63644780ba
New command for removing symbol files added via the add-symbol-file command. 2013-10-29 Nicolas Blanc <nicolas.blanc@intel.com> * breakpoint.c (disable_breakpoints_in_freed_objfile): New function. * objfiles.c (free_objfile): Notify free_objfile. (is_addr_in_objfile): New function. * objfiles.h (is_addr_in_objfile): New declaration. * printcmd.c (clear_dangling_display_expressions): Act upon free_objfile events instead of solib_unloaded events. (_initialize_printcmd): Register observer for free_objfile instead of solib_unloaded notifications. * solib.c (remove_user_added_objfile): New function. * symfile.c (remove_symbol_file_command): New command. (_initialize_symfile): Add remove-symbol-file. gdb/doc * observer.texi: New free_objfile event. Signed-off-by: Nicolas Blanc <nicolas.blanc@intel.com>
1541 lines
43 KiB
C
1541 lines
43 KiB
C
/* GDB routines for manipulating objfiles.
|
||
|
||
Copyright (C) 1992-2013 Free Software Foundation, Inc.
|
||
|
||
Contributed by Cygnus Support, using pieces from other GDB modules.
|
||
|
||
This file is part of GDB.
|
||
|
||
This program is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 3 of the License, or
|
||
(at your option) any later version.
|
||
|
||
This program is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with this program. If not, see <http://www.gnu.org/licenses/>. */
|
||
|
||
/* This file contains support routines for creating, manipulating, and
|
||
destroying objfile structures. */
|
||
|
||
#include "defs.h"
|
||
#include "bfd.h" /* Binary File Description */
|
||
#include "symtab.h"
|
||
#include "symfile.h"
|
||
#include "objfiles.h"
|
||
#include "gdb-stabs.h"
|
||
#include "target.h"
|
||
#include "bcache.h"
|
||
#include "expression.h"
|
||
#include "parser-defs.h"
|
||
|
||
#include "gdb_assert.h"
|
||
#include <sys/types.h>
|
||
#include "gdb_stat.h"
|
||
#include <fcntl.h>
|
||
#include "gdb_obstack.h"
|
||
#include "gdb_string.h"
|
||
#include "hashtab.h"
|
||
|
||
#include "breakpoint.h"
|
||
#include "block.h"
|
||
#include "dictionary.h"
|
||
#include "source.h"
|
||
#include "addrmap.h"
|
||
#include "arch-utils.h"
|
||
#include "exec.h"
|
||
#include "observer.h"
|
||
#include "complaints.h"
|
||
#include "psymtab.h"
|
||
#include "solist.h"
|
||
#include "gdb_bfd.h"
|
||
#include "btrace.h"
|
||
|
||
/* Keep a registry of per-objfile data-pointers required by other GDB
|
||
modules. */
|
||
|
||
DEFINE_REGISTRY (objfile, REGISTRY_ACCESS_FIELD)
|
||
|
||
/* Externally visible variables that are owned by this module.
|
||
See declarations in objfile.h for more info. */
|
||
|
||
struct objfile_pspace_info
|
||
{
|
||
struct obj_section **sections;
|
||
int num_sections;
|
||
|
||
/* Nonzero if object files have been added since the section map
|
||
was last updated. */
|
||
int new_objfiles_available;
|
||
|
||
/* Nonzero if the section map MUST be updated before use. */
|
||
int section_map_dirty;
|
||
|
||
/* Nonzero if section map updates should be inhibited if possible. */
|
||
int inhibit_updates;
|
||
};
|
||
|
||
/* Per-program-space data key. */
|
||
static const struct program_space_data *objfiles_pspace_data;
|
||
|
||
static void
|
||
objfiles_pspace_data_cleanup (struct program_space *pspace, void *arg)
|
||
{
|
||
struct objfile_pspace_info *info = arg;
|
||
|
||
xfree (info->sections);
|
||
xfree (info);
|
||
}
|
||
|
||
/* Get the current svr4 data. If none is found yet, add it now. This
|
||
function always returns a valid object. */
|
||
|
||
static struct objfile_pspace_info *
|
||
get_objfile_pspace_data (struct program_space *pspace)
|
||
{
|
||
struct objfile_pspace_info *info;
|
||
|
||
info = program_space_data (pspace, objfiles_pspace_data);
|
||
if (info == NULL)
|
||
{
|
||
info = XZALLOC (struct objfile_pspace_info);
|
||
set_program_space_data (pspace, objfiles_pspace_data, info);
|
||
}
|
||
|
||
return info;
|
||
}
|
||
|
||
|
||
|
||
/* Per-BFD data key. */
|
||
|
||
static const struct bfd_data *objfiles_bfd_data;
|
||
|
||
/* Create the per-BFD storage object for OBJFILE. If ABFD is not
|
||
NULL, and it already has a per-BFD storage object, use that.
|
||
Otherwise, allocate a new per-BFD storage object. If ABFD is not
|
||
NULL, the object is allocated on the BFD; otherwise it is allocated
|
||
on OBJFILE's obstack. Note that it is not safe to call this
|
||
multiple times for a given OBJFILE -- it can only be called when
|
||
allocating or re-initializing OBJFILE. */
|
||
|
||
static struct objfile_per_bfd_storage *
|
||
get_objfile_bfd_data (struct objfile *objfile, struct bfd *abfd)
|
||
{
|
||
struct objfile_per_bfd_storage *storage = NULL;
|
||
|
||
if (abfd != NULL)
|
||
storage = bfd_data (abfd, objfiles_bfd_data);
|
||
|
||
if (storage == NULL)
|
||
{
|
||
/* If the object requires gdb to do relocations, we simply fall
|
||
back to not sharing data across users. These cases are rare
|
||
enough that this seems reasonable. */
|
||
if (abfd != NULL && !gdb_bfd_requires_relocations (abfd))
|
||
{
|
||
storage = bfd_zalloc (abfd, sizeof (struct objfile_per_bfd_storage));
|
||
set_bfd_data (abfd, objfiles_bfd_data, storage);
|
||
}
|
||
else
|
||
storage = OBSTACK_ZALLOC (&objfile->objfile_obstack,
|
||
struct objfile_per_bfd_storage);
|
||
|
||
/* Look up the gdbarch associated with the BFD. */
|
||
if (abfd != NULL)
|
||
storage->gdbarch = gdbarch_from_bfd (abfd);
|
||
|
||
obstack_init (&storage->storage_obstack);
|
||
storage->filename_cache = bcache_xmalloc (NULL, NULL);
|
||
storage->macro_cache = bcache_xmalloc (NULL, NULL);
|
||
}
|
||
|
||
return storage;
|
||
}
|
||
|
||
/* Free STORAGE. */
|
||
|
||
static void
|
||
free_objfile_per_bfd_storage (struct objfile_per_bfd_storage *storage)
|
||
{
|
||
bcache_xfree (storage->filename_cache);
|
||
bcache_xfree (storage->macro_cache);
|
||
if (storage->demangled_names_hash)
|
||
htab_delete (storage->demangled_names_hash);
|
||
obstack_free (&storage->storage_obstack, 0);
|
||
}
|
||
|
||
/* A wrapper for free_objfile_per_bfd_storage that can be passed as a
|
||
cleanup function to the BFD registry. */
|
||
|
||
static void
|
||
objfile_bfd_data_free (struct bfd *unused, void *d)
|
||
{
|
||
free_objfile_per_bfd_storage (d);
|
||
}
|
||
|
||
/* See objfiles.h. */
|
||
|
||
void
|
||
set_objfile_per_bfd (struct objfile *objfile)
|
||
{
|
||
objfile->per_bfd = get_objfile_bfd_data (objfile, objfile->obfd);
|
||
}
|
||
|
||
|
||
|
||
/* Called via bfd_map_over_sections to build up the section table that
|
||
the objfile references. The objfile contains pointers to the start
|
||
of the table (objfile->sections) and to the first location after
|
||
the end of the table (objfile->sections_end). */
|
||
|
||
static void
|
||
add_to_objfile_sections_full (struct bfd *abfd, struct bfd_section *asect,
|
||
struct objfile *objfile, int force)
|
||
{
|
||
struct obj_section *section;
|
||
|
||
if (!force)
|
||
{
|
||
flagword aflag;
|
||
|
||
aflag = bfd_get_section_flags (abfd, asect);
|
||
if (!(aflag & SEC_ALLOC))
|
||
return;
|
||
}
|
||
|
||
section = &objfile->sections[gdb_bfd_section_index (abfd, asect)];
|
||
section->objfile = objfile;
|
||
section->the_bfd_section = asect;
|
||
section->ovly_mapped = 0;
|
||
}
|
||
|
||
static void
|
||
add_to_objfile_sections (struct bfd *abfd, struct bfd_section *asect,
|
||
void *objfilep)
|
||
{
|
||
add_to_objfile_sections_full (abfd, asect, objfilep, 0);
|
||
}
|
||
|
||
/* Builds a section table for OBJFILE.
