3db64b0092
Many files: Include sysdep.h before bfd.h. * Makefile.am: Run "make dep-am". * Makefile.in: Regenerate. binutils/ * bucumm.h: Split off host dependencies to.. * sysdep.h: ..here. Many files: Include sysdep.h. Remove duplicate headers and reorder. * Makefile.am: Run "make dep-am". * Makefile.in: Regenerate. ld/ Many files: Include sysdep.h first. Remove duplicate headers. * Makefile.am: Run "make dep-am". * Makefile.in: Regenerate. opcodes/ * Makefile.am: Run "make dep-am". * Makefile.in: Regenerate. * ns32k-dis.c: Include sysdep.h first.
3166 lines
95 KiB
C
3166 lines
95 KiB
C
/* linker.c -- BFD linker routines
|
||
Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
|
||
2003, 2004, 2005, 2006, 2007
|
||
Free Software Foundation, Inc.
|
||
Written by Steve Chamberlain and Ian Lance Taylor, Cygnus Support
|
||
|
||
This file is part of BFD, the Binary File Descriptor library.
|
||
|
||
This program is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 2 of the License, or
|
||
(at your option) any later version.
|
||
|
||
This program is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with this program; if not, write to the Free Software
|
||
Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */
|
||
|
||
#include "sysdep.h"
|
||
#include "bfd.h"
|
||
#include "libbfd.h"
|
||
#include "bfdlink.h"
|
||
#include "genlink.h"
|
||
|
||
/*
|
||
SECTION
|
||
Linker Functions
|
||
|
||
@cindex Linker
|
||
The linker uses three special entry points in the BFD target
|
||
vector. It is not necessary to write special routines for
|
||
these entry points when creating a new BFD back end, since
|
||
generic versions are provided. However, writing them can
|
||
speed up linking and make it use significantly less runtime
|
||
memory.
|
||
|
||
The first routine creates a hash table used by the other
|
||
routines. The second routine adds the symbols from an object
|
||
file to the hash table. The third routine takes all the
|
||
object files and links them together to create the output
|
||
file. These routines are designed so that the linker proper
|
||
does not need to know anything about the symbols in the object
|
||
files that it is linking. The linker merely arranges the
|
||
sections as directed by the linker script and lets BFD handle
|
||
the details of symbols and relocs.
|
||
|
||
The second routine and third routines are passed a pointer to
|
||
a <<struct bfd_link_info>> structure (defined in
|
||
<<bfdlink.h>>) which holds information relevant to the link,
|
||
including the linker hash table (which was created by the
|
||
first routine) and a set of callback functions to the linker
|
||
proper.
|
||
|
||
The generic linker routines are in <<linker.c>>, and use the
|
||
header file <<genlink.h>>. As of this writing, the only back
|
||
ends which have implemented versions of these routines are
|
||
a.out (in <<aoutx.h>>) and ECOFF (in <<ecoff.c>>). The a.out
|
||
routines are used as examples throughout this section.
|
||
|
||
@menu
|
||
@* Creating a Linker Hash Table::
|
||
@* Adding Symbols to the Hash Table::
|
||
@* Performing the Final Link::
|
||
@end menu
|
||
|
||
INODE
|
||
Creating a Linker Hash Table, Adding Symbols to the Hash Table, Linker Functions, Linker Functions
|
||
SUBSECTION
|
||
Creating a linker hash table
|
||
|
||
@cindex _bfd_link_hash_table_create in target vector
|
||
@cindex target vector (_bfd_link_hash_table_create)
|
||
The linker routines must create a hash table, which must be
|
||
derived from <<struct bfd_link_hash_table>> described in
|
||
<<bfdlink.c>>. @xref{Hash Tables}, for information on how to
|
||
create a derived hash table. This entry point is called using
|
||
the target vector of the linker output file.
|
||
|
||
The <<_bfd_link_hash_table_create>> entry point must allocate
|
||
and initialize an instance of the desired hash table. If the
|
||
back end does not require any additional information to be
|
||
stored with the entries in the hash table, the entry point may
|
||
simply create a <<struct bfd_link_hash_table>>. Most likely,
|
||
however, some additional information will be needed.
