push_word (sp, pc + 4);
|
||
sp = push_word (sp, pcspace);
|
||
write_register (SP_REGNUM, sp);
|
||
}
|
||
|
||
static void
|
||
find_dummy_frame_regs (struct frame_info *frame,
|
||
struct frame_saved_regs *frame_saved_regs)
|
||
{
|
||
CORE_ADDR fp = frame->frame;
|
||
int i;
|
||
|
||
/* The 32bit and 64bit ABIs save RP into different locations. */
|
||
if (REGISTER_SIZE == 8)
|
||
frame_saved_regs->regs[RP_REGNUM] = (fp - 16) & ~0x3;
|
||
else
|
||
frame_saved_regs->regs[RP_REGNUM] = (fp - 20) & ~0x3;
|
||
|
||
frame_saved_regs->regs[FP_REGNUM] = fp;
|
||
|
||
frame_saved_regs->regs[1] = fp + (2 * REGISTER_SIZE);
|
||
|
||
for (fp += 3 * REGISTER_SIZE, i = 3; i < 32; i++)
|
||
{
|
||
if (i != FP_REGNUM)
|
||
{
|
||
frame_saved_regs->regs[i] = fp;
|
||
fp += REGISTER_SIZE;
|
||
}
|
||
}
|
||
|
||
/* This is not necessary or desirable for the 64bit ABI. */
|
||
if (REGISTER_SIZE != 8)
|
||
fp += 4;
|
||
|
||
for (i = FP0_REGNUM; i < NUM_REGS; i++, fp += 8)
|
||
frame_saved_regs->regs[i] = fp;
|
||
|
||
frame_saved_regs->regs[IPSW_REGNUM] = fp;
|
||
frame_saved_regs->regs[SAR_REGNUM] = fp + REGISTER_SIZE;
|
||
frame_saved_regs->regs[PCOQ_HEAD_REGNUM] = fp + 2 * REGISTER_SIZE;
|
||
frame_saved_regs->regs[PCSQ_HEAD_REGNUM] = fp + 3 * REGISTER_SIZE;
|
||
frame_saved_regs->regs[PCOQ_TAIL_REGNUM] = fp + 4 * REGISTER_SIZE;
|
||
frame_saved_regs->regs[PCSQ_TAIL_REGNUM] = fp + 5 * REGISTER_SIZE;
|
||
}
|
||
|
||
void
|
||
hppa_pop_frame (void)
|
||
{
|
||
register struct frame_info *frame = get_current_frame ();
|
||
register CORE_ADDR fp, npc, target_pc;
|
||
register int regnum;
|
||
struct frame_saved_regs fsr;
|
||
double freg_buffer;
|
||
|
||
fp = get_frame_base (frame);
|
||
deprecated_get_frame_saved_regs (frame, &fsr);
|
||
|
||
#ifndef NO_PC_SPACE_QUEUE_RESTORE
|
||
if (fsr.regs[IPSW_REGNUM]) /* Restoring a call dummy frame */
|
||
restore_pc_queue (&fsr);
|
||
#endif
|
||
|
||
for (regnum = 31; regnum > 0; regnum--)
|
||
if (fsr.regs[regnum])
|
||
write_register (regnum, read_memory_integer (fsr.regs[regnum],
|
||
REGISTER_SIZE));
|
||
|
||
for (regnum = NUM_REGS - 1; regnum >= FP0_REGNUM; regnum--)
|
||
if (fsr.regs[regnum])
|
||
{
|
||
read_memory (fsr.regs[regnum], (char *) &freg_buffer, 8);
|
||
deprecated_write_register_bytes (REGISTER_BYTE (regnum),
|
||
(char *) &freg_buffer, 8);
|
||
}
|
||
|
||
if (fsr.regs[IPSW_REGNUM])
|
||
write_register (IPSW_REGNUM,
|
||
read_memory_integer (fsr.regs[IPSW_REGNUM],
|
||
REGISTER_SIZE));
|
||
|
||
if (fsr.regs[SAR_REGNUM])
|
||
write_register (SAR_REGNUM,
|
||
read_memory_integer (fsr.regs[SAR_REGNUM],
|
||
REGISTER_SIZE));
|
||
|
||
/* If the PC was explicitly saved, then just restore it. */
|
||
if (fsr.regs[PCOQ_TAIL_REGNUM])
|
||
{
|
||
npc = read_memory_integer (fsr.regs[PCOQ_TAIL_REGNUM],
|
||
REGISTER_SIZE);
|
||
write_register (PCOQ_TAIL_REGNUM, npc);
|
||
}
|
||
/* Else use the value in %rp to set the new PC. */
|
||
else
|
||
{
|
||
npc = read_register (RP_REGNUM);
|
||
write_pc (npc);
|
||
}
|
||
|
||
write_register (FP_REGNUM, read_memory_integer (fp, REGISTER_SIZE));
|
||
|
||
if (fsr.regs[IPSW_REGNUM]) /* call dummy */
|
||
write_register (SP_REGNUM, fp - 48);
|
||
else
|
||
write_register (SP_REGNUM, fp);
|
||
|
||
/* The PC we just restored may be inside a return trampoline. If so
|
||
we want to restart the inferior and run it through the trampoline.
|
||
|
||
Do this by setting a momentary breakpoint at the location the
|
||
trampoline returns to.
|
||
|
||
Don't skip through the trampoline if we're popping a dummy frame. */
|
||
target_pc = SKIP_TRAMPOLINE_CODE (npc & ~0x3) & ~0x3;
|
||
if (target_pc && !fsr.regs[IPSW_REGNUM])
|
||
{
|
||
struct symtab_and_line sal;
|
||
struct breakpoint *breakpoint;
|
||
struct cleanup *old_chain;
|
||
|
||
/* Set up our breakpoint. Set it to be silent as the MI code
|
||
for "return_command" will print the frame we returned to. */
|
||
sal = find_pc_line (target_pc, 0);
|
||
sal.pc = target_pc;
|
||
breakpoint = set_momentary_breakpoint (sal, null_frame_id, bp_finish);
|
||
breakpoint->silent = 1;
|
||
|
||
/* So we can clean things up. */
|
||
old_chain = make_cleanup_delete_breakpoint (breakpoint);
|
||
|
||
/* Start up the inferior. */
|
||
clear_proceed_status ();
|
||
proceed_to_finish = 1;
|
||
proceed ((CORE_ADDR) -1, TARGET_SIGNAL_DEFAULT, 0);
|
||
|
||
/* Perform our cleanups. */
|
||
do_cleanups (old_chain);
|
||
}
|
||
flush_cached_frames ();
|
||
}
|
||
|
||
/* After returning to a dummy on the stack, restore the instruction
|
||
queue space registers. */
|
||
|
||
static int
|
||
restore_pc_queue (struct frame_saved_regs *fsr)
|
||
{
|
||
CORE_ADDR pc = read_pc ();
|
||
CORE_ADDR new_pc = read_memory_integer (fsr->regs[PCOQ_HEAD_REGNUM],
|
||
TARGET_PTR_BIT / 8);
|
||
struct target_waitstatus w;
|
||
int insn_count;
|
||
|
||
/* Advance past break instruction in the call dummy. */
|
||
write_register (PCOQ_HEAD_REGNUM, pc + 4);
|
||
write_register (PCOQ_TAIL_REGNUM, pc + 8);
|
||
|
||
/* HPUX doesn't let us set the space registers or the space
|
||
registers of the PC queue through ptrace. Boo, hiss.
|
||
Conveniently, the call dummy has this sequence of instructions
|
||
after the break:
|
||
mtsp r21, sr0
|
||
ble,n 0(sr0, r22)
|
||
|
||
So, load up the registers and single step until we are in the
|
||
right place. */
|
||
|
||
write_register (21, read_memory_integer (fsr->regs[PCSQ_HEAD_REGNUM],
|
||
REGISTER_SIZE));
|
||
write_register (22, new_pc);
|
||
|
||
for (insn_count = 0; insn_count < 3; insn_count++)
|
||
{
|
||
/* FIXME: What if the inferior gets a signal right now? Want to
|
||
merge this into wait_for_inferior (as a special kind of
|
||
watchpoint? By setting a breakpoint at the end? Is there
|
||
any other choice? Is there *any* way to do this stuff with
|
||
ptrace() or some equivalent?). */
|
||
resume (1, 0);
|
||
target_wait (inferior_ptid, &w);
|
||
|
||
if (w.kind == TARGET_WAITKIND_SIGNALLED)
|
||
{
|
||
stop_signal = w.value.sig;
|
||
terminal_ours_for_output ();
|
||
printf_unfiltered ("\nProgram terminated with signal %s, %s.\n",
|
||
target_signal_to_name (stop_signal),
|
||
target_signal_to_string (stop_signal));
|
||
gdb_flush (gdb_stdout);
|
||
return 0;
|
||
}
|
||
}
|
||
target_terminal_ours ();
|
||
target_fetch_registers (-1);
|
||
return 1;
|
||
}
|
||
|
||
|
||
#ifdef PA20W_CALLING_CONVENTIONS
|
||
|
||
/* This function pushes a stack frame with arguments as part of the
|
||
inferior function calling mechanism.
|
||
|
||
This is the version for the PA64, in which later arguments appear
|
||
at higher addresses. (The stack always grows towards higher
|
||
addresses.)
|
||
|
||
We simply allocate the appropriate amount of stack space and put
|
||
arguments into their proper slots. The call dummy code will copy
|
||
arguments into registers as needed by the ABI.
|
||
|
||
This ABI also requires that the caller provide an argument pointer
|
||
to the callee, so we do that too. */
|
||
|
||
CORE_ADDR
|
||
hppa_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
|
||
int struct_return, CORE_ADDR struct_addr)
|
||
{
|
||
/* array of arguments' offsets */
|
||
int *offset = (int *) alloca (nargs * sizeof (int));
|
||
|
||
/* array of arguments' lengths: real lengths in bytes, not aligned to
|
||
word size */
|
||
int *lengths = (int *) alloca (nargs * sizeof (int));
|
||
|
||
/* The value of SP as it was passed into this function after
|
||
aligning. */
|
||
CORE_ADDR orig_sp = STACK_ALIGN (sp);
|
||
|
||
/* The number of stack bytes occupied by the current argument. */
|
||
int bytes_reserved;
|
||
|
||
/* The total number of bytes reserved for the arguments. */
|
||
int cum_bytes_reserved = 0;
|
||
|
||
/* Similarly, but aligned. */
|
||
int cum_bytes_aligned = 0;
|
||
int i;
|
||
|
||
/* Iterate over each argument provided by the user. */
|
||
for (i = 0; i < nargs; i++)
|
||
{
|
||
struct type *arg_type = VALUE_TYPE (args[i]);
|
||
|
||
/* Integral scalar values smaller than a register are padded on
|
||
the left. We do this by promoting them to full-width,
|
||
although the ABI says to pad them with garbage. */
|
||
if (is_integral_type (arg_type)
|
||
&& TYPE_LENGTH (arg_type) < REGISTER_SIZE)
|
||
{
|
||
args[i] = value_cast ((TYPE_UNSIGNED (arg_type)
|
||
? builtin_type_unsigned_long
|
||
: builtin_type_long),
|
||
args[i]);
|
||
arg_type = VALUE_TYPE (args[i]);
|
||
}
|
||
|
||
lengths[i] = TYPE_LENGTH (arg_type);
|
||
|
||
/* Align the size of the argument to the word size for this
|
||
target. */
|
||
bytes_reserved = (lengths[i] + REGISTER_SIZE - 1) & -REGISTER_SIZE;
|
||
|
||
offset[i] = cum_bytes_reserved;
|
||
|
||
/* Aggregates larger than eight bytes (the only types larger
|
||
than eight bytes we have) are aligned on a 16-byte boundary,
|
||
possibly padded on the right with garbage. This may leave an
|
||
empty word on the stack, and thus an unused register, as per
|
||
the ABI. */
|
||
if (bytes_reserved > 8)
|
||
{
|
||
/* Round up the offset to a multiple of two slots. */
|
||
int new_offset = ((offset[i] + 2*REGISTER_SIZE-1)
|
||
& -(2*REGISTER_SIZE));
|
||
|
||
/* Note the space we've wasted, if any. */
|
||
bytes_reserved += new_offset - offset[i];
|
||
offset[i] = new_offset;
|
||
}
|
||
|
||
cum_bytes_reserved += bytes_reserved;
|
||
}
|
||
|
||
/* CUM_BYTES_RESERVED already accounts for all the arguments
|
||
passed by the user. However, the ABIs mandate minimum stack space
|
||
allocations for outgoing arguments.
|
||
|
||
The ABIs also mandate minimum stack alignments which we must
|
||
preserve. */
|
||
cum_bytes_aligned = STACK_ALIGN (cum_bytes_reserved);
|
||
sp += max (cum_bytes_aligned, REG_PARM_STACK_SPACE);
|
||
|
||
/* Now write each of the args at the proper offset down the stack. */
|
||
for (i = 0; i < nargs; i++)
|
||
write_memory (orig_sp + offset[i], VALUE_CONTENTS (args[i]), lengths[i]);
|
||
|
||
/* If a structure has to be returned, set up register 28 to hold its
|
||
address */
|
||
if (struct_return)
|
||
write_register (28, struct_addr);
|
||
|
||
/* For the PA64 we must pass a pointer to the outgoing argument list.
|
||
The ABI mandates that the pointer should point to the first byte of
|
||
storage beyond the register flushback area.
|
||
|
||
However, the call dummy expects the outgoing argument pointer to
|
||
be passed in register %r4. */
|
||
write_register (4, orig_sp + REG_PARM_STACK_SPACE);
|
||
|
||
/* ?!? This needs further work. We need to set up the global data
|
||
pointer for this procedure. This assumes the same global pointer
|
||
for every procedure. The call dummy expects the dp value to
|
||
be passed in register %r6. */
|
||
write_register (6, read_register (27));
|
||
|
||
/* The stack will have 64 bytes of additional space for a frame marker. */
|
||
return sp + 64;
|
||
}
|
||
|
||
#else
|
||
|
||
/* This function pushes a stack frame with arguments as part of the
|
||
inferior function calling mechanism.
|
||
|
||
This is the version of the function for the 32-bit PA machines, in
|
||
which later arguments appear at lower addresses. (The stack always
|
||
grows towards higher addresses.)
|
||
|
||
We simply allocate the appropriate amount of stack space and put
|
||
arguments into their proper slots. The call dummy code will copy
|
||
arguments into registers as needed by the ABI. */
|
||
|
||
CORE_ADDR
|
||
hppa_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
|
||
int struct_return, CORE_ADDR struct_addr)
|
||
{
|
||
/* array of arguments' offsets */
|
||
int *offset = (int *) alloca (nargs * sizeof (int));
|
||
|
||
/* array of arguments' lengths: real lengths in bytes, not aligned to
|
||
word size */
|
||
int *lengths = (int *) alloca (nargs * sizeof (int));
|
||
|
||
/* The number of stack bytes occupied by the current argument. */
|
||
int bytes_reserved;
|
||
|
||
/* The total number of bytes reserved for the arguments. */
|
||
int cum_bytes_reserved = 0;
|
||
|
||
/* Similarly, but aligned. */
|
||
int cum_bytes_aligned = 0;
|
||
int i;
|
||
|
||
/* Iterate over each argument provided by the user. */
|
||
for (i = 0; i < nargs; i++)
|
||
{
|
||
lengths[i] = TYPE_LENGTH (VALUE_TYPE (args[i]));
|
||
|
||
/* Align the size of the argument to the word size for this
|
||
target. */
|
||
bytes_reserved = (lengths[i] + REGISTER_SIZE - 1) & -REGISTER_SIZE;
|
||
|
||
offset[i] = (cum_bytes_reserved
|
||
+ (lengths[i] > 4 ? bytes_reserved : lengths[i]));
|
||
|
||
/* If the argument is a double word argument, then it needs to be
|
||
double word aligned. */
|
||
if ((bytes_reserved == 2 * REGISTER_SIZE)
|
||
&& (offset[i] % 2 * REGISTER_SIZE))
|
||
{
|
||
int new_offset = 0;
|
||
/* BYTES_RESERVED is already aligned to the word, so we put
|
||
the argument at one word more down the stack.
|
||
|
||
This will leave one empty word on the stack, and one unused
|
||
register as mandated by the ABI. */
|
||
new_offset = ((offset[i] + 2 * REGISTER_SIZE - 1)
|
||
& -(2 * REGISTER_SIZE));
|
||
|
||
if ((new_offset - offset[i]) >= 2 * REGISTER_SIZE)
|
||
{
|
||
bytes_reserved += REGISTER_SIZE;
|
||
offset[i] += REGISTER_SIZE;
|
||
}
|
||
}
|
||
|
||
cum_bytes_reserved += bytes_reserved;
|
||
|
||
}
|
||
|
||
/* CUM_BYTES_RESERVED already accounts for all the arguments passed
|
||
by the user. However, the ABI mandates minimum stack space
|
||
allocations for outgoing arguments.
|
||
|
||
The ABI also mandates minimum stack alignments which we must
|
||
preserve. */
|
||
cum_bytes_aligned = STACK_ALIGN (cum_bytes_reserved);
|
||
sp += max (cum_bytes_aligned, REG_PARM_STACK_SPACE);
|
||
|
||
/* Now write each of the args at the proper offset down the stack.
|
||
?!? We need to promote values to a full register instead of skipping
|
||
words in the stack. */
|
||
for (i = 0; i < nargs; i++)
|
||
write_memory (sp - offset[i], VALUE_CONTENTS (args[i]), lengths[i]);
|
||
|
||
/* If a structure has to be returned, set up register 28 to hold its
|
||
address */
|
||
if (struct_return)
|
||
write_register (28, struct_addr);
|
||
|
||
/* The stack will have 32 bytes of additional space for a frame marker. */
|
||
return sp + 32;
|
||
}
|
||
|
||
#endif
|
||
|
||
/* elz: this function returns a value which is built looking at the given address.
|
||
It is called from call_function_by_hand, in case we need to return a
|
||
value which is larger than 64 bits, and it is stored in the stack rather than
|
||
in the registers r28 and r29 or fr4.
|
||
This function does the same stuff as value_being_returned in values.c, but
|
||
gets the value from the stack rather than from the buffer where all the
|
||
registers were saved when the function called completed. */
|
||
struct value *
|
||
hppa_value_returned_from_stack (register struct type *valtype, CORE_ADDR addr)
|
||
{
|
||
register struct value *val;
|
||
|
||
val = allocate_value (valtype);
|
||
CHECK_TYPEDEF (valtype);
|
||
target_read_memory (addr, VALUE_CONTENTS_RAW (val), TYPE_LENGTH (valtype));
|
||
|
||
return val;
|
||
}
|
||
|
||
|
||
|
||
/* elz: Used to lookup a symbol in the shared libraries.
|
||
This function calls shl_findsym, indirectly through a
|
||
call to __d_shl_get. __d_shl_get is in end.c, which is always
|
||
linked in by the hp compilers/linkers.
|
||
The call to shl_findsym cannot be made directly because it needs
|
||
to be active in target address space.
|
||
inputs: - minimal symbol pointer for the function we want to look up
|
||
- address in target space of the descriptor for the library
|
||
where we want to look the symbol up.
