1590 lines
37 KiB
C
1590 lines
37 KiB
C
/*> cp1.c <*/
|
|
/* MIPS Simulator FPU (CoProcessor 1) support.
|
|
Copyright (C) 2002, 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
|
|
Originally created by Cygnus Solutions. Extensive modifications,
|
|
including paired-single operation support and MIPS-3D support
|
|
contributed by Ed Satterthwaite and Chris Demetriou, of Broadcom
|
|
Corporation (SiByte).
|
|
|
|
This file is part of GDB, the GNU debugger.
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>. */
|
|
|
|
/* XXX: The following notice should be removed as soon as is practical: */
|
|
/* Floating Point Support for gdb MIPS simulators
|
|
|
|
This file is part of the MIPS sim
|
|
|
|
THIS SOFTWARE IS NOT COPYRIGHTED
|
|
(by Cygnus.)
|
|
|
|
Cygnus offers the following for use in the public domain. Cygnus
|
|
makes no warranty with regard to the software or it's performance
|
|
and the user accepts the software "AS IS" with all faults.
|
|
|
|
CYGNUS DISCLAIMS ANY WARRANTIES, EXPRESS OR IMPLIED, WITH REGARD TO
|
|
THIS SOFTWARE INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
|
|
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
|
|
|
|
(Originally, this code was in interp.c)
|
|
*/
|
|
|
|
#include "sim-main.h"
|
|
|
|
/* Within cp1.c we refer to sim_cpu directly. */
|
|
#define CPU cpu
|
|
#define SD CPU_STATE(cpu)
|
|
|
|
/*-- FPU support routines ---------------------------------------------------*/
|
|
|
|
/* Numbers are held in normalized form. The SINGLE and DOUBLE binary
|
|
formats conform to ANSI/IEEE Std 754-1985.
|
|
|
|
SINGLE precision floating:
|
|
seeeeeeeefffffffffffffffffffffff
|
|
s = 1bit = sign
|
|
e = 8bits = exponent
|
|
f = 23bits = fraction
|
|
|
|
SINGLE precision fixed:
|
|
siiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
|
|
s = 1bit = sign
|
|
i = 31bits = integer
|
|
|
|
DOUBLE precision floating:
|
|
seeeeeeeeeeeffffffffffffffffffffffffffffffffffffffffffffffffffff
|
|
s = 1bit = sign
|
|
e = 11bits = exponent
|
|
f = 52bits = fraction
|
|
|
|
DOUBLE precision fixed:
|
|
siiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
|
|
s = 1bit = sign
|
|
i = 63bits = integer
|
|
|
|
PAIRED SINGLE precision floating:
|
|
seeeeeeeefffffffffffffffffffffffseeeeeeeefffffffffffffffffffffff
|
|
| upper || lower |
|
|
s = 1bit = sign
|
|
e = 8bits = exponent
|
|
f = 23bits = fraction
|
|
Note: upper = [63..32], lower = [31..0]
|
|
*/
|
|
|
|
/* Extract packed single values: */
|
|
#define FP_PS_upper(v) (((v) >> 32) & (unsigned)0xFFFFFFFF)
|
|
#define FP_PS_lower(v) ((v) & (unsigned)0xFFFFFFFF)
|
|
#define FP_PS_cat(u,l) (((unsigned64)((u) & (unsigned)0xFFFFFFFF) << 32) \
|
|
| (unsigned64)((l) & 0xFFFFFFFF))
|
|
|
|
/* Explicit QNaN values. */
|
|
#define FPQNaN_SINGLE (0x7FBFFFFF)
|
|
#define FPQNaN_WORD (0x7FFFFFFF)
|
|
#define FPQNaN_DOUBLE (UNSIGNED64 (0x7FF7FFFFFFFFFFFF))
|
|
#define FPQNaN_LONG (UNSIGNED64 (0x7FFFFFFFFFFFFFFF))
|
|
#define FPQNaN_PS (FP_PS_cat (FPQNaN_SINGLE, FPQNaN_SINGLE))
|
|
|
|
static const char *fpu_format_name (FP_formats fmt);
|
|
#ifdef DEBUG
|
|
static const char *fpu_rounding_mode_name (int rm);
|
|
#endif
|
|
|
|
uword64
|
|
value_fpr (sim_cpu *cpu,
|
|
address_word cia,
|
|
int fpr,
|
|
FP_formats fmt)
|
|
{
|
|
uword64 value = 0;
|
|
int err = 0;
|
|
|
|
/* Treat unused register values, as fixed-point 64bit values. */
|
|
if (fmt == fmt_unknown)
|
|
{
|
|
#if 1
|
|
/* If request to read data as "unknown", then use the current
|
|
encoding: */
|
|
fmt = FPR_STATE[fpr];
|
|
#else
|
|
fmt = fmt_long;
|
|
#endif
|
|
}
|
|
|
|
/* For values not yet accessed, set to the desired format. */
|
|
if (fmt < fmt_uninterpreted)
|
|
{
|
|
if (FPR_STATE[fpr] == fmt_uninterpreted)
|
|
{
|
|
FPR_STATE[fpr] = fmt;
|
|
#ifdef DEBUG
|
|
printf ("DBG: Register %d was fmt_uninterpreted. Now %s\n", fpr,
|
|
fpu_format_name (fmt));
|
|
#endif /* DEBUG */
|
|
}
|
|
else if (fmt != FPR_STATE[fpr])
|
|
{
|
|
sim_io_eprintf (SD, "FPR %d (format %s) being accessed with format %s - setting to unknown (PC = 0x%s)\n",
|
|
fpr, fpu_format_name (FPR_STATE[fpr]),
|
|
fpu_format_name (fmt), pr_addr (cia));
|
|
FPR_STATE[fpr] = fmt_unknown;
|
|
}
|
|
}
|
|
|
|
if (FPR_STATE[fpr] == fmt_unknown)
|
|
{
|
|
/* Set QNaN value: */
|
|
switch (fmt)
|
|
{
|
|
case fmt_single: value = FPQNaN_SINGLE; break;
|
|
case fmt_double: value = FPQNaN_DOUBLE; break;
|
|
case fmt_word: value = FPQNaN_WORD; break;
|
|
case fmt_long: value = FPQNaN_LONG; break;
|
|
case fmt_ps: value = FPQNaN_PS; break;
|
|
default: err = -1; break;
|
|
}
|
|
}
|
|
else if (SizeFGR () == 64)
|
|
{
|
|
switch (fmt)
|
|
{
|
|
case fmt_uninterpreted_32:
|
|
case fmt_single:
|
|
case fmt_word:
|
|
value = (FGR[fpr] & 0xFFFFFFFF);
|
|
break;
|
|
|
|
case fmt_uninterpreted_64:
|
|
case fmt_uninterpreted:
|
|
case fmt_double:
|
|
case fmt_long:
|
|
case fmt_ps:
|
|
value = FGR[fpr];
|
|
break;