|
||
|
||
Note that the OFFSET and OVLY_MAPPED in each table entry are
|
||
initialized to zero. */
|
||
|
||
void
|
||
build_objfile_section_table (struct objfile *objfile)
|
||
{
|
||
int count = gdb_bfd_count_sections (objfile->obfd);
|
||
|
||
objfile->sections = OBSTACK_CALLOC (&objfile->objfile_obstack,
|
||
count,
|
||
struct obj_section);
|
||
objfile->sections_end = (objfile->sections + count);
|
||
bfd_map_over_sections (objfile->obfd,
|
||
add_to_objfile_sections, (void *) objfile);
|
||
|
||
/* See gdb_bfd_section_index. */
|
||
add_to_objfile_sections_full (objfile->obfd, bfd_com_section_ptr, objfile, 1);
|
||
add_to_objfile_sections_full (objfile->obfd, bfd_und_section_ptr, objfile, 1);
|
||
add_to_objfile_sections_full (objfile->obfd, bfd_abs_section_ptr, objfile, 1);
|
||
add_to_objfile_sections_full (objfile->obfd, bfd_ind_section_ptr, objfile, 1);
|
||
}
|
||
|
||
/* Given a pointer to an initialized bfd (ABFD) and some flag bits
|
||
allocate a new objfile struct, fill it in as best we can, link it
|
||
into the list of all known objfiles, and return a pointer to the
|
||
new objfile struct.
|
||
|
||
NAME should contain original non-canonicalized filename or other
|
||
identifier as entered by user. If there is no better source use
|
||
bfd_get_filename (ABFD). NAME may be NULL only if ABFD is NULL.
|
||
NAME content is copied into returned objfile.
|
||
|
||
The FLAGS word contains various bits (OBJF_*) that can be taken as
|
||
requests for specific operations. Other bits like OBJF_SHARED are
|
||
simply copied through to the new objfile flags member. */
|
||
|
||
/* NOTE: carlton/2003-02-04: This function is called with args NULL, 0
|
||
by jv-lang.c, to create an artificial objfile used to hold
|
||
information about dynamically-loaded Java classes. Unfortunately,
|
||
that branch of this function doesn't get tested very frequently, so
|
||
it's prone to breakage. (E.g. at one time the name was set to NULL
|
||
in that situation, which broke a loop over all names in the dynamic
|
||
library loader.) If you change this function, please try to leave
|
||
things in a consistent state even if abfd is NULL. */
|
||
|
||
struct objfile *
|
||
allocate_objfile (bfd *abfd, const char *name, int flags)
|
||
{
|
||
struct objfile *objfile;
|
||
|
||
objfile = (struct objfile *) xzalloc (sizeof (struct objfile));
|
||
objfile->psymbol_cache = psymbol_bcache_init ();
|
||
/* We could use obstack_specify_allocation here instead, but
|
||
gdb_obstack.h specifies the alloc/dealloc functions. */
|
||
obstack_init (&objfile->objfile_obstack);
|
||
terminate_minimal_symbol_table (objfile);
|
||
|
||
objfile_alloc_data (objfile);
|
||
|
||
if (name == NULL)
|
||
{
|
||
gdb_assert (abfd == NULL);
|
||
gdb_assert ((flags & OBJF_NOT_FILENAME) != 0);
|
||
name = "<<anonymous objfile>>";
|
||
}
|
||
objfile->original_name = obstack_copy0 (&objfile->objfile_obstack, name,
|
||
strlen (name));
|
||
|
||
/* Update the per-objfile information that comes from the bfd, ensuring
|
||
that any data that is reference is saved in the per-objfile data
|
||
region. */
|
||
|
||
objfile->obfd = abfd;
|
||
gdb_bfd_ref (abfd);
|
||
if (abfd != NULL)
|
||
{
|
||
objfile->mtime = bfd_get_mtime (abfd);
|
||
|
||
/* Build section table. */
|
||
build_objfile_section_table (objfile);
|
||
}
|
||
|
||
objfile->per_bfd = get_objfile_bfd_data (objfile, abfd);
|
||
objfile->pspace = current_program_space;
|
||
|
||
/* Initialize the section indexes for this objfile, so that we can
|
||
later detect if they are used w/o being properly assigned to. */
|
||
|
||
objfile->sect_index_text = -1;
|
||
objfile->sect_index_data = -1;
|
||
objfile->sect_index_bss = -1;
|
||
objfile->sect_index_rodata = -1;
|
||
|
||
/* Add this file onto the tail of the linked list of other such files. */
|
||
|
||
objfile->next = NULL;
|
||
if (object_files == NULL)
|
||
object_files = objfile;
|
||
else
|
||
{
|
||
struct objfile *last_one;
|
||
|
||
for (last_one = object_files;
|
||
last_one->next;
|
||
last_one = last_one->next);
|
||
last_one->next = objfile;
|
||
}
|
||
|
||
/* Save passed in flag bits. */
|
||
objfile->flags |= flags;
|
||
|
||
/* Rebuild section map next time we need it. */
|
||
get_objfile_pspace_data (objfile->pspace)->new_objfiles_available = 1;
|
||
|
||
return objfile;
|
||
}
|
||
|
||
/* Retrieve the gdbarch associated with OBJFILE. */
|
||
struct gdbarch *
|
||
get_objfile_arch (struct objfile *objfile)
|
||
{
|
||
return objfile->per_bfd->gdbarch;
|
||
}
|
||
|
||
/* If there is a valid and known entry point, function fills *ENTRY_P with it
|
||
and returns non-zero; otherwise it returns zero. */
|
||
|
||
int
|
||
entry_point_address_query (CORE_ADDR *entry_p)
|
||
{
|
||
if (symfile_objfile == NULL || !symfile_objfile->ei.entry_point_p)
|
||
return 0;
|
||
|
||
*entry_p = symfile_objfile->ei.entry_point;
|
||
|
||
return 1;
|
||
}
|
||
|
||
/* Get current entry point address. Call error if it is not known. */
|
||
|
||
CORE_ADDR
|
||
entry_point_address (void)
|
||
{
|
||
CORE_ADDR retval;
|
||
|
||
if (!entry_point_address_query (&retval))
|
||
error (_("Entry point address is not known."));
|
||
|
||
return retval;
|
||
}
|
||
|
||
/* Iterator on PARENT and every separate debug objfile of PARENT.