|
||
This address is retrieved using the
|
||
som_solib_get_solib_by_pc function (somsolib.c).
|
||
output: - real address in the library of the function.
|
||
note: the handle can be null, in which case shl_findsym will look for
|
||
the symbol in all the loaded shared libraries.
|
||
files to look at if you need reference on this stuff:
|
||
dld.c, dld_shl_findsym.c
|
||
end.c
|
||
man entry for shl_findsym */
|
||
|
||
CORE_ADDR
|
||
find_stub_with_shl_get (struct minimal_symbol *function, CORE_ADDR handle)
|
||
{
|
||
struct symbol *get_sym, *symbol2;
|
||
struct minimal_symbol *buff_minsym, *msymbol;
|
||
struct type *ftype;
|
||
struct value **args;
|
||
struct value *funcval;
|
||
struct value *val;
|
||
|
||
int x, namelen, err_value, tmp = -1;
|
||
CORE_ADDR endo_buff_addr, value_return_addr, errno_return_addr;
|
||
CORE_ADDR stub_addr;
|
||
|
||
|
||
args = alloca (sizeof (struct value *) * 8); /* 6 for the arguments and one null one??? */
|
||
funcval = find_function_in_inferior ("__d_shl_get");
|
||
get_sym = lookup_symbol ("__d_shl_get", NULL, VAR_NAMESPACE, NULL, NULL);
|
||
buff_minsym = lookup_minimal_symbol ("__buffer", NULL, NULL);
|
||
msymbol = lookup_minimal_symbol ("__shldp", NULL, NULL);
|
||
symbol2 = lookup_symbol ("__shldp", NULL, VAR_NAMESPACE, NULL, NULL);
|
||
endo_buff_addr = SYMBOL_VALUE_ADDRESS (buff_minsym);
|
||
namelen = strlen (DEPRECATED_SYMBOL_NAME (function));
|
||
value_return_addr = endo_buff_addr + namelen;
|
||
ftype = check_typedef (SYMBOL_TYPE (get_sym));
|
||
|
||
/* do alignment */
|
||
if ((x = value_return_addr % 64) != 0)
|
||
value_return_addr = value_return_addr + 64 - x;
|
||
|
||
errno_return_addr = value_return_addr + 64;
|
||
|
||
|
||
/* set up stuff needed by __d_shl_get in buffer in end.o */
|
||
|
||
target_write_memory (endo_buff_addr, DEPRECATED_SYMBOL_NAME (function), namelen);
|
||
|
||
target_write_memory (value_return_addr, (char *) &tmp, 4);
|
||
|
||
target_write_memory (errno_return_addr, (char *) &tmp, 4);
|
||
|
||
target_write_memory (SYMBOL_VALUE_ADDRESS (msymbol),
|
||
(char *) &handle, 4);
|
||
|
||
/* now prepare the arguments for the call */
|
||
|
||
args[0] = value_from_longest (TYPE_FIELD_TYPE (ftype, 0), 12);
|
||
args[1] = value_from_pointer (TYPE_FIELD_TYPE (ftype, 1), SYMBOL_VALUE_ADDRESS (msymbol));
|
||
args[2] = value_from_pointer (TYPE_FIELD_TYPE (ftype, 2), endo_buff_addr);
|
||
args[3] = value_from_longest (TYPE_FIELD_TYPE (ftype, 3), TYPE_PROCEDURE);
|
||
args[4] = value_from_pointer (TYPE_FIELD_TYPE (ftype, 4), value_return_addr);
|
||
args[5] = value_from_pointer (TYPE_FIELD_TYPE (ftype, 5), errno_return_addr);
|
||
|
||
/* now call the function */
|
||
|
||
val = call_function_by_hand (funcval, 6, args);
|
||
|
||
/* now get the results */
|
||
|
||
target_read_memory (errno_return_addr, (char *) &err_value, sizeof (err_value));
|
||
|
||
target_read_memory (value_return_addr, (char *) &stub_addr, sizeof (stub_addr));
|
||
if (stub_addr <= 0)
|
||
error ("call to __d_shl_get failed, error code is %d", err_value);
|
||
|
||
return (stub_addr);
|
||
}
|
||
|
||
/* Cover routine for find_stub_with_shl_get to pass to catch_errors */
|
||
static int
|
||
cover_find_stub_with_shl_get (void *args_untyped)
|
||
{
|
||
args_for_find_stub *args = args_untyped;
|
||
args->return_val = find_stub_with_shl_get (args->msym, args->solib_handle);
|
||
return 0;
|
||
}
|
||
|
||
/* Insert the specified number of args and function address
|
||
into a call sequence of the above form stored at DUMMYNAME.
|
||
|
||
On the hppa we need to call the stack dummy through $$dyncall.
|
||
Therefore our version of FIX_CALL_DUMMY takes an extra argument,
|
||
real_pc, which is the location where gdb should start up the
|
||
inferior to do the function call.
|
||
|
||
This has to work across several versions of hpux, bsd, osf1. It has to
|
||
work regardless of what compiler was used to build the inferior program.
|
||
It should work regardless of whether or not end.o is available. It has
|
||
to work even if gdb can not call into the dynamic loader in the inferior
|
||
to query it for symbol names and addresses.
|
||
|
||
Yes, all those cases should work. Luckily code exists to handle most
|
||
of them. The complexity is in selecting exactly what scheme should
|
||
be used to perform the inferior call.
|
||
|
||
At the current time this routine is known not to handle cases where
|
||
the program was linked with HP's compiler without including end.o.
|
||
|
||
Please contact Jeff Law (law@cygnus.com) before changing this code. */
|
||
|
||
CORE_ADDR
|
||
hppa_fix_call_dummy (char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs,
|
||
struct value **args, struct type *type, int gcc_p)
|
||
{
|
||
CORE_ADDR dyncall_addr;
|
||
struct minimal_symbol *msymbol;
|
||
struct minimal_symbol *trampoline;
|
||
int flags = read_register (FLAGS_REGNUM);
|
||
struct unwind_table_entry *u = NULL;
|
||
CORE_ADDR new_stub = 0;
|
||
CORE_ADDR solib_handle = 0;
|
||
|
||
/* Nonzero if we will use GCC's PLT call routine. This routine must be
|
||
passed an import stub, not a PLABEL. It is also necessary to set %r19
|
||
(the PIC register) before performing the call.
|
||
|
||
If zero, then we are using __d_plt_call (HP's PLT call routine) or we
|
||
are calling the target directly. When using __d_plt_call we want to
|
||
use a PLABEL instead of an import stub. */
|
||
int using_gcc_plt_call = 1;
|
||
|
||
#ifdef GDB_TARGET_IS_HPPA_20W
|
||
/* We currently use completely different code for the PA2.0W inferior
|
||
function call sequences. This needs to be cleaned up. */
|
||
{
|
||
CORE_ADDR pcsqh, pcsqt, pcoqh, pcoqt, sr5;
|
||
struct target_waitstatus w;
|
||
int inst1, inst2;
|
||
char buf[4];
|
||
int status;
|
||
struct objfile *objfile;
|
||
|
||
/* We can not modify the PC space queues directly, so we start
|
||
up the inferior and execute a couple instructions to set the
|
||
space queues so that they point to the call dummy in the stack. */
|
||
pcsqh = read_register (PCSQ_HEAD_REGNUM);
|
||
sr5 = read_register (SR5_REGNUM);
|
||
if (1)
|
||
{
|
||
pcoqh = read_register (PCOQ_HEAD_REGNUM);
|
||
pcoqt = read_register (PCOQ_TAIL_REGNUM);
|
||
if (target_read_memory (pcoqh, buf, 4) != 0)
|
||
error ("Couldn't modify space queue\n");
|
||
inst1 = extract_unsigned_integer (buf, 4);
|
||
|
||
if (target_read_memory (pcoqt, buf, 4) != 0)
|
||
error ("Couldn't modify space queue\n");
|
||
inst2 = extract_unsigned_integer (buf, 4);
|
||
|
||
/* BVE (r1) */
|
||
*((int *) buf) = 0xe820d000;
|
||
if (target_write_memory (pcoqh, buf, 4) != 0)
|
||
error ("Couldn't modify space queue\n");
|
||
|
||
/* NOP */
|
||
*((int *) buf) = 0x08000240;
|
||
if (target_write_memory (pcoqt, buf, 4) != 0)
|
||
{
|
||
*((int *) buf) = inst1;
|
||
target_write_memory (pcoqh, buf, 4);
|
||
error ("Couldn't modify space queue\n");
|
||
}
|
||
|
||
write_register (1, pc);
|
||
|
||
/* Single step twice, the BVE instruction will set the space queue
|
||
such that it points to the PC value written immediately above
|
||
(ie the call dummy). */
|
||
resume (1, 0);
|
||
target_wait (inferior_ptid, &w);
|
||
resume (1, 0);
|
||
target_wait (inferior_ptid, &w);
|
||
|
||
/* Restore the two instructions at the old PC locations. */
|
||
*((int *) buf) = inst1;
|
||
target_write_memory (pcoqh, buf, 4);
|
||
*((int *) buf) = inst2;
|
||
target_write_memory (pcoqt, buf, 4);
|
||
}
|
||
|
||
/* The call dummy wants the ultimate destination address initially
|
||
in register %r5. */
|
||
write_register (5, fun);
|
||
|
||
/* We need to see if this objfile has a different DP value than our
|
||
own (it could be a shared library for example). */
|
||
ALL_OBJFILES (objfile)
|
||
{
|
||
struct obj_section *s;
|
||
obj_private_data_t *obj_private;
|
||
|
||
/* See if FUN is in any section within this shared library. */
|
||
for (s = objfile->sections; s < objfile->sections_end; s++)
|
||
if (s->addr <= fun && fun < s->endaddr)
|
||
break;
|
||
|
||
if (s >= objfile->sections_end)
|
||
continue;
|
||
|
||
obj_private = (obj_private_data_t *) objfile->obj_private;
|
||
|
||
/* The DP value may be different for each objfile. But within an
|
||
objfile each function uses the same dp value. Thus we do not need
|
||
to grope around the opd section looking for dp values.
|
||
|
||
?!? This is not strictly correct since we may be in a shared library
|
||
and want to call back into the main program. To make that case
|
||
work correctly we need to set obj_private->dp for the main program's
|
||
objfile, then remove this conditional. */
|
||
if (obj_private->dp)
|
||
write_register (27, obj_private->dp);
|
||
break;
|
||
}
|
||
return pc;
|
||
}
|
||
#endif
|
||
|
||
#ifndef GDB_TARGET_IS_HPPA_20W
|
||
/* Prefer __gcc_plt_call over the HP supplied routine because
|
||
__gcc_plt_call works for any number of arguments. */
|
||
trampoline = NULL;
|
||
if (lookup_minimal_symbol ("__gcc_plt_call", NULL, NULL) == NULL)
|
||
using_gcc_plt_call = 0;
|
||
|
||
msymbol = lookup_minimal_symbol ("$$dyncall", NULL, NULL);
|
||
if (msymbol == NULL)
|
||
error ("Can't find an address for $$dyncall trampoline");
|
||
|
||
dyncall_addr = SYMBOL_VALUE_ADDRESS (msymbol);
|
||
|
||
/* FUN could be a procedure label, in which case we have to get
|
||
its real address and the value of its GOT/DP if we plan to
|
||
call the routine via gcc_plt_call. */
|
||
if ((fun & 0x2) && using_gcc_plt_call)
|
||
{
|
||
/* Get the GOT/DP value for the target function. It's
|
||
at *(fun+4). Note the call dummy is *NOT* allowed to
|
||
trash %r19 before calling the target function. */
|
||
write_register (19, read_memory_integer ((fun & ~0x3) + 4,
|
||
REGISTER_SIZE));
|
||
|
||
/* Now get the real address for the function we are calling, it's
|
||
at *fun. */
|
||
fun = (CORE_ADDR) read_memory_integer (fun & ~0x3,
|
||
TARGET_PTR_BIT / 8);
|
||
}
|
||
else
|
||
{
|
||
|
||
#ifndef GDB_TARGET_IS_PA_ELF
|
||
/* FUN could be an export stub, the real address of a function, or
|
||
a PLABEL. When using gcc's PLT call routine we must call an import
|
||
stub rather than the export stub or real function for lazy binding
|
||
to work correctly
|
||
|
||
If we are using the gcc PLT call routine, then we need to
|
||
get the import stub for the target function. */
|
||
if (using_gcc_plt_call && som_solib_get_got_by_pc (fun))
|
||
{
|
||
struct objfile *objfile;
|
||
struct minimal_symbol *funsymbol, *stub_symbol;
|
||
CORE_ADDR newfun = 0;
|
||
|
||
funsymbol = lookup_minimal_symbol_by_pc (fun);
|
||
if (!funsymbol)
|
||
error ("Unable to find minimal symbol for target function.\n");
|
||
|
||
/* Search all the object files for an import symbol with the
|
||
right name. */
|
||
ALL_OBJFILES (objfile)
|
||
{
|
||
stub_symbol
|
||
= lookup_minimal_symbol_solib_trampoline
|
||
(DEPRECATED_SYMBOL_NAME (funsymbol), NULL, objfile);
|
||
|
||
if (!stub_symbol)
|
||
stub_symbol = lookup_minimal_symbol (DEPRECATED_SYMBOL_NAME (funsymbol),
|
||
NULL, objfile);
|
||
|
||
/* Found a symbol with the right name. */
|
||
if (stub_symbol)
|
||
{
|
||
struct unwind_table_entry *u;
|
||
/* It must be a shared library trampoline. */
|
||
if (MSYMBOL_TYPE (stub_symbol) != mst_solib_trampoline)
|
||
continue;
|
||
|
||
/* It must also be an import stub. */
|
||
u = find_unwind_entry (SYMBOL_VALUE (stub_symbol));
|
||
if (u == NULL
|
||
|| (u->stub_unwind.stub_type != IMPORT
|
||
#ifdef GDB_NATIVE_HPUX_11
|
||
/* Sigh. The hpux 10.20 dynamic linker will blow
|
||
chunks if we perform a call to an unbound function
|
||
via the IMPORT_SHLIB stub. The hpux 11.00 dynamic
|
||
linker will blow chunks if we do not call the
|
||
unbound function via the IMPORT_SHLIB stub.
|
||
|
||
We currently have no way to select bevahior on just
|
||
the target. However, we only support HPUX/SOM in
|
||
native mode. So we conditinalize on a native
|
||
#ifdef. Ugly. Ugly. Ugly */
|
||
&& u->stub_unwind.stub_type != IMPORT_SHLIB
|
||
#endif
|
||
))
|
||
continue;
|
||
|
||
/* OK. Looks like the correct import stub. */
|
||
newfun = SYMBOL_VALUE (stub_symbol);
|
||
fun = newfun;
|
||
|
||
/* If we found an IMPORT stub, then we want to stop
|
||
searching now. If we found an IMPORT_SHLIB, we want
|
||
to continue the search in the hopes that we will find
|
||
an IMPORT stub. */
|
||
if (u->stub_unwind.stub_type == IMPORT)
|
||
break;
|
||
}
|
||
}
|
||
|
||
/* Ouch. We did not find an import stub. Make an attempt to
|
||
do the right thing instead of just croaking. Most of the
|
||
time this will actually work. */
|
||
if (newfun == 0)
|
||
write_register (19, som_solib_get_got_by_pc (fun));
|
||
|
||
u = find_unwind_entry (fun);
|
||
if (u
|
||
&& (u->stub_unwind.stub_type == IMPORT
|
||
|| u->stub_unwind.stub_type == IMPORT_SHLIB))
|
||
trampoline = lookup_minimal_symbol ("__gcc_plt_call", NULL, NULL);
|
||
|
||
/* If we found the import stub in the shared library, then we have
|
||
to set %r19 before we call the stub. */
|
||
if (u && u->stub_unwind.stub_type == IMPORT_SHLIB)
|
||
write_register (19, som_solib_get_got_by_pc (fun));
|
||
}
|
||
#endif
|
||
}
|
||
|
||
/* If we are calling into another load module then have sr4export call the
|
||
magic __d_plt_call routine which is linked in from end.o.
|
||
|
||
You can't use _sr4export to make the call as the value in sp-24 will get
|
||
fried and you end up returning to the wrong location. You can't call the
|
||
target as the code to bind the PLT entry to a function can't return to a
|
||
stack address.
|
||
|
||
Also, query the dynamic linker in the inferior to provide a suitable
|
||
PLABEL for the target function. */
|
||
if (!using_gcc_plt_call)
|
||
{
|
||
CORE_ADDR new_fun;
|
||
|
||
/* Get a handle for the shared library containing FUN. Given the
|
||
handle we can query the shared library for a PLABEL. */
|
||
solib_handle = som_solib_get_solib_by_pc (fun);
|
||
|
||
if (solib_handle)
|
||
{
|
||
struct minimal_symbol *fmsymbol = lookup_minimal_symbol_by_pc (fun);
|
||
|
||
trampoline = lookup_minimal_symbol ("__d_plt_call", NULL, NULL);
|
||
|
||
if (trampoline == NULL)
|
||
{
|
||
error ("Can't find an address for __d_plt_call or __gcc_plt_call trampoline\nSuggest linking executable with -g or compiling with gcc.");
|
||
}
|
||
|
||
/* This is where sr4export will jump to. */
|
||
new_fun = SYMBOL_VALUE_ADDRESS (trampoline);
|
||
|
||
/* If the function is in a shared library, then call __d_shl_get to
|
||
get a PLABEL for the target function. */
|
||
new_stub = find_stub_with_shl_get (fmsymbol, solib_handle);
|
||
|
||
if (new_stub == 0)
|
||
error ("Can't find an import stub for %s", DEPRECATED_SYMBOL_NAME (fmsymbol));
|
||
|
||
/* We have to store the address of the stub in __shlib_funcptr. */
|
||
msymbol = lookup_minimal_symbol ("__shlib_funcptr", NULL,
|
||
(struct objfile *) NULL);
|
||
|
||
if (msymbol == NULL)
|
||
error ("Can't find an address for __shlib_funcptr");
|
||
target_write_memory (SYMBOL_VALUE_ADDRESS (msymbol),
|
||
(char *) &new_stub, 4);
|
||
|
||
/* We want sr4export to call __d_plt_call, so we claim it is
|
||
the final target. Clear trampoline. */
|
||
fun = new_fun;
|
||
trampoline = NULL;
|
||
}
|
||
}
|
||
|
||
/* Store upper 21 bits of function address into ldil. fun will either be
|
||
the final target (most cases) or __d_plt_call when calling into a shared
|
||
library and __gcc_plt_call is not available. */
|
||
store_unsigned_integer
|
||
(&dummy[FUNC_LDIL_OFFSET],
|
||
INSTRUCTION_SIZE,
|
||
deposit_21 (fun >> 11,
|
||
extract_unsigned_integer (&dummy[FUNC_LDIL_OFFSET],
|
||
INSTRUCTION_SIZE)));
|
||
|
||
/* Store lower 11 bits of function address into ldo */
|
||
store_unsigned_integer
|
||
(&dummy[FUNC_LDO_OFFSET],
|
||
INSTRUCTION_SIZE,
|
||
deposit_14 (fun & MASK_11,
|
||
extract_unsigned_integer (&dummy[FUNC_LDO_OFFSET],
|
||
INSTRUCTION_SIZE)));
|
||
#ifdef SR4EXPORT_LDIL_OFFSET
|
||
|
||
{
|
||
CORE_ADDR trampoline_addr;
|
||
|
||
/* We may still need sr4export's address too. */
|
||
|
||
if (trampoline == NULL)
|
||
{
|
||
msymbol = lookup_minimal_symbol ("_sr4export", NULL, NULL);
|
||
if (msymbol == NULL)
|
||
error ("Can't find an address for _sr4export trampoline");
|
||
|
||
trampoline_addr = SYMBOL_VALUE_ADDRESS (msymbol);
|
||
}
|
||
else
|
||
trampoline_addr = SYMBOL_VALUE_ADDRESS (trampoline);
|
||
|
||
|
||
/* Store upper 21 bits of trampoline's address into ldil */
|
||
store_unsigned_integer
|
||
(&dummy[SR4EXPORT_LDIL_OFFSET],
|
||
INSTRUCTION_SIZE,
|
||
deposit_21 (trampoline_addr >> 11,
|
||
extract_unsigned_integer (&dummy[SR4EXPORT_LDIL_OFFSET],
|
||
INSTRUCTION_SIZE)));
|
||
|
||
/* Store lower 11 bits of trampoline's address into ldo */
|
||
store_unsigned_integer
|
||
(&dummy[SR4EXPORT_LDO_OFFSET],
|
||
INSTRUCTION_SIZE,
|
||
deposit_14 (trampoline_addr & MASK_11,
|
||
extract_unsigned_integer (&dummy[SR4EXPORT_LDO_OFFSET],
|
||
INSTRUCTION_SIZE)));
|
||
}
|
||
#endif
|
||
|
||
write_register (22, pc);
|
||
|
||
/* If we are in a syscall, then we should call the stack dummy
|
||
directly. $$dyncall is not needed as the kernel sets up the
|
||
space id registers properly based on the value in %r31. In
|
||
fact calling $$dyncall will not work because the value in %r22
|
||
will be clobbered on the syscall exit path.