|
|
|
|
default:
|
|
err = -1;
|
|
break;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
switch (fmt)
|
|
{
|
|
case fmt_uninterpreted_32:
|
|
case fmt_single:
|
|
case fmt_word:
|
|
value = (FGR[fpr] & 0xFFFFFFFF);
|
|
break;
|
|
|
|
case fmt_uninterpreted_64:
|
|
case fmt_uninterpreted:
|
|
case fmt_double:
|
|
case fmt_long:
|
|
if ((fpr & 1) == 0)
|
|
{
|
|
/* Even register numbers only. */
|
|
#ifdef DEBUG
|
|
printf ("DBG: ValueFPR: FGR[%d] = %s, FGR[%d] = %s\n",
|
|
fpr + 1, pr_uword64 ((uword64) FGR[fpr+1]),
|
|
fpr, pr_uword64 ((uword64) FGR[fpr]));
|
|
#endif
|
|
value = ((((uword64) FGR[fpr+1]) << 32)
|
|
| (FGR[fpr] & 0xFFFFFFFF));
|
|
}
|
|
else
|
|
{
|
|
SignalException (ReservedInstruction, 0);
|
|
}
|
|
break;
|
|
|
|
case fmt_ps:
|
|
SignalException (ReservedInstruction, 0);
|
|
break;
|
|
|
|
default:
|
|
err = -1;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (err)
|
|
SignalExceptionSimulatorFault ("Unrecognised FP format in ValueFPR ()");
|
|
|
|
#ifdef DEBUG
|
|
printf ("DBG: ValueFPR: fpr = %d, fmt = %s, value = 0x%s : PC = 0x%s : SizeFGR () = %d\n",
|
|
fpr, fpu_format_name (fmt), pr_uword64 (value), pr_addr (cia),
|
|
SizeFGR ());
|
|
#endif /* DEBUG */
|
|
|
|
return (value);
|
|
}
|
|
|
|
void
|
|
store_fpr (sim_cpu *cpu,
|
|
address_word cia,
|
|
int fpr,
|
|
FP_formats fmt,
|
|
uword64 value)
|
|
{
|
|
int err = 0;
|
|
|
|
#ifdef DEBUG
|
|
printf ("DBG: StoreFPR: fpr = %d, fmt = %s, value = 0x%s : PC = 0x%s : SizeFGR () = %d, \n",
|
|
fpr, fpu_format_name (fmt), pr_uword64 (value), pr_addr (cia),
|
|
SizeFGR ());
|
|
#endif /* DEBUG */
|
|
|
|
if (SizeFGR () == 64)
|
|
{
|
|
switch (fmt)
|
|
{
|
|
case fmt_uninterpreted_32:
|
|
fmt = fmt_uninterpreted;
|
|
case fmt_single:
|
|
case fmt_word:
|
|
if (STATE_VERBOSE_P (SD))
|
|
sim_io_eprintf (SD,
|
|
"Warning: PC 0x%s: interp.c store_fpr DEADCODE\n",
|
|
pr_addr (cia));
|
|
FGR[fpr] = (((uword64) 0xDEADC0DE << 32) | (value & 0xFFFFFFFF));
|
|
FPR_STATE[fpr] = fmt;
|
|
break;
|
|
|
|
case fmt_uninterpreted_64:
|
|
fmt = fmt_uninterpreted;
|
|
case fmt_uninterpreted:
|
|
case fmt_double:
|
|
case fmt_long:
|
|
case fmt_ps:
|
|
FGR[fpr] = value;
|
|
FPR_STATE[fpr] = fmt;
|
|
break;
|
|
|
|
default:
|
|
FPR_STATE[fpr] = fmt_unknown;
|
|
err = -1;
|
|
break;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
switch (fmt)
|
|
{
|
|
case fmt_uninterpreted_32:
|
|
fmt = fmt_uninterpreted;
|
|
case fmt_single:
|
|
case fmt_word:
|
|
FGR[fpr] = (value & 0xFFFFFFFF);
|
|
FPR_STATE[fpr] = fmt;
|
|
break;
|
|
|
|
case fmt_uninterpreted_64:
|
|
fmt = fmt_uninterpreted;
|
|
case fmt_uninterpreted:
|
|
case fmt_double:
|
|
case fmt_long:
|
|
if ((fpr & 1) == 0)
|
|
{
|
|
/* Even register numbers only. */
|
|
FGR[fpr+1] = (value >> 32);
|
|
FGR[fpr] = (value & 0xFFFFFFFF);
|
|
FPR_STATE[fpr + 1] = fmt;
|
|
FPR_STATE[fpr] = fmt;
|
|
}
|
|
else
|
|
{
|
|
FPR_STATE[fpr] = fmt_unknown;
|
|
FPR_STATE[fpr ^ 1] = fmt_unknown;
|
|
SignalException (ReservedInstruction, 0);
|
|
}
|
|
break;
|
|
|
|
case fmt_ps:
|
|
FPR_STATE[fpr] = fmt_unknown;
|
|
SignalException (ReservedInstruction, 0);
|
|
break;
|
|
|
|
default:
|
|
FPR_STATE[fpr] = fmt_unknown;
|
|
err = -1;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (err)
|
|
SignalExceptionSimulatorFault ("Unrecognised FP format in StoreFPR ()");
|
|
|
|
#ifdef DEBUG
|
|
printf ("DBG: StoreFPR: fpr[%d] = 0x%s (format %s)\n",
|
|
fpr, pr_uword64 (FGR[fpr]), fpu_format_name (fmt));
|
|
#endif /* DEBUG */
|
|
|
|
return;
|
|
}
|
|
|
|
|
|
/* CP1 control/status register access functions. */
|
|
|
|
void
|
|
test_fcsr (sim_cpu *cpu,
|
|
address_word cia)
|
|
{
|
|
unsigned int cause;
|
|
|
|
cause = (FCSR & fcsr_CAUSE_mask) >> fcsr_CAUSE_shift;
|
|
if ((cause & ((FCSR & fcsr_ENABLES_mask) >> fcsr_ENABLES_shift)) != 0
|
|
|| (cause & (1 << UO)))
|
|
{
|
|
SignalExceptionFPE();
|
|
}
|
|
}
|
|
|
|
unsigned_word
|
|
value_fcr(sim_cpu *cpu,
|
|
address_word cia,
|
|
int fcr)
|
|
{
|
|
unsigned32 value = 0;
|
|
|
|
switch (fcr)
|
|
{
|
|
case 0: /* FP Implementation and Revision Register. */
|
|
value = FCR0;
|
|
break;
|
|
case 25: /* FP Condition Codes Register (derived from FCSR). */
|
|
value = (FCR31 & fcsr_FCC_mask) >> fcsr_FCC_shift;
|
|
value = (value & 0x1) | (value >> 1); /* Close FCC gap. */
|
|
break;
|
|
case 26: /* FP Exceptions Register (derived from FCSR). */
|
|
value = FCR31 & (fcsr_CAUSE_mask | fcsr_FLAGS_mask);
|
|
break;
|
|
case 28: /* FP Enables Register (derived from FCSR). */
|
|
value = FCR31 & (fcsr_ENABLES_mask | fcsr_RM_mask);
|
|
if ((FCR31 & fcsr_FS) != 0)
|
|
value |= fenr_FS;
|
|
break;
|
|
case 31: /* FP Control/Status Register (FCSR). */
|
|
value = FCR31 & ~fcsr_ZERO_mask;
|
|
break;
|
|
}
|
|
|
|
return (EXTEND32 (value));
|
|
}
|
|
|
|
void
|
|
store_fcr(sim_cpu *cpu,
|
|
address_word cia,
|
|
int fcr,
|
|
unsigned_word value)
|
|
{
|
|
unsigned32 v;
|
|
|
|