|
||
The usage pattern is:
|
||
for (objfile = parent;
|
||
objfile;
|
||
objfile = objfile_separate_debug_iterate (parent, objfile))
|
||
...
|
||
*/
|
||
|
||
struct objfile *
|
||
objfile_separate_debug_iterate (const struct objfile *parent,
|
||
const struct objfile *objfile)
|
||
{
|
||
struct objfile *res;
|
||
|
||
/* If any, return the first child. */
|
||
res = objfile->separate_debug_objfile;
|
||
if (res)
|
||
return res;
|
||
|
||
/* Common case where there is no separate debug objfile. */
|
||
if (objfile == parent)
|
||
return NULL;
|
||
|
||
/* Return the brother if any. Note that we don't iterate on brothers of
|
||
the parents. */
|
||
res = objfile->separate_debug_objfile_link;
|
||
if (res)
|
||
return res;
|
||
|
||
for (res = objfile->separate_debug_objfile_backlink;
|
||
res != parent;
|
||
res = res->separate_debug_objfile_backlink)
|
||
{
|
||
gdb_assert (res != NULL);
|
||
if (res->separate_debug_objfile_link)
|
||
return res->separate_debug_objfile_link;
|
||
}
|
||
return NULL;
|
||
}
|
||
|
||
/* Put one object file before a specified on in the global list.
|
||
This can be used to make sure an object file is destroyed before
|
||
another when using ALL_OBJFILES_SAFE to free all objfiles. */
|
||
void
|
||
put_objfile_before (struct objfile *objfile, struct objfile *before_this)
|
||
{
|
||
struct objfile **objp;
|
||
|
||
unlink_objfile (objfile);
|
||
|
||
for (objp = &object_files; *objp != NULL; objp = &((*objp)->next))
|
||
{
|
||
if (*objp == before_this)
|
||
{
|
||
objfile->next = *objp;
|
||
*objp = objfile;
|
||
return;
|
||
}
|
||
}
|
||
|
||
internal_error (__FILE__, __LINE__,
|
||
_("put_objfile_before: before objfile not in list"));
|
||
}
|
||
|
||
/* Put OBJFILE at the front of the list. */
|
||
|
||
void
|
||
objfile_to_front (struct objfile *objfile)
|
||
{
|
||
struct objfile **objp;
|
||
for (objp = &object_files; *objp != NULL; objp = &((*objp)->next))
|
||
{
|
||
if (*objp == objfile)
|
||
{
|
||
/* Unhook it from where it is. */
|
||
*objp = objfile->next;
|
||
/* Put it in the front. */
|
||
objfile->next = object_files;
|
||
object_files = objfile;
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Unlink OBJFILE from the list of known objfiles, if it is found in the
|
||
list.
|
||
|
||
It is not a bug, or error, to call this function if OBJFILE is not known
|
||
to be in the current list. This is done in the case of mapped objfiles,
|
||
for example, just to ensure that the mapped objfile doesn't appear twice
|
||
in the list. Since the list is threaded, linking in a mapped objfile
|
||
twice would create a circular list.
|
||
|
||
If OBJFILE turns out to be in the list, we zap it's NEXT pointer after
|
||
unlinking it, just to ensure that we have completely severed any linkages
|
||
between the OBJFILE and the list. */
|
||
|
||
void
|
||
unlink_objfile (struct objfile *objfile)
|
||
{
|
||
struct objfile **objpp;
|
||
|
||
for (objpp = &object_files; *objpp != NULL; objpp = &((*objpp)->next))
|
||
{
|
||
if (*objpp == objfile)
|
||
{
|
||
*objpp = (*objpp)->next;
|
||
objfile->next = NULL;
|
||
return;
|
||
}
|
||
}
|
||
|
||
internal_error (__FILE__, __LINE__,
|
||
_("unlink_objfile: objfile already unlinked"));
|
||
}
|
||
|
||
/* Add OBJFILE as a separate debug objfile of PARENT. */
|
||
|
||
void
|
||
add_separate_debug_objfile (struct objfile *objfile, struct objfile *parent)
|
||
{
|
||
gdb_assert (objfile && parent);
|
||
|
||
/* Must not be already in a list. */
|
||
gdb_assert (objfile->separate_debug_objfile_backlink == NULL);
|
||
gdb_assert (objfile->separate_debug_objfile_link == NULL);
|
||
gdb_assert (objfile->separate_debug_objfile == NULL);
|
||
gdb_assert (parent->separate_debug_objfile_backlink == NULL);
|
||
gdb_assert (parent->separate_debug_objfile_link == NULL);
|
||
|
||
objfile->separate_debug_objfile_backlink = parent;
|
||
objfile->separate_debug_objfile_link = parent->separate_debug_objfile;
|
||
parent->separate_debug_objfile = objfile;
|
||
|
||
/* Put the separate debug object before the normal one, this is so that
|
||
usage of the ALL_OBJFILES_SAFE macro will stay safe. */
|
||
put_objfile_before (objfile, parent);
|
||
}
|
||
|
||
/* Free all separate debug objfile of OBJFILE, but don't free OBJFILE
|
||
itself. */
|
||
|
||
void
|
||
free_objfile_separate_debug (struct objfile *objfile)
|
||
{
|
||
struct objfile *child;
|
||
|
||
for (child = objfile->separate_debug_objfile; child;)
|
||
{
|
||
struct objfile *next_child = child->separate_debug_objfile_link;
|
||
free_objfile (child);
|
||
child = next_child;
|
||
}
|
||
}
|
||
|
||
/* Destroy an objfile and all the symtabs and psymtabs under it. Note
|
||
that as much as possible is allocated on the objfile_obstack
|
||
so that the memory can be efficiently freed.