|
||
|
||
Similarly if the current PC is in a shared library. Note however,
|
||
this scheme won't work if the shared library isn't mapped into
|
||
the same space as the stack. */
|
||
if (flags & 2)
|
||
return pc;
|
||
#ifndef GDB_TARGET_IS_PA_ELF
|
||
else if (som_solib_get_got_by_pc (hppa_target_read_pc (inferior_ptid)))
|
||
return pc;
|
||
#endif
|
||
else
|
||
return dyncall_addr;
|
||
#endif
|
||
}
|
||
|
||
/* If the pid is in a syscall, then the FP register is not readable.
|
||
We'll return zero in that case, rather than attempting to read it
|
||
and cause a warning. */
|
||
|
||
CORE_ADDR
|
||
hppa_read_fp (int pid)
|
||
{
|
||
int flags = read_register (FLAGS_REGNUM);
|
||
|
||
if (flags & 2)
|
||
{
|
||
return (CORE_ADDR) 0;
|
||
}
|
||
|
||
/* This is the only site that may directly read_register () the FP
|
||
register. All others must use TARGET_READ_FP (). */
|
||
return read_register (FP_REGNUM);
|
||
}
|
||
|
||
CORE_ADDR
|
||
hppa_target_read_fp (void)
|
||
{
|
||
return hppa_read_fp (PIDGET (inferior_ptid));
|
||
}
|
||
|
||
/* Get the PC from %r31 if currently in a syscall. Also mask out privilege
|
||
bits. */
|
||
|
||
CORE_ADDR
|
||
hppa_target_read_pc (ptid_t ptid)
|
||
{
|
||
int flags = read_register_pid (FLAGS_REGNUM, ptid);
|
||
|
||
/* The following test does not belong here. It is OS-specific, and belongs
|
||
in native code. */
|
||
/* Test SS_INSYSCALL */
|
||
if (flags & 2)
|
||
return read_register_pid (31, ptid) & ~0x3;
|
||
|
||
return read_register_pid (PC_REGNUM, ptid) & ~0x3;
|
||
}
|
||
|
||
/* Write out the PC. If currently in a syscall, then also write the new
|
||
PC value into %r31. */
|
||
|
||
void
|
||
hppa_target_write_pc (CORE_ADDR v, ptid_t ptid)
|
||
{
|
||
int flags = read_register_pid (FLAGS_REGNUM, ptid);
|
||
|
||
/* The following test does not belong here. It is OS-specific, and belongs
|
||
in native code. */
|
||
/* If in a syscall, then set %r31. Also make sure to get the
|
||
privilege bits set correctly. */
|
||
/* Test SS_INSYSCALL */
|
||
if (flags & 2)
|
||
write_register_pid (31, v | 0x3, ptid);
|
||
|
||
write_register_pid (PC_REGNUM, v, ptid);
|
||
write_register_pid (NPC_REGNUM, v + 4, ptid);
|
||
}
|
||
|
||
/* return the alignment of a type in bytes. Structures have the maximum
|
||
alignment required by their fields. */
|
||
|
||
static int
|
||
hppa_alignof (struct type *type)
|
||
{
|
||
int max_align, align, i;
|
||
CHECK_TYPEDEF (type);
|
||
switch (TYPE_CODE (type))
|
||
{
|
||
case TYPE_CODE_PTR:
|
||
case TYPE_CODE_INT:
|
||
case TYPE_CODE_FLT:
|
||
return TYPE_LENGTH (type);
|
||
case TYPE_CODE_ARRAY:
|
||
return hppa_alignof (TYPE_FIELD_TYPE (type, 0));
|
||
case TYPE_CODE_STRUCT:
|
||
case TYPE_CODE_UNION:
|
||
max_align = 1;
|
||
for (i = 0; i < TYPE_NFIELDS (type); i++)
|
||
{
|
||
/* Bit fields have no real alignment. */
|
||
/* if (!TYPE_FIELD_BITPOS (type, i)) */
|
||
if (!TYPE_FIELD_BITSIZE (type, i)) /* elz: this should be bitsize */
|
||
{
|
||
align = hppa_alignof (TYPE_FIELD_TYPE (type, i));
|
||
max_align = max (max_align, align);
|
||
}
|
||
}
|
||
return max_align;
|
||
default:
|
||
return 4;
|
||
}
|
||
}
|
||
|
||
/* Print the register regnum, or all registers if regnum is -1 */
|
||
|
||
void
|
||
pa_do_registers_info (int regnum, int fpregs)
|
||
{
|
||
char raw_regs[REGISTER_BYTES];
|
||
int i;
|
||
|
||
/* Make a copy of gdb's save area (may cause actual
|
||
reads from the target). */
|
||
for (i = 0; i < NUM_REGS; i++)
|
||
frame_register_read (deprecated_selected_frame, i, raw_regs + REGISTER_BYTE (i));
|
||
|
||
if (regnum == -1)
|
||
pa_print_registers (raw_regs, regnum, fpregs);
|
||
else if (regnum < FP4_REGNUM)
|
||
{
|
||
long reg_val[2];
|
||
|
||
/* Why is the value not passed through "extract_signed_integer"
|
||
as in "pa_print_registers" below? */
|
||
pa_register_look_aside (raw_regs, regnum, ®_val[0]);
|
||
|
||
if (!is_pa_2)
|
||
{
|
||
printf_unfiltered ("%s %lx\n", REGISTER_NAME (regnum), reg_val[1]);
|
||
}
|
||
else
|
||
{
|
||
/* Fancy % formats to prevent leading zeros. */
|
||
if (reg_val[0] == 0)
|
||
printf_unfiltered ("%s %lx\n", REGISTER_NAME (regnum), reg_val[1]);
|
||
else
|
||
printf_unfiltered ("%s %lx%8.8lx\n", REGISTER_NAME (regnum),
|
||
reg_val[0], reg_val[1]);
|
||
}
|
||
}
|
||
else
|
||
/* Note that real floating point values only start at
|
||
FP4_REGNUM. FP0 and up are just status and error
|
||
registers, which have integral (bit) values. */
|
||
pa_print_fp_reg (regnum);
|
||
}
|
||
|
||
/********** new function ********************/
|
||
void
|
||
pa_do_strcat_registers_info (int regnum, int fpregs, struct ui_file *stream,
|
||
enum precision_type precision)
|
||
{
|
||
char raw_regs[REGISTER_BYTES];
|
||
int i;
|
||
|
||
/* Make a copy of gdb's save area (may cause actual
|
||
reads from the target). */
|
||
for (i = 0; i < NUM_REGS; i++)
|
||
frame_register_read (deprecated_selected_frame, i, raw_regs + REGISTER_BYTE (i));
|
||
|
||
if (regnum == -1)
|
||
pa_strcat_registers (raw_regs, regnum, fpregs, stream);
|
||
|
||
else if (regnum < FP4_REGNUM)
|
||
{
|
||
long reg_val[2];
|
||
|
||
/* Why is the value not passed through "extract_signed_integer"
|
||
as in "pa_print_registers" below? */
|
||
pa_register_look_aside (raw_regs, regnum, ®_val[0]);
|
||
|
||
if (!is_pa_2)
|
||
{
|
||
fprintf_unfiltered (stream, "%s %lx", REGISTER_NAME (regnum), reg_val[1]);
|
||
}
|
||
else
|
||
{
|
||
/* Fancy % formats to prevent leading zeros. */
|
||
if (reg_val[0] == 0)
|
||
fprintf_unfiltered (stream, "%s %lx", REGISTER_NAME (regnum),
|
||
reg_val[1]);
|
||
else
|
||
fprintf_unfiltered (stream, "%s %lx%8.8lx", REGISTER_NAME (regnum),
|
||
reg_val[0], reg_val[1]);
|
||
}
|
||
}
|
||
else
|
||
/* Note that real floating point values only start at
|
||
FP4_REGNUM. FP0 and up are just status and error
|
||
registers, which have integral (bit) values. */
|
||
pa_strcat_fp_reg (regnum, stream, precision);
|
||
}
|
||
|
||
/* If this is a PA2.0 machine, fetch the real 64-bit register
|
||
value. Otherwise use the info from gdb's saved register area.
|
||
|
||
Note that reg_val is really expected to be an array of longs,
|
||
with two elements. */
|
||
static void
|
||
pa_register_look_aside (char *raw_regs, int regnum, long *raw_val)
|
||
{
|
||
static int know_which = 0; /* False */
|
||
|
||
int regaddr;
|
||
unsigned int offset;
|
||
register int i;
|
||
int start;
|
||
|
||
|
||
char *buf = alloca (max_register_size (current_gdbarch));
|
||
long long reg_val;
|
||
|
||
if (!know_which)
|
||
{
|
||
if (CPU_PA_RISC2_0 == sysconf (_SC_CPU_VERSION))
|
||
{
|
||
is_pa_2 = (1 == 1);
|
||
}
|
||
|
||
know_which = 1; /* True */
|
||
}
|
||
|
||
raw_val[0] = 0;
|
||
raw_val[1] = 0;
|
||
|
||
if (!is_pa_2)
|
||
{
|
||
raw_val[1] = *(long *) (raw_regs + REGISTER_BYTE (regnum));
|
||
return;
|
||
}
|
||
|
||
/* Code below copied from hppah-nat.c, with fixes for wide
|
||
registers, using different area of save_state, etc. */
|
||
if (regnum == FLAGS_REGNUM || regnum >= FP0_REGNUM ||
|
||
!HAVE_STRUCT_SAVE_STATE_T || !HAVE_STRUCT_MEMBER_SS_WIDE)
|
||
{
|
||
/* Use narrow regs area of save_state and default macro. */
|
||
offset = U_REGS_OFFSET;
|
||
regaddr = register_addr (regnum, offset);
|
||
start = 1;
|
||
}
|
||
else
|
||
{
|
||
/* Use wide regs area, and calculate registers as 8 bytes wide.
|
||
|
||
We'd like to do this, but current version of "C" doesn't
|
||
permit "offsetof":
|
||
|
||
offset = offsetof(save_state_t, ss_wide);
|
||
|
||
Note that to avoid "C" doing typed pointer arithmetic, we
|
||
have to cast away the type in our offset calculation:
|
||
otherwise we get an offset of 1! */
|
||
|
||
/* NB: save_state_t is not available before HPUX 9.
|
||
The ss_wide field is not available previous to HPUX 10.20,
|
||
so to avoid compile-time warnings, we only compile this for
|
||
PA 2.0 processors. This control path should only be followed
|
||
if we're debugging a PA 2.0 processor, so this should not cause
|
||
problems. */
|
||
|
||
/* #if the following code out so that this file can still be
|
||
compiled on older HPUX boxes (< 10.20) which don't have
|
||
this structure/structure member. */
|
||
#if HAVE_STRUCT_SAVE_STATE_T == 1 && HAVE_STRUCT_MEMBER_SS_WIDE == 1
|
||
save_state_t temp;
|
||
|
||
offset = ((int) &temp.ss_wide) - ((int) &temp);
|
||
regaddr = offset + regnum * 8;
|
||
start = 0;
|
||
#endif
|
||
}
|
||
|
||
for (i = start; i < 2; i++)
|
||
{
|
||
errno = 0;
|
||
raw_val[i] = call_ptrace (PT_RUREGS, PIDGET (inferior_ptid),
|
||
(PTRACE_ARG3_TYPE) regaddr, 0);
|
||
if (errno != 0)
|
||
{
|
||
/* Warning, not error, in case we are attached; sometimes the
|
||
kernel doesn't let us at the registers. */
|
||
char *err = safe_strerror (errno);
|
||
char *msg = alloca (strlen (err) + 128);
|
||
sprintf (msg, "reading register %s: %s", REGISTER_NAME (regnum), err);
|
||
warning (msg);
|
||
goto error_exit;
|
||
}
|
||
|
||
regaddr += sizeof (long);
|
||
}
|
||
|
||
if (regnum == PCOQ_HEAD_REGNUM || regnum == PCOQ_TAIL_REGNUM)
|
||
raw_val[1] &= ~0x3; /* I think we're masking out space bits */
|
||
|
||
error_exit:
|
||
;
|
||
}
|
||
|
||
/* "Info all-reg" command */
|
||
|
||
static void
|
||
pa_print_registers (char *raw_regs, int regnum, int fpregs)
|
||
{
|
||
int i, j;
|
||
/* Alas, we are compiled so that "long long" is 32 bits */
|
||
long raw_val[2];
|
||
long long_val;
|
||
int rows = 48, columns = 2;
|
||
|
||
for (i = 0; i < rows; i++)
|
||
{
|
||
for (j = 0; j < columns; j++)
|
||
{
|
||
/* We display registers in column-major order. */
|
||
int regnum = i + j * rows;
|
||
|
||
/* Q: Why is the value passed through "extract_signed_integer",
|
||
while above, in "pa_do_registers_info" it isn't?
|
||
A: ? */
|
||
pa_register_look_aside (raw_regs, regnum, &raw_val[0]);
|
||
|
||
/* Even fancier % formats to prevent leading zeros
|
||
and still maintain the output in columns. */
|
||
if (!is_pa_2)
|
||
{
|
||
/* Being big-endian, on this machine the low bits
|
||
(the ones we want to look at) are in the second longword. */
|
||
long_val = extract_signed_integer (&raw_val[1], 4);
|
||
printf_filtered ("%10.10s: %8lx ",
|
||
REGISTER_NAME (regnum), long_val);
|
||
}
|
||
else
|
||
{
|
||
/* raw_val = extract_signed_integer(&raw_val, 8); */
|
||
if (raw_val[0] == 0)
|
||
printf_filtered ("%10.10s: %8lx ",
|
||
REGISTER_NAME (regnum), raw_val[1]);
|
||
else
|
||
printf_filtered ("%10.10s: %8lx%8.8lx ",
|
||
REGISTER_NAME (regnum),
|
||
raw_val[0], raw_val[1]);
|
||
}
|
||
}
|
||
printf_unfiltered ("\n");
|
||
}
|
||
|
||
if (fpregs)
|
||
for (i = FP4_REGNUM; i < NUM_REGS; i++) /* FP4_REGNUM == 72 */
|
||
pa_print_fp_reg (i);
|
||
}
|
||
|
||
/************* new function ******************/
|
||
static void
|
||
pa_strcat_registers (char *raw_regs, int regnum, int fpregs,
|
||
struct ui_file *stream)
|
||
{
|
||
int i, j;
|
||
long raw_val[2]; /* Alas, we are compiled so that "long long" is 32 bits */
|
||
long long_val;
|
||
enum precision_type precision;
|
||
|
||
precision = unspecified_precision;
|
||
|
||
for (i = 0; i < 18; i++)
|
||
{
|
||
for (j = 0; j < 4; j++)
|
||
{
|
||
/* Q: Why is the value passed through "extract_signed_integer",
|
||
while above, in "pa_do_registers_info" it isn't?