v = VL4_8(value);
|
|
switch (fcr)
|
|
{
|
|
case 25: /* FP Condition Codes Register (stored into FCSR). */
|
|
v = (v << 1) | (v & 0x1); /* Adjust for FCC gap. */
|
|
FCR31 &= ~fcsr_FCC_mask;
|
|
FCR31 |= ((v << fcsr_FCC_shift) & fcsr_FCC_mask);
|
|
break;
|
|
case 26: /* FP Exceptions Register (stored into FCSR). */
|
|
FCR31 &= ~(fcsr_CAUSE_mask | fcsr_FLAGS_mask);
|
|
FCR31 |= (v & (fcsr_CAUSE_mask | fcsr_FLAGS_mask));
|
|
test_fcsr(cpu, cia);
|
|
break;
|
|
case 28: /* FP Enables Register (stored into FCSR). */
|
|
if ((v & fenr_FS) != 0)
|
|
v |= fcsr_FS;
|
|
else
|
|
v &= ~fcsr_FS;
|
|
FCR31 &= (fcsr_FCC_mask | fcsr_CAUSE_mask | fcsr_FLAGS_mask);
|
|
FCR31 |= (v & (fcsr_FS | fcsr_ENABLES_mask | fcsr_RM_mask));
|
|
test_fcsr(cpu, cia);
|
|
break;
|
|
case 31: /* FP Control/Status Register (FCSR). */
|
|
FCR31 = v & ~fcsr_ZERO_mask;
|
|
test_fcsr(cpu, cia);
|
|
break;
|
|
}
|
|
}
|
|
|
|
void
|
|
update_fcsr (sim_cpu *cpu,
|
|
address_word cia,
|
|
sim_fpu_status status)
|
|
{
|
|
FCSR &= ~fcsr_CAUSE_mask;
|
|
|
|
if (status != 0)
|
|
{
|
|
unsigned int cause = 0;
|
|
|
|
/* map between sim_fpu codes and MIPS FCSR */
|
|
if (status & (sim_fpu_status_invalid_snan
|
|
| sim_fpu_status_invalid_isi
|
|
| sim_fpu_status_invalid_idi
|
|
| sim_fpu_status_invalid_zdz
|
|
| sim_fpu_status_invalid_imz
|
|
| sim_fpu_status_invalid_cmp
|
|
| sim_fpu_status_invalid_sqrt
|
|
| sim_fpu_status_invalid_cvi))
|
|
cause |= (1 << IO);
|
|
if (status & sim_fpu_status_invalid_div0)
|
|
cause |= (1 << DZ);
|
|
if (status & sim_fpu_status_overflow)
|
|
cause |= (1 << OF);
|
|
if (status & sim_fpu_status_underflow)
|
|
cause |= (1 << UF);
|
|
if (status & sim_fpu_status_inexact)
|
|
cause |= (1 << IR);
|
|
#if 0 /* Not yet. */
|
|
/* Implicit clearing of other bits by unimplemented done by callers. */
|
|
if (status & sim_fpu_status_unimplemented)
|
|
cause |= (1 << UO);
|
|
#endif
|
|
|
|
FCSR |= (cause << fcsr_CAUSE_shift);
|
|
test_fcsr (cpu, cia);
|
|
FCSR |= ((cause & ~(1 << UO)) << fcsr_FLAGS_shift);
|
|
}
|
|
return;
|
|
}
|
|
|
|
static sim_fpu_round
|
|
rounding_mode(int rm)
|
|
{
|
|
sim_fpu_round round;
|
|
|
|
switch (rm)
|
|
{
|
|
case FP_RM_NEAREST:
|
|
/* Round result to nearest representable value. When two
|
|
representable values are equally near, round to the value
|
|
that has a least significant bit of zero (i.e. is even). */
|
|
round = sim_fpu_round_near;
|
|
break;
|
|
case FP_RM_TOZERO:
|
|
/* Round result to the value closest to, and not greater in
|
|
magnitude than, the result. */
|
|
round = sim_fpu_round_zero;
|
|
break;
|
|
case FP_RM_TOPINF:
|
|
/* Round result to the value closest to, and not less than,
|
|
the result. */
|
|
round = sim_fpu_round_up;
|
|
break;
|
|
case FP_RM_TOMINF:
|
|
/* Round result to the value closest to, and not greater than,
|
|
the result. */
|
|
round = sim_fpu_round_down;
|
|
break;
|
|
default:
|
|
round = 0;
|
|
fprintf (stderr, "Bad switch\n");
|
|
abort ();
|
|
}
|
|
return round;
|
|
}
|
|
|
|
/* When the FS bit is set, MIPS processors return zero for
|
|
denormalized results and optionally replace denormalized inputs
|
|
with zero. When FS is clear, some implementation trap on input
|
|
and/or output, while other perform the operation in hardware. */
|
|
static sim_fpu_denorm
|
|
denorm_mode(sim_cpu *cpu)
|
|
{
|
|
sim_fpu_denorm denorm;
|
|
|
|
/* XXX: FIXME: Eventually should be CPU model dependent. */
|
|
if (GETFS())
|
|
denorm = sim_fpu_denorm_zero;
|
|
else
|
|
denorm = 0;
|
|
return denorm;
|
|
}
|
|
|
|
|
|
/* Comparison operations. */
|
|
|
|
static sim_fpu_status
|
|
fp_test(unsigned64 op1,
|
|
unsigned64 op2,
|
|
FP_formats fmt,
|
|
int abs,
|
|
int cond,
|
|
int *condition)
|
|
{
|
|
sim_fpu wop1;
|
|
sim_fpu wop2;
|
|
sim_fpu_status status = 0;
|
|
int less, equal, unordered;
|
|
|
|
/* The format type has already been checked: */
|
|
switch (fmt)
|
|
{
|
|
case fmt_single:
|
|
{
|
|
sim_fpu_32to (&wop1, op1);
|
|
sim_fpu_32to (&wop2, op2);
|
|
break;
|
|
}
|
|
case fmt_double:
|
|
{
|
|
sim_fpu_64to (&wop1, op1);
|
|
sim_fpu_64to (&wop2, op2);
|
|
break;
|
|
}
|
|
default:
|
|
fprintf (stderr, "Bad switch\n");
|
|
abort ();
|
|
}
|
|
|
|
if (sim_fpu_is_nan (&wop1) || sim_fpu_is_nan (&wop2))
|
|
{
|
|
if ((cond & (1 << 3)) ||
|
|
sim_fpu_is_snan (&wop1) || sim_fpu_is_snan (&wop2))
|
|
status = sim_fpu_status_invalid_snan;
|
|
less = 0;
|
|
equal = 0;
|
|
unordered = 1;
|
|
}
|
|
else
|
|
{
|
|
if (abs)
|
|
{
|
|
status |= sim_fpu_abs (&wop1, &wop1);
|
|
status |= sim_fpu_abs (&wop2, &wop2);
|
|
}
|
|
equal = sim_fpu_is_eq (&wop1, &wop2);
|
|
less = !equal && sim_fpu_is_lt (&wop1, &wop2);
|
|
unordered = 0;
|
|
}
|
|
*condition = (((cond & (1 << 2)) && less)
|
|
|| ((cond & (1 << 1)) && equal)
|
|
|| ((cond & (1 << 0)) && unordered));
|
|
return status;
|
|
}
|
|
|
|
void
|
|
fp_cmp(sim_cpu *cpu,
|
|
address_word cia,
|
|
unsigned64 op1,
|
|