|
||
|
||
Things which we do NOT free because they are not in malloc'd memory
|
||
or not in memory specific to the objfile include:
|
||
|
||
objfile -> sf
|
||
|
||
FIXME: If the objfile is using reusable symbol information (via mmalloc),
|
||
then we need to take into account the fact that more than one process
|
||
may be using the symbol information at the same time (when mmalloc is
|
||
extended to support cooperative locking). When more than one process
|
||
is using the mapped symbol info, we need to be more careful about when
|
||
we free objects in the reusable area. */
|
||
|
||
void
|
||
free_objfile (struct objfile *objfile)
|
||
{
|
||
/* First notify observers that this objfile is about to be freed. */
|
||
observer_notify_free_objfile (objfile);
|
||
|
||
/* Free all separate debug objfiles. */
|
||
free_objfile_separate_debug (objfile);
|
||
|
||
if (objfile->separate_debug_objfile_backlink)
|
||
{
|
||
/* We freed the separate debug file, make sure the base objfile
|
||
doesn't reference it. */
|
||
struct objfile *child;
|
||
|
||
child = objfile->separate_debug_objfile_backlink->separate_debug_objfile;
|
||
|
||
if (child == objfile)
|
||
{
|
||
/* OBJFILE is the first child. */
|
||
objfile->separate_debug_objfile_backlink->separate_debug_objfile =
|
||
objfile->separate_debug_objfile_link;
|
||
}
|
||
else
|
||
{
|
||
/* Find OBJFILE in the list. */
|
||
while (1)
|
||
{
|
||
if (child->separate_debug_objfile_link == objfile)
|
||
{
|
||
child->separate_debug_objfile_link =
|
||
objfile->separate_debug_objfile_link;
|
||
break;
|
||
}
|
||
child = child->separate_debug_objfile_link;
|
||
gdb_assert (child);
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Remove any references to this objfile in the global value
|
||
lists. */
|
||
preserve_values (objfile);
|
||
|
||
/* It still may reference data modules have associated with the objfile and
|
||
the symbol file data. */
|
||
forget_cached_source_info_for_objfile (objfile);
|
||
|
||
breakpoint_free_objfile (objfile);
|
||
btrace_free_objfile (objfile);
|
||
|
||
/* First do any symbol file specific actions required when we are
|
||
finished with a particular symbol file. Note that if the objfile
|
||
is using reusable symbol information (via mmalloc) then each of
|
||
these routines is responsible for doing the correct thing, either
|
||
freeing things which are valid only during this particular gdb
|
||
execution, or leaving them to be reused during the next one. */
|
||
|
||
if (objfile->sf != NULL)
|
||
{
|
||
(*objfile->sf->sym_finish) (objfile);
|
||
}
|
||
|
||
/* Discard any data modules have associated with the objfile. The function
|
||
still may reference objfile->obfd. */
|
||
objfile_free_data (objfile);
|
||
|
||
if (objfile->obfd)
|
||
gdb_bfd_unref (objfile->obfd);
|
||
else
|
||
free_objfile_per_bfd_storage (objfile->per_bfd);
|
||
|
||
/* Remove it from the chain of all objfiles. */
|
||
|
||
unlink_objfile (objfile);
|
||
|
||
if (objfile == symfile_objfile)
|
||
symfile_objfile = NULL;
|
||
|
||
/* Before the symbol table code was redone to make it easier to
|
||
selectively load and remove information particular to a specific
|
||
linkage unit, gdb used to do these things whenever the monolithic
|
||
symbol table was blown away. How much still needs to be done
|
||
is unknown, but we play it safe for now and keep each action until
|
||
it is shown to be no longer needed. */
|
||
|
||
/* Not all our callers call clear_symtab_users (objfile_purge_solibs,
|
||
for example), so we need to call this here. */
|
||
clear_pc_function_cache ();
|
||
|
||
/* Clear globals which might have pointed into a removed objfile.
|
||
FIXME: It's not clear which of these are supposed to persist
|
||
between expressions and which ought to be reset each time. */
|
||
expression_context_block = NULL;
|
||
innermost_block = NULL;
|
||
|
||
/* Check to see if the current_source_symtab belongs to this objfile,
|
||
and if so, call clear_current_source_symtab_and_line. */
|
||
|
||
{
|
||
struct symtab_and_line cursal = get_current_source_symtab_and_line ();
|
||
|
||
if (cursal.symtab && cursal.symtab->objfile == objfile)
|
||
clear_current_source_symtab_and_line ();
|
||
}
|
||
|
||
if (objfile->global_psymbols.list)
|
||
xfree (objfile->global_psymbols.list);
|
||
if (objfile->static_psymbols.list)
|
||
xfree (objfile->static_psymbols.list);
|
||
/* Free the obstacks for non-reusable objfiles. */
|
||
psymbol_bcache_free (objfile->psymbol_cache);
|
||
obstack_free (&objfile->objfile_obstack, 0);
|
||
|
||
/* Rebuild section map next time we need it. */
|
||
get_objfile_pspace_data (objfile->pspace)->section_map_dirty = 1;
|
||
|
||
/* The last thing we do is free the objfile struct itself. */
|
||
xfree (objfile);
|
||
}
|
||
|
||
static void
|
||
do_free_objfile_cleanup (void *obj)
|
||
{
|
||
free_objfile (obj);
|
||
}
|
||
|
||
struct cleanup *
|
||
make_cleanup_free_objfile (struct objfile *obj)
|
||
{
|
||
return make_cleanup (do_free_objfile_cleanup, obj);
|
||
}
|
||
|
||
/* Free all the object files at once and clean up their users. */
|
||
|
||
void
|
||
free_all_objfiles (void)
|
||
{
|
||
struct objfile *objfile, *temp;
|
||
struct so_list *so;
|
||
|
||
/* Any objfile referencewould become stale. */
|
||
for (so = master_so_list (); so; so = so->next)
|
||
gdb_assert (so->objfile == NULL);
|
||
|
||
ALL_OBJFILES_SAFE (objfile, temp)
|
||
{
|
||
free_objfile (objfile);
|
||
}
|
||
clear_symtab_users (0);
|
||
}
|
||
|
||
/* A helper function for objfile_relocate1 that relocates a single
|
||
symbol. */
|
||
|
||
static void
|
||
relocate_one_symbol (struct symbol *sym, struct objfile *objfile,
|
||
struct section_offsets *delta)
|
||
{
|
||
fixup_symbol_section (sym, objfile);
|
||
|
||
/* The RS6000 code from which this was taken skipped
|
||
any symbols in STRUCT_DOMAIN or UNDEF_DOMAIN.
|
||
But I'm leaving out that test, on the theory that
|
||
they can't possibly pass the tests below. */
|
||
if ((SYMBOL_CLASS (sym) == LOC_LABEL
|
||
|| SYMBOL_CLASS (sym) == LOC_STATIC)
|
||
&& SYMBOL_SECTION (sym) >= 0)
|
||
{
|
||
SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (delta, SYMBOL_SECTION (sym));
|
||
}
|
||
}
|
||
|
||
/* Relocate OBJFILE to NEW_OFFSETS. There should be OBJFILE->NUM_SECTIONS
|
||
entries in new_offsets. SEPARATE_DEBUG_OBJFILE is not touched here.