|
||
|
||
For example, with each entry in the hash table the a.out
|
||
linker keeps the index the symbol has in the final output file
|
||
(this index number is used so that when doing a relocatable
|
||
link the symbol index used in the output file can be quickly
|
||
filled in when copying over a reloc). The a.out linker code
|
||
defines the required structures and functions for a hash table
|
||
derived from <<struct bfd_link_hash_table>>. The a.out linker
|
||
hash table is created by the function
|
||
<<NAME(aout,link_hash_table_create)>>; it simply allocates
|
||
space for the hash table, initializes it, and returns a
|
||
pointer to it.
|
||
|
||
When writing the linker routines for a new back end, you will
|
||
generally not know exactly which fields will be required until
|
||
you have finished. You should simply create a new hash table
|
||
which defines no additional fields, and then simply add fields
|
||
as they become necessary.
|
||
|
||
INODE
|
||
Adding Symbols to the Hash Table, Performing the Final Link, Creating a Linker Hash Table, Linker Functions
|
||
SUBSECTION
|
||
Adding symbols to the hash table
|
||
|
||
@cindex _bfd_link_add_symbols in target vector
|
||
@cindex target vector (_bfd_link_add_symbols)
|
||
The linker proper will call the <<_bfd_link_add_symbols>>
|
||
entry point for each object file or archive which is to be
|
||
linked (typically these are the files named on the command
|
||
line, but some may also come from the linker script). The
|
||
entry point is responsible for examining the file. For an
|
||
object file, BFD must add any relevant symbol information to
|
||
the hash table. For an archive, BFD must determine which
|
||
elements of the archive should be used and adding them to the
|
||
link.
|
||
|
||
The a.out version of this entry point is
|
||
<<NAME(aout,link_add_symbols)>>.
|
||
|
||
@menu
|
||
@* Differing file formats::
|
||
@* Adding symbols from an object file::
|
||
@* Adding symbols from an archive::
|
||
@end menu
|
||
|
||
INODE
|
||
Differing file formats, Adding symbols from an object file, Adding Symbols to the Hash Table, Adding Symbols to the Hash Table
|
||
SUBSUBSECTION
|
||
Differing file formats
|
||
|
||
Normally all the files involved in a link will be of the same
|
||
format, but it is also possible to link together different
|
||
format object files, and the back end must support that. The
|
||
<<_bfd_link_add_symbols>> entry point is called via the target
|
||
vector of the file to be added. This has an important
|
||
consequence: the function may not assume that the hash table
|
||
is the type created by the corresponding
|
||
<<_bfd_link_hash_table_create>> vector. All the
|
||
<<_bfd_link_add_symbols>> function can assume about the hash
|
||
table is that it is derived from <<struct
|
||
bfd_link_hash_table>>.
|
||
|
||
Sometimes the <<_bfd_link_add_symbols>> function must store
|
||
some information in the hash table entry to be used by the
|
||
<<_bfd_final_link>> function. In such a case the <<creator>>
|
||
field of the hash table must be checked to make sure that the
|
||
hash table was created by an object file of the same format.
|
||
|
||
The <<_bfd_final_link>> routine must be prepared to handle a
|
||
hash entry without any extra information added by the
|
||
<<_bfd_link_add_symbols>> function. A hash entry without
|
||
extra information will also occur when the linker script
|
||
directs the linker to create a symbol. Note that, regardless
|
||
of how a hash table entry is added, all the fields will be
|
||
initialized to some sort of null value by the hash table entry
|
||
initialization function.
|
||
|
||
See <<ecoff_link_add_externals>> for an example of how to
|
||
check the <<creator>> field before saving information (in this
|
||
case, the ECOFF external symbol debugging information) in a
|
||
hash table entry.