unsigned64 op2,
|
|
FP_formats fmt,
|
|
int abs,
|
|
int cond,
|
|
int cc)
|
|
{
|
|
sim_fpu_status status = 0;
|
|
|
|
/* The format type should already have been checked. The FCSR is
|
|
updated before the condition codes so that any exceptions will
|
|
be signalled before the condition codes are changed. */
|
|
switch (fmt)
|
|
{
|
|
case fmt_single:
|
|
case fmt_double:
|
|
{
|
|
int result;
|
|
status = fp_test(op1, op2, fmt, abs, cond, &result);
|
|
update_fcsr (cpu, cia, status);
|
|
SETFCC (cc, result);
|
|
break;
|
|
}
|
|
case fmt_ps:
|
|
{
|
|
int result0, result1;
|
|
status = fp_test(FP_PS_lower (op1), FP_PS_lower (op2), fmt_single,
|
|
abs, cond, &result0);
|
|
status |= fp_test(FP_PS_upper (op1), FP_PS_upper (op2), fmt_single,
|
|
abs, cond, &result1);
|
|
update_fcsr (cpu, cia, status);
|
|
SETFCC (cc, result0);
|
|
SETFCC (cc+1, result1);
|
|
break;
|
|
}
|
|
default:
|
|
sim_io_eprintf (SD, "Bad switch\n");
|
|
abort ();
|
|
}
|
|
}
|
|
|
|
|
|
/* Basic arithmetic operations. */
|
|
|
|
static unsigned64
|
|
fp_unary(sim_cpu *cpu,
|
|
address_word cia,
|
|
int (*sim_fpu_op)(sim_fpu *, const sim_fpu *),
|
|
unsigned64 op,
|
|
FP_formats fmt)
|
|
{
|
|
sim_fpu wop;
|
|
sim_fpu ans;
|
|
sim_fpu_round round = rounding_mode (GETRM());
|
|
sim_fpu_denorm denorm = denorm_mode (cpu);
|
|
sim_fpu_status status = 0;
|
|
unsigned64 result = 0;
|
|
|
|
/* The format type has already been checked: */
|
|
switch (fmt)
|
|
{
|
|
case fmt_single:
|
|
{
|
|
unsigned32 res;
|
|
sim_fpu_32to (&wop, op);
|
|
status |= (*sim_fpu_op) (&ans, &wop);
|
|
status |= sim_fpu_round_32 (&ans, round, denorm);
|
|
sim_fpu_to32 (&res, &ans);
|
|
result = res;
|
|
break;
|
|
}
|
|
case fmt_double:
|
|
{
|
|
unsigned64 res;
|
|
sim_fpu_64to (&wop, op);
|
|
status |= (*sim_fpu_op) (&ans, &wop);
|
|
status |= sim_fpu_round_64 (&ans, round, denorm);
|
|
sim_fpu_to64 (&res, &ans);
|
|
result = res;
|
|
break;
|
|
}
|
|
case fmt_ps:
|
|
{
|
|
int status_u = 0, status_l = 0;
|
|
unsigned32 res_u, res_l;
|
|
sim_fpu_32to (&wop, FP_PS_upper(op));
|
|
status_u |= (*sim_fpu_op) (&ans, &wop);
|
|
sim_fpu_to32 (&res_u, &ans);
|
|
sim_fpu_32to (&wop, FP_PS_lower(op));
|
|
status_l |= (*sim_fpu_op) (&ans, &wop);
|
|
sim_fpu_to32 (&res_l, &ans);
|
|
result = FP_PS_cat(res_u, res_l);
|
|
status = status_u | status_l;
|
|
break;
|
|
}
|
|
default:
|
|
sim_io_eprintf (SD, "Bad switch\n");
|
|
abort ();
|
|
}
|
|
|
|
update_fcsr (cpu, cia, status);
|
|
return result;
|
|
}
|
|
|
|
static unsigned64
|
|
fp_binary(sim_cpu *cpu,
|
|
address_word cia,
|
|
int (*sim_fpu_op)(sim_fpu *, const sim_fpu *, const sim_fpu *),
|
|
unsigned64 op1,
|
|
unsigned64 op2,
|
|
FP_formats fmt)
|
|
{
|
|
sim_fpu wop1;
|
|
sim_fpu wop2;
|
|
sim_fpu ans;
|
|
sim_fpu_round round = rounding_mode (GETRM());
|
|
sim_fpu_denorm denorm = denorm_mode (cpu);
|
|
sim_fpu_status status = 0;
|
|
unsigned64 result = 0;
|
|
|
|
/* The format type has already been checked: */
|
|
switch (fmt)
|
|
{
|
|
case fmt_single:
|
|
{
|
|
unsigned32 res;
|
|
sim_fpu_32to (&wop1, op1);
|
|
sim_fpu_32to (&wop2, op2);
|
|
status |= (*sim_fpu_op) (&ans, &wop1, &wop2);
|
|
status |= sim_fpu_round_32 (&ans, round, denorm);
|
|
sim_fpu_to32 (&res, &ans);
|
|
result = res;
|
|
break;
|
|
}
|
|
case fmt_double:
|
|
{
|
|
unsigned64 res;
|
|
sim_fpu_64to (&wop1, op1);
|
|
sim_fpu_64to (&wop2, op2);
|
|
status |= (*sim_fpu_op) (&ans, &wop1, &wop2);
|
|
status |= sim_fpu_round_64 (&ans, round, denorm);
|
|
sim_fpu_to64 (&res, &ans);
|
|
result = res;
|
|
break;
|
|
}
|
|
case fmt_ps:
|
|
{
|
|
int status_u = 0, status_l = 0;
|
|
unsigned32 res_u, res_l;
|
|
sim_fpu_32to (&wop1, FP_PS_upper(op1));
|
|
sim_fpu_32to (&wop2, FP_PS_upper(op2));
|
|
status_u |= (*sim_fpu_op) (&ans, &wop1, &wop2);
|
|
sim_fpu_to32 (&res_u, &ans);
|
|
sim_fpu_32to (&wop1, FP_PS_lower(op1));
|
|
sim_fpu_32to (&wop2, FP_PS_lower(op2));
|
|
status_l |= (*sim_fpu_op) (&ans, &wop1, &wop2);
|
|
sim_fpu_to32 (&res_l, &ans);
|
|
result = FP_PS_cat(res_u, res_l);
|
|
status = status_u | status_l;
|
|
break;
|
|
}
|
|
default:
|
|
sim_io_eprintf (SD, "Bad switch\n");
|
|
abort ();
|
|
}
|
|
|
|
update_fcsr (cpu, cia, status);
|
|
return result;
|
|
}
|
|
|
|
/* Common MAC code for single operands (.s or .d), defers setting FCSR. */
|
|
static sim_fpu_status
|
|
inner_mac(int (*sim_fpu_op)(sim_fpu *, const sim_fpu *, const sim_fpu *),
|
|
unsigned64 op1,
|
|
unsigned64 op2,
|
|
unsigned64 op3,
|
|
int scale,
|
|
int negate,
|
|
FP_formats fmt,
|
|
sim_fpu_round round,
|
|
sim_fpu_denorm denorm,
|
|
unsigned64 *result)
|
|
{
|
|
sim_fpu wop1;
|
|
sim_fpu wop2;
|
|
sim_fpu ans;
|
|
sim_fpu_status status = 0;
|
|
sim_fpu_status op_status;
|
|
unsigned64 temp = 0;
|
|
|
|
switch (fmt)
|
|
{
|
|
case fmt_single:
|
|
{
|
|
unsigned32 res;
|
|
sim_fpu_32to (&wop1, op1);
|
|
sim_fpu_32to (&wop2, op2);
|
|
status |= sim_fpu_mul (&ans, &wop1, &wop2);
