97d3151a59
defined, define as 0. (FIX_CALL_DUMMY): Rewrite to remove presumption that host and target are similar. * config/mips/tm-idt.h (TARGET_BYTE_ORDER_SELECTABLE): Define. * config/mips/tm-idtl.h (TARGET_BYTE_ORDER_SELECTABLE): Define. * config/mips/tm-idt64.h (TARGET_BYTE_ORDER_SELECTABLE): Define. (BREAKPOINT): Remove definition. * config/mips/tm-idtl64.h (TARGET_BYTE_ORDER_SELECTABLE): Define. (BREAKPOINT): Remove definition. * config/mips/tm-mips64.h (GDB_TARGET_IS_MIPS64): Define with a value of 1, rather than without a value. * config/mips/tm-bigmips64.h (GDB_TARGET_IS_MIPS64): Likewise.
465 lines
17 KiB
C
465 lines
17 KiB
C
/* Definitions to make GDB run on a mips box under 4.3bsd.
|
||
Copyright 1986, 1987, 1989, 1991, 1992, 1993 Free Software Foundation, Inc.
|
||
Contributed by Per Bothner (bothner@cs.wisc.edu) at U.Wisconsin
|
||
and by Alessandro Forin (af@cs.cmu.edu) at CMU..
|
||
|
||
This file is part of GDB.
|
||
|
||
This program is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 2 of the License, or
|
||
(at your option) any later version.
|
||
|
||
This program is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with this program; if not, write to the Free Software
|
||
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
|
||
|
||
#include <bfd.h>
|
||
#include "coff/sym.h" /* Needed for PDR below. */
|
||
#include "coff/symconst.h"
|
||
|
||
#if !defined (TARGET_BYTE_ORDER)
|
||
#define TARGET_BYTE_ORDER LITTLE_ENDIAN
|
||
#endif
|
||
|
||
#if !defined (GDB_TARGET_IS_MIPS64)
|
||
#define GDB_TARGET_IS_MIPS64 0
|
||
#endif
|
||
|
||
/* Floating point is IEEE compliant */
|
||
#define IEEE_FLOAT
|
||
|
||
/* Some MIPS boards are provided both with and without a floating
|
||
point coprocessor; we provide a user settable variable to tell gdb
|
||
whether there is one or not. */
|
||
extern int mips_fpu;
|
||
|
||
/* Offset from address of function to start of its code.
|
||
Zero on most machines. */
|
||
|
||
#define FUNCTION_START_OFFSET 0
|
||
|
||
/* Advance PC across any function entry prologue instructions
|
||
to reach some "real" code. */
|
||
|
||
#define SKIP_PROLOGUE(pc) pc = mips_skip_prologue (pc, 0)
|
||
extern CORE_ADDR mips_skip_prologue PARAMS ((CORE_ADDR addr, int lenient));
|
||
|
||
/* Return non-zero if PC points to an instruction which will cause a step
|
||
to execute both the instruction at PC and an instruction at PC+4. */
|
||
#define STEP_SKIPS_DELAY(pc) (mips_step_skips_delay (pc))
|
||
|
||
/* Immediately after a function call, return the saved pc.
|
||
Can't always go through the frames for this because on some machines
|
||
the new frame is not set up until the new function executes
|
||
some instructions. */
|
||
|
||
#define SAVED_PC_AFTER_CALL(frame) read_register(RA_REGNUM)
|
||
|
||
/* Are we currently handling a signal */
|
||
|
||
extern int in_sigtramp PARAMS ((CORE_ADDR, char *));
|
||
#define IN_SIGTRAMP(pc, name) in_sigtramp(pc, name)
|
||
|
||
/* Stack grows downward. */
|
||
|
||
#define INNER_THAN <
|
||
|
||
#define BIG_ENDIAN 4321
|
||
#if TARGET_BYTE_ORDER == BIG_ENDIAN
|
||
#define BREAKPOINT {0, 0x5, 0, 0xd}
|
||
#else
|
||
#define BREAKPOINT {0xd, 0, 0x5, 0}
|
||
#endif
|
||
|
||
/* Amount PC must be decremented by after a breakpoint.