|
||
Return non-zero iff any change happened. */
|
||
|
||
static int
|
||
objfile_relocate1 (struct objfile *objfile,
|
||
const struct section_offsets *new_offsets)
|
||
{
|
||
struct obj_section *s;
|
||
struct section_offsets *delta =
|
||
((struct section_offsets *)
|
||
alloca (SIZEOF_N_SECTION_OFFSETS (objfile->num_sections)));
|
||
|
||
int i;
|
||
int something_changed = 0;
|
||
|
||
for (i = 0; i < objfile->num_sections; ++i)
|
||
{
|
||
delta->offsets[i] =
|
||
ANOFFSET (new_offsets, i) - ANOFFSET (objfile->section_offsets, i);
|
||
if (ANOFFSET (delta, i) != 0)
|
||
something_changed = 1;
|
||
}
|
||
if (!something_changed)
|
||
return 0;
|
||
|
||
/* OK, get all the symtabs. */
|
||
{
|
||
struct symtab *s;
|
||
|
||
ALL_OBJFILE_SYMTABS (objfile, s)
|
||
{
|
||
struct linetable *l;
|
||
struct blockvector *bv;
|
||
int i;
|
||
|
||
/* First the line table. */
|
||
l = LINETABLE (s);
|
||
if (l)
|
||
{
|
||
for (i = 0; i < l->nitems; ++i)
|
||
l->item[i].pc += ANOFFSET (delta, s->block_line_section);
|
||
}
|
||
|
||
/* Don't relocate a shared blockvector more than once. */
|
||
if (!s->primary)
|
||
continue;
|
||
|
||
bv = BLOCKVECTOR (s);
|
||
if (BLOCKVECTOR_MAP (bv))
|
||
addrmap_relocate (BLOCKVECTOR_MAP (bv),
|
||
ANOFFSET (delta, s->block_line_section));
|
||
|
||
for (i = 0; i < BLOCKVECTOR_NBLOCKS (bv); ++i)
|
||
{
|
||
struct block *b;
|
||
struct symbol *sym;
|
||
struct dict_iterator iter;
|
||
|
||
b = BLOCKVECTOR_BLOCK (bv, i);
|
||
BLOCK_START (b) += ANOFFSET (delta, s->block_line_section);
|
||
BLOCK_END (b) += ANOFFSET (delta, s->block_line_section);
|
||
|
||
/* We only want to iterate over the local symbols, not any
|
||
symbols in included symtabs. */
|
||
ALL_DICT_SYMBOLS (BLOCK_DICT (b), iter, sym)
|
||
{
|
||
relocate_one_symbol (sym, objfile, delta);
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Relocate isolated symbols. */
|
||
{
|
||
struct symbol *iter;
|
||
|
||
for (iter = objfile->template_symbols; iter; iter = iter->hash_next)
|
||
relocate_one_symbol (iter, objfile, delta);
|
||
}
|
||
|
||
if (objfile->psymtabs_addrmap)
|
||
addrmap_relocate (objfile->psymtabs_addrmap,
|
||
ANOFFSET (delta, SECT_OFF_TEXT (objfile)));
|
||
|
||
if (objfile->sf)
|
||
objfile->sf->qf->relocate (objfile, new_offsets, delta);
|
||
|
||
{
|
||
struct minimal_symbol *msym;
|
||
|
||
ALL_OBJFILE_MSYMBOLS (objfile, msym)
|
||
if (SYMBOL_SECTION (msym) >= 0)
|
||
SYMBOL_VALUE_ADDRESS (msym) += ANOFFSET (delta, SYMBOL_SECTION (msym));
|
||
}
|
||
/* Relocating different sections by different amounts may cause the symbols
|
||
to be out of order. */
|
||
msymbols_sort (objfile);
|
||
|
||
if (objfile->ei.entry_point_p)
|
||
{
|
||
/* Relocate ei.entry_point with its section offset, use SECT_OFF_TEXT
|
||
only as a fallback. */
|
||
struct obj_section *s;
|
||
s = find_pc_section (objfile->ei.entry_point);
|
||
if (s)
|
||
{
|
||
int idx = gdb_bfd_section_index (objfile->obfd, s->the_bfd_section);
|
||
|
||
objfile->ei.entry_point += ANOFFSET (delta, idx);
|
||
}
|
||
else
|
||
objfile->ei.entry_point += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
|
||
}
|
||
|
||
{
|
||
int i;
|
||
|
||
for (i = 0; i < objfile->num_sections; ++i)
|
||
(objfile->section_offsets)->offsets[i] = ANOFFSET (new_offsets, i);
|
||
}
|
||
|
||
/* Rebuild section map next time we need it. */
|
||
get_objfile_pspace_data (objfile->pspace)->section_map_dirty = 1;
|
||
|
||
/* Update the table in exec_ops, used to read memory. */
|
||
ALL_OBJFILE_OSECTIONS (objfile, s)
|
||
{
|
||
int idx = s - objfile->sections;
|
||
|
||
exec_set_section_address (bfd_get_filename (objfile->obfd), idx,
|
||
obj_section_addr (s));
|
||
}
|
||
|
||
/* Relocating probes. */
|
||
if (objfile->sf && objfile->sf->sym_probe_fns)
|
||
objfile->sf->sym_probe_fns->sym_relocate_probe (objfile,
|
||
new_offsets, delta);
|
||
|
||
/* Data changed. */
|
||
return 1;
|
||
}
|
||
|
||
/* Relocate OBJFILE to NEW_OFFSETS. There should be OBJFILE->NUM_SECTIONS
|
||
entries in new_offsets. Process also OBJFILE's SEPARATE_DEBUG_OBJFILEs.
|
||
|
||
The number and ordering of sections does differ between the two objfiles.
|
||
Only their names match. Also the file offsets will differ (objfile being
|
||
possibly prelinked but separate_debug_objfile is probably not prelinked) but
|
||
the in-memory absolute address as specified by NEW_OFFSETS must match both
|
||
files. */
|
||
|
||
void
|
||
objfile_relocate (struct objfile *objfile,
|
||
const struct section_offsets *new_offsets)
|
||
{
|
||
struct objfile *debug_objfile;
|
||
int changed = 0;
|
||
|
||
changed |= objfile_relocate1 (objfile, new_offsets);
|
||
|
||
for (debug_objfile = objfile->separate_debug_objfile;
|
||
debug_objfile;
|
||
debug_objfile = objfile_separate_debug_iterate (objfile, debug_objfile))
|
||
{
|
||
struct section_addr_info *objfile_addrs;
|
||
struct section_offsets *new_debug_offsets;
|
||
struct cleanup *my_cleanups;
|
||
|
||
objfile_addrs = build_section_addr_info_from_objfile (objfile);
|
||
my_cleanups = make_cleanup (xfree, objfile_addrs);
|
||
|
||
/* Here OBJFILE_ADDRS contain the correct absolute addresses, the
|
||
relative ones must be already created according to debug_objfile. */
|
||
|
||
addr_info_make_relative (objfile_addrs, debug_objfile->obfd);
|
||
|
||
gdb_assert (debug_objfile->num_sections
|
||
== gdb_bfd_count_sections (debug_objfile->obfd));
|
||
new_debug_offsets =
|
||
xmalloc (SIZEOF_N_SECTION_OFFSETS (debug_objfile->num_sections));
|
||
make_cleanup (xfree, new_debug_offsets);
|
||
relative_addr_info_to_section_offsets (new_debug_offsets,
|
||
debug_objfile->num_sections,
|
||
objfile_addrs);
|
||
|
||
changed |= objfile_relocate1 (debug_objfile, new_debug_offsets);
|
||
|
||
do_cleanups (my_cleanups);
|
||
}
|
||
|
||
/* Relocate breakpoints as necessary, after things are relocated. */
|
||
if (changed)
|
||
breakpoint_re_set ();
|
||
}
|
||
|
||
/* Rebase (add to the offsets) OBJFILE by SLIDE. SEPARATE_DEBUG_OBJFILE is
|
||
not touched here.