|
|
if (scale != 0 && sim_fpu_is_number (&ans)) /* number or denorm */
|
|
ans.normal_exp += scale;
|
|
status |= sim_fpu_round_32 (&ans, round, denorm);
|
|
wop1 = ans;
|
|
op_status = 0;
|
|
sim_fpu_32to (&wop2, op3);
|
|
op_status |= (*sim_fpu_op) (&ans, &wop1, &wop2);
|
|
op_status |= sim_fpu_round_32 (&ans, round, denorm);
|
|
status |= op_status;
|
|
if (negate)
|
|
{
|
|
wop1 = ans;
|
|
op_status = sim_fpu_neg (&ans, &wop1);
|
|
op_status |= sim_fpu_round_32 (&ans, round, denorm);
|
|
status |= op_status;
|
|
}
|
|
sim_fpu_to32 (&res, &ans);
|
|
temp = res;
|
|
break;
|
|
}
|
|
case fmt_double:
|
|
{
|
|
unsigned64 res;
|
|
sim_fpu_64to (&wop1, op1);
|
|
sim_fpu_64to (&wop2, op2);
|
|
status |= sim_fpu_mul (&ans, &wop1, &wop2);
|
|
if (scale != 0 && sim_fpu_is_number (&ans)) /* number or denorm */
|
|
ans.normal_exp += scale;
|
|
status |= sim_fpu_round_64 (&ans, round, denorm);
|
|
wop1 = ans;
|
|
op_status = 0;
|
|
sim_fpu_64to (&wop2, op3);
|
|
op_status |= (*sim_fpu_op) (&ans, &wop1, &wop2);
|
|
op_status |= sim_fpu_round_64 (&ans, round, denorm);
|
|
status |= op_status;
|
|
if (negate)
|
|
{
|
|
wop1 = ans;
|
|
op_status = sim_fpu_neg (&ans, &wop1);
|
|
op_status |= sim_fpu_round_64 (&ans, round, denorm);
|
|
status |= op_status;
|
|
}
|
|
sim_fpu_to64 (&res, &ans);
|
|
temp = res;
|
|
break;
|
|
}
|
|
default:
|
|
fprintf (stderr, "Bad switch\n");
|
|
abort ();
|
|
}
|
|
*result = temp;
|
|
return status;
|
|
}
|
|
|
|
/* Common implementation of madd, nmadd, msub, nmsub that does
|
|
intermediate rounding per spec. Also used for recip2 and rsqrt2,
|
|
which are transformed into equivalent nmsub operations. The scale
|
|
argument is an adjustment to the exponent of the intermediate
|
|
product op1*op2. It is currently non-zero for rsqrt2 (-1), which
|
|
requires an effective division by 2. */
|
|
static unsigned64
|
|
fp_mac(sim_cpu *cpu,
|
|
address_word cia,
|
|
int (*sim_fpu_op)(sim_fpu *, const sim_fpu *, const sim_fpu *),
|
|
unsigned64 op1,
|
|
unsigned64 op2,
|
|
unsigned64 op3,
|
|
int scale,
|
|
int negate,
|
|
FP_formats fmt)
|
|
{
|
|
sim_fpu_round round = rounding_mode (GETRM());
|
|
sim_fpu_denorm denorm = denorm_mode (cpu);
|
|
sim_fpu_status status = 0;
|
|
unsigned64 result = 0;
|
|
|
|
/* The format type has already been checked: */
|
|
switch (fmt)
|
|
{
|
|
case fmt_single:
|
|
case fmt_double:
|
|
status = inner_mac(sim_fpu_op, op1, op2, op3, scale,
|
|
negate, fmt, round, denorm, &result);
|
|
break;
|
|
case fmt_ps:
|
|
{
|
|
int status_u, status_l;
|
|
unsigned64 result_u, result_l;
|
|
status_u = inner_mac(sim_fpu_op, FP_PS_upper(op1), FP_PS_upper(op2),
|
|
FP_PS_upper(op3), scale, negate, fmt_single,
|
|
round, denorm, &result_u);
|
|
status_l = inner_mac(sim_fpu_op, FP_PS_lower(op1), FP_PS_lower(op2),
|
|
FP_PS_lower(op3), scale, negate, fmt_single,
|
|
round, denorm, &result_l);
|
|
result = FP_PS_cat(result_u, result_l);
|
|
status = status_u | status_l;
|
|
break;
|
|
}
|
|
default:
|
|
sim_io_eprintf (SD, "Bad switch\n");
|
|
abort ();
|
|
}
|
|
|
|
update_fcsr (cpu, cia, status);
|
|
return result;
|
|
}
|
|
|
|
/* Common rsqrt code for single operands (.s or .d), intermediate rounding. */
|
|
static sim_fpu_status
|
|
inner_rsqrt(unsigned64 op1,
|
|
FP_formats fmt,
|
|
sim_fpu_round round,
|
|
sim_fpu_denorm denorm,
|
|
unsigned64 *result)
|
|
{
|
|
sim_fpu wop1;
|
|
sim_fpu ans;
|
|
sim_fpu_status status = 0;
|
|
sim_fpu_status op_status;
|
|
unsigned64 temp = 0;
|
|
|
|
switch (fmt)
|
|
{
|
|
case fmt_single:
|
|
{
|
|
unsigned32 res;
|
|
sim_fpu_32to (&wop1, op1);
|
|
status |= sim_fpu_sqrt (&ans, &wop1);
|
|
status |= sim_fpu_round_32 (&ans, status, round);
|
|
wop1 = ans;
|
|
op_status = sim_fpu_inv (&ans, &wop1);
|
|
op_status |= sim_fpu_round_32 (&ans, round, denorm);
|
|
sim_fpu_to32 (&res, &ans);
|
|
temp = res;
|
|
status |= op_status;
|
|
break;
|
|
}
|
|
case fmt_double:
|
|
{
|
|
unsigned64 res;
|
|
sim_fpu_64to (&wop1, op1);
|
|
status |= sim_fpu_sqrt (&ans, &wop1);
|
|
status |= sim_fpu_round_64 (&ans, round, denorm);
|
|
wop1 = ans;
|
|
op_status = sim_fpu_inv (&ans, &wop1);
|
|
op_status |= sim_fpu_round_64 (&ans, round, denorm);
|
|
sim_fpu_to64 (&res, &ans);
|
|
temp = res;
|
|
status |= op_status;
|
|
break;
|
|
}
|
|
default:
|
|
fprintf (stderr, "Bad switch\n");
|
|
abort ();
|
|
}
|
|
*result = temp;
|
|
return status;
|
|
}
|
|
|
|
static unsigned64
|
|
fp_inv_sqrt(sim_cpu *cpu,
|
|
address_word cia,
|
|
unsigned64 op1,
|
|
FP_formats fmt)
|
|
{
|
|
sim_fpu_round round = rounding_mode (GETRM());
|
|
sim_fpu_round denorm = denorm_mode (cpu);
|
|
sim_fpu_status status = 0;
|
|
unsigned64 result = 0;
|
|
|
|
/* The format type has already been checked: */
|
|
switch (fmt)
|
|
{
|
|
case fmt_single:
|
|
case fmt_double:
|
|
status = inner_rsqrt (op1, fmt, round, denorm, &result);
|
|
break;
|
|
case fmt_ps:
|
|
{
|
|
int status_u, status_l;