|
||
A: ? */
|
||
pa_register_look_aside (raw_regs, i + (j * 18), &raw_val[0]);
|
||
|
||
/* Even fancier % formats to prevent leading zeros
|
||
and still maintain the output in columns. */
|
||
if (!is_pa_2)
|
||
{
|
||
/* Being big-endian, on this machine the low bits
|
||
(the ones we want to look at) are in the second longword. */
|
||
long_val = extract_signed_integer (&raw_val[1], 4);
|
||
fprintf_filtered (stream, "%8.8s: %8lx ",
|
||
REGISTER_NAME (i + (j * 18)), long_val);
|
||
}
|
||
else
|
||
{
|
||
/* raw_val = extract_signed_integer(&raw_val, 8); */
|
||
if (raw_val[0] == 0)
|
||
fprintf_filtered (stream, "%8.8s: %8lx ",
|
||
REGISTER_NAME (i + (j * 18)), raw_val[1]);
|
||
else
|
||
fprintf_filtered (stream, "%8.8s: %8lx%8.8lx ",
|
||
REGISTER_NAME (i + (j * 18)), raw_val[0],
|
||
raw_val[1]);
|
||
}
|
||
}
|
||
fprintf_unfiltered (stream, "\n");
|
||
}
|
||
|
||
if (fpregs)
|
||
for (i = FP4_REGNUM; i < NUM_REGS; i++) /* FP4_REGNUM == 72 */
|
||
pa_strcat_fp_reg (i, stream, precision);
|
||
}
|
||
|
||
static void
|
||
pa_print_fp_reg (int i)
|
||
{
|
||
char *raw_buffer = alloca (max_register_size (current_gdbarch));
|
||
char *virtual_buffer = alloca (max_register_size (current_gdbarch));
|
||
|
||
/* Get 32bits of data. */
|
||
frame_register_read (deprecated_selected_frame, i, raw_buffer);
|
||
|
||
/* Put it in the buffer. No conversions are ever necessary. */
|
||
memcpy (virtual_buffer, raw_buffer, REGISTER_RAW_SIZE (i));
|
||
|
||
fputs_filtered (REGISTER_NAME (i), gdb_stdout);
|
||
print_spaces_filtered (8 - strlen (REGISTER_NAME (i)), gdb_stdout);
|
||
fputs_filtered ("(single precision) ", gdb_stdout);
|
||
|
||
val_print (REGISTER_VIRTUAL_TYPE (i), virtual_buffer, 0, 0, gdb_stdout, 0,
|
||
1, 0, Val_pretty_default);
|
||
printf_filtered ("\n");
|
||
|
||
/* If "i" is even, then this register can also be a double-precision
|
||
FP register. Dump it out as such. */
|
||
if ((i % 2) == 0)
|
||
{
|
||
/* Get the data in raw format for the 2nd half. */
|
||
frame_register_read (deprecated_selected_frame, i + 1, raw_buffer);
|
||
|
||
/* Copy it into the appropriate part of the virtual buffer. */
|
||
memcpy (virtual_buffer + REGISTER_RAW_SIZE (i), raw_buffer,
|
||
REGISTER_RAW_SIZE (i));
|
||
|
||
/* Dump it as a double. */
|
||
fputs_filtered (REGISTER_NAME (i), gdb_stdout);
|
||
print_spaces_filtered (8 - strlen (REGISTER_NAME (i)), gdb_stdout);
|
||
fputs_filtered ("(double precision) ", gdb_stdout);
|
||
|
||
val_print (builtin_type_double, virtual_buffer, 0, 0, gdb_stdout, 0,
|
||
1, 0, Val_pretty_default);
|
||
printf_filtered ("\n");
|
||
}
|
||
}
|
||
|
||
/*************** new function ***********************/
|
||
static void
|
||
pa_strcat_fp_reg (int i, struct ui_file *stream, enum precision_type precision)
|
||
{
|
||
char *raw_buffer = alloca (max_register_size (current_gdbarch));
|
||
char *virtual_buffer = alloca (max_register_size (current_gdbarch));
|
||
|
||
fputs_filtered (REGISTER_NAME (i), stream);
|
||
print_spaces_filtered (8 - strlen (REGISTER_NAME (i)), stream);
|
||
|
||
/* Get 32bits of data. */
|
||
frame_register_read (deprecated_selected_frame, i, raw_buffer);
|
||
|
||
/* Put it in the buffer. No conversions are ever necessary. */
|
||
memcpy (virtual_buffer, raw_buffer, REGISTER_RAW_SIZE (i));
|
||
|
||
if (precision == double_precision && (i % 2) == 0)
|
||
{
|
||
|
||
char *raw_buf = alloca (max_register_size (current_gdbarch));
|
||
|
||
/* Get the data in raw format for the 2nd half. */
|
||
frame_register_read (deprecated_selected_frame, i + 1, raw_buf);
|
||
|
||
/* Copy it into the appropriate part of the virtual buffer. */
|
||
memcpy (virtual_buffer + REGISTER_RAW_SIZE (i), raw_buf, REGISTER_RAW_SIZE (i));
|
||
|
||
val_print (builtin_type_double, virtual_buffer, 0, 0, stream, 0,
|
||
1, 0, Val_pretty_default);
|
||
|
||
}
|
||
else
|
||
{
|
||
val_print (REGISTER_VIRTUAL_TYPE (i), virtual_buffer, 0, 0, stream, 0,
|
||
1, 0, Val_pretty_default);
|
||
}
|
||
|
||
}
|
||
|
||
/* Return one if PC is in the call path of a trampoline, else return zero.
|
||
|
||
Note we return one for *any* call trampoline (long-call, arg-reloc), not
|
||
just shared library trampolines (import, export). */
|
||
|
||
int
|
||
hppa_in_solib_call_trampoline (CORE_ADDR pc, char *name)
|
||
{
|
||
struct minimal_symbol *minsym;
|
||
struct unwind_table_entry *u;
|
||
static CORE_ADDR dyncall = 0;
|
||
static CORE_ADDR sr4export = 0;
|
||
|
||
#ifdef GDB_TARGET_IS_HPPA_20W
|
||
/* PA64 has a completely different stub/trampoline scheme. Is it
|
||
better? Maybe. It's certainly harder to determine with any
|
||
certainty that we are in a stub because we can not refer to the
|
||
unwinders to help.
|
||
|
||
The heuristic is simple. Try to lookup the current PC value in th
|
||
minimal symbol table. If that fails, then assume we are not in a
|
||
stub and return.
|
||
|
||
Then see if the PC value falls within the section bounds for the
|
||
section containing the minimal symbol we found in the first
|
||
step. If it does, then assume we are not in a stub and return.
|
||
|
||
Finally peek at the instructions to see if they look like a stub. */
|
||
{
|
||
struct minimal_symbol *minsym;
|
||
asection *sec;
|
||
CORE_ADDR addr;
|
||
int insn, i;
|
||
|
||
minsym = lookup_minimal_symbol_by_pc (pc);
|
||
if (! minsym)
|
||
return 0;
|
||
|
||
sec = SYMBOL_BFD_SECTION (minsym);
|
||
|
||
if (sec->vma <= pc
|
||
&& sec->vma + sec->_cooked_size < pc)
|
||
return 0;
|
||
|
||
/* We might be in a stub. Peek at the instructions. Stubs are 3
|
||
instructions long. */
|
||
insn = read_memory_integer (pc, 4);
|
||
|
||
/* Find out where we think we are within the stub. */
|
||
if ((insn & 0xffffc00e) == 0x53610000)
|
||
addr = pc;
|
||
else if ((insn & 0xffffffff) == 0xe820d000)
|
||
addr = pc - 4;
|
||
else if ((insn & 0xffffc00e) == 0x537b0000)
|
||
addr = pc - 8;
|
||
else
|
||
return 0;
|
||
|
||
/* Now verify each insn in the range looks like a stub instruction. */
|
||
insn = read_memory_integer (addr, 4);
|
||
if ((insn & 0xffffc00e) != 0x53610000)
|
||
return 0;
|
||
|
||
/* Now verify each insn in the range looks like a stub instruction. */
|
||
insn = read_memory_integer (addr + 4, 4);
|
||
if ((insn & 0xffffffff) != 0xe820d000)
|
||
return 0;
|
||
|
||
/* Now verify each insn in the range looks like a stub instruction. */
|
||
insn = read_memory_integer (addr + 8, 4);
|
||
if ((insn & 0xffffc00e) != 0x537b0000)
|
||
return 0;
|
||
|
||
/* Looks like a stub. */
|
||
return 1;
|
||
}
|
||
#endif
|
||
|
||
/* FIXME XXX - dyncall and sr4export must be initialized whenever we get a
|
||
new exec file */
|
||
|
||
/* First see if PC is in one of the two C-library trampolines. */
|
||
if (!dyncall)
|
||
{
|
||
minsym = lookup_minimal_symbol ("$$dyncall", NULL, NULL);
|
||
if (minsym)
|
||
dyncall = SYMBOL_VALUE_ADDRESS (minsym);
|
||
else
|
||
dyncall = -1;
|
||
}
|
||
|
||
if (!sr4export)
|
||
{
|
||
minsym = lookup_minimal_symbol ("_sr4export", NULL, NULL);
|
||
if (minsym)
|
||
sr4export = SYMBOL_VALUE_ADDRESS (minsym);
|
||
else
|
||
sr4export = -1;
|
||
}
|
||
|
||
if (pc == dyncall || pc == sr4export)
|
||
return 1;
|
||
|
||
minsym = lookup_minimal_symbol_by_pc (pc);
|
||
if (minsym && strcmp (DEPRECATED_SYMBOL_NAME (minsym), ".stub") == 0)
|
||
return 1;
|
||
|
||
/* Get the unwind descriptor corresponding to PC, return zero
|
||
if no unwind was found. */
|
||
u = find_unwind_entry (pc);
|
||
if (!u)
|
||
return 0;
|
||
|
||
/* If this isn't a linker stub, then return now. */
|
||
if (u->stub_unwind.stub_type == 0)
|
||
return 0;
|
||
|
||
/* By definition a long-branch stub is a call stub. */
|
||
if (u->stub_unwind.stub_type == LONG_BRANCH)
|
||
return 1;
|
||
|
||
/* The call and return path execute the same instructions within
|
||
an IMPORT stub! So an IMPORT stub is both a call and return
|
||
trampoline. */
|
||
if (u->stub_unwind.stub_type == IMPORT)
|
||
return 1;
|
||
|
||
/* Parameter relocation stubs always have a call path and may have a
|
||
return path. */
|
||
if (u->stub_unwind.stub_type == PARAMETER_RELOCATION
|
||
|| u->stub_unwind.stub_type == EXPORT)
|
||
{
|
||
CORE_ADDR addr;
|
||
|
||
/* Search forward from the current PC until we hit a branch
|
||
or the end of the stub. */
|
||
for (addr = pc; addr <= u->region_end; addr += 4)
|
||
{
|
||
unsigned long insn;
|
||
|
||
insn = read_memory_integer (addr, 4);
|
||
|
||
/* Does it look like a bl? If so then it's the call path, if
|
||
we find a bv or be first, then we're on the return path. */
|
||
if ((insn & 0xfc00e000) == 0xe8000000)
|
||
return 1;
|
||
else if ((insn & 0xfc00e001) == 0xe800c000
|
||
|| (insn & 0xfc000000) == 0xe0000000)
|
||
return 0;
|
||
}
|
||
|
||
/* Should never happen. */
|
||
warning ("Unable to find branch in parameter relocation stub.\n");
|
||
return 0;
|
||
}
|
||
|
||
/* Unknown stub type. For now, just return zero. */
|
||
return 0;
|
||
}
|
||
|
||
/* Return one if PC is in the return path of a trampoline, else return zero.
|
||
|
||
Note we return one for *any* call trampoline (long-call, arg-reloc), not
|
||
just shared library trampolines (import, export). */
|
||
|
||
int
|
||
hppa_in_solib_return_trampoline (CORE_ADDR pc, char *name)
|
||
{
|
||
struct unwind_table_entry *u;
|
||
|
||
/* Get the unwind descriptor corresponding to PC, return zero
|
||
if no unwind was found. */
|
||
u = find_unwind_entry (pc);
|
||
if (!u)
|
||
return 0;
|
||
|
||
/* If this isn't a linker stub or it's just a long branch stub, then
|
||
return zero. */
|
||
if (u->stub_unwind.stub_type == 0 || u->stub_unwind.stub_type == LONG_BRANCH)
|
||
return 0;
|
||
|
||
/* The call and return path execute the same instructions within
|
||
an IMPORT stub! So an IMPORT stub is both a call and return
|
||
trampoline. */
|
||
if (u->stub_unwind.stub_type == IMPORT)
|
||
return 1;
|
||
|
||
/* Parameter relocation stubs always have a call path and may have a
|
||
return path. */
|
||
if (u->stub_unwind.stub_type == PARAMETER_RELOCATION
|
||
|| u->stub_unwind.stub_type == EXPORT)
|
||
{
|
||
CORE_ADDR addr;
|
||
|
||
/* Search forward from the current PC until we hit a branch
|
||
or the end of the stub. */
|
||
for (addr = pc; addr <= u->region_end; addr += 4)
|
||
{
|
||
unsigned long insn;
|
||
|
||
insn = read_memory_integer (addr, 4);
|
||
|
||
/* Does it look like a bl? If so then it's the call path, if
|
||
we find a bv or be first, then we're on the return path. */
|
||
if ((insn & 0xfc00e000) == 0xe8000000)
|
||
return 0;
|
||
else if ((insn & 0xfc00e001) == 0xe800c000
|
||
|| (insn & 0xfc000000) == 0xe0000000)
|
||
return 1;
|
||
}
|
||
|
||
/* Should never happen. */
|
||
warning ("Unable to find branch in parameter relocation stub.\n");
|
||
return 0;
|
||
}
|
||
|
||
/* Unknown stub type. For now, just return zero. */
|
||
return 0;
|
||
|
||
}
|
||
|
||
/* Figure out if PC is in a trampoline, and if so find out where
|
||
the trampoline will jump to. If not in a trampoline, return zero.
|
||
|
||
Simple code examination probably is not a good idea since the code
|
||
sequences in trampolines can also appear in user code.
|
||
|
||
We use unwinds and information from the minimal symbol table to
|
||
determine when we're in a trampoline. This won't work for ELF
|
||
(yet) since it doesn't create stub unwind entries. Whether or
|
||
not ELF will create stub unwinds or normal unwinds for linker
|
||
stubs is still being debated.
|
||
|
||
This should handle simple calls through dyncall or sr4export,
|
||
long calls, argument relocation stubs, and dyncall/sr4export
|
||
calling an argument relocation stub. It even handles some stubs
|
||
used in dynamic executables. */
|
||
|
||
CORE_ADDR
|
||
hppa_skip_trampoline_code (CORE_ADDR pc)
|
||
{
|
||
long orig_pc = pc;
|
||
long prev_inst, curr_inst, loc;
|
||
static CORE_ADDR dyncall = 0;
|
||
static CORE_ADDR dyncall_external = 0;
|
||
static CORE_ADDR sr4export = 0;
|
||
struct minimal_symbol *msym;
|
||
struct unwind_table_entry *u;
|
||
|
||
/* FIXME XXX - dyncall and sr4export must be initialized whenever we get a
|
||
new exec file */
|
||
|
||
if (!dyncall)
|
||
{
|
||
msym = lookup_minimal_symbol ("$$dyncall", NULL, NULL);
|
||
if (msym)
|
||
dyncall = SYMBOL_VALUE_ADDRESS (msym);
|
||
else
|
||
dyncall = -1;
|
||
}
|
||
|
||
if (!dyncall_external)
|
||
{
|
||
msym = lookup_minimal_symbol ("$$dyncall_external", NULL, NULL);
|
||
if (msym)
|
||
dyncall_external = SYMBOL_VALUE_ADDRESS (msym);
|
||
else
|
||
dyncall_external = -1;
|
||
}
|
||
|
||
if (!sr4export)
|
||
{
|
||
msym = lookup_minimal_symbol ("_sr4export", NULL, NULL);
|
||
if (msym)
|
||
sr4export = SYMBOL_VALUE_ADDRESS (msym);
|
||
else
|
||
sr4export = -1;
|
||
}
|
||
|
||
/* Addresses passed to dyncall may *NOT* be the actual address
|
||
of the function. So we may have to do something special. */
|
||
if (pc == dyncall)
|
||
{
|
||
pc = (CORE_ADDR) read_register (22);
|
||
|
||
/* If bit 30 (counting from the left) is on, then pc is the address of
|
||
the PLT entry for this function, not the address of the function
|
||
itself. Bit 31 has meaning too, but only for MPE. */
|
||
if (pc & 0x2)
|
||
pc = (CORE_ADDR) read_memory_integer (pc & ~0x3, TARGET_PTR_BIT / 8);
|
||
}
|
||
if (pc == dyncall_external)
|
||
{
|
||
pc = (CORE_ADDR) read_register (22);
|
||
pc = (CORE_ADDR) read_memory_integer (pc & ~0x3, TARGET_PTR_BIT / 8);
|
||
}
|
||
else if (pc == sr4export)
|
||
pc = (CORE_ADDR) (read_register (22));
|
||
|
||
/* Get the unwind descriptor corresponding to PC, return zero
|
||
if no unwind was found. */
|
||
u = find_unwind_entry (pc);
|
||
if (!u)
|
||
return 0;
|
||
|
||
/* If this isn't a linker stub, then return now. */
|
||
/* elz: attention here! (FIXME) because of a compiler/linker
|
||
error, some stubs which should have a non zero stub_unwind.stub_type
|
||
have unfortunately a value of zero. So this function would return here
|
||
as if we were not in a trampoline. To fix this, we go look at the partial
|
||
symbol information, which reports this guy as a stub.
|
||
(FIXME): Unfortunately, we are not that lucky: it turns out that the
|
||
partial symbol information is also wrong sometimes. This is because
|
||
when it is entered (somread.c::som_symtab_read()) it can happen that
|
||
if the type of the symbol (from the som) is Entry, and the symbol is
|
||
in a shared library, then it can also be a trampoline. This would
|
||
be OK, except that I believe the way they decide if we are ina shared library
|
||
does not work. SOOOO..., even if we have a regular function w/o trampolines
|
||
its minimal symbol can be assigned type mst_solib_trampoline.
|
||
Also, if we find that the symbol is a real stub, then we fix the unwind
|
||
descriptor, and define the stub type to be EXPORT.
|
||
Hopefully this is correct most of the times. */
|
||
if (u->stub_unwind.stub_type == 0)
|
||
{
|
||
|
||
/* elz: NOTE (FIXME!) once the problem with the unwind information is fixed
|
||
we can delete all the code which appears between the lines */
|
||
/*--------------------------------------------------------------------------*/
|
||
msym = lookup_minimal_symbol_by_pc (pc);
|
||
|
||
if (msym == NULL || MSYMBOL_TYPE (msym) != mst_solib_trampoline)
|
||
return orig_pc == pc ? 0 : pc & ~0x3;
|
||
|
||
else if (msym != NULL && MSYMBOL_TYPE (msym) == mst_solib_trampoline)
|
||
{
|
||
struct objfile *objfile;
|
||
struct minimal_symbol *msymbol;
|
||
int function_found = 0;
|
||
|
||
/* go look if there is another minimal symbol with the same name as
|
||
this one, but with type mst_text. This would happen if the msym
|
||
is an actual trampoline, in which case there would be another
|
||
symbol with the same name corresponding to the real function */
|
||
|
||
ALL_MSYMBOLS (objfile, msymbol)
|
||
{
|
||
if (MSYMBOL_TYPE (msymbol) == mst_text
|
||
&& STREQ (DEPRECATED_SYMBOL_NAME (msymbol), DEPRECATED_SYMBOL_NAME (msym)))
|
||
{
|
||
function_found = 1;
|
||
break;
|
||
}
|
||
}
|
||
|
||
if (function_found)
|
||
/* the type of msym is correct (mst_solib_trampoline), but
|
||
the unwind info is wrong, so set it to the correct value */
|
||
u->stub_unwind.stub_type = EXPORT;
|
||
else
|
||
/* the stub type info in the unwind is correct (this is not a
|
||
trampoline), but the msym type information is wrong, it
|
||
should be mst_text. So we need to fix the msym, and also
|
||
get out of this function */
|
||
{
|
||
MSYMBOL_TYPE (msym) = mst_text;
|
||
return orig_pc == pc ? 0 : pc & ~0x3;
|
||
}
|
||
}
|
||
|
||
/*--------------------------------------------------------------------------*/
|
||
}
|
||
|
||
/* It's a stub. Search for a branch and figure out where it goes.
|
||
Note we have to handle multi insn branch sequences like ldil;ble.