|
||
This is often the number of bytes in BREAKPOINT
|
||
but not always. */
|
||
|
||
#define DECR_PC_AFTER_BREAK 0
|
||
|
||
/* Nonzero if instruction at PC is a return instruction. "j ra" on mips. */
|
||
|
||
#define ABOUT_TO_RETURN(pc) (read_memory_integer (pc, 4) == 0x3e00008)
|
||
|
||
/* Say how long (ordinary) registers are. This is a piece of bogosity
|
||
used in push_word and a few other places; REGISTER_RAW_SIZE is the
|
||
real way to know how big a register is. */
|
||
|
||
#define REGISTER_SIZE 4
|
||
|
||
/* The size of a register. This is predefined in tm-mips64.h. We
|
||
can't use REGISTER_SIZE because that is used for various other
|
||
things. */
|
||
|
||
#ifndef MIPS_REGSIZE
|
||
#define MIPS_REGSIZE 4
|
||
#endif
|
||
|
||
/* Number of machine registers */
|
||
|
||
#define NUM_REGS 80
|
||
|
||
/* Initializer for an array of names of registers.
|
||
There should be NUM_REGS strings in this initializer. */
|
||
|
||
#define REGISTER_NAMES \
|
||
{ "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3", \
|
||
"t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7", \
|
||
"s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7", \
|
||
"t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra", \
|
||
"sr", "lo", "hi", "bad", "cause","pc", \
|
||
"f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7", \
|
||
"f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15", \
|
||
"f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",\
|
||
"f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",\
|
||
"fsr", "fir", "fp", "inx", "rand", "tlblo","ctxt", "tlbhi",\
|
||
"epc", "prid"\
|
||
}
|
||
|
||
/* Register numbers of various important registers.
|
||
Note that some of these values are "real" register numbers,
|
||
and correspond to the general registers of the machine,
|
||
and some are "phony" register numbers which are too large
|
||
to be actual register numbers as far as the user is concerned
|
||
but do serve to get the desired values when passed to read_register. */
|
||
|
||
#define ZERO_REGNUM 0 /* read-only register, always 0 */
|
||
#define V0_REGNUM 2 /* Function integer return value */
|
||
#define A0_REGNUM 4 /* Loc of first arg during a subr call */
|
||
#define SP_REGNUM 29 /* Contains address of top of stack */
|
||
#define RA_REGNUM 31 /* Contains return address value */
|
||
#define PS_REGNUM 32 /* Contains processor status */
|
||
#define HI_REGNUM 34 /* Multiple/divide temp */
|
||
#define LO_REGNUM 33 /* ... */
|
||
#define BADVADDR_REGNUM 35 /* bad vaddr for addressing exception */
|
||
#define CAUSE_REGNUM 36 /* describes last exception */
|
||
#define PC_REGNUM 37 /* Contains program counter */
|
||
#define FP0_REGNUM 38 /* Floating point register 0 (single float) */
|
||
#define FCRCS_REGNUM 70 /* FP control/status */
|
||
#define FCRIR_REGNUM 71 /* FP implementation/revision */
|
||
#define FP_REGNUM 72 /* Pseudo register that contains true address of executing stack frame */
|
||
#define FIRST_EMBED_REGNUM 73 /* First supervisor register for embedded use */
|
||
#define LAST_EMBED_REGNUM 79 /* Last one */
|
||
|
||
/* Define DO_REGISTERS_INFO() to do machine-specific formatting
|
||
of register dumps. */
|
||
|
||
#define DO_REGISTERS_INFO(_regnum, fp) mips_do_registers_info(_regnum, fp)
|
||
|
||
/* Total amount of space needed to store our copies of the machine's
|
||
register state, the array `registers'. */
|
||
#define REGISTER_BYTES (NUM_REGS*MIPS_REGSIZE)
|
||
|
||
/* Index within `registers' of the first byte of the space for
|
||
register N. */
|
||
|
||
#define REGISTER_BYTE(N) ((N) * MIPS_REGSIZE)
|
||
|
||
/* Number of bytes of storage in the actual machine representation
|
||
for register N. On mips, all regs are the same size. */
|
||
|
||
#define REGISTER_RAW_SIZE(N) MIPS_REGSIZE
|
||
|
||
/* Number of bytes of storage in the program's representation
|
||
for register N. On mips, all regs are the same size. */
|
||
|
||
#define REGISTER_VIRTUAL_SIZE(N) MIPS_REGSIZE
|
||
|
||
/* Largest value REGISTER_RAW_SIZE can have. */
|
||
|
||
#define MAX_REGISTER_RAW_SIZE 8
|
||
|
||
/* Largest value REGISTER_VIRTUAL_SIZE can have. */
|
||
|
||
#define MAX_REGISTER_VIRTUAL_SIZE 8
|
||
|
||
/* Return the GDB type object for the "standard" data type
|
||
of data in register N. */
|
||
|
||
#ifndef REGISTER_VIRTUAL_TYPE
|
||
#define REGISTER_VIRTUAL_TYPE(N) \
|
||
(((N) >= FP0_REGNUM && (N) < FP0_REGNUM+32) \
|
||
? builtin_type_float : builtin_type_int)
|
||
#endif
|
||
|
||
#if HOST_BYTE_ORDER == BIG_ENDIAN
|
||
/* All mips targets store doubles in a register pair with the least
|
||
significant register in the lower numbered register.