|
|
unsigned64 result_u, result_l;
|
|
status_u = inner_rsqrt (FP_PS_upper(op1), fmt_single, round, denorm,
|
|
&result_u);
|
|
status_l = inner_rsqrt (FP_PS_lower(op1), fmt_single, round, denorm,
|
|
&result_l);
|
|
result = FP_PS_cat(result_u, result_l);
|
|
status = status_u | status_l;
|
|
break;
|
|
}
|
|
default:
|
|
sim_io_eprintf (SD, "Bad switch\n");
|
|
abort ();
|
|
}
|
|
|
|
update_fcsr (cpu, cia, status);
|
|
return result;
|
|
}
|
|
|
|
|
|
unsigned64
|
|
fp_abs(sim_cpu *cpu,
|
|
address_word cia,
|
|
unsigned64 op,
|
|
FP_formats fmt)
|
|
{
|
|
return fp_unary(cpu, cia, &sim_fpu_abs, op, fmt);
|
|
}
|
|
|
|
unsigned64
|
|
fp_neg(sim_cpu *cpu,
|
|
address_word cia,
|
|
unsigned64 op,
|
|
FP_formats fmt)
|
|
{
|
|
return fp_unary(cpu, cia, &sim_fpu_neg, op, fmt);
|
|
}
|
|
|
|
unsigned64
|
|
fp_add(sim_cpu *cpu,
|
|
address_word cia,
|
|
unsigned64 op1,
|
|
unsigned64 op2,
|
|
FP_formats fmt)
|
|
{
|
|
return fp_binary(cpu, cia, &sim_fpu_add, op1, op2, fmt);
|
|
}
|
|
|
|
unsigned64
|
|
fp_sub(sim_cpu *cpu,
|
|
address_word cia,
|
|
unsigned64 op1,
|
|
unsigned64 op2,
|
|
FP_formats fmt)
|
|
{
|
|
return fp_binary(cpu, cia, &sim_fpu_sub, op1, op2, fmt);
|
|
}
|
|
|
|
unsigned64
|
|
fp_mul(sim_cpu *cpu,
|
|
address_word cia,
|
|
unsigned64 op1,
|
|
unsigned64 op2,
|
|
FP_formats fmt)
|
|
{
|
|
return fp_binary(cpu, cia, &sim_fpu_mul, op1, op2, fmt);
|
|
}
|
|
|
|
unsigned64
|
|
fp_div(sim_cpu *cpu,
|
|
address_word cia,
|
|
unsigned64 op1,
|
|
unsigned64 op2,
|
|
FP_formats fmt)
|
|
{
|
|
return fp_binary(cpu, cia, &sim_fpu_div, op1, op2, fmt);
|
|
}
|
|
|
|
unsigned64
|
|
fp_recip(sim_cpu *cpu,
|
|
address_word cia,
|
|
unsigned64 op,
|
|
FP_formats fmt)
|
|
{
|
|
return fp_unary(cpu, cia, &sim_fpu_inv, op, fmt);
|
|
}
|
|
|
|
unsigned64
|
|
fp_sqrt(sim_cpu *cpu,
|
|
address_word cia,
|
|
unsigned64 op,
|
|
FP_formats fmt)
|
|
{
|
|
return fp_unary(cpu, cia, &sim_fpu_sqrt, op, fmt);
|
|
}
|
|
|
|
unsigned64
|
|
fp_rsqrt(sim_cpu *cpu,
|
|
address_word cia,
|
|
unsigned64 op,
|
|
FP_formats fmt)
|
|
{
|
|
return fp_inv_sqrt(cpu, cia, op, fmt);
|
|
}
|
|
|
|
unsigned64
|
|
fp_madd(sim_cpu *cpu,
|
|
address_word cia,
|
|
unsigned64 op1,
|
|
unsigned64 op2,
|
|
unsigned64 op3,
|
|
FP_formats fmt)
|
|
{
|
|
return fp_mac(cpu, cia, &sim_fpu_add, op1, op2, op3, 0, 0, fmt);
|
|
}
|
|
|
|
unsigned64
|
|
fp_msub(sim_cpu *cpu,
|
|
address_word cia,
|
|
unsigned64 op1,
|
|
unsigned64 op2,
|
|
unsigned64 op3,
|
|
FP_formats fmt)
|
|
{
|
|
return fp_mac(cpu, cia, &sim_fpu_sub, op1, op2, op3, 0, 0, fmt);
|
|
}
|
|
|
|
unsigned64
|
|
fp_nmadd(sim_cpu *cpu,
|
|
address_word cia,
|
|
unsigned64 op1,
|
|
unsigned64 op2,
|
|
unsigned64 op3,
|
|
FP_formats fmt)
|
|
{
|
|
return fp_mac(cpu, cia, &sim_fpu_add, op1, op2, op3, 0, 1, fmt);
|
|
}
|
|
|
|
unsigned64
|
|
fp_nmsub(sim_cpu *cpu,
|
|
address_word cia,
|
|
unsigned64 op1,
|
|
unsigned64 op2,
|
|
unsigned64 op3,
|
|
FP_formats fmt)
|
|
{
|
|
return fp_mac(cpu, cia, &sim_fpu_sub, op1, op2, op3, 0, 1, fmt);
|
|
}
|
|
|
|
|
|
/* MIPS-3D ASE operations. */
|
|
|
|
/* Variant of fp_binary for *r.ps MIPS-3D operations. */
|
|
static unsigned64
|
|
fp_binary_r(sim_cpu *cpu,
|
|
address_word cia,
|
|
int (*sim_fpu_op)(sim_fpu *, const sim_fpu *, const sim_fpu *),
|
|
unsigned64 op1,
|
|
unsigned64 op2)
|
|
{
|
|
sim_fpu wop1;
|
|
sim_fpu wop2;
|
|
sim_fpu ans;
|
|
sim_fpu_round round = rounding_mode (GETRM ());
|
|
sim_fpu_denorm denorm = denorm_mode (cpu);
|
|
sim_fpu_status status_u, status_l;
|
|
unsigned64 result;
|
|
unsigned32 res_u, res_l;
|
|
|
|
/* The format must be fmt_ps. */
|
|
status_u = 0;
|
|
sim_fpu_32to (&wop1, FP_PS_upper (op1));
|
|
sim_fpu_32to (&wop2, FP_PS_lower (op1));
|
|
status_u |= (*sim_fpu_op) (&ans, &wop1, &wop2);
|
|
status_u |= sim_fpu_round_32 (&ans, round, denorm);
|
|
sim_fpu_to32 (&res_u, &ans);
|
|
status_l = 0;
|
|
sim_fpu_32to (&wop1, FP_PS_upper (op2));
|
|
sim_fpu_32to (&wop2, FP_PS_lower (op2));
|
|
status_l |= (*sim_fpu_op) (&ans, &wop1, &wop2);
|
|
status_l |= sim_fpu_round_32 (&ans, round, denorm);
|
|
sim_fpu_to32 (&res_l, &ans);
|
|
result = FP_PS_cat (res_u, res_l);
|
|
|
|
update_fcsr (cpu, cia, status_u | status_l);
|
|
return result;
|
|
}
|
|
|
|
unsigned64
|
|
fp_add_r(sim_cpu *cpu,
|
|
address_word cia,
|
|
unsigned64 op1,
|
|
unsigned64 op2,
|
|
FP_formats fmt)
|
|
{
|
|
return fp_binary_r (cpu, cia, &sim_fpu_add, op1, op2);
|
|
}
|
|
|
|
unsigned64
|
|
fp_mul_r(sim_cpu *cpu,
|
|
address_word cia,
|
|
unsigned64 op1,
|
|
unsigned64 op2,
|
|
FP_formats fmt)
|
|
{
|
|
return fp_binary_r (cpu, cia, &sim_fpu_mul, op1, op2);
|
|
}
|
|
|
|
#define NR_FRAC_GUARD (60)
|
|
#define IMPLICIT_1 LSBIT64 (NR_FRAC_GUARD)
|
|
|
|
static int
|
|
fpu_inv1(sim_fpu *f, const sim_fpu *l)
|
|
{
|
|
static const sim_fpu sim_fpu_one = {
|
|
sim_fpu_class_number, 0, IMPLICIT_1, 0
|
|
};
|
|
int status = 0;
|
|
sim_fpu t;
|
|