|
||
Most (all?) other branches can be determined by examining the contents
|
||
of certain registers and the stack. */
|
||
|
||
loc = pc;
|
||
curr_inst = 0;
|
||
prev_inst = 0;
|
||
while (1)
|
||
{
|
||
/* Make sure we haven't walked outside the range of this stub. */
|
||
if (u != find_unwind_entry (loc))
|
||
{
|
||
warning ("Unable to find branch in linker stub");
|
||
return orig_pc == pc ? 0 : pc & ~0x3;
|
||
}
|
||
|
||
prev_inst = curr_inst;
|
||
curr_inst = read_memory_integer (loc, 4);
|
||
|
||
/* Does it look like a branch external using %r1? Then it's the
|
||
branch from the stub to the actual function. */
|
||
if ((curr_inst & 0xffe0e000) == 0xe0202000)
|
||
{
|
||
/* Yup. See if the previous instruction loaded
|
||
a value into %r1. If so compute and return the jump address. */
|
||
if ((prev_inst & 0xffe00000) == 0x20200000)
|
||
return (extract_21 (prev_inst) + extract_17 (curr_inst)) & ~0x3;
|
||
else
|
||
{
|
||
warning ("Unable to find ldil X,%%r1 before ble Y(%%sr4,%%r1).");
|
||
return orig_pc == pc ? 0 : pc & ~0x3;
|
||
}
|
||
}
|
||
|
||
/* Does it look like a be 0(sr0,%r21)? OR
|
||
Does it look like a be, n 0(sr0,%r21)? OR
|
||
Does it look like a bve (r21)? (this is on PA2.0)
|
||
Does it look like a bve, n(r21)? (this is also on PA2.0)
|
||
That's the branch from an
|
||
import stub to an export stub.
|
||
|
||
It is impossible to determine the target of the branch via
|
||
simple examination of instructions and/or data (consider
|
||
that the address in the plabel may be the address of the
|
||
bind-on-reference routine in the dynamic loader).
|
||
|
||
So we have try an alternative approach.
|
||
|
||
Get the name of the symbol at our current location; it should
|
||
be a stub symbol with the same name as the symbol in the
|
||
shared library.
|
||
|
||
Then lookup a minimal symbol with the same name; we should
|
||
get the minimal symbol for the target routine in the shared
|
||
library as those take precedence of import/export stubs. */
|
||
if ((curr_inst == 0xe2a00000) ||
|
||
(curr_inst == 0xe2a00002) ||
|
||
(curr_inst == 0xeaa0d000) ||
|
||
(curr_inst == 0xeaa0d002))
|
||
{
|
||
struct minimal_symbol *stubsym, *libsym;
|
||
|
||
stubsym = lookup_minimal_symbol_by_pc (loc);
|
||
if (stubsym == NULL)
|
||
{
|
||
warning ("Unable to find symbol for 0x%lx", loc);
|
||
return orig_pc == pc ? 0 : pc & ~0x3;
|
||
}
|
||
|
||
libsym = lookup_minimal_symbol (DEPRECATED_SYMBOL_NAME (stubsym), NULL, NULL);
|
||
if (libsym == NULL)
|
||
{
|
||
warning ("Unable to find library symbol for %s\n",
|
||
DEPRECATED_SYMBOL_NAME (stubsym));
|
||
return orig_pc == pc ? 0 : pc & ~0x3;
|
||
}
|
||
|
||
return SYMBOL_VALUE (libsym);
|
||
}
|
||
|
||
/* Does it look like bl X,%rp or bl X,%r0? Another way to do a
|
||
branch from the stub to the actual function. */
|
||
/*elz */
|
||
else if ((curr_inst & 0xffe0e000) == 0xe8400000
|
||
|| (curr_inst & 0xffe0e000) == 0xe8000000
|
||
|| (curr_inst & 0xffe0e000) == 0xe800A000)
|
||
return (loc + extract_17 (curr_inst) + 8) & ~0x3;
|
||
|
||
/* Does it look like bv (rp)? Note this depends on the
|
||
current stack pointer being the same as the stack
|
||
pointer in the stub itself! This is a branch on from the
|
||
stub back to the original caller. */
|
||
/*else if ((curr_inst & 0xffe0e000) == 0xe840c000) */
|
||
else if ((curr_inst & 0xffe0f000) == 0xe840c000)
|
||
{
|
||
/* Yup. See if the previous instruction loaded
|
||
rp from sp - 8. */
|
||
if (prev_inst == 0x4bc23ff1)
|
||
return (read_memory_integer
|
||
(read_register (SP_REGNUM) - 8, 4)) & ~0x3;
|
||
else
|
||
{
|
||
warning ("Unable to find restore of %%rp before bv (%%rp).");
|
||
return orig_pc == pc ? 0 : pc & ~0x3;
|
||
}
|
||
}
|
||
|
||
/* elz: added this case to capture the new instruction
|
||
at the end of the return part of an export stub used by
|
||
the PA2.0: BVE, n (rp) */
|
||
else if ((curr_inst & 0xffe0f000) == 0xe840d000)
|
||
{
|
||
return (read_memory_integer
|
||
(read_register (SP_REGNUM) - 24, TARGET_PTR_BIT / 8)) & ~0x3;
|
||
}
|
||
|
||
/* What about be,n 0(sr0,%rp)? It's just another way we return to
|
||
the original caller from the stub. Used in dynamic executables. */
|
||
else if (curr_inst == 0xe0400002)
|
||
{
|
||
/* The value we jump to is sitting in sp - 24. But that's
|
||
loaded several instructions before the be instruction.
|
||
I guess we could check for the previous instruction being
|
||
mtsp %r1,%sr0 if we want to do sanity checking. */
|
||
return (read_memory_integer
|
||
(read_register (SP_REGNUM) - 24, TARGET_PTR_BIT / 8)) & ~0x3;
|
||
}
|
||
|
||
/* Haven't found the branch yet, but we're still in the stub.
|
||
Keep looking. */
|
||
loc += 4;
|
||
}
|
||
}
|
||
|
||
|
||
/* For the given instruction (INST), return any adjustment it makes
|
||
to the stack pointer or zero for no adjustment.
|
||
|
||
This only handles instructions commonly found in prologues. */
|
||
|
||
static int
|
||
prologue_inst_adjust_sp (unsigned long inst)
|
||
{
|
||
/* This must persist across calls. */
|
||
static int save_high21;
|
||
|
||
/* The most common way to perform a stack adjustment ldo X(sp),sp */
|
||
if ((inst & 0xffffc000) == 0x37de0000)
|
||
return extract_14 (inst);
|
||
|
||
/* stwm X,D(sp) */
|
||
if ((inst & 0xffe00000) == 0x6fc00000)
|
||
return extract_14 (inst);
|
||
|
||
/* std,ma X,D(sp) */
|
||
if ((inst & 0xffe00008) == 0x73c00008)
|
||
return (inst & 0x1 ? -1 << 13 : 0) | (((inst >> 4) & 0x3ff) << 3);
|
||
|
||
/* addil high21,%r1; ldo low11,(%r1),%r30)
|
||
save high bits in save_high21 for later use. */
|
||
if ((inst & 0xffe00000) == 0x28200000)
|
||
{
|
||
save_high21 = extract_21 (inst);
|
||
return 0;
|
||
}
|
||
|
||
if ((inst & 0xffff0000) == 0x343e0000)
|
||
return save_high21 + extract_14 (inst);
|
||
|
||
/* fstws as used by the HP compilers. */
|
||
if ((inst & 0xffffffe0) == 0x2fd01220)
|
||
return extract_5_load (inst);
|
||
|
||
/* No adjustment. */
|
||
return 0;
|
||
}
|
||
|
||
/* Return nonzero if INST is a branch of some kind, else return zero. */
|
||
|
||
static int
|
||
is_branch (unsigned long inst)
|
||
{
|
||
switch (inst >> 26)
|
||
{
|
||
case 0x20:
|
||
case 0x21:
|
||
case 0x22:
|
||
case 0x23:
|
||
case 0x27:
|
||
case 0x28:
|
||
case 0x29:
|
||
case 0x2a:
|
||
case 0x2b:
|
||
case 0x2f:
|
||
case 0x30:
|
||
case 0x31:
|
||
case 0x32:
|
||
case 0x33:
|
||
case 0x38:
|
||
case 0x39:
|
||
case 0x3a:
|
||
case 0x3b:
|
||
return 1;
|
||
|
||
default:
|
||
return 0;
|
||
}
|
||
}
|
||
|
||
/* Return the register number for a GR which is saved by INST or
|
||
zero it INST does not save a GR. */
|
||
|
||
static int
|
||
inst_saves_gr (unsigned long inst)
|
||
{
|
||
/* Does it look like a stw? */
|
||
if ((inst >> 26) == 0x1a || (inst >> 26) == 0x1b
|
||
|| (inst >> 26) == 0x1f
|
||
|| ((inst >> 26) == 0x1f
|
||
&& ((inst >> 6) == 0xa)))
|
||
return extract_5R_store (inst);
|
||
|
||
/* Does it look like a std? */
|
||
if ((inst >> 26) == 0x1c
|
||
|| ((inst >> 26) == 0x03
|
||
&& ((inst >> 6) & 0xf) == 0xb))
|
||
return extract_5R_store (inst);
|
||
|
||
/* Does it look like a stwm? GCC & HPC may use this in prologues. */
|
||
if ((inst >> 26) == 0x1b)
|
||
return extract_5R_store (inst);
|
||
|
||
/* Does it look like sth or stb? HPC versions 9.0 and later use these
|
||
too. */
|
||
if ((inst >> 26) == 0x19 || (inst >> 26) == 0x18
|
||
|| ((inst >> 26) == 0x3
|
||
&& (((inst >> 6) & 0xf) == 0x8
|
||
|| (inst >> 6) & 0xf) == 0x9))
|
||
return extract_5R_store (inst);
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Return the register number for a FR which is saved by INST or
|
||
zero it INST does not save a FR.
|
||
|
||
Note we only care about full 64bit register stores (that's the only
|
||
kind of stores the prologue will use).
|
||
|
||
FIXME: What about argument stores with the HP compiler in ANSI mode? */
|
||
|
||
static int
|
||
inst_saves_fr (unsigned long inst)
|
||
{
|
||
/* is this an FSTD ? */
|
||
if ((inst & 0xfc00dfc0) == 0x2c001200)
|
||
return extract_5r_store (inst);
|
||
if ((inst & 0xfc000002) == 0x70000002)
|
||
return extract_5R_store (inst);
|
||
/* is this an FSTW ? */
|
||
if ((inst & 0xfc00df80) == 0x24001200)
|
||
return extract_5r_store (inst);
|
||
if ((inst & 0xfc000002) == 0x7c000000)
|
||
return extract_5R_store (inst);
|
||
return 0;
|
||
}
|
||
|
||
/* Advance PC across any function entry prologue instructions
|
||
to reach some "real" code.
|
||
|
||
Use information in the unwind table to determine what exactly should
|
||
be in the prologue. */
|
||
|
||
|
||
CORE_ADDR
|
||
skip_prologue_hard_way (CORE_ADDR pc)
|
||
{
|
||
char buf[4];
|
||
CORE_ADDR orig_pc = pc;
|
||
unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp;
|
||
unsigned long args_stored, status, i, restart_gr, restart_fr;
|
||
struct unwind_table_entry *u;
|
||
|
||
restart_gr = 0;
|
||
restart_fr = 0;
|
||
|
||
restart:
|
||
u = find_unwind_entry (pc);
|
||
if (!u)
|
||
return pc;
|
||
|
||
/* If we are not at the beginning of a function, then return now. */
|
||
if ((pc & ~0x3) != u->region_start)
|
||
return pc;
|
||
|
||
/* This is how much of a frame adjustment we need to account for. */
|
||
stack_remaining = u->Total_frame_size << 3;
|
||
|
||
/* Magic register saves we want to know about. */
|
||
save_rp = u->Save_RP;
|
||
save_sp = u->Save_SP;
|
||
|
||
/* An indication that args may be stored into the stack. Unfortunately
|
||
the HPUX compilers tend to set this in cases where no args were
|
||
stored too!. */
|
||
args_stored = 1;
|
||
|
||
/* Turn the Entry_GR field into a bitmask. */
|
||
save_gr = 0;
|
||
for (i = 3; i < u->Entry_GR + 3; i++)
|
||
{
|
||
/* Frame pointer gets saved into a special location. */
|
||
if (u->Save_SP && i == FP_REGNUM)
|
||
continue;
|
||
|
||
save_gr |= (1 << i);
|
||
}
|
||
save_gr &= ~restart_gr;
|
||
|
||
/* Turn the Entry_FR field into a bitmask too. */
|
||
save_fr = 0;
|
||
for (i = 12; i < u->Entry_FR + 12; i++)
|
||
save_fr |= (1 << i);
|
||
save_fr &= ~restart_fr;
|
||
|
||
/* Loop until we find everything of interest or hit a branch.
|
||
|
||
For unoptimized GCC code and for any HP CC code this will never ever
|
||
examine any user instructions.
|
||
|
||
For optimzied GCC code we're faced with problems. GCC will schedule
|
||
its prologue and make prologue instructions available for delay slot
|
||
filling. The end result is user code gets mixed in with the prologue
|
||
and a prologue instruction may be in the delay slot of the first branch
|
||
or call.
|
||
|
||
Some unexpected things are expected with debugging optimized code, so
|
||
we allow this routine to walk past user instructions in optimized
|
||
GCC code. */
|
||
while (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0
|
||
|| args_stored)
|
||
{
|
||
unsigned int reg_num;
|
||
unsigned long old_stack_remaining, old_save_gr, old_save_fr;
|
||
unsigned long old_save_rp, old_save_sp, next_inst;
|
||
|
||
/* Save copies of all the triggers so we can compare them later
|
||
(only for HPC). */
|
||
old_save_gr = save_gr;
|
||
old_save_fr = save_fr;
|
||
old_save_rp = save_rp;
|
||
old_save_sp = save_sp;
|
||
old_stack_remaining = stack_remaining;
|
||
|
||
status = target_read_memory (pc, buf, 4);
|
||
inst = extract_unsigned_integer (buf, 4);
|
||
|
||
/* Yow! */
|
||
if (status != 0)
|
||
return pc;
|
||
|
||
/* Note the interesting effects of this instruction. */
|
||
stack_remaining -= prologue_inst_adjust_sp (inst);
|
||
|
||
/* There are limited ways to store the return pointer into the
|
||
stack. */
|
||
if (inst == 0x6bc23fd9 || inst == 0x0fc212c1)
|
||
save_rp = 0;
|
||
|
||
/* These are the only ways we save SP into the stack. At this time
|
||
the HP compilers never bother to save SP into the stack. */
|
||
if ((inst & 0xffffc000) == 0x6fc10000
|
||
|| (inst & 0xffffc00c) == 0x73c10008)
|
||
save_sp = 0;
|
||
|
||
/* Are we loading some register with an offset from the argument
|
||
pointer? */
|
||
if ((inst & 0xffe00000) == 0x37a00000
|
||
|| (inst & 0xffffffe0) == 0x081d0240)
|
||
{
|
||
pc += 4;
|
||
continue;
|
||
}
|
||
|
||
/* Account for general and floating-point register saves. */
|
||
reg_num = inst_saves_gr (inst);
|
||
save_gr &= ~(1 << reg_num);
|
||
|
||
/* Ugh. Also account for argument stores into the stack.
|
||
Unfortunately args_stored only tells us that some arguments
|
||
where stored into the stack. Not how many or what kind!
|
||
|
||
This is a kludge as on the HP compiler sets this bit and it
|
||
never does prologue scheduling. So once we see one, skip past
|
||
all of them. We have similar code for the fp arg stores below.
|
||
|
||
FIXME. Can still die if we have a mix of GR and FR argument
|
||
stores! */
|
||
if (reg_num >= (TARGET_PTR_BIT == 64 ? 19 : 23) && reg_num <= 26)
|
||
{
|
||
while (reg_num >= (TARGET_PTR_BIT == 64 ? 19 : 23) && reg_num <= 26)
|
||
{
|
||
pc += 4;
|
||
status = target_read_memory (pc, buf, 4);
|
||
inst = extract_unsigned_integer (buf, 4);
|
||
if (status != 0)
|
||
return pc;
|
||
reg_num = inst_saves_gr (inst);
|
||
}
|
||
args_stored = 0;
|
||
continue;
|
||
}
|
||
|
||
reg_num = inst_saves_fr (inst);
|
||
save_fr &= ~(1 << reg_num);
|
||
|
||
status = target_read_memory (pc + 4, buf, 4);
|
||
next_inst = extract_unsigned_integer (buf, 4);
|
||
|
||
/* Yow! */
|
||
if (status != 0)
|
||
return pc;
|
||
|
||
/* We've got to be read to handle the ldo before the fp register
|
||
save. */
|
||
if ((inst & 0xfc000000) == 0x34000000
|
||
&& inst_saves_fr (next_inst) >= 4
|
||
&& inst_saves_fr (next_inst) <= (TARGET_PTR_BIT == 64 ? 11 : 7))
|
||
{
|
||
/* So we drop into the code below in a reasonable state. */
|
||
reg_num = inst_saves_fr (next_inst);
|
||
pc -= 4;
|
||
}
|
||
|
||
/* Ugh. Also account for argument stores into the stack.
|
||
This is a kludge as on the HP compiler sets this bit and it
|
||
never does prologue scheduling. So once we see one, skip past
|
||
all of them. */
|
||
if (reg_num >= 4 && reg_num <= (TARGET_PTR_BIT == 64 ? 11 : 7))
|
||
{
|
||
while (reg_num >= 4 && reg_num <= (TARGET_PTR_BIT == 64 ? 11 : 7))
|
||
{
|
||
pc += 8;
|
||
status = target_read_memory (pc, buf, 4);
|
||
inst = extract_unsigned_integer (buf, 4);
|
||
if (status != 0)
|
||
return pc;
|
||
if ((inst & 0xfc000000) != 0x34000000)
|
||
break;
|
||
status = target_read_memory (pc + 4, buf, 4);
|
||
next_inst = extract_unsigned_integer (buf, 4);
|
||
if (status != 0)
|
||
return pc;
|
||
reg_num = inst_saves_fr (next_inst);
|
||
}
|
||
args_stored = 0;
|
||
continue;
|
||
}
|
||
|
||
/* Quit if we hit any kind of branch. This can happen if a prologue
|
||
instruction is in the delay slot of the first call/branch. */
|
||
if (is_branch (inst))
|
||
break;
|
||
|
||
/* What a crock. The HP compilers set args_stored even if no
|
||
arguments were stored into the stack (boo hiss). This could
|
||
cause this code to then skip a bunch of user insns (up to the
|
||
first branch).
|
||
|
||
To combat this we try to identify when args_stored was bogusly
|
||
set and clear it. We only do this when args_stored is nonzero,
|
||
all other resources are accounted for, and nothing changed on
|
||
this pass. */
|
||
if (args_stored
|
||
&& !(save_gr || save_fr || save_rp || save_sp || stack_remaining > 0)
|
||
&& old_save_gr == save_gr && old_save_fr == save_fr
|
||
&& old_save_rp == save_rp && old_save_sp == save_sp
|
||
&& old_stack_remaining == stack_remaining)
|
||
break;
|
||
|
||
/* Bump the PC. */
|
||
pc += 4;
|
||
}
|
||
|
||
/* We've got a tenative location for the end of the prologue. However
|
||
because of limitations in the unwind descriptor mechanism we may
|
||
have went too far into user code looking for the save of a register
|
||
that does not exist. So, if there registers we expected to be saved
|
||
but never were, mask them out and restart.