|
||
Return non-zero iff any change happened. */
|
||
|
||
static int
|
||
objfile_rebase1 (struct objfile *objfile, CORE_ADDR slide)
|
||
{
|
||
struct section_offsets *new_offsets =
|
||
((struct section_offsets *)
|
||
alloca (SIZEOF_N_SECTION_OFFSETS (objfile->num_sections)));
|
||
int i;
|
||
|
||
for (i = 0; i < objfile->num_sections; ++i)
|
||
new_offsets->offsets[i] = slide;
|
||
|
||
return objfile_relocate1 (objfile, new_offsets);
|
||
}
|
||
|
||
/* Rebase (add to the offsets) OBJFILE by SLIDE. Process also OBJFILE's
|
||
SEPARATE_DEBUG_OBJFILEs. */
|
||
|
||
void
|
||
objfile_rebase (struct objfile *objfile, CORE_ADDR slide)
|
||
{
|
||
struct objfile *debug_objfile;
|
||
int changed = 0;
|
||
|
||
changed |= objfile_rebase1 (objfile, slide);
|
||
|
||
for (debug_objfile = objfile->separate_debug_objfile;
|
||
debug_objfile;
|
||
debug_objfile = objfile_separate_debug_iterate (objfile, debug_objfile))
|
||
changed |= objfile_rebase1 (debug_objfile, slide);
|
||
|
||
/* Relocate breakpoints as necessary, after things are relocated. */
|
||
if (changed)
|
||
breakpoint_re_set ();
|
||
}
|
||
|
||
/* Return non-zero if OBJFILE has partial symbols. */
|
||
|
||
int
|
||
objfile_has_partial_symbols (struct objfile *objfile)
|
||
{
|
||
if (!objfile->sf)
|
||
return 0;
|
||
|
||
/* If we have not read psymbols, but we have a function capable of reading
|
||
them, then that is an indication that they are in fact available. Without
|
||
this function the symbols may have been already read in but they also may
|
||
not be present in this objfile. */
|
||
if ((objfile->flags & OBJF_PSYMTABS_READ) == 0
|
||
&& objfile->sf->sym_read_psymbols != NULL)
|
||
return 1;
|
||
|
||
return objfile->sf->qf->has_symbols (objfile);
|
||
}
|
||
|
||
/* Return non-zero if OBJFILE has full symbols. */
|
||
|
||
int
|
||
objfile_has_full_symbols (struct objfile *objfile)
|
||
{
|
||
return objfile->symtabs != NULL;
|
||
}
|
||
|
||
/* Return non-zero if OBJFILE has full or partial symbols, either directly
|
||
or through a separate debug file. */
|
||
|
||
int
|
||
objfile_has_symbols (struct objfile *objfile)
|
||
{
|
||
struct objfile *o;
|
||
|
||
for (o = objfile; o; o = objfile_separate_debug_iterate (objfile, o))
|
||
if (objfile_has_partial_symbols (o) || objfile_has_full_symbols (o))
|
||
return 1;
|
||
return 0;
|
||
}
|
||
|
||
|
||
/* Many places in gdb want to test just to see if we have any partial
|
||
symbols available. This function returns zero if none are currently
|
||
available, nonzero otherwise. */
|
||
|
||
int
|
||
have_partial_symbols (void)
|
||
{
|
||
struct objfile *ofp;
|
||
|
||
ALL_OBJFILES (ofp)
|
||
{
|
||
if (objfile_has_partial_symbols (ofp))
|
||
return 1;
|
||
}
|
||
return 0;
|
||
}
|
||
|
||
/* Many places in gdb want to test just to see if we have any full
|
||
symbols available. This function returns zero if none are currently
|
||
available, nonzero otherwise. */
|
||
|
||
int
|
||
have_full_symbols (void)
|
||
{
|
||
struct objfile *ofp;
|
||
|
||
ALL_OBJFILES (ofp)
|
||
{
|
||
if (objfile_has_full_symbols (ofp))
|
||
return 1;
|
||
}
|
||
return 0;
|
||
}
|
||
|
||
|
||
/* This operations deletes all objfile entries that represent solibs that
|
||
weren't explicitly loaded by the user, via e.g., the add-symbol-file
|
||
command. */
|
||
|
||
void
|
||
objfile_purge_solibs (void)
|
||
{
|
||
struct objfile *objf;
|
||
struct objfile *temp;
|
||
|
||
ALL_OBJFILES_SAFE (objf, temp)
|
||
{
|
||
/* We assume that the solib package has been purged already, or will
|
||
be soon. */
|
||
|
||
if (!(objf->flags & OBJF_USERLOADED) && (objf->flags & OBJF_SHARED))
|
||
free_objfile (objf);
|
||
}
|
||
}
|
||
|
||
|
||
/* Many places in gdb want to test just to see if we have any minimal
|
||
symbols available. This function returns zero if none are currently
|
||
available, nonzero otherwise. */
|
||
|
||
int
|
||
have_minimal_symbols (void)
|
||
{
|
||
struct objfile *ofp;
|
||
|
||
ALL_OBJFILES (ofp)
|
||
{
|
||
if (ofp->minimal_symbol_count > 0)
|
||
{
|
||
return 1;
|
||
}
|
||
}
|
||
return 0;
|
||
}
|
||
|
||
/* Qsort comparison function. */
|
||
|
||
static int
|
||
qsort_cmp (const void *a, const void *b)
|
||
{
|
||
const struct obj_section *sect1 = *(const struct obj_section **) a;
|
||
const struct obj_section *sect2 = *(const struct obj_section **) b;
|
||
const CORE_ADDR sect1_addr = obj_section_addr (sect1);
|
||
const CORE_ADDR sect2_addr = obj_section_addr (sect2);
|
||
|
||
if (sect1_addr < sect2_addr)
|
||
return -1;
|
||
else if (sect1_addr > sect2_addr)
|
||
return 1;
|
||
else
|
||
{
|
||
/* Sections are at the same address. This could happen if
|
||
A) we have an objfile and a separate debuginfo.
|
||
B) we are confused, and have added sections without proper relocation,
|
||
or something like that. */
|
||
|
||
const struct objfile *const objfile1 = sect1->objfile;
|
||
const struct objfile *const objfile2 = sect2->objfile;
|
||
|
||
if (objfile1->separate_debug_objfile == objfile2
|
||
|| objfile2->separate_debug_objfile == objfile1)
|
||
{
|
||
/* Case A. The ordering doesn't matter: separate debuginfo files
|
||
will be filtered out later. */
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Case B. Maintain stable sort order, so bugs in GDB are easier to
|
||
triage. This section could be slow (since we iterate over all
|
||
objfiles in each call to qsort_cmp), but this shouldn't happen
|
||
very often (GDB is already in a confused state; one hopes this
|
||
doesn't happen at all). If you discover that significant time is
|
||
spent in the loops below, do 'set complaints 100' and examine the
|
||
resulting complaints. */
|
||
|
||
if (objfile1 == objfile2)
|
||
{
|
||
/* Both sections came from the same objfile. We are really confused.
|
||
Sort on sequence order of sections within the objfile. */
|
||
|
||
const struct obj_section *osect;
|
||
|
||
ALL_OBJFILE_OSECTIONS (objfile1, osect)
|
||
if (osect == sect1)
|
||
return -1;
|
||
else if (osect == sect2)
|
||
return 1;
|
||
|
||
/* We should have found one of the sections before getting here. */
|
||
gdb_assert_not_reached ("section not found");
|
||
}
|
||
else
|
||
{
|
||
/* Sort on sequence number of the objfile in the chain. */
|
||
|
||
const struct objfile *objfile;
|
||
|
||
ALL_OBJFILES (objfile)
|
||
if (objfile == objfile1)
|
||
return -1;
|
||
else if (objfile == objfile2)
|
||
return 1;
|
||
|
||
/* We should have found one of the objfiles before getting here. */
|
||
gdb_assert_not_reached ("objfile not found");
|
||
}
|
||
}
|
||
|
||
/* Unreachable. */
|
||
gdb_assert_not_reached ("unexpected code path");
|
||
return 0;
|
||
}
|
||
|
||
/* Select "better" obj_section to keep. We prefer the one that came from
|
||
the real object, rather than the one from separate debuginfo.