|
||
|
||
INODE
|
||
Adding symbols from an object file, Adding symbols from an archive, Differing file formats, Adding Symbols to the Hash Table
|
||
SUBSUBSECTION
|
||
Adding symbols from an object file
|
||
|
||
When the <<_bfd_link_add_symbols>> routine is passed an object
|
||
file, it must add all externally visible symbols in that
|
||
object file to the hash table. The actual work of adding the
|
||
symbol to the hash table is normally handled by the function
|
||
<<_bfd_generic_link_add_one_symbol>>. The
|
||
<<_bfd_link_add_symbols>> routine is responsible for reading
|
||
all the symbols from the object file and passing the correct
|
||
information to <<_bfd_generic_link_add_one_symbol>>.
|
||
|
||
The <<_bfd_link_add_symbols>> routine should not use
|
||
<<bfd_canonicalize_symtab>> to read the symbols. The point of
|
||
providing this routine is to avoid the overhead of converting
|
||
the symbols into generic <<asymbol>> structures.
|
||
|
||
@findex _bfd_generic_link_add_one_symbol
|
||
<<_bfd_generic_link_add_one_symbol>> handles the details of
|
||
combining common symbols, warning about multiple definitions,
|
||
and so forth. It takes arguments which describe the symbol to
|
||
add, notably symbol flags, a section, and an offset. The
|
||
symbol flags include such things as <<BSF_WEAK>> or
|
||
<<BSF_INDIRECT>>. The section is a section in the object
|
||
file, or something like <<bfd_und_section_ptr>> for an undefined
|
||
symbol or <<bfd_com_section_ptr>> for a common symbol.
|
||
|
||
If the <<_bfd_final_link>> routine is also going to need to
|
||
read the symbol information, the <<_bfd_link_add_symbols>>
|
||
routine should save it somewhere attached to the object file
|
||
BFD. However, the information should only be saved if the
|
||
<<keep_memory>> field of the <<info>> argument is TRUE, so
|
||
that the <<-no-keep-memory>> linker switch is effective.
|
||
|
||
The a.out function which adds symbols from an object file is
|
||
<<aout_link_add_object_symbols>>, and most of the interesting
|
||
work is in <<aout_link_add_symbols>>. The latter saves
|
||
pointers to the hash tables entries created by
|
||
<<_bfd_generic_link_add_one_symbol>> indexed by symbol number,
|
||
so that the <<_bfd_final_link>> routine does not have to call
|
||
the hash table lookup routine to locate the entry.
|
||
|
||
INODE
|
||
Adding symbols from an archive, , Adding symbols from an object file, Adding Symbols to the Hash Table
|
||
SUBSUBSECTION
|
||
Adding symbols from an archive
|
||
|
||
When the <<_bfd_link_add_symbols>> routine is passed an
|
||
archive, it must look through the symbols defined by the
|
||
archive and decide which elements of the archive should be
|
||
included in the link. For each such element it must call the
|
||
<<add_archive_element>> linker callback, and it must add the
|
||
symbols from the object file to the linker hash table.
|
||
|
||
@findex _bfd_generic_link_add_archive_symbols
|
||
In most cases the work of looking through the symbols in the
|
||
archive should be done by the
|
||
<<_bfd_generic_link_add_archive_symbols>> function. This
|
||
function builds a hash table from the archive symbol table and
|
||
looks through the list of undefined symbols to see which
|
||
elements should be included.
|
||
<<_bfd_generic_link_add_archive_symbols>> is passed a function
|
||
to call to make the final decision about adding an archive
|
||
element to the link and to do the actual work of adding the
|
||
symbols to the linker hash table.
|
||
|
||
The function passed to
|
||
<<_bfd_generic_link_add_archive_symbols>> must read the
|
||
symbols of the archive element and decide whether the archive
|
||
element should be included in the link. If the element is to
|
||
be included, the <<add_archive_element>> linker callback
|
||
routine must be called with the element as an argument, and
|
||
the elements symbols must be added to the linker hash table
|
||
just as though the element had itself been passed to the
|
||
<<_bfd_link_add_symbols>> function.
|
||
|
||
When the a.out <<_bfd_link_add_symbols>> function receives an
|
||
archive, it calls <<_bfd_generic_link_add_archive_symbols>>
|
||
passing <<aout_link_check_archive_element>> as the function
|
||
argument. <<aout_link_check_archive_element>> calls
|
||
<<aout_link_check_ar_symbols>>. If the latter decides to add
|
||
the element (an element is only added if it provides a real,
|
||
non-common, definition for a previously undefined or common
|
||
symbol) it calls the <<add_archive_element>> callback and then
|
||
<<aout_link_check_archive_element>> calls
|
||
<<aout_link_add_symbols>> to actually add the symbols to the
|
||
linker hash table.