|
||
If the host is big endian, double register values need conversion between
|
||
memory and register formats. */
|
||
|
||
#define REGISTER_CONVERT_TO_TYPE(n, type, buffer) \
|
||
do {if ((n) >= FP0_REGNUM && (n) < FP0_REGNUM + 32 && \
|
||
TYPE_CODE(type) == TYPE_CODE_FLT && TYPE_LENGTH(type) == 8) { \
|
||
char __temp[4]; \
|
||
memcpy (__temp, ((char *)(buffer))+4, 4); \
|
||
memcpy (((char *)(buffer))+4, (buffer), 4); \
|
||
memcpy (((char *)(buffer)), __temp, 4); }} while (0)
|
||
|
||
#define REGISTER_CONVERT_FROM_TYPE(n, type, buffer) \
|
||
do {if ((n) >= FP0_REGNUM && (n) < FP0_REGNUM + 32 && \
|
||
TYPE_CODE(type) == TYPE_CODE_FLT && TYPE_LENGTH(type) == 8) { \
|
||
char __temp[4]; \
|
||
memcpy (__temp, ((char *)(buffer))+4, 4); \
|
||
memcpy (((char *)(buffer))+4, (buffer), 4); \
|
||
memcpy (((char *)(buffer)), __temp, 4); }} while (0)
|
||
#endif
|
||
|
||
/* Store the address of the place in which to copy the structure the
|
||
subroutine will return. Handled by mips_push_arguments. */
|
||
|
||
#define STORE_STRUCT_RETURN(addr, sp) /**/
|
||
|
||
/* Extract from an array REGBUF containing the (raw) register state
|
||
a function return value of type TYPE, and copy that, in virtual format,
|
||
into VALBUF. XXX floats */
|
||
|
||
#define EXTRACT_RETURN_VALUE(TYPE,REGBUF,VALBUF) \
|
||
mips_extract_return_value(TYPE, REGBUF, VALBUF)
|
||
|
||
/* Write into appropriate registers a function return value
|
||
of type TYPE, given in virtual format. */
|
||
|
||
#define STORE_RETURN_VALUE(TYPE,VALBUF) \
|
||
mips_store_return_value(TYPE, VALBUF)
|
||
|
||
/* Extract from an array REGBUF containing the (raw) register state
|
||
the address in which a function should return its structure value,
|
||
as a CORE_ADDR (or an expression that can be used as one). */
|
||
/* The address is passed in a0 upon entry to the function, but when
|
||
the function exits, the compiler has copied the value to v0. This
|
||
convention is specified by the System V ABI, so I think we can rely
|
||
on it. */
|
||
|
||
#define EXTRACT_STRUCT_VALUE_ADDRESS(REGBUF) \
|
||
(extract_address (REGBUF + REGISTER_BYTE (V0_REGNUM), \
|
||
REGISTER_RAW_SIZE (V0_REGNUM)))
|
||
|
||
/* Structures are returned by ref in extra arg0 */
|
||
#define USE_STRUCT_CONVENTION(gcc_p, type) 1
|
||
|
||
|
||
/* Describe the pointer in each stack frame to the previous stack frame
|
||
(its caller). */
|
||
|
||
/* FRAME_CHAIN takes a frame's nominal address
|
||
and produces the frame's chain-pointer. */
|
||
|
||
#define FRAME_CHAIN(thisframe) (FRAME_ADDR)mips_frame_chain(thisframe)
|
||
|
||
/* Define other aspects of the stack frame. */
|
||
|
||
|
||
/* A macro that tells us whether the function invocation represented
|
||
by FI does not have a frame on the stack associated with it. If it
|
||
does not, FRAMELESS is set to 1, else 0. */
|
||
/* We handle this differently for mips, and maybe we should not */
|
||
|
||
#define FRAMELESS_FUNCTION_INVOCATION(FI, FRAMELESS) {(FRAMELESS) = 0;}
|
||
|
||
/* Saved Pc. */
|
||
|
||
#define FRAME_SAVED_PC(FRAME) (mips_frame_saved_pc(FRAME))
|
||
|
||
#define FRAME_ARGS_ADDRESS(fi) (fi)->frame
|
||
|
||
#define FRAME_LOCALS_ADDRESS(fi) (fi)->frame
|
||
|
||
/* Return number of args passed to a frame.