|
||
Most of the time the two sections are exactly identical, but with
|
||
prelinking the .rel.dyn section in the real object may have different
|
||
size. */
|
||
|
||
static struct obj_section *
|
||
preferred_obj_section (struct obj_section *a, struct obj_section *b)
|
||
{
|
||
gdb_assert (obj_section_addr (a) == obj_section_addr (b));
|
||
gdb_assert ((a->objfile->separate_debug_objfile == b->objfile)
|
||
|| (b->objfile->separate_debug_objfile == a->objfile));
|
||
gdb_assert ((a->objfile->separate_debug_objfile_backlink == b->objfile)
|
||
|| (b->objfile->separate_debug_objfile_backlink == a->objfile));
|
||
|
||
if (a->objfile->separate_debug_objfile != NULL)
|
||
return a;
|
||
return b;
|
||
}
|
||
|
||
/* Return 1 if SECTION should be inserted into the section map.
|
||
We want to insert only non-overlay and non-TLS section. */
|
||
|
||
static int
|
||
insert_section_p (const struct bfd *abfd,
|
||
const struct bfd_section *section)
|
||
{
|
||
const bfd_vma lma = bfd_section_lma (abfd, section);
|
||
|
||
if (overlay_debugging && lma != 0 && lma != bfd_section_vma (abfd, section)
|
||
&& (bfd_get_file_flags (abfd) & BFD_IN_MEMORY) == 0)
|
||
/* This is an overlay section. IN_MEMORY check is needed to avoid
|
||
discarding sections from the "system supplied DSO" (aka vdso)
|
||
on some Linux systems (e.g. Fedora 11). */
|
||
return 0;
|
||
if ((bfd_get_section_flags (abfd, section) & SEC_THREAD_LOCAL) != 0)
|
||
/* This is a TLS section. */
|
||
return 0;
|
||
|
||
return 1;
|
||
}
|
||
|
||
/* Filter out overlapping sections where one section came from the real
|
||
objfile, and the other from a separate debuginfo file.
|
||
Return the size of table after redundant sections have been eliminated. */
|
||
|
||
static int
|
||
filter_debuginfo_sections (struct obj_section **map, int map_size)
|
||
{
|
||
int i, j;
|
||
|
||
for (i = 0, j = 0; i < map_size - 1; i++)
|
||
{
|
||
struct obj_section *const sect1 = map[i];
|
||
struct obj_section *const sect2 = map[i + 1];
|
||
const struct objfile *const objfile1 = sect1->objfile;
|
||
const struct objfile *const objfile2 = sect2->objfile;
|
||
const CORE_ADDR sect1_addr = obj_section_addr (sect1);
|
||
const CORE_ADDR sect2_addr = obj_section_addr (sect2);
|
||
|
||
if (sect1_addr == sect2_addr
|
||
&& (objfile1->separate_debug_objfile == objfile2
|
||
|| objfile2->separate_debug_objfile == objfile1))
|
||
{
|
||
map[j++] = preferred_obj_section (sect1, sect2);
|
||
++i;
|
||
}
|
||
else
|
||
map[j++] = sect1;
|
||
}
|
||
|
||
if (i < map_size)
|
||
{
|
||
gdb_assert (i == map_size - 1);
|
||
map[j++] = map[i];
|
||
}
|
||
|
||
/* The map should not have shrunk to less than half the original size. */
|
||
gdb_assert (map_size / 2 <= j);
|
||
|
||
return j;
|
||
}
|
||
|
||
/* Filter out overlapping sections, issuing a warning if any are found.
|
||
Overlapping sections could really be overlay sections which we didn't
|
||
classify as such in insert_section_p, or we could be dealing with a
|
||
corrupt binary. */
|
||
|
||
static int
|
||
filter_overlapping_sections (struct obj_section **map, int map_size)
|
||
{
|
||
int i, j;
|
||
|
||
for (i = 0, j = 0; i < map_size - 1; )
|
||
{
|
||
int k;
|
||
|
||
map[j++] = map[i];
|
||
for (k = i + 1; k < map_size; k++)
|
||
{
|
||
struct obj_section *const sect1 = map[i];
|
||
struct obj_section *const sect2 = map[k];
|
||
const CORE_ADDR sect1_addr = obj_section_addr (sect1);
|
||
const CORE_ADDR sect2_addr = obj_section_addr (sect2);
|
||
const CORE_ADDR sect1_endaddr = obj_section_endaddr (sect1);
|
||
|
||
gdb_assert (sect1_addr <= sect2_addr);
|
||
|
||
if (sect1_endaddr <= sect2_addr)
|
||
break;
|
||
else
|
||
{
|
||
/* We have an overlap. Report it. */
|
||
|
||
struct objfile *const objf1 = sect1->objfile;
|
||
struct objfile *const objf2 = sect2->objfile;
|
||
|
||
const struct bfd_section *const bfds1 = sect1->the_bfd_section;
|
||
const struct bfd_section *const bfds2 = sect2->the_bfd_section;
|
||
|
||
const CORE_ADDR sect2_endaddr = obj_section_endaddr (sect2);
|
||
|
||
struct gdbarch *const gdbarch = get_objfile_arch (objf1);
|
||
|
||
complaint (&symfile_complaints,
|
||
_("unexpected overlap between:\n"
|
||
" (A) section `%s' from `%s' [%s, %s)\n"
|
||
" (B) section `%s' from `%s' [%s, %s).\n"
|
||
"Will ignore section B"),
|
||
bfd_section_name (abfd1, bfds1), objfile_name (objf1),
|
||
paddress (gdbarch, sect1_addr),
|
||
paddress (gdbarch, sect1_endaddr),
|
||
bfd_section_name (abfd2, bfds2), objfile_name (objf2),
|
||
paddress (gdbarch, sect2_addr),
|
||
paddress (gdbarch, sect2_endaddr));
|
||
}
|
||
}
|
||
i = k;
|
||
}
|
||
|
||
if (i < map_size)
|
||
{
|
||
gdb_assert (i == map_size - 1);
|
||
map[j++] = map[i];
|
||
}
|
||
|
||
return j;
|
||
}
|
||
|
||
|
||
/* Update PMAP, PMAP_SIZE with sections from all objfiles, excluding any
|
||
TLS, overlay and overlapping sections. */
|
||
|
||
static void
|
||
update_section_map (struct program_space *pspace,
|
||
struct obj_section ***pmap, int *pmap_size)
|
||
{
|
||
struct objfile_pspace_info *pspace_info;
|
||
int alloc_size, map_size, i;
|
||
struct obj_section *s, **map;
|
||
struct objfile *objfile;
|
||
|
||
pspace_info = get_objfile_pspace_data (pspace);
|
||
gdb_assert (pspace_info->section_map_dirty != 0
|
||
|| pspace_info->new_objfiles_available != 0);
|
||
|
||
map = *pmap;
|
||
xfree (map);
|
||
|
||
alloc_size = 0;
|
||
ALL_PSPACE_OBJFILES (pspace, objfile)
|
||
ALL_OBJFILE_OSECTIONS (objfile, s)
|
||
if (insert_section_p (objfile->obfd, s->the_bfd_section))
|
||
alloc_size += 1;
|
||
|
||
/* This happens on detach/attach (e.g. in gdb.base/attach.exp). */
|
||
if (alloc_size == 0)
|
||
{
|