|
||
|
||
The ECOFF back end is unusual in that it does not normally
|
||
call <<_bfd_generic_link_add_archive_symbols>>, because ECOFF
|
||
archives already contain a hash table of symbols. The ECOFF
|
||
back end searches the archive itself to avoid the overhead of
|
||
creating a new hash table.
|
||
|
||
INODE
|
||
Performing the Final Link, , Adding Symbols to the Hash Table, Linker Functions
|
||
SUBSECTION
|
||
Performing the final link
|
||
|
||
@cindex _bfd_link_final_link in target vector
|
||
@cindex target vector (_bfd_final_link)
|
||
When all the input files have been processed, the linker calls
|
||
the <<_bfd_final_link>> entry point of the output BFD. This
|
||
routine is responsible for producing the final output file,
|
||
which has several aspects. It must relocate the contents of
|
||
the input sections and copy the data into the output sections.
|
||
It must build an output symbol table including any local
|
||
symbols from the input files and the global symbols from the
|
||
hash table. When producing relocatable output, it must
|
||
modify the input relocs and write them into the output file.
|
||
There may also be object format dependent work to be done.
|
||
|
||
The linker will also call the <<write_object_contents>> entry
|
||
point when the BFD is closed. The two entry points must work
|
||
together in order to produce the correct output file.
|
||
|
||
The details of how this works are inevitably dependent upon
|
||
the specific object file format. The a.out
|
||
<<_bfd_final_link>> routine is <<NAME(aout,final_link)>>.
|
||
|
||
@menu
|
||
@* Information provided by the linker::
|
||
@* Relocating the section contents::
|
||
@* Writing the symbol table::
|
||
@end menu
|
||
|
||
INODE
|
||
Information provided by the linker, Relocating the section contents, Performing the Final Link, Performing the Final Link
|
||
SUBSUBSECTION
|
||
Information provided by the linker
|
||
|
||
Before the linker calls the <<_bfd_final_link>> entry point,
|
||
it sets up some data structures for the function to use.
|
||
|
||
The <<input_bfds>> field of the <<bfd_link_info>> structure
|
||
will point to a list of all the input files included in the
|
||
link. These files are linked through the <<link_next>> field
|
||
of the <<bfd>> structure.
|
||
|
||
Each section in the output file will have a list of
|
||
<<link_order>> structures attached to the <<map_head.link_order>>
|
||
field (the <<link_order>> structure is defined in
|
||
<<bfdlink.h>>). These structures describe how to create the
|
||
contents of the output section in terms of the contents of
|
||
various input sections, fill constants, and, eventually, other
|
||
types of information. They also describe relocs that must be
|
||
created by the BFD backend, but do not correspond to any input
|
||
file; this is used to support -Ur, which builds constructors
|
||
while generating a relocatable object file.
|
||
|
||
INODE
|
||
Relocating the section contents, Writing the symbol table, Information provided by the linker, Performing the Final Link
|
||
SUBSUBSECTION
|
||
Relocating the section contents
|
||
|
||
The <<_bfd_final_link>> function should look through the
|
||
<<link_order>> structures attached to each section of the
|
||
output file. Each <<link_order>> structure should either be
|
||
handled specially, or it should be passed to the function
|
||
<<_bfd_default_link_order>> which will do the right thing
|
||
(<<_bfd_default_link_order>> is defined in <<linker.c>>).
|
||
|
||
For efficiency, a <<link_order>> of type
|
||
<<bfd_indirect_link_order>> whose associated section belongs
|
||
to a BFD of the same format as the output BFD must be handled
|
||
specially. This type of <<link_order>> describes part of an
|
||
output section in terms of a section belonging to one of the
|
||
input files. The <<_bfd_final_link>> function should read the
|
||
contents of the section and any associated relocs, apply the
|
||
relocs to the section contents, and write out the modified
|
||
section contents. If performing a relocatable link, the
|
||
relocs themselves must also be modified and written out.