|
||
Can return -1, meaning no way to tell. */
|
||
|
||
#define FRAME_NUM_ARGS(num, fi) (num = mips_frame_num_args(fi))
|
||
|
||
/* Return number of bytes at start of arglist that are not really args. */
|
||
|
||
#define FRAME_ARGS_SKIP 0
|
||
|
||
/* Put here the code to store, into a struct frame_saved_regs,
|
||
the addresses of the saved registers of frame described by FRAME_INFO.
|
||
This includes special registers such as pc and fp saved in special
|
||
ways in the stack frame. sp is even more special:
|
||
the address we return for it IS the sp for the next frame. */
|
||
|
||
#define FRAME_FIND_SAVED_REGS(frame_info, frame_saved_regs) \
|
||
do { \
|
||
if ((frame_info)->saved_regs == NULL) \
|
||
mips_find_saved_regs (frame_info); \
|
||
(frame_saved_regs) = *(frame_info)->saved_regs; \
|
||
(frame_saved_regs).regs[SP_REGNUM] = (frame_info)->frame; \
|
||
} while (0)
|
||
|
||
|
||
/* Things needed for making the inferior call functions. */
|
||
|
||
/* Stack has strict alignment. However, use PUSH_ARGUMENTS
|
||
to take care of it. */
|
||
/*#define STACK_ALIGN(addr) (((addr)+3)&~3)*/
|
||
|
||
#define PUSH_ARGUMENTS(nargs, args, sp, struct_return, struct_addr) \
|
||
sp = mips_push_arguments(nargs, args, sp, struct_return, struct_addr)
|
||
|
||
/* Push an empty stack frame, to record the current PC, etc. */
|
||
|
||
#define PUSH_DUMMY_FRAME mips_push_dummy_frame()
|
||
|
||
/* Discard from the stack the innermost frame, restoring all registers. */
|
||
|
||
#define POP_FRAME mips_pop_frame()
|
||
|
||
#define MK_OP(op,rs,rt,offset) (((op)<<26)|((rs)<<21)|((rt)<<16)|(offset))
|
||
#ifndef OP_LDFPR
|
||
#define OP_LDFPR 061 /* lwc1 */
|
||
#endif
|
||
#ifndef OP_LDGPR
|
||
#define OP_LDGPR 043 /* lw */
|
||
#endif
|
||
#define CALL_DUMMY_SIZE (16*4)
|
||
#define Dest_Reg 2
|
||
#define CALL_DUMMY {\
|
||
MK_OP(0,RA_REGNUM,0,8), /* jr $ra # Fake ABOUT_TO_RETURN ...*/\
|
||
0, /* nop # ... to stop raw backtrace*/\
|
||
0x27bd0000, /* addu sp,?0 # Pseudo prologue */\
|
||
/* Start here; reload FP regs, then GP regs: */\
|
||
MK_OP(OP_LDFPR,SP_REGNUM,12,0 ), /* l[wd]c1 $f12,0(sp) */\
|
||
MK_OP(OP_LDFPR,SP_REGNUM,13, MIPS_REGSIZE), /* l[wd]c1 $f13,{4,8}(sp) */\
|
||
MK_OP(OP_LDFPR,SP_REGNUM,14,2*MIPS_REGSIZE), /* l[wd]c1 $f14,{8,16}(sp) */\
|
||
MK_OP(OP_LDFPR,SP_REGNUM,15,3*MIPS_REGSIZE), /* l[wd]c1 $f15,{12,24}(sp) */\
|
||
MK_OP(OP_LDGPR,SP_REGNUM, 4,0 ), /* l[wd] $r4,0(sp) */\
|
||
MK_OP(OP_LDGPR,SP_REGNUM, 5, MIPS_REGSIZE), /* l[wd] $r5,{4,8}(sp) */\
|
||
MK_OP(OP_LDGPR,SP_REGNUM, 6,2*MIPS_REGSIZE), /* l[wd] $r6,{8,16}(sp) */\
|
||
MK_OP(OP_LDGPR,SP_REGNUM, 7,3*MIPS_REGSIZE), /* l[wd] $r7,{12,24}(sp) */\