|
|
if (sim_fpu_is_zero (l))
|
|
{
|
|
*f = sim_fpu_maxfp;
|
|
f->sign = l->sign;
|
|
return sim_fpu_status_invalid_div0;
|
|
}
|
|
if (sim_fpu_is_infinity (l))
|
|
{
|
|
*f = sim_fpu_zero;
|
|
f->sign = l->sign;
|
|
return status;
|
|
}
|
|
status |= sim_fpu_div (f, &sim_fpu_one, l);
|
|
return status;
|
|
}
|
|
|
|
static int
|
|
fpu_inv1_32(sim_fpu *f, const sim_fpu *l)
|
|
{
|
|
if (sim_fpu_is_zero (l))
|
|
{
|
|
*f = sim_fpu_max32;
|
|
f->sign = l->sign;
|
|
return sim_fpu_status_invalid_div0;
|
|
}
|
|
return fpu_inv1 (f, l);
|
|
}
|
|
|
|
static int
|
|
fpu_inv1_64(sim_fpu *f, const sim_fpu *l)
|
|
{
|
|
if (sim_fpu_is_zero (l))
|
|
{
|
|
*f = sim_fpu_max64;
|
|
f->sign = l->sign;
|
|
return sim_fpu_status_invalid_div0;
|
|
}
|
|
return fpu_inv1 (f, l);
|
|
}
|
|
|
|
unsigned64
|
|
fp_recip1(sim_cpu *cpu,
|
|
address_word cia,
|
|
unsigned64 op,
|
|
FP_formats fmt)
|
|
{
|
|
switch (fmt)
|
|
{
|
|
case fmt_single:
|
|
case fmt_ps:
|
|
return fp_unary (cpu, cia, &fpu_inv1_32, op, fmt);
|
|
case fmt_double:
|
|
return fp_unary (cpu, cia, &fpu_inv1_64, op, fmt);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
unsigned64
|
|
fp_recip2(sim_cpu *cpu,
|
|
address_word cia,
|
|
unsigned64 op1,
|
|
unsigned64 op2,
|
|
FP_formats fmt)
|
|
{
|
|
static const unsigned64 one_single = UNSIGNED64 (0x3F800000);
|
|
static const unsigned64 one_double = UNSIGNED64 (0x3FF0000000000000);
|
|
static const unsigned64 one_ps = (UNSIGNED64 (0x3F800000) << 32 | UNSIGNED64 (0x3F800000));
|
|
unsigned64 one;
|
|
|
|
/* Implemented as nmsub fd, 1, fs, ft. */
|
|
switch (fmt)
|
|
{
|
|
case fmt_single: one = one_single; break;
|
|
case fmt_double: one = one_double; break;
|
|
case fmt_ps: one = one_ps; break;
|
|
default: one = 0; abort ();
|
|
}
|
|
return fp_mac (cpu, cia, &sim_fpu_sub, op1, op2, one, 0, 1, fmt);
|
|
}
|
|
|
|
static int
|
|
fpu_inv_sqrt1(sim_fpu *f, const sim_fpu *l)
|
|
{
|
|
static const sim_fpu sim_fpu_one = {
|
|
sim_fpu_class_number, 0, IMPLICIT_1, 0
|
|
};
|
|
int status = 0;
|
|
sim_fpu t;
|
|
|
|
if (sim_fpu_is_zero (l))
|
|
{
|
|
*f = sim_fpu_maxfp;
|
|
f->sign = l->sign;
|
|
return sim_fpu_status_invalid_div0;
|
|
}
|
|
if (sim_fpu_is_infinity (l))
|
|
{
|
|
if (!l->sign)
|
|
{
|
|
f->class = sim_fpu_class_zero;
|
|
f->sign = 0;
|
|
}
|
|
else
|
|
{
|
|
*f = sim_fpu_qnan;
|
|
status = sim_fpu_status_invalid_sqrt;
|
|
}
|
|
return status;
|
|
}
|
|
status |= sim_fpu_sqrt (&t, l);
|
|
status |= sim_fpu_div (f, &sim_fpu_one, &t);
|
|
return status;
|
|
}
|
|
|
|
static int
|
|
fpu_inv_sqrt1_32(sim_fpu *f, const sim_fpu *l)
|
|
{
|
|
if (sim_fpu_is_zero (l))
|
|
{
|
|
*f = sim_fpu_max32;
|
|
f->sign = l->sign;
|
|
return sim_fpu_status_invalid_div0;
|
|
}
|
|
return fpu_inv_sqrt1 (f, l);
|
|
}
|
|
|
|
static int
|
|
fpu_inv_sqrt1_64(sim_fpu *f, const sim_fpu *l)
|
|
{
|
|
if (sim_fpu_is_zero (l))
|
|
{
|
|
*f = sim_fpu_max64;
|
|
f->sign = l->sign;
|
|
return sim_fpu_status_invalid_div0;
|
|
}
|
|
return fpu_inv_sqrt1 (f, l);
|
|
}
|
|
|
|
unsigned64
|
|
fp_rsqrt1(sim_cpu *cpu,
|
|
address_word cia,
|
|
unsigned64 op,
|
|
FP_formats fmt)
|
|
{
|
|
switch (fmt)
|
|
{
|
|
case fmt_single:
|
|
case fmt_ps:
|
|
return fp_unary (cpu, cia, &fpu_inv_sqrt1_32, op, fmt);
|
|
case fmt_double:
|
|
return fp_unary (cpu, cia, &fpu_inv_sqrt1_64, op, fmt);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
unsigned64
|
|
fp_rsqrt2(sim_cpu *cpu,
|
|
address_word cia,
|
|
unsigned64 op1,
|
|
unsigned64 op2,
|
|
FP_formats fmt)
|
|
{
|
|
static const unsigned64 half_single = UNSIGNED64 (0x3F000000);
|
|
static const unsigned64 half_double = UNSIGNED64 (0x3FE0000000000000);
|
|
static const unsigned64 half_ps = (UNSIGNED64 (0x3F000000) << 32 | UNSIGNED64 (0x3F000000));
|
|
unsigned64 half;
|
|
|
|
/* Implemented as (nmsub fd, 0.5, fs, ft)/2, where the divide is
|
|
done by scaling the exponent during multiply. */
|
|
switch (fmt)
|
|
{
|
|
case fmt_single: half = half_single; break;
|
|
case fmt_double: half = half_double; break;
|
|
case fmt_ps: half = half_ps; break;
|
|
default: half = 0; abort ();
|
|
}
|
|
return fp_mac (cpu, cia, &sim_fpu_sub, op1, op2, half, -1, 1, fmt);
|
|
}
|
|
|
|
|
|
/* Conversion operations. */
|
|
|
|
uword64
|
|
convert (sim_cpu *cpu,
|
|
address_word cia,
|
|
int rm,
|
|
uword64 op,
|
|
FP_formats from,
|
|
FP_formats to)
|
|
{
|
|
sim_fpu wop;
|
|
sim_fpu_round round = rounding_mode (rm);
|
|
sim_fpu_denorm denorm = denorm_mode (cpu);
|
|
unsigned32 result32;
|
|
unsigned64 result64;
|
|
sim_fpu_status status = 0;
|
|
|
|
/* Convert the input to sim_fpu internal format */
|
|
switch (from)
|
|
{
|
|
case fmt_double:
|
|
sim_fpu_64to (&wop, op);
|
|
break;
|
|
case fmt_single:
|
|
sim_fpu_32to (&wop, op);
|
|
break;
|
|
case fmt_word:
|
|
status = sim_fpu_i32to (&wop, op, round);
|
|
break;
|
|
case fmt_long:
|
|
status = sim_fpu_i64to (&wop, op, round);
|
|
break;
|
|
default:
|
|
sim_io_eprintf (SD, "Bad switch\n");
|
|
abort ();
|
|
}
|
|
|
|
/* Convert sim_fpu format into the output */
|
|
/* The value WOP is converted to the destination format, rounding
|
|
using mode RM. When the destination is a fixed-point format, then
|
|
a source value of Infinity, NaN or one which would round to an
|
|
integer outside the fixed point range then an IEEE Invalid Operation
|
|
condition is raised. Not used if destination format is PS. */
|
|
switch (to)
|
|
{
|
|
case fmt_single:
|
|
status |= sim_fpu_round_32 (&wop, round, denorm);
|
|
/* For a NaN, normalize mantissa bits (cvt.s.d can't preserve them) */
|
|
if (sim_fpu_is_qnan (&wop))
|
|
wop = sim_fpu_qnan;
|
|
sim_fpu_to32 (&result32, &wop);
|
|
result64 = result32;
|
|
break;
|
|
case fmt_double:
|
|
status |= sim_fpu_round_64 (&wop, round, denorm);
|
|
/* For a NaN, normalize mantissa bits (make cvt.d.s consistent) */
|
|
if (sim_fpu_is_qnan (&wop))
|
|
wop = sim_fpu_qnan;
|
|
sim_fpu_to64 (&result64, &wop);
|
|
break;
|
|
case fmt_word:
|
|
status |= sim_fpu_to32i (&result32, &wop, round);
|
|
result64 = result32;
|
|
break;
|
|
case fmt_long:
|
|
status |= sim_fpu_to64i (&result64, &wop, round);
|
|
break;
|
|
default:
|
|
result64 = 0;
|
|
sim_io_eprintf (SD, "Bad switch\n");
|
|
abort ();
|
|
}
|
|
|
|
update_fcsr (cpu, cia, status);
|
|
return result64;
|
|
}
|
|
|
|
unsigned64
|
|
ps_lower(sim_cpu *cpu,
|
|
address_word cia,
|
|
unsigned64 op)
|
|
{
|
|
return FP_PS_lower (op);
|
|
}
|
|
|
|
unsigned64
|
|
ps_upper(sim_cpu *cpu,
|
|
address_word cia,
|
|
unsigned64 op)
|
|
{
|
|
return FP_PS_upper(op);
|
|
}
|
|
|
|
unsigned64
|
|
pack_ps(sim_cpu *cpu,
|
|
address_word cia,
|
|
unsigned64 op1,
|
|
unsigned64 op2,
|
|
FP_formats fmt)
|
|
{
|
|
unsigned64 result = 0;
|
|
|
|
/* The registers must specify FPRs valid for operands of type
|
|
"fmt". If they are not valid, the result is undefined. */
|
|
|
|
/* The format type should already have been checked: */
|
|
switch (fmt)
|
|
{
|
|
case fmt_single:
|
|
{
|
|
sim_fpu wop;
|
|
unsigned32 res_u, res_l;
|
|
sim_fpu_32to (&wop, op1);
|
|
sim_fpu_to32 (&res_u, &wop);
|
|
sim_fpu_32to (&wop, op2);
|
|
sim_fpu_to32 (&res_l, &wop);
|
|
result = FP_PS_cat(res_u, res_l);
|
|
break;
|
|
}
|
|
default:
|
|
sim_io_eprintf (SD, "Bad switch\n");
|
|
abort ();
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
unsigned64
|
|
convert_ps (sim_cpu *cpu,
|
|
address_word cia,
|
|
int rm,
|
|
unsigned64 op,
|
|
FP_formats from,
|
|
FP_formats to)
|
|
{
|
|
sim_fpu wop_u, wop_l;
|
|
sim_fpu_round round = rounding_mode (rm);
|
|
sim_fpu_denorm denorm = denorm_mode (cpu);
|
|
unsigned32 res_u, res_l;
|
|
unsigned64 result;
|
|
sim_fpu_status status_u = 0, status_l = 0;
|
|
|
|
/* As convert, but used only for paired values (formats PS, PW) */
|
|
|
|
/* Convert the input to sim_fpu internal format */
|
|
switch (from)
|
|
{
|
|
case fmt_word: /* fmt_pw */
|
|
sim_fpu_i32to (&wop_u, (op >> 32) & (unsigned)0xFFFFFFFF, round);
|
|
sim_fpu_i32to (&wop_l, op & (unsigned)0xFFFFFFFF, round);
|
|
break;
|
|
case fmt_ps:
|
|
sim_fpu_32to (&wop_u, FP_PS_upper(op));
|
|
sim_fpu_32to (&wop_l, FP_PS_lower(op));
|
|
break;
|
|
default:
|
|
sim_io_eprintf (SD, "Bad switch\n");
|
|
abort ();
|
|
}
|
|
|
|
/* Convert sim_fpu format into the output */
|
|
switch (to)
|
|
{
|
|
case fmt_word: /* fmt_pw */
|
|
status_u |= sim_fpu_to32i (&res_u, &wop_u, round);
|
|
status_l |= sim_fpu_to32i (&res_l, &wop_l, round);
|
|
result = (((unsigned64)res_u) << 32) | (unsigned64)res_l;
|
|
break;
|
|
case fmt_ps:
|
|
status_u |= sim_fpu_round_32 (&wop_u, 0, round);
|
|
status_l |= sim_fpu_round_32 (&wop_l, 0, round);
|
|
sim_fpu_to32 (&res_u, &wop_u);
|
|
sim_fpu_to32 (&res_l, &wop_l);
|
|
result = FP_PS_cat(res_u, res_l);
|
|
break;
|
|
default:
|
|
result = 0;
|
|
sim_io_eprintf (SD, "Bad switch\n");
|
|
abort ();
|
|
}
|
|
|
|
update_fcsr (cpu, cia, status_u | status_l);
|
|
return result;
|
|
}
|
|
|
|
static const char *
|
|
fpu_format_name (FP_formats fmt)
|
|
{
|
|
switch (fmt)
|
|
{
|
|
case fmt_single:
|
|
return "single";
|
|
case fmt_double:
|
|
return "double";
|
|
case fmt_word:
|
|
return "word";
|
|
case fmt_long:
|
|
return "long";
|
|
case fmt_ps:
|
|
return "ps";
|
|
case fmt_unknown:
|
|
return "<unknown>";
|
|
case fmt_uninterpreted:
|
|
return "<uninterpreted>";
|
|
case fmt_uninterpreted_32:
|
|
return "<uninterpreted_32>";
|
|
case fmt_uninterpreted_64:
|
|
return "<uninterpreted_64>";
|
|
default:
|
|
return "<format error>";
|
|
}
|
|
}
|
|
|
|
#ifdef DEBUG
|
|
static const char *
|
|
fpu_rounding_mode_name (int rm)
|
|
{
|
|
switch (rm)
|
|
{
|
|
case FP_RM_NEAREST:
|
|
return "Round";
|
|
case FP_RM_TOZERO:
|
|
return "Trunc";
|
|
case FP_RM_TOPINF:
|
|
return "Ceil";
|
|
case FP_RM_TOMINF:
|
|
return "Floor";
|
|
default:
|
|
return "<rounding mode error>";
|
|
}
|
|
}
|
|
#endif /* DEBUG */
|