|
||
|
||
This should only happen in optimized code, and should be very rare. */
|
||
if (save_gr || (save_fr && !(restart_fr || restart_gr)))
|
||
{
|
||
pc = orig_pc;
|
||
restart_gr = save_gr;
|
||
restart_fr = save_fr;
|
||
goto restart;
|
||
}
|
||
|
||
return pc;
|
||
}
|
||
|
||
|
||
/* Return the address of the PC after the last prologue instruction if
|
||
we can determine it from the debug symbols. Else return zero. */
|
||
|
||
static CORE_ADDR
|
||
after_prologue (CORE_ADDR pc)
|
||
{
|
||
struct symtab_and_line sal;
|
||
CORE_ADDR func_addr, func_end;
|
||
struct symbol *f;
|
||
|
||
/* If we can not find the symbol in the partial symbol table, then
|
||
there is no hope we can determine the function's start address
|
||
with this code. */
|
||
if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
|
||
return 0;
|
||
|
||
/* Get the line associated with FUNC_ADDR. */
|
||
sal = find_pc_line (func_addr, 0);
|
||
|
||
/* There are only two cases to consider. First, the end of the source line
|
||
is within the function bounds. In that case we return the end of the
|
||
source line. Second is the end of the source line extends beyond the
|
||
bounds of the current function. We need to use the slow code to
|
||
examine instructions in that case.
|
||
|
||
Anything else is simply a bug elsewhere. Fixing it here is absolutely
|
||
the wrong thing to do. In fact, it should be entirely possible for this
|
||
function to always return zero since the slow instruction scanning code
|
||
is supposed to *always* work. If it does not, then it is a bug. */
|
||
if (sal.end < func_end)
|
||
return sal.end;
|
||
else
|
||
return 0;
|
||
}
|
||
|
||
/* To skip prologues, I use this predicate. Returns either PC itself
|
||
if the code at PC does not look like a function prologue; otherwise
|
||
returns an address that (if we're lucky) follows the prologue. If
|
||
LENIENT, then we must skip everything which is involved in setting
|
||
up the frame (it's OK to skip more, just so long as we don't skip
|
||
anything which might clobber the registers which are being saved.
|
||
Currently we must not skip more on the alpha, but we might the lenient
|
||
stuff some day. */
|
||
|
||
CORE_ADDR
|
||
hppa_skip_prologue (CORE_ADDR pc)
|
||
{
|
||
unsigned long inst;
|
||
int offset;
|
||
CORE_ADDR post_prologue_pc;
|
||
char buf[4];
|
||
|
||
/* See if we can determine the end of the prologue via the symbol table.
|
||
If so, then return either PC, or the PC after the prologue, whichever
|
||
is greater. */
|
||
|
||
post_prologue_pc = after_prologue (pc);
|
||
|
||
/* If after_prologue returned a useful address, then use it. Else
|
||
fall back on the instruction skipping code.
|
||
|
||
Some folks have claimed this causes problems because the breakpoint
|
||
may be the first instruction of the prologue. If that happens, then
|
||
the instruction skipping code has a bug that needs to be fixed. */
|
||
if (post_prologue_pc != 0)
|
||
return max (pc, post_prologue_pc);
|
||
else
|
||
return (skip_prologue_hard_way (pc));
|
||
}
|
||
|
||
/* Put here the code to store, into a struct frame_saved_regs,
|
||
the addresses of the saved registers of frame described by FRAME_INFO.
|
||
This includes special registers such as pc and fp saved in special
|
||
ways in the stack frame. sp is even more special:
|
||
the address we return for it IS the sp for the next frame. */
|
||
|
||
void
|
||
hppa_frame_find_saved_regs (struct frame_info *frame_info,
|
||
struct frame_saved_regs *frame_saved_regs)
|
||
{
|
||
CORE_ADDR pc;
|
||
struct unwind_table_entry *u;
|
||
unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp;
|
||
int status, i, reg;
|
||
char buf[4];
|
||
int fp_loc = -1;
|
||
int final_iteration;
|
||
|
||
/* Zero out everything. */
|
||
memset (frame_saved_regs, '\0', sizeof (struct frame_saved_regs));
|
||
|
||
/* Call dummy frames always look the same, so there's no need to
|
||
examine the dummy code to determine locations of saved registers;
|
||
instead, let find_dummy_frame_regs fill in the correct offsets
|
||
for the saved registers. */
|
||
if ((frame_info->pc >= frame_info->frame
|
||
&& frame_info->pc <= (frame_info->frame
|
||
/* A call dummy is sized in words, but it is
|
||
actually a series of instructions. Account
|
||
for that scaling factor. */
|
||
+ ((REGISTER_SIZE / INSTRUCTION_SIZE)
|
||
* CALL_DUMMY_LENGTH)
|
||
/* Similarly we have to account for 64bit
|
||
wide register saves. */
|
||
+ (32 * REGISTER_SIZE)
|
||
/* We always consider FP regs 8 bytes long. */
|
||
+ (NUM_REGS - FP0_REGNUM) * 8
|
||
/* Similarly we have to account for 64bit
|
||
wide register saves. */
|
||
+ (6 * REGISTER_SIZE))))
|
||
find_dummy_frame_regs (frame_info, frame_saved_regs);
|
||
|
||
/* Interrupt handlers are special too. They lay out the register
|
||
state in the exact same order as the register numbers in GDB. */
|
||
if (pc_in_interrupt_handler (frame_info->pc))
|
||
{
|
||
for (i = 0; i < NUM_REGS; i++)
|
||
{
|
||
/* SP is a little special. */
|
||
if (i == SP_REGNUM)
|
||
frame_saved_regs->regs[SP_REGNUM]
|
||
= read_memory_integer (frame_info->frame + SP_REGNUM * 4,
|
||
TARGET_PTR_BIT / 8);
|
||
else
|
||
frame_saved_regs->regs[i] = frame_info->frame + i * 4;
|
||
}
|
||
return;
|
||
}
|
||
|
||
#ifdef FRAME_FIND_SAVED_REGS_IN_SIGTRAMP
|
||
/* Handle signal handler callers. */
|
||
if ((get_frame_type (frame_info) == SIGTRAMP_FRAME))
|
||
{
|
||
FRAME_FIND_SAVED_REGS_IN_SIGTRAMP (frame_info, frame_saved_regs);
|
||
return;
|
||
}
|
||
#endif
|
||
|
||
/* Get the starting address of the function referred to by the PC
|
||
saved in frame. */
|
||
pc = get_pc_function_start (frame_info->pc);
|
||
|
||
/* Yow! */
|
||
u = find_unwind_entry (pc);
|
||
if (!u)
|
||
return;
|
||
|
||
/* This is how much of a frame adjustment we need to account for. */
|
||
stack_remaining = u->Total_frame_size << 3;
|
||
|
||
/* Magic register saves we want to know about. */
|
||
save_rp = u->Save_RP;
|
||
save_sp = u->Save_SP;
|
||
|
||
/* Turn the Entry_GR field into a bitmask. */
|
||
save_gr = 0;
|
||
for (i = 3; i < u->Entry_GR + 3; i++)
|
||
{
|
||
/* Frame pointer gets saved into a special location. */
|
||
if (u->Save_SP && i == FP_REGNUM)
|
||
continue;
|
||
|
||
save_gr |= (1 << i);
|
||
}
|
||
|
||
/* Turn the Entry_FR field into a bitmask too. */
|
||
save_fr = 0;
|
||
for (i = 12; i < u->Entry_FR + 12; i++)
|
||
save_fr |= (1 << i);
|
||
|
||
/* The frame always represents the value of %sp at entry to the
|
||
current function (and is thus equivalent to the "saved" stack
|
||
pointer. */
|
||
frame_saved_regs->regs[SP_REGNUM] = frame_info->frame;
|
||
|
||
/* Loop until we find everything of interest or hit a branch.
|
||
|
||
For unoptimized GCC code and for any HP CC code this will never ever
|
||
examine any user instructions.
|
||
|
||
For optimized GCC code we're faced with problems. GCC will schedule
|
||
its prologue and make prologue instructions available for delay slot
|
||
filling. The end result is user code gets mixed in with the prologue
|
||
and a prologue instruction may be in the delay slot of the first branch
|
||
or call.
|
||
|
||
Some unexpected things are expected with debugging optimized code, so
|
||
we allow this routine to walk past user instructions in optimized
|
||
GCC code. */
|
||
final_iteration = 0;
|
||
while ((save_gr || save_fr || save_rp || save_sp || stack_remaining > 0)
|
||
&& pc <= frame_info->pc)
|
||
{
|
||
status = target_read_memory (pc, buf, 4);
|
||
inst = extract_unsigned_integer (buf, 4);
|
||
|
||
/* Yow! */
|
||
if (status != 0)
|
||
return;
|
||
|
||
/* Note the interesting effects of this instruction. */
|
||
stack_remaining -= prologue_inst_adjust_sp (inst);
|
||
|
||
/* There are limited ways to store the return pointer into the
|
||
stack. */
|
||
if (inst == 0x6bc23fd9) /* stw rp,-0x14(sr0,sp) */
|
||
{
|
||
save_rp = 0;
|
||
frame_saved_regs->regs[RP_REGNUM] = frame_info->frame - 20;
|
||
}
|
||
else if (inst == 0x0fc212c1) /* std rp,-0x10(sr0,sp) */
|
||
{
|
||
save_rp = 0;
|
||
frame_saved_regs->regs[RP_REGNUM] = frame_info->frame - 16;
|
||
}
|
||
|
||
/* Note if we saved SP into the stack. This also happens to indicate
|
||
the location of the saved frame pointer. */
|
||
if ( (inst & 0xffffc000) == 0x6fc10000 /* stw,ma r1,N(sr0,sp) */
|
||
|| (inst & 0xffffc00c) == 0x73c10008) /* std,ma r1,N(sr0,sp) */
|
||
{
|
||
frame_saved_regs->regs[FP_REGNUM] = frame_info->frame;
|
||
save_sp = 0;
|
||
}
|
||
|
||
/* Account for general and floating-point register saves. */
|
||
reg = inst_saves_gr (inst);
|
||
if (reg >= 3 && reg <= 18
|
||
&& (!u->Save_SP || reg != FP_REGNUM))
|
||
{
|
||
save_gr &= ~(1 << reg);
|
||
|
||
/* stwm with a positive displacement is a *post modify*. */
|
||
if ((inst >> 26) == 0x1b
|
||
&& extract_14 (inst) >= 0)
|
||
frame_saved_regs->regs[reg] = frame_info->frame;
|
||
/* A std has explicit post_modify forms. */
|
||
else if ((inst & 0xfc00000c0) == 0x70000008)
|
||
frame_saved_regs->regs[reg] = frame_info->frame;
|
||
else
|
||
{
|
||
CORE_ADDR offset;
|
||
|
||
if ((inst >> 26) == 0x1c)
|
||
offset = (inst & 0x1 ? -1 << 13 : 0) | (((inst >> 4) & 0x3ff) << 3);
|
||
else if ((inst >> 26) == 0x03)
|
||
offset = low_sign_extend (inst & 0x1f, 5);
|
||
else
|
||
offset = extract_14 (inst);
|
||
|
||
/* Handle code with and without frame pointers. */
|
||
if (u->Save_SP)
|
||
frame_saved_regs->regs[reg]
|
||
= frame_info->frame + offset;
|
||
else
|
||
frame_saved_regs->regs[reg]
|
||
= (frame_info->frame + (u->Total_frame_size << 3)
|
||
+ offset);
|
||
}
|
||
}
|
||
|
||
|
||
/* GCC handles callee saved FP regs a little differently.
|
||
|
||
It emits an instruction to put the value of the start of
|
||
the FP store area into %r1. It then uses fstds,ma with
|
||
a basereg of %r1 for the stores.
|
||
|
||
HP CC emits them at the current stack pointer modifying
|
||
the stack pointer as it stores each register. */
|
||
|
||
/* ldo X(%r3),%r1 or ldo X(%r30),%r1. */
|
||
if ((inst & 0xffffc000) == 0x34610000
|
||
|| (inst & 0xffffc000) == 0x37c10000)
|
||
fp_loc = extract_14 (inst);
|
||
|
||
reg = inst_saves_fr (inst);
|
||
if (reg >= 12 && reg <= 21)
|
||
{
|
||
/* Note +4 braindamage below is necessary because the FP status
|
||
registers are internally 8 registers rather than the expected
|
||
4 registers. */
|
||
save_fr &= ~(1 << reg);
|
||
if (fp_loc == -1)
|
||
{
|
||
/* 1st HP CC FP register store. After this instruction
|
||
we've set enough state that the GCC and HPCC code are
|
||
both handled in the same manner. */
|
||
frame_saved_regs->regs[reg + FP4_REGNUM + 4] = frame_info->frame;
|
||
fp_loc = 8;
|
||
}
|
||
else
|
||
{
|
||
frame_saved_regs->regs[reg + FP0_REGNUM + 4]
|
||
= frame_info->frame + fp_loc;
|
||
fp_loc += 8;
|
||
}
|
||
}
|
||
|
||
/* Quit if we hit any kind of branch the previous iteration. */
|
||
if (final_iteration)
|
||
break;
|
||
|
||
/* We want to look precisely one instruction beyond the branch
|
||
if we have not found everything yet. */
|
||
if (is_branch (inst))
|
||
final_iteration = 1;
|
||
|
||
/* Bump the PC. */
|
||
pc += 4;
|
||
}
|
||
}
|
||
|
||
|
||
/* Exception handling support for the HP-UX ANSI C++ compiler.
|
||
The compiler (aCC) provides a callback for exception events;
|
||
GDB can set a breakpoint on this callback and find out what
|
||
exception event has occurred. */
|
||
|
||
/* The name of the hook to be set to point to the callback function */
|
||
static char HP_ACC_EH_notify_hook[] = "__eh_notify_hook";
|
||
/* The name of the function to be used to set the hook value */
|
||
static char HP_ACC_EH_set_hook_value[] = "__eh_set_hook_value";
|
||
/* The name of the callback function in end.o */
|
||
static char HP_ACC_EH_notify_callback[] = "__d_eh_notify_callback";
|
||
/* Name of function in end.o on which a break is set (called by above) */
|
||
static char HP_ACC_EH_break[] = "__d_eh_break";
|
||
/* Name of flag (in end.o) that enables catching throws */
|
||
static char HP_ACC_EH_catch_throw[] = "__d_eh_catch_throw";
|
||
/* Name of flag (in end.o) that enables catching catching */
|
||
static char HP_ACC_EH_catch_catch[] = "__d_eh_catch_catch";
|
||
/* The enum used by aCC */
|
||
typedef enum
|
||
{
|
||
__EH_NOTIFY_THROW,
|
||
__EH_NOTIFY_CATCH
|
||
}
|
||
__eh_notification;
|
||
|
||
/* Is exception-handling support available with this executable? */
|
||
static int hp_cxx_exception_support = 0;
|
||
/* Has the initialize function been run? */
|
||
int hp_cxx_exception_support_initialized = 0;
|
||
/* Similar to above, but imported from breakpoint.c -- non-target-specific */
|
||
extern int exception_support_initialized;
|
||
/* Address of __eh_notify_hook */
|
||
static CORE_ADDR eh_notify_hook_addr = 0;
|
||
/* Address of __d_eh_notify_callback */
|
||
static CORE_ADDR eh_notify_callback_addr = 0;
|
||
/* Address of __d_eh_break */
|
||
static CORE_ADDR eh_break_addr = 0;
|
||
/* Address of __d_eh_catch_catch */
|
||
static CORE_ADDR eh_catch_catch_addr = 0;
|
||
/* Address of __d_eh_catch_throw */
|
||
static CORE_ADDR eh_catch_throw_addr = 0;
|
||
/* Sal for __d_eh_break */
|
||
static struct symtab_and_line *break_callback_sal = 0;
|
||
|
||
/* Code in end.c expects __d_pid to be set in the inferior,
|
||
otherwise __d_eh_notify_callback doesn't bother to call
|
||
__d_eh_break! So we poke the pid into this symbol
|
||
ourselves.
|
||
0 => success
|
||
1 => failure */
|
||
int
|
||
setup_d_pid_in_inferior (void)
|
||
{
|
||
CORE_ADDR anaddr;
|
||
struct minimal_symbol *msymbol;
|
||
char buf[4]; /* FIXME 32x64? */
|
||
|
||
/* Slam the pid of the process into __d_pid; failing is only a warning! */
|
||
msymbol = lookup_minimal_symbol ("__d_pid", NULL, symfile_objfile);
|
||
if (msymbol == NULL)
|
||
{
|
||
warning ("Unable to find __d_pid symbol in object file.");
|
||
warning ("Suggest linking executable with -g (links in /opt/langtools/lib/end.o).");
|
||
return 1;
|
||
}
|
||
|
||
anaddr = SYMBOL_VALUE_ADDRESS (msymbol);
|
||
store_unsigned_integer (buf, 4, PIDGET (inferior_ptid)); /* FIXME 32x64? */
|
||
if (target_write_memory (anaddr, buf, 4)) /* FIXME 32x64? */
|
||
{
|
||
warning ("Unable to write __d_pid");
|
||
warning ("Suggest linking executable with -g (links in /opt/langtools/lib/end.o).");
|
||
return 1;
|
||
}
|
||
return 0;
|
||
}
|
||
|
||
/* Initialize exception catchpoint support by looking for the
|
||
necessary hooks/callbacks in end.o, etc., and set the hook value to
|
||
point to the required debug function
|
||
|
||
Return 0 => failure
|
||
1 => success */
|
||
|
||
static int
|
||
initialize_hp_cxx_exception_support (void)
|
||
{
|
||
struct symtabs_and_lines sals;
|
||
struct cleanup *old_chain;
|
||
struct cleanup *canonical_strings_chain = NULL;
|
||
int i;
|
||
char *addr_start;
|
||
char *addr_end = NULL;
|
||
char **canonical = (char **) NULL;
|
||
int thread = -1;
|
||
struct symbol *sym = NULL;
|
||
struct minimal_symbol *msym = NULL;
|
||
struct objfile *objfile;
|
||
asection *shlib_info;
|
||
|
||
/* Detect and disallow recursion. On HP-UX with aCC, infinite
|
||
recursion is a possibility because finding the hook for exception
|
||
callbacks involves making a call in the inferior, which means
|
||
re-inserting breakpoints which can re-invoke this code */
|
||
|
||
static int recurse = 0;
|
||
if (recurse > 0)
|
||
{
|
||
hp_cxx_exception_support_initialized = 0;
|
||
exception_support_initialized = 0;
|
||
return 0;
|
||
}
|
||
|
||
hp_cxx_exception_support = 0;
|
||
|
||
/* First check if we have seen any HP compiled objects; if not,
|
||
it is very unlikely that HP's idiosyncratic callback mechanism
|
||
for exception handling debug support will be available!
|
||
This will percolate back up to breakpoint.c, where our callers
|
||
will decide to try the g++ exception-handling support instead. */
|
||
if (!hp_som_som_object_present)
|
||
return 0;
|
||
|
||
/* We have a SOM executable with SOM debug info; find the hooks */
|
||
|
||
/* First look for the notify hook provided by aCC runtime libs */
|
||
/* If we find this symbol, we conclude that the executable must
|
||
have HP aCC exception support built in. If this symbol is not
|
||
found, even though we're a HP SOM-SOM file, we may have been
|
||
built with some other compiler (not aCC). This results percolates
|
||
back up to our callers in breakpoint.c which can decide to
|
||
try the g++ style of exception support instead.