|
||
(017<<26)| (Dest_Reg << 16), /* lui $r31,<target upper 16 bits>*/\
|
||
MK_OP(13,Dest_Reg,Dest_Reg,0), /* ori $r31,$r31,<lower 16 bits>*/ \
|
||
(Dest_Reg<<21) | (31<<11) | 9, /* jalr $r31 */\
|
||
MK_OP(OP_LDGPR,SP_REGNUM, 7,3*MIPS_REGSIZE), /* l[wd] $r7,{12,24}(sp) */\
|
||
0x5000d, /* bpt */\
|
||
}
|
||
|
||
#define CALL_DUMMY_START_OFFSET 12
|
||
|
||
#define CALL_DUMMY_BREAKPOINT_OFFSET (CALL_DUMMY_START_OFFSET + (12 * 4))
|
||
|
||
/* Insert the specified number of args and function address
|
||
into a call sequence of the above form stored at DUMMYNAME. */
|
||
|
||
/* For big endian mips machines we need to switch the order of the
|
||
words with a floating-point value (it was already coerced to a double
|
||
by mips_push_arguments). */
|
||
#define FIX_CALL_DUMMY(dummyname, start_sp, fun, nargs, args, rettype, gcc_p) \
|
||
do \
|
||
{ \
|
||
store_unsigned_integer \
|
||
(dummyname + 11 * 4, 4, \
|
||
(extract_unsigned_integer (dummyname + 11 * 4, 4) \
|
||
| (((fun) >> 16) & 0xffff))); \
|
||
store_unsigned_integer \
|
||
(dummyname + 12 * 4, 4, \
|
||
(extract_unsigned_integer (dummyname + 12 * 4, 4) \
|
||
| ((fun) & 0xffff))); \
|
||
if (! mips_fpu) \
|
||
{ \
|
||
store_unsigned_integer (dummyname + 3 * 4, 4, \
|
||
(unsigned LONGEST) 0); \
|
||
store_unsigned_integer (dummyname + 4 * 4, 4, \
|
||
(unsigned LONGEST) 0); \
|
||
store_unsigned_integer (dummyname + 5 * 4, 4, \
|
||
(unsigned LONGEST) 0); \
|
||
store_unsigned_integer (dummyname + 6 * 4, 4, \
|
||
(unsigned LONGEST) 0); \
|
||
} \
|
||
else if (TARGET_BYTE_ORDER == BIG_ENDIAN \
|
||
&& ! GDB_TARGET_IS_MIPS64) \
|
||
{ \
|
||
if (nargs > 0 \
|
||
&& TYPE_CODE (VALUE_TYPE (args[0])) == TYPE_CODE_FLT) \
|
||
{ \
|
||
if (TYPE_LENGTH (VALUE_TYPE (args[0])) > 8) \
|
||
error ("floating point value too large to pass to function");\
|
||
store_unsigned_integer \
|
||
(dummyname + 3 * 4, 4, MK_OP (OP_LDFPR, SP_REGNUM, 12, 4));\
|
||
store_unsigned_integer \
|
||
(dummyname + 4 * 4, 4, MK_OP (OP_LDFPR, SP_REGNUM, 13, 0));\
|
||
} \
|
||
if (nargs > 1 \
|
||
&& TYPE_CODE (VALUE_TYPE (args[1])) == TYPE_CODE_FLT) \
|
||
{ \
|
||
if (TYPE_LENGTH (VALUE_TYPE (args[1])) > 8) \
|
||
error ("floating point value too large to pass to function");\
|
||
store_unsigned_integer \
|
||
(dummyname + 5 * 4, 4, MK_OP (OP_LDFPR, SP_REGNUM, 14, 12));\
|
||
store_unsigned_integer \
|
||
(dummyname + 6 * 4, 4, MK_OP (OP_LDFPR, SP_REGNUM, 15, 8));\
|
||
} \
|
||
} \
|
||
} \
|
||
while (0)
|
||
|
||
/* There's a mess in stack frame creation. See comments in blockframe.c
|
||
near reference to INIT_FRAME_PC_FIRST. */
|
||
|
||