|
||
|
||
@findex _bfd_relocate_contents
|
||
@findex _bfd_final_link_relocate
|
||
The functions <<_bfd_relocate_contents>> and
|
||
<<_bfd_final_link_relocate>> provide some general support for
|
||
performing the actual relocations, notably overflow checking.
|
||
Their arguments include information about the symbol the
|
||
relocation is against and a <<reloc_howto_type>> argument
|
||
which describes the relocation to perform. These functions
|
||
are defined in <<reloc.c>>.
|
||
|
||
The a.out function which handles reading, relocating, and
|
||
writing section contents is <<aout_link_input_section>>. The
|
||
actual relocation is done in <<aout_link_input_section_std>>
|
||
and <<aout_link_input_section_ext>>.
|
||
|
||
INODE
|
||
Writing the symbol table, , Relocating the section contents, Performing the Final Link
|
||
SUBSUBSECTION
|
||
Writing the symbol table
|
||
|
||
The <<_bfd_final_link>> function must gather all the symbols
|
||
in the input files and write them out. It must also write out
|
||
all the symbols in the global hash table. This must be
|
||
controlled by the <<strip>> and <<discard>> fields of the
|
||
<<bfd_link_info>> structure.
|
||
|
||
The local symbols of the input files will not have been
|
||
entered into the linker hash table. The <<_bfd_final_link>>
|
||
routine must consider each input file and include the symbols
|
||
in the output file. It may be convenient to do this when
|
||
looking through the <<link_order>> structures, or it may be
|
||
done by stepping through the <<input_bfds>> list.
|
||
|
||
The <<_bfd_final_link>> routine must also traverse the global
|
||
hash table to gather all the externally visible symbols. It
|
||
is possible that most of the externally visible symbols may be
|
||
written out when considering the symbols of each input file,
|
||
but it is still necessary to traverse the hash table since the
|
||
linker script may have defined some symbols that are not in
|
||
any of the input files.
|
||
|
||
The <<strip>> field of the <<bfd_link_info>> structure
|
||
controls which symbols are written out. The possible values
|
||
are listed in <<bfdlink.h>>. If the value is <<strip_some>>,
|
||
then the <<keep_hash>> field of the <<bfd_link_info>>
|
||
structure is a hash table of symbols to keep; each symbol
|
||
should be looked up in this hash table, and only symbols which
|
||
are present should be included in the output file.
|
||
|
||
If the <<strip>> field of the <<bfd_link_info>> structure
|
||
permits local symbols to be written out, the <<discard>> field
|
||
is used to further controls which local symbols are included
|
||
in the output file. If the value is <<discard_l>>, then all
|
||
local symbols which begin with a certain prefix are discarded;
|
||
this is controlled by the <<bfd_is_local_label_name>> entry point.
|
||
|
||
The a.out backend handles symbols by calling
|
||
<<aout_link_write_symbols>> on each input BFD and then
|
||
traversing the global hash table with the function
|
||
<<aout_link_write_other_symbol>>. It builds a string table
|
||
while writing out the symbols, which is written to the output
|
||
file at the end of <<NAME(aout,final_link)>>.