||
*pmap = NULL;
|
||
*pmap_size = 0;
|
||
return;
|
||
}
|
||
|
||
map = xmalloc (alloc_size * sizeof (*map));
|
||
|
||
i = 0;
|
||
ALL_PSPACE_OBJFILES (pspace, objfile)
|
||
ALL_OBJFILE_OSECTIONS (objfile, s)
|
||
if (insert_section_p (objfile->obfd, s->the_bfd_section))
|
||
map[i++] = s;
|
||
|
||
qsort (map, alloc_size, sizeof (*map), qsort_cmp);
|
||
map_size = filter_debuginfo_sections(map, alloc_size);
|
||
map_size = filter_overlapping_sections(map, map_size);
|
||
|
||
if (map_size < alloc_size)
|
||
/* Some sections were eliminated. Trim excess space. */
|
||
map = xrealloc (map, map_size * sizeof (*map));
|
||
else
|
||
gdb_assert (alloc_size == map_size);
|
||
|
||
*pmap = map;
|
||
*pmap_size = map_size;
|
||
}
|
||
|
||
/* Bsearch comparison function. */
|
||
|
||
static int
|
||
bsearch_cmp (const void *key, const void *elt)
|
||
{
|
||
const CORE_ADDR pc = *(CORE_ADDR *) key;
|
||
const struct obj_section *section = *(const struct obj_section **) elt;
|
||
|
||
if (pc < obj_section_addr (section))
|
||
return -1;
|
||
if (pc < obj_section_endaddr (section))
|
||
return 0;
|
||
return 1;
|
||
}
|
||
|
||
/* Returns a section whose range includes PC or NULL if none found. */
|
||
|
||
struct obj_section *
|
||
find_pc_section (CORE_ADDR pc)
|
||
{
|
||
struct objfile_pspace_info *pspace_info;
|
||
struct obj_section *s, **sp;
|
||
|
||
/* Check for mapped overlay section first. */
|
||
s = find_pc_mapped_section (pc);
|
||
if (s)
|
||
return s;
|
||
|
||
pspace_info = get_objfile_pspace_data (current_program_space);
|
||
if (pspace_info->section_map_dirty
|
||
|| (pspace_info->new_objfiles_available
|
||
&& !pspace_info->inhibit_updates))
|
||
{
|
||
update_section_map (current_program_space,
|
||
&pspace_info->sections,
|
||
&pspace_info->num_sections);
|
||
|
||
/* Don't need updates to section map until objfiles are added,
|
||
removed or relocated. */
|
||
pspace_info->new_objfiles_available = 0;
|
||
pspace_info->section_map_dirty = 0;
|
||
}
|
||
|
||
/* The C standard (ISO/IEC 9899:TC2) requires the BASE argument to
|
||
bsearch be non-NULL. */
|
||
if (pspace_info->sections == NULL)
|
||
{
|
||
gdb_assert (pspace_info->num_sections == 0);
|
||
return NULL;
|
||
}
|
||
|
||
sp = (struct obj_section **) bsearch (&pc,
|
||
pspace_info->sections,
|
||
pspace_info->num_sections,
|
||
sizeof (*pspace_info->sections),
|
||
bsearch_cmp);
|
||
if (sp != NULL)
|
||
return *sp;
|
||
return NULL;
|
||
}
|
||
|
||
|
||
/* Return non-zero if PC is in a section called NAME. */
|
||
|
||
int
|
||
pc_in_section (CORE_ADDR pc, char *name)
|
||
{
|
||
struct obj_section *s;
|
||
int retval = 0;
|
||
|
||
s = find_pc_section (pc);
|
||
|
||
retval = (s != NULL
|
||
&& s->the_bfd_section->name != NULL
|
||
&& strcmp (s->the_bfd_section->name, name) == 0);
|
||
return (retval);
|
||
}
|
||
|
||
|
||
/* Set section_map_dirty so section map will be rebuilt next time it
|
||
is used. Called by reread_symbols. */
|
||
|
||
void
|
||
objfiles_changed (void)
|
||
{
|
||
/* Rebuild section map next time we need it. */
|
||
get_objfile_pspace_data (current_program_space)->section_map_dirty = 1;
|
||
}
|
||
|
||
/* See comments in objfiles.h. */
|
||
|
||
void
|
||
inhibit_section_map_updates (struct program_space *pspace)
|
||
{
|
||
get_objfile_pspace_data (pspace)->inhibit_updates = 1;
|
||
}
|
||
|
||
/* See comments in objfiles.h. */
|
||
|
||
void
|
||
resume_section_map_updates (struct program_space *pspace)
|
||
{
|
||
get_objfile_pspace_data (pspace)->inhibit_updates = 0;
|
||
}
|
||
|
||
/* See comments in objfiles.h. */
|
||
|
||
void
|
||
resume_section_map_updates_cleanup (void *arg)
|
||
{
|
||
resume_section_map_updates (arg);
|
||
}
|
||
|
||
/* Return 1 if ADDR maps into one of the sections of OBJFILE and 0
|
||
otherwise. */
|
||
|
||
int
|
||
is_addr_in_objfile (CORE_ADDR addr, const struct objfile *objfile)
|
||
{
|
||
struct obj_section *osect;
|
||
|
||
if (objfile == NULL)
|
||
return 0;
|
||
|
||
ALL_OBJFILE_OSECTIONS (objfile, osect)
|
||
{
|
||
if (section_is_overlay (osect) && !section_is_mapped (osect))
|
||
continue;
|
||
|
||
if (obj_section_addr (osect) <= addr
|
||
&& addr < obj_section_endaddr (osect))
|
||
return 1;
|
||
}
|
||
return 0;
|
||
}
|
||
|
||
/* The default implementation for the "iterate_over_objfiles_in_search_order"
|
||
gdbarch method. It is equivalent to use the ALL_OBJFILES macro,
|
||
searching the objfiles in the order they are stored internally,
|
||
ignoring CURRENT_OBJFILE.
|
||
|
||
On most platorms, it should be close enough to doing the best
|
||
we can without some knowledge specific to the architecture. */
|
||
|
||
void
|
||
default_iterate_over_objfiles_in_search_order
|
||
(struct gdbarch *gdbarch,
|
||
iterate_over_objfiles_in_search_order_cb_ftype *cb,
|
||
void *cb_data, struct objfile *current_objfile)
|
||
{
|
||
int stop = 0;
|
||
struct objfile *objfile;
|
||
|
||
ALL_OBJFILES (objfile)
|
||
{
|
||
stop = cb (objfile, cb_data);
|
||
if (stop)
|
||
return;
|
||
}
|
||
}
|
||
|
||
/* Return canonical name for OBJFILE. */
|
||
|
||
const char *
|
||
objfile_name (const struct objfile *objfile)
|
||
{
|
||
if (objfile->obfd != NULL)
|
||
return bfd_get_filename (objfile->obfd);
|
||
|
||
return objfile->original_name;
|
||
}
|
||
|
||
/* Provide a prototype to silence -Wmissing-prototypes. */
|
||
extern initialize_file_ftype _initialize_objfiles;
|
||
|
||
void
|
||
_initialize_objfiles (void)
|
||
{
|
||
objfiles_pspace_data
|
||
= register_program_space_data_with_cleanup (NULL,
|
||
objfiles_pspace_data_cleanup);
|
||
|
||
objfiles_bfd_data = register_bfd_data_with_cleanup (NULL,
|
||
objfile_bfd_data_free);
|
||
}
|