#define INIT_FRAME_PC(fromleaf, prev) /* nada */
|
||
|
||
#define INIT_FRAME_PC_FIRST(fromleaf, prev) \
|
||
(prev)->pc = ((fromleaf) ? SAVED_PC_AFTER_CALL ((prev)->next) : \
|
||
(prev)->next ? FRAME_SAVED_PC ((prev)->next) : read_pc ());
|
||
|
||
/* Special symbol found in blocks associated with routines. We can hang
|
||
mips_extra_func_info_t's off of this. */
|
||
|
||
#define MIPS_EFI_SYMBOL_NAME "__GDB_EFI_INFO__"
|
||
|
||
/* Specific information about a procedure.
|
||
This overlays the MIPS's PDR records,
|
||
mipsread.c (ab)uses this to save memory */
|
||
|
||
typedef struct mips_extra_func_info {
|
||
long numargs; /* number of args to procedure (was iopt) */
|
||
PDR pdr; /* Procedure descriptor record */
|
||
} *mips_extra_func_info_t;
|
||
|
||
#define EXTRA_FRAME_INFO \
|
||
mips_extra_func_info_t proc_desc; \
|
||
int num_args;\
|
||
struct frame_saved_regs *saved_regs;
|
||
|
||
#define INIT_EXTRA_FRAME_INFO(fromleaf, fci) init_extra_frame_info(fci)
|
||
|
||
#define PRINT_EXTRA_FRAME_INFO(fi) \
|
||
{ \
|
||
if (fi && fi->proc_desc && fi->proc_desc->pdr.framereg < NUM_REGS) \
|
||
printf_filtered (" frame pointer is at %s+%d\n", \
|
||
reg_names[fi->proc_desc->pdr.framereg], \
|
||
fi->proc_desc->pdr.frameoffset); \
|
||
}
|
||
|
||
/* It takes two values to specify a frame on the MIPS.
|
||
|
||
In fact, the *PC* is the primary value that sets up a frame. The
|
||
PC is looked up to see what function it's in; symbol information
|
||
from that function tells us which register is the frame pointer
|
||
base, and what offset from there is the "virtual frame pointer".
|
||
(This is usually an offset from SP.) On most non-MIPS machines,
|
||
the primary value is the SP, and the PC, if needed, disambiguates
|
||
multiple functions with the same SP. But on the MIPS we can't do
|
||
that since the PC is not stored in the same part of the frame every
|
||
time. This does not seem to be a very clever way to set up frames,
|
||
but there is nothing we can do about that). */
|
||
|
||
#define SETUP_ARBITRARY_FRAME(argc, argv) setup_arbitrary_frame (argc, argv)
|
||
/* FIXME: Depends on equivalence between FRAME and "struct frame_info *",
|
||
and equivalence between CORE_ADDR and FRAME_ADDR. */
|
||
extern struct frame_info *setup_arbitrary_frame PARAMS ((int, CORE_ADDR *));
|
||
|
||
/* Convert a dbx stab register number (from `r' declaration) to a gdb REGNUM */
|
||
|
||
#define STAB_REG_TO_REGNUM(num) ((num) < 32 ? (num) : (num)+FP0_REGNUM-38)
|
||
|
||
/* Convert a ecoff register number to a gdb REGNUM */
|
||
|
||
#define ECOFF_REG_TO_REGNUM(num) ((num) < 32 ? (num) : (num)+FP0_REGNUM-32)
|