|
||
*/
|
||
|
||
static bfd_boolean generic_link_add_object_symbols
|
||
(bfd *, struct bfd_link_info *, bfd_boolean collect);
|
||
static bfd_boolean generic_link_add_symbols
|
||
(bfd *, struct bfd_link_info *, bfd_boolean);
|
||
static bfd_boolean generic_link_check_archive_element_no_collect
|
||
(bfd *, struct bfd_link_info *, bfd_boolean *);
|
||
static bfd_boolean generic_link_check_archive_element_collect
|
||
(bfd *, struct bfd_link_info *, bfd_boolean *);
|
||
static bfd_boolean generic_link_check_archive_element
|
||
(bfd *, struct bfd_link_info *, bfd_boolean *, bfd_boolean);
|
||
static bfd_boolean generic_link_add_symbol_list
|
||
(bfd *, struct bfd_link_info *, bfd_size_type count, asymbol **,
|
||
bfd_boolean);
|
||
static bfd_boolean generic_add_output_symbol
|
||
(bfd *, size_t *psymalloc, asymbol *);
|
||
static bfd_boolean default_data_link_order
|
||
(bfd *, struct bfd_link_info *, asection *, struct bfd_link_order *);
|
||
static bfd_boolean default_indirect_link_order
|
||
(bfd *, struct bfd_link_info *, asection *, struct bfd_link_order *,
|
||
bfd_boolean);
|
||
|
||
/* The link hash table structure is defined in bfdlink.h. It provides
|
||
a base hash table which the backend specific hash tables are built
|
||
upon. */
|
||
|
||
/* Routine to create an entry in the link hash table. */
|
||
|
||
struct bfd_hash_entry *
|
||
_bfd_link_hash_newfunc (struct bfd_hash_entry *entry,
|
||
struct bfd_hash_table *table,
|
||
const char *string)
|
||
{
|
||
/* Allocate the structure if it has not already been allocated by a
|
||
subclass. */
|
||
if (entry == NULL)
|
||
{
|
||
entry = bfd_hash_allocate (table, sizeof (struct bfd_link_hash_entry));
|
||
if (entry == NULL)
|
||
return entry;
|
||
}
|
||
|
||
/* Call the allocation method of the superclass. */
|
||
entry = bfd_hash_newfunc (entry, table, string);
|
||
if (entry)
|
||
{
|
||
struct bfd_link_hash_entry *h = (struct bfd_link_hash_entry *) entry;
|
||
|
||
/* Initialize the local fields. */
|
||
h->type = bfd_link_hash_new;
|
||
memset (&h->u.undef.next, 0,
|
||
(sizeof (struct bfd_link_hash_entry)
|
||
- offsetof (struct bfd_link_hash_entry, u.undef.next)));
|
||
}
|
||
|
||
return entry;
|
||
}
|
||
|
||
/* Initialize a link hash table. The BFD argument is the one
|
||
responsible for creating this table. */
|
||
|
||
bfd_boolean
|
||
_bfd_link_hash_table_init
|
||
(struct bfd_link_hash_table *table,
|
||
bfd *abfd,
|
||
struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
|
||
struct bfd_hash_table *,
|
||
const char *),
|
||
unsigned int entsize)
|
||
{
|
||
table->creator = abfd->xvec;
|
||
table->undefs = NULL;
|
||
table->undefs_tail = NULL;
|
||
table->type = bfd_link_generic_hash_table;
|
||
|
||
return bfd_hash_table_init (&table->table, newfunc, entsize);
|
||
}
|
||
|
||
/* Look up a symbol in a link hash table. If follow is TRUE, we
|
||
follow bfd_link_hash_indirect and bfd_link_hash_warning links to
|
||
the real symbol. */
|
||
|
||
struct bfd_link_hash_entry *
|
||
bfd_link_hash_lookup (struct bfd_link_hash_table *table,
|
||
const char *string,
|
||
bfd_boolean create,
|
||
bfd_boolean copy,
|
||
bfd_boolean follow)
|
||
{
|
||
struct bfd_link_hash_entry *ret;
|
||
|
||
ret = ((struct bfd_link_hash_entry *)
|
||
bfd_hash_lookup (&table->table, string, create, copy));
|
||
|
||
if (follow && ret != NULL)
|
||
{
|
||
while (ret->type == bfd_link_hash_indirect
|
||
|| ret->type == bfd_link_hash_warning)
|
||
ret = ret->u.i.link;
|
||
}
|
||
|
||
return ret;
|
||
}
|
||
|
||
/* Look up a symbol in the main linker hash table if the symbol might
|
||
be wrapped. This should only be used for references to an
|
||
undefined symbol, not for definitions of a symbol. */
|
||
|
||
struct bfd_link_hash_entry *
|
||
bfd_wrapped_link_hash_lookup (bfd *abfd,
|
||
struct bfd_link_info *info,
|
||
const char *string,
|
||
bfd_boolean create,
|
||
bfd_boolean copy,