|
||
If this symbol is found but the other symbols we require are
|
||
not found, there is something weird going on, and g++ support
|
||
should *not* be tried as an alternative.
|
||
|
||
ASSUMPTION: Only HP aCC code will have __eh_notify_hook defined.
|
||
ASSUMPTION: HP aCC and g++ modules cannot be linked together. */
|
||
|
||
/* libCsup has this hook; it'll usually be non-debuggable */
|
||
msym = lookup_minimal_symbol (HP_ACC_EH_notify_hook, NULL, NULL);
|
||
if (msym)
|
||
{
|
||
eh_notify_hook_addr = SYMBOL_VALUE_ADDRESS (msym);
|
||
hp_cxx_exception_support = 1;
|
||
}
|
||
else
|
||
{
|
||
warning ("Unable to find exception callback hook (%s).", HP_ACC_EH_notify_hook);
|
||
warning ("Executable may not have been compiled debuggable with HP aCC.");
|
||
warning ("GDB will be unable to intercept exception events.");
|
||
eh_notify_hook_addr = 0;
|
||
hp_cxx_exception_support = 0;
|
||
return 0;
|
||
}
|
||
|
||
/* Next look for the notify callback routine in end.o */
|
||
/* This is always available in the SOM symbol dictionary if end.o is linked in */
|
||
msym = lookup_minimal_symbol (HP_ACC_EH_notify_callback, NULL, NULL);
|
||
if (msym)
|
||
{
|
||
eh_notify_callback_addr = SYMBOL_VALUE_ADDRESS (msym);
|
||
hp_cxx_exception_support = 1;
|
||
}
|
||
else
|
||
{
|
||
warning ("Unable to find exception callback routine (%s).", HP_ACC_EH_notify_callback);
|
||
warning ("Suggest linking executable with -g (links in /opt/langtools/lib/end.o).");
|
||
warning ("GDB will be unable to intercept exception events.");
|
||
eh_notify_callback_addr = 0;
|
||
return 0;
|
||
}
|
||
|
||
#ifndef GDB_TARGET_IS_HPPA_20W
|
||
/* Check whether the executable is dynamically linked or archive bound */
|
||
/* With an archive-bound executable we can use the raw addresses we find
|
||
for the callback function, etc. without modification. For an executable
|
||
with shared libraries, we have to do more work to find the plabel, which
|
||
can be the target of a call through $$dyncall from the aCC runtime support
|
||
library (libCsup) which is linked shared by default by aCC. */
|
||
/* This test below was copied from somsolib.c/somread.c. It may not be a very
|
||
reliable one to test that an executable is linked shared. pai/1997-07-18 */
|
||
shlib_info = bfd_get_section_by_name (symfile_objfile->obfd, "$SHLIB_INFO$");
|
||
if (shlib_info && (bfd_section_size (symfile_objfile->obfd, shlib_info) != 0))
|
||
{
|
||
/* The minsym we have has the local code address, but that's not the
|
||
plabel that can be used by an inter-load-module call. */
|
||
/* Find solib handle for main image (which has end.o), and use that
|
||
and the min sym as arguments to __d_shl_get() (which does the equivalent
|
||
of shl_findsym()) to find the plabel. */
|
||
|
||
args_for_find_stub args;
|
||
static char message[] = "Error while finding exception callback hook:\n";
|
||
|
||
args.solib_handle = som_solib_get_solib_by_pc (eh_notify_callback_addr);
|
||
args.msym = msym;
|
||
args.return_val = 0;
|
||
|
||
recurse++;
|
||
catch_errors (cover_find_stub_with_shl_get, &args, message,
|
||
RETURN_MASK_ALL);
|
||
eh_notify_callback_addr = args.return_val;
|
||
recurse--;
|
||
|
||
exception_catchpoints_are_fragile = 1;
|
||
|
||
if (!eh_notify_callback_addr)
|
||
{
|
||
/* We can get here either if there is no plabel in the export list
|
||
for the main image, or if something strange happened (?) */
|
||
warning ("Couldn't find a plabel (indirect function label) for the exception callback.");
|
||
warning ("GDB will not be able to intercept exception events.");
|
||
return 0;
|
||
}
|
||
}
|
||
else
|
||
exception_catchpoints_are_fragile = 0;
|
||
#endif
|
||
|
||
/* Now, look for the breakpointable routine in end.o */
|
||
/* This should also be available in the SOM symbol dict. if end.o linked in */
|
||
msym = lookup_minimal_symbol (HP_ACC_EH_break, NULL, NULL);
|
||
if (msym)
|
||
{
|
||
eh_break_addr = SYMBOL_VALUE_ADDRESS (msym);
|
||
hp_cxx_exception_support = 1;
|
||
}
|
||
else
|
||
{
|
||
warning ("Unable to find exception callback routine to set breakpoint (%s).", HP_ACC_EH_break);
|
||
warning ("Suggest linking executable with -g (link in /opt/langtools/lib/end.o).");
|
||
warning ("GDB will be unable to intercept exception events.");
|
||
eh_break_addr = 0;
|
||
return 0;
|
||
}
|
||
|
||
/* Next look for the catch enable flag provided in end.o */
|
||
sym = lookup_symbol (HP_ACC_EH_catch_catch, (struct block *) NULL,
|
||
VAR_NAMESPACE, 0, (struct symtab **) NULL);
|
||
if (sym) /* sometimes present in debug info */
|
||
{
|
||
eh_catch_catch_addr = SYMBOL_VALUE_ADDRESS (sym);
|
||
hp_cxx_exception_support = 1;
|
||
}
|
||
else
|
||
/* otherwise look in SOM symbol dict. */
|
||
{
|
||
msym = lookup_minimal_symbol (HP_ACC_EH_catch_catch, NULL, NULL);
|
||
if (msym)
|
||
{
|
||
eh_catch_catch_addr = SYMBOL_VALUE_ADDRESS (msym);
|
||
hp_cxx_exception_support = 1;
|
||
}
|
||
else
|
||
{
|
||
warning ("Unable to enable interception of exception catches.");
|
||
warning ("Executable may not have been compiled debuggable with HP aCC.");
|
||
warning ("Suggest linking executable with -g (link in /opt/langtools/lib/end.o).");
|
||
return 0;
|
||
}
|
||
}
|
||
|
||
/* Next look for the catch enable flag provided end.o */
|
||
sym = lookup_symbol (HP_ACC_EH_catch_catch, (struct block *) NULL,
|
||
VAR_NAMESPACE, 0, (struct symtab **) NULL);
|
||
if (sym) /* sometimes present in debug info */
|
||
{
|
||
eh_catch_throw_addr = SYMBOL_VALUE_ADDRESS (sym);
|
||
hp_cxx_exception_support = 1;
|
||
}
|
||
else
|
||
/* otherwise look in SOM symbol dict. */
|
||
{
|
||
msym = lookup_minimal_symbol (HP_ACC_EH_catch_throw, NULL, NULL);
|
||
if (msym)
|
||
{
|
||
eh_catch_throw_addr = SYMBOL_VALUE_ADDRESS (msym);
|
||
hp_cxx_exception_support = 1;
|
||
}
|
||
else
|
||
{
|
||
warning ("Unable to enable interception of exception throws.");
|
||
warning ("Executable may not have been compiled debuggable with HP aCC.");
|
||
warning ("Suggest linking executable with -g (link in /opt/langtools/lib/end.o).");
|
||
return 0;
|
||
}
|
||
}
|
||
|
||
/* Set the flags */
|
||
hp_cxx_exception_support = 2; /* everything worked so far */
|
||
hp_cxx_exception_support_initialized = 1;
|
||
exception_support_initialized = 1;
|
||
|
||
return 1;
|
||
}
|
||
|
||
/* Target operation for enabling or disabling interception of
|
||
exception events.
|
||
KIND is either EX_EVENT_THROW or EX_EVENT_CATCH
|
||
ENABLE is either 0 (disable) or 1 (enable).
|
||
Return value is NULL if no support found;
|
||
-1 if something went wrong,
|
||
or a pointer to a symtab/line struct if the breakpointable
|
||
address was found. */
|
||
|
||
struct symtab_and_line *
|
||
child_enable_exception_callback (enum exception_event_kind kind, int enable)
|
||
{
|
||
char buf[4];
|
||
|
||
if (!exception_support_initialized || !hp_cxx_exception_support_initialized)
|
||
if (!initialize_hp_cxx_exception_support ())
|
||
return NULL;
|
||
|
||
switch (hp_cxx_exception_support)
|
||
{
|
||
case 0:
|
||
/* Assuming no HP support at all */
|
||
return NULL;
|
||
case 1:
|
||
/* HP support should be present, but something went wrong */
|
||
return (struct symtab_and_line *) -1; /* yuck! */
|
||
/* there may be other cases in the future */
|
||
}
|
||
|
||
/* Set the EH hook to point to the callback routine */
|
||
store_unsigned_integer (buf, 4, enable ? eh_notify_callback_addr : 0); /* FIXME 32x64 problem */
|
||
/* pai: (temp) FIXME should there be a pack operation first? */
|
||
if (target_write_memory (eh_notify_hook_addr, buf, 4)) /* FIXME 32x64 problem */
|
||
{
|
||
warning ("Could not write to target memory for exception event callback.");
|
||
warning ("Interception of exception events may not work.");
|
||
return (struct symtab_and_line *) -1;
|
||
}
|
||
if (enable)
|
||
{
|
||
/* Ensure that __d_pid is set up correctly -- end.c code checks this. :-( */
|
||
if (PIDGET (inferior_ptid) > 0)
|
||
{
|
||
if (setup_d_pid_in_inferior ())
|
||
return (struct symtab_and_line *) -1;
|
||
}
|
||
else
|
||
{
|
||
warning ("Internal error: Invalid inferior pid? Cannot intercept exception events.");
|
||
return (struct symtab_and_line *) -1;
|
||
}
|
||
}
|
||
|
||
switch (kind)
|
||
{
|
||
case EX_EVENT_THROW:
|
||
store_unsigned_integer (buf, 4, enable ? 1 : 0);
|
||
if (target_write_memory (eh_catch_throw_addr, buf, 4)) /* FIXME 32x64? */
|
||
{
|
||
warning ("Couldn't enable exception throw interception.");
|
||
return (struct symtab_and_line *) -1;
|
||
}
|
||
break;
|
||
case EX_EVENT_CATCH:
|
||
store_unsigned_integer (buf, 4, enable ? 1 : 0);
|
||
if (target_write_memory (eh_catch_catch_addr, buf, 4)) /* FIXME 32x64? */
|
||
{
|
||
warning ("Couldn't enable exception catch interception.");
|
||
return (struct symtab_and_line *) -1;
|
||
}
|
||
break;
|
||
default:
|
||
error ("Request to enable unknown or unsupported exception event.");
|
||
}
|
||
|
||
/* Copy break address into new sal struct, malloc'ing if needed. */
|
||
if (!break_callback_sal)
|
||
{
|
||
break_callback_sal = (struct symtab_and_line *) xmalloc (sizeof (struct symtab_and_line));
|
||
}
|
||
init_sal (break_callback_sal);
|
||
break_callback_sal->symtab = NULL;
|
||
break_callback_sal->pc = eh_break_addr;
|
||
break_callback_sal->line = 0;
|
||
break_callback_sal->end = eh_break_addr;
|
||
|
||
return break_callback_sal;
|
||
}
|
||
|
||
/* Record some information about the current exception event */
|
||
static struct exception_event_record current_ex_event;
|
||
/* Convenience struct */
|
||
static struct symtab_and_line null_symtab_and_line =
|
||
{NULL, 0, 0, 0};
|
||
|
||
/* Report current exception event. Returns a pointer to a record
|
||
that describes the kind of the event, where it was thrown from,
|
||
and where it will be caught. More information may be reported
|
||
in the future */
|
||
struct exception_event_record *
|
||
child_get_current_exception_event (void)
|
||
{
|
||
CORE_ADDR event_kind;
|
||
CORE_ADDR throw_addr;
|
||
CORE_ADDR catch_addr;
|
||
struct frame_info *fi, *curr_frame;
|
||
int level = 1;
|
||
|
||
curr_frame = get_current_frame ();
|
||
if (!curr_frame)
|
||
return (struct exception_event_record *) NULL;
|
||
|
||
/* Go up one frame to __d_eh_notify_callback, because at the
|
||
point when this code is executed, there's garbage in the
|
||
arguments of __d_eh_break. */
|
||
fi = find_relative_frame (curr_frame, &level);
|
||
if (level != 0)
|
||
return (struct exception_event_record *) NULL;
|
||
|
||
select_frame (fi);
|
||
|
||
/* Read in the arguments */
|
||
/* __d_eh_notify_callback() is called with 3 arguments:
|
||
1. event kind catch or throw
|
||
2. the target address if known
|
||
3. a flag -- not sure what this is. pai/1997-07-17 */
|
||
event_kind = read_register (ARG0_REGNUM);
|
||
catch_addr = read_register (ARG1_REGNUM);
|
||
|
||
/* Now go down to a user frame */
|
||
/* For a throw, __d_eh_break is called by
|
||
__d_eh_notify_callback which is called by
|
||
__notify_throw which is called
|
||
from user code.
|
||
For a catch, __d_eh_break is called by
|
||
__d_eh_notify_callback which is called by
|
||
<stackwalking stuff> which is called by
|
||
__throw__<stuff> or __rethrow_<stuff> which is called
|
||
from user code. */
|
||
/* FIXME: Don't use such magic numbers; search for the frames */
|
||
level = (event_kind == EX_EVENT_THROW) ? 3 : 4;
|
||
fi = find_relative_frame (curr_frame, &level);
|
||
if (level != 0)
|
||
return (struct exception_event_record *) NULL;
|
||
|
||
select_frame (fi);
|
||
throw_addr = fi->pc;
|
||
|
||
/* Go back to original (top) frame */
|
||
select_frame (curr_frame);
|
||
|
||
current_ex_event.kind = (enum exception_event_kind) event_kind;
|
||
current_ex_event.throw_sal = find_pc_line (throw_addr, 1);
|
||
current_ex_event.catch_sal = find_pc_line (catch_addr, 1);
|
||
|
||
return ¤t_ex_event;
|
||
}
|
||
|
||
/* Instead of this nasty cast, add a method pvoid() that prints out a
|
||
host VOID data type (remember %p isn't portable). */
|
||
|
||
static CORE_ADDR
|
||
hppa_pointer_to_address_hack (void *ptr)
|
||
{
|
||
gdb_assert (sizeof (ptr) == TYPE_LENGTH (builtin_type_void_data_ptr));
|
||
return POINTER_TO_ADDRESS (builtin_type_void_data_ptr, &ptr);
|
||
}
|
||
|
||
static void
|
||
unwind_command (char *exp, int from_tty)
|
||
{
|
||
CORE_ADDR address;
|
||
struct unwind_table_entry *u;
|
||
|
||
/* If we have an expression, evaluate it and use it as the address. */
|
||
|
||
if (exp != 0 && *exp != 0)
|
||
address = parse_and_eval_address (exp);
|
||
else
|
||
return;
|
||
|
||
u = find_unwind_entry (address);
|
||
|
||
if (!u)
|
||
{
|
||
printf_unfiltered ("Can't find unwind table entry for %s\n", exp);
|
||
return;
|
||
}
|
||
|
||
printf_unfiltered ("unwind_table_entry (0x%s):\n",
|
||
paddr_nz (hppa_pointer_to_address_hack (u)));
|
||
|
||
printf_unfiltered ("\tregion_start = ");
|
||
print_address (u->region_start, gdb_stdout);
|
||
|
||
printf_unfiltered ("\n\tregion_end = ");
|
||
print_address (u->region_end, gdb_stdout);
|
||
|
||
#define pif(FLD) if (u->FLD) printf_unfiltered (" "#FLD);
|
||
|
||
printf_unfiltered ("\n\tflags =");
|
||
pif (Cannot_unwind);
|
||
pif (Millicode);
|
||
pif (Millicode_save_sr0);
|
||
pif (Entry_SR);
|
||
pif (Args_stored);
|
||
pif (Variable_Frame);
|
||
pif (Separate_Package_Body);
|
||
pif (Frame_Extension_Millicode);
|
||
pif (Stack_Overflow_Check);
|
||
pif (Two_Instruction_SP_Increment);
|
||
pif (Ada_Region);
|
||
pif (Save_SP);
|
||
pif (Save_RP);
|
||
pif (Save_MRP_in_frame);
|
||
pif (extn_ptr_defined);
|
||
pif (Cleanup_defined);
|
||
pif (MPE_XL_interrupt_marker);
|
||
pif (HP_UX_interrupt_marker);
|
||
pif (Large_frame);
|
||
|
||
putchar_unfiltered ('\n');
|
||
|
||
#define pin(FLD) printf_unfiltered ("\t"#FLD" = 0x%x\n", u->FLD);
|
||
|
||
pin (Region_description);
|
||
pin (Entry_FR);
|
||
pin (Entry_GR);
|
||
pin (Total_frame_size);
|
||
}
|
||
|
||
#ifdef PREPARE_TO_PROCEED
|
||
|
||
/* If the user has switched threads, and there is a breakpoint
|
||
at the old thread's pc location, then switch to that thread
|
||
and return TRUE, else return FALSE and don't do a thread
|
||
switch (or rather, don't seem to have done a thread switch).
|
||
|
||
Ptrace-based gdb will always return FALSE to the thread-switch
|
||
query, and thus also to PREPARE_TO_PROCEED.
|
||
|
||
The important thing is whether there is a BPT instruction,
|
||
not how many user breakpoints there are. So we have to worry
|
||
about things like these:
|
||
|
||
o Non-bp stop -- NO
|
||
|
||
o User hits bp, no switch -- NO
|
||
|
||
o User hits bp, switches threads -- YES
|
||
|
||
o User hits bp, deletes bp, switches threads -- NO
|
||
|
||
o User hits bp, deletes one of two or more bps
|
||
at that PC, user switches threads -- YES
|
||
|
||
o Plus, since we're buffering events, the user may have hit a
|
||
breakpoint, deleted the breakpoint and then gotten another
|
||
hit on that same breakpoint on another thread which
|
||
actually hit before the delete. (FIXME in breakpoint.c
|
||
so that "dead" breakpoints are ignored?) -- NO
|
||
|
||
For these reasons, we have to violate information hiding and
|
||
call "breakpoint_here_p". If core gdb thinks there is a bpt
|
||
here, that's what counts, as core gdb is the one which is
|
||
putting the BPT instruction in and taking it out.
|
||
|
||
Note that this implementation is potentially redundant now that
|
||
default_prepare_to_proceed() has been added.
|
||
|
||
FIXME This may not support switching threads after Ctrl-C
|
||
correctly. The default implementation does support this. */
|
||
int
|
||
hppa_prepare_to_proceed (void)
|
||
{
|
||
pid_t old_thread;
|
||
pid_t current_thread;
|
||
|
||
old_thread = hppa_switched_threads (PIDGET (inferior_ptid));
|
||
if (old_thread != 0)
|
||
{
|
||
/* Switched over from "old_thread". Try to do
|
||
as little work as possible, 'cause mostly
|
||
we're going to switch back. */
|
||
CORE_ADDR new_pc;
|
||
CORE_ADDR old_pc = read_pc ();
|
||
|
||
/* Yuk, shouldn't use global to specify current
|
||
thread. But that's how gdb does it. */
|
||
current_thread = PIDGET (inferior_ptid);
|
||
inferior_ptid = pid_to_ptid (old_thread);
|
||
|
||
new_pc = read_pc ();
|
||
if (new_pc != old_pc /* If at same pc, no need */
|
||
&& breakpoint_here_p (new_pc))
|
||
{
|
||
/* User hasn't deleted the BP.
|
||
Return TRUE, finishing switch to "old_thread". */
|
||
flush_cached_frames ();
|
||
registers_changed ();
|
||
#if 0
|
||
printf ("---> PREPARE_TO_PROCEED (was %d, now %d)!\n",
|
||
current_thread, PIDGET (inferior_ptid));
|
||
#endif
|
||
|
||
return 1;
|
||
}
|
||
|
||
/* Otherwise switch back to the user-chosen thread. */
|
||
inferior_ptid = pid_to_ptid (current_thread);
|
||
new_pc = read_pc (); /* Re-prime register cache */
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
#endif /* PREPARE_TO_PROCEED */
|
||
|
||
void
|
||
hppa_skip_permanent_breakpoint (void)
|
||
{
|
||
/* To step over a breakpoint instruction on the PA takes some
|
||
fiddling with the instruction address queue.
|
||
|
||
When we stop at a breakpoint, the IA queue front (the instruction
|
||
we're executing now) points at the breakpoint instruction, and
|
||
the IA queue back (the next instruction to execute) points to
|
||
whatever instruction we would execute after the breakpoint, if it
|
||
were an ordinary instruction. This is the case even if the
|
||
breakpoint is in the delay slot of a branch instruction.
|
||
|
||
Clearly, to step past the breakpoint, we need to set the queue
|
||
front to the back. But what do we put in the back? What
|
||
instruction comes after that one? Because of the branch delay
|
||
slot, the next insn is always at the back + 4. */
|
||
write_register (PCOQ_HEAD_REGNUM, read_register (PCOQ_TAIL_REGNUM));
|
||
write_register (PCSQ_HEAD_REGNUM, read_register (PCSQ_TAIL_REGNUM));
|
||
|
||
write_register (PCOQ_TAIL_REGNUM, read_register (PCOQ_TAIL_REGNUM) + 4);
|
||
/* We can leave the tail's space the same, since there's no jump. */
|
||
}
|
||
|
||
/* Copy the function value from VALBUF into the proper location
|
||
for a function return.
|
||
|
||
Called only in the context of the "return" command. */
|
||
|
||
void
|
||
hppa_store_return_value (struct type *type, char *valbuf)
|
||
{
|
||
/* For software floating point, the return value goes into the
|
||
integer registers. But we do not have any flag to key this on,
|
||
so we always store the value into the integer registers.
|
||
|
||
If its a float value, then we also store it into the floating
|
||
point registers. */
|
||
deprecated_write_register_bytes (REGISTER_BYTE (28)
|
||
+ (TYPE_LENGTH (type) > 4
|
||
? (8 - TYPE_LENGTH (type))
|
||
: (4 - TYPE_LENGTH (type))),
|
||
valbuf, TYPE_LENGTH (type));
|
||
if (! SOFT_FLOAT && TYPE_CODE (type) == TYPE_CODE_FLT)
|
||
deprecated_write_register_bytes (REGISTER_BYTE (FP4_REGNUM),
|
||
valbuf, TYPE_LENGTH (type));
|
||
}
|
||
|
||
/* Copy the function's return value into VALBUF.
|
||
|
||
This function is called only in the context of "target function calls",
|
||
ie. when the debugger forces a function to be called in the child, and
|
||
when the debugger forces a fucntion to return prematurely via the
|
||
"return" command. */
|
||
|
||
void
|
||
hppa_extract_return_value (struct type *type, char *regbuf, char *valbuf)
|
||
{
|
||
if (! SOFT_FLOAT && TYPE_CODE (type) == TYPE_CODE_FLT)
|
||
memcpy (valbuf,
|
||
(char *)regbuf + REGISTER_BYTE (FP4_REGNUM),
|
||
TYPE_LENGTH (type));
|
||
else
|
||
memcpy (valbuf,
|
||
((char *)regbuf
|
||
+ REGISTER_BYTE (28)
|
||
+ (TYPE_LENGTH (type) > 4
|
||
? (8 - TYPE_LENGTH (type))
|
||
: (4 - TYPE_LENGTH (type)))),
|
||
TYPE_LENGTH (type));
|
||
}
|
||
|
||
int
|
||
hppa_reg_struct_has_addr (int gcc_p, struct type *type)
|
||
{
|
||
/* On the PA, any pass-by-value structure > 8 bytes is actually passed
|
||
via a pointer regardless of its type or the compiler used. */
|
||
return (TYPE_LENGTH (type) > 8);
|
||
}
|
||
|
||
int
|
||
hppa_inner_than (CORE_ADDR lhs, CORE_ADDR rhs)
|
||
{
|
||
/* Stack grows upward */
|
||
return (lhs > rhs);
|
||
}
|
||
|
||
CORE_ADDR
|
||
hppa_stack_align (CORE_ADDR sp)
|
||
{
|
||
/* elz: adjust the quantity to the next highest value which is
|
||
64-bit aligned. This is used in valops.c, when the sp is adjusted.
|
||
On hppa the sp must always be kept 64-bit aligned */
|
||
return ((sp % 8) ? (sp + 7) & -8 : sp);
|
||
}
|
||
|
||
int
|
||
hppa_pc_requires_run_before_use (CORE_ADDR pc)
|
||
{
|
||
/* Sometimes we may pluck out a minimal symbol that has a negative address.
|
||
|
||
An example of this occurs when an a.out is linked against a foo.sl.
|
||
The foo.sl defines a global bar(), and the a.out declares a signature
|
||
for bar(). However, the a.out doesn't directly call bar(), but passes
|
||
its address in another call.
|
||
|
||
If you have this scenario and attempt to "break bar" before running,
|
||
gdb will find a minimal symbol for bar() in the a.out. But that
|
||
symbol's address will be negative. What this appears to denote is
|
||
an index backwards from the base of the procedure linkage table (PLT)
|
||
into the data linkage table (DLT), the end of which is contiguous
|
||
with the start of the PLT. This is clearly not a valid address for
|
||
us to set a breakpoint on.
|
||
|
||
Note that one must be careful in how one checks for a negative address.
|
||
0xc0000000 is a legitimate address of something in a shared text
|
||
segment, for example. Since I don't know what the possible range
|
||
is of these "really, truly negative" addresses that come from the
|
||
minimal symbols, I'm resorting to the gross hack of checking the
|
||
top byte of the address for all 1's. Sigh. */
|
||
|
||
return (!target_has_stack && (pc & 0xFF000000));
|
||
}
|
||
|
||
int
|
||
hppa_instruction_nullified (void)
|
||
{
|
||
/* brobecker 2002/11/07: Couldn't we use a ULONGEST here? It would
|
||
avoid the type cast. I'm leaving it as is for now as I'm doing
|
||
semi-mechanical multiarching-related changes. */
|
||
const int ipsw = (int) read_register (IPSW_REGNUM);
|
||
const int flags = (int) read_register (FLAGS_REGNUM);
|
||
|
||
return ((ipsw & 0x00200000) && !(flags & 0x2));
|
||
}
|
||
|
||
int
|
||
hppa_register_raw_size (int reg_nr)
|
||
{
|
||
/* All registers have the same size. */
|
||
return REGISTER_SIZE;
|
||
}
|
||
|
||
/* Index within the register vector of the first byte of the space i
|
||
used for register REG_NR. */
|
||
|
||
int
|
||
hppa_register_byte (int reg_nr)
|
||
{
|
||
return reg_nr * 4;
|
||
}
|
||
|
||
/* Return the GDB type object for the "standard" data type of data
|
||
in register N. */
|
||
|
||
struct type *
|
||
hppa_register_virtual_type (int reg_nr)
|
||
{
|
||
if (reg_nr < FP4_REGNUM)
|
||
return builtin_type_int;
|
||
else
|
||
return builtin_type_float;
|
||
}
|
||
|
||
/* Store the address of the place in which to copy the structure the
|
||
subroutine will return. This is called from call_function. */
|
||
|
||
void
|
||
hppa_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
|
||
{
|
||
write_register (28, addr);
|
||
}
|
||
|
||
CORE_ADDR
|
||
hppa_extract_struct_value_address (char *regbuf)
|
||
{
|
||
/* Extract from an array REGBUF containing the (raw) register state
|
||
the address in which a function should return its structure value,
|
||
as a CORE_ADDR (or an expression that can be used as one). */
|
||
/* FIXME: brobecker 2002-12-26.
|
||
The current implementation is historical, but we should eventually
|
||
implement it in a more robust manner as it relies on the fact that
|
||
the address size is equal to the size of an int* _on the host_...
|
||
One possible implementation that crossed my mind is to use
|
||
extract_address. */
|
||
return (*(int *)(regbuf + REGISTER_BYTE (28)));
|
||
}
|
||
|
||
/* Return True if REGNUM is not a register available to the user
|
||
through ptrace(). */
|
||
|
||
int
|
||
hppa_cannot_store_register (int regnum)
|
||
{
|
||
return (regnum == 0
|
||
|| regnum == PCSQ_HEAD_REGNUM
|
||
|| (regnum >= PCSQ_TAIL_REGNUM && regnum < IPSW_REGNUM)
|
||
|| (regnum > IPSW_REGNUM && regnum < FP4_REGNUM));
|
||
|
||
}
|
||
|
||
CORE_ADDR
|
||
hppa_frame_args_address (struct frame_info *fi)
|
||
{
|
||
return fi->frame;
|
||
}
|
||
|
||
CORE_ADDR
|
||
hppa_frame_locals_address (struct frame_info *fi)
|
||
{
|
||
return fi->frame;
|
||
}
|
||
|
||
int
|
||
hppa_frame_num_args (struct frame_info *frame)
|
||
{
|
||
/* We can't tell how many args there are now that the C compiler delays
|
||
popping them. */
|
||
return -1;
|
||
}
|
||
|
||
CORE_ADDR
|
||
hppa_smash_text_address (CORE_ADDR addr)
|
||
{
|
||
/* The low two bits of the PC on the PA contain the privilege level.
|
||
Some genius implementing a (non-GCC) compiler apparently decided
|
||
this means that "addresses" in a text section therefore include a
|
||
privilege level, and thus symbol tables should contain these bits.
|
||
This seems like a bonehead thing to do--anyway, it seems to work
|
||
for our purposes to just ignore those bits. */
|
||
|
||
return (addr &= ~0x3);
|
||
}
|
||
|
||
static struct gdbarch *
|
||
hppa_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
|
||
{
|
||
struct gdbarch *gdbarch;
|
||
|
||
/* Try to determine the ABI of the object we are loading. */
|
||
if (info.abfd != NULL && info.osabi == GDB_OSABI_UNKNOWN)
|
||
{
|
||
/* If it's a SOM file, assume it's HP/UX SOM. */
|
||
if (bfd_get_flavour (info.abfd) == bfd_target_som_flavour)
|
||
info.osabi = GDB_OSABI_HPUX_SOM;
|
||
}
|
||
|
||
/* find a candidate among the list of pre-declared architectures. */
|
||
arches = gdbarch_list_lookup_by_info (arches, &info);
|
||
if (arches != NULL)
|
||
return (arches->gdbarch);
|
||
|
||
/* If none found, then allocate and initialize one. */
|
||
gdbarch = gdbarch_alloc (&info, NULL);
|
||
|
||
/* Hook in ABI-specific overrides, if they have been registered. */
|
||
gdbarch_init_osabi (info, gdbarch);
|
||
|
||
set_gdbarch_reg_struct_has_addr (gdbarch, hppa_reg_struct_has_addr);
|
||
set_gdbarch_function_start_offset (gdbarch, 0);
|
||
set_gdbarch_skip_prologue (gdbarch, hppa_skip_prologue);
|
||
set_gdbarch_skip_trampoline_code (gdbarch, hppa_skip_trampoline_code);
|
||
set_gdbarch_in_solib_call_trampoline (gdbarch, hppa_in_solib_call_trampoline);
|
||
set_gdbarch_in_solib_return_trampoline (gdbarch,
|
||
hppa_in_solib_return_trampoline);
|
||
set_gdbarch_saved_pc_after_call (gdbarch, hppa_saved_pc_after_call);
|
||
set_gdbarch_inner_than (gdbarch, hppa_inner_than);
|
||
set_gdbarch_stack_align (gdbarch, hppa_stack_align);
|
||
set_gdbarch_decr_pc_after_break (gdbarch, 0);
|
||
set_gdbarch_register_size (gdbarch, 4);
|
||
set_gdbarch_num_regs (gdbarch, hppa_num_regs);
|
||
set_gdbarch_fp_regnum (gdbarch, 3);
|
||
set_gdbarch_sp_regnum (gdbarch, 30);
|
||
set_gdbarch_fp0_regnum (gdbarch, 64);
|
||
set_gdbarch_pc_regnum (gdbarch, PCOQ_HEAD_REGNUM);
|
||
set_gdbarch_npc_regnum (gdbarch, PCOQ_TAIL_REGNUM);
|
||
set_gdbarch_register_raw_size (gdbarch, hppa_register_raw_size);
|
||
set_gdbarch_register_bytes (gdbarch, hppa_num_regs * 4);
|
||
set_gdbarch_register_byte (gdbarch, hppa_register_byte);
|
||
set_gdbarch_register_virtual_size (gdbarch, hppa_register_raw_size);
|
||
set_gdbarch_deprecated_max_register_raw_size (gdbarch, 4);
|
||
set_gdbarch_deprecated_max_register_virtual_size (gdbarch, 8);
|
||
set_gdbarch_register_virtual_type (gdbarch, hppa_register_virtual_type);
|
||
set_gdbarch_deprecated_store_struct_return (gdbarch, hppa_store_struct_return);
|
||
set_gdbarch_deprecated_extract_return_value (gdbarch,
|
||
hppa_extract_return_value);
|
||
set_gdbarch_use_struct_convention (gdbarch, hppa_use_struct_convention);
|
||
set_gdbarch_deprecated_store_return_value (gdbarch, hppa_store_return_value);
|
||
set_gdbarch_deprecated_extract_struct_value_address
|
||
(gdbarch, hppa_extract_struct_value_address);
|
||
set_gdbarch_cannot_store_register (gdbarch, hppa_cannot_store_register);
|
||
set_gdbarch_deprecated_init_extra_frame_info (gdbarch, hppa_init_extra_frame_info);
|
||
set_gdbarch_deprecated_frame_chain (gdbarch, hppa_frame_chain);
|
||
set_gdbarch_deprecated_frame_chain_valid (gdbarch, hppa_frame_chain_valid);
|
||
set_gdbarch_frameless_function_invocation
|
||
(gdbarch, hppa_frameless_function_invocation);
|
||
set_gdbarch_deprecated_frame_saved_pc (gdbarch, hppa_frame_saved_pc);
|
||
set_gdbarch_frame_args_address (gdbarch, hppa_frame_args_address);
|
||
set_gdbarch_frame_locals_address (gdbarch, hppa_frame_locals_address);
|
||
set_gdbarch_frame_num_args (gdbarch, hppa_frame_num_args);
|
||
set_gdbarch_frame_args_skip (gdbarch, 0);
|
||
set_gdbarch_deprecated_push_dummy_frame (gdbarch, hppa_push_dummy_frame);
|
||
set_gdbarch_deprecated_pop_frame (gdbarch, hppa_pop_frame);
|
||
set_gdbarch_call_dummy_length (gdbarch, INSTRUCTION_SIZE * 28);
|
||
set_gdbarch_call_dummy_start_offset (gdbarch, 0);
|
||
/* set_gdbarch_fix_call_dummy (gdbarch, hppa_fix_call_dummy); */
|
||
set_gdbarch_deprecated_push_arguments (gdbarch, hppa_push_arguments);
|
||
set_gdbarch_smash_text_address (gdbarch, hppa_smash_text_address);
|
||
set_gdbarch_believe_pcc_promotion (gdbarch, 1);
|
||
set_gdbarch_read_pc (gdbarch, hppa_target_read_pc);
|
||
set_gdbarch_write_pc (gdbarch, hppa_target_write_pc);
|
||
set_gdbarch_read_fp (gdbarch, hppa_target_read_fp);
|
||
|
||
return gdbarch;
|
||
}
|
||
|
||
static void
|
||
hppa_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
|
||
{
|
||
/* Nothing to print for the moment. */
|
||
}
|
||
|
||
void
|
||
_initialize_hppa_tdep (void)
|
||
{
|
||
struct cmd_list_element *c;
|
||
void break_at_finish_command (char *arg, int from_tty);
|
||
void tbreak_at_finish_command (char *arg, int from_tty);
|
||
void break_at_finish_at_depth_command (char *arg, int from_tty);
|
||
|
||
gdbarch_register (bfd_arch_hppa, hppa_gdbarch_init, hppa_dump_tdep);
|
||
tm_print_insn = print_insn_hppa;
|
||
|
||
add_cmd ("unwind", class_maintenance, unwind_command,
|
||
"Print unwind table entry at given address.",
|
||
&maintenanceprintlist);
|
||
|
||
deprecate_cmd (add_com ("xbreak", class_breakpoint,
|
||
break_at_finish_command,
|
||
concat ("Set breakpoint at procedure exit. \n\
|
||
Argument may be function name, or \"*\" and an address.\n\
|
||
If function is specified, break at end of code for that function.\n\
|
||
If an address is specified, break at the end of the function that contains \n\
|
||
that exact address.\n",
|
||
"With no arg, uses current execution address of selected stack frame.\n\
|
||
This is useful for breaking on return to a stack frame.\n\
|
||
\n\
|
||
Multiple breakpoints at one place are permitted, and useful if conditional.\n\
|
||
\n\
|
||
Do \"help breakpoints\" for info on other commands dealing with breakpoints.", NULL)), NULL);
|
||
deprecate_cmd (add_com_alias ("xb", "xbreak", class_breakpoint, 1), NULL);
|
||
deprecate_cmd (add_com_alias ("xbr", "xbreak", class_breakpoint, 1), NULL);
|
||
deprecate_cmd (add_com_alias ("xbre", "xbreak", class_breakpoint, 1), NULL);
|
||
deprecate_cmd (add_com_alias ("xbrea", "xbreak", class_breakpoint, 1), NULL);
|
||
|
||
deprecate_cmd (c = add_com ("txbreak", class_breakpoint,
|
||
tbreak_at_finish_command,
|
||
"Set temporary breakpoint at procedure exit. Either there should\n\
|
||
be no argument or the argument must be a depth.\n"), NULL);
|
||
set_cmd_completer (c, location_completer);
|
||
|
||
if (xdb_commands)
|
||
deprecate_cmd (add_com ("bx", class_breakpoint,
|
||
break_at_finish_at_depth_command,
|
||
"Set breakpoint at procedure exit. Either there should\n\
|
||
be no argument or the argument must be a depth.\n"), NULL);
|
||
}
|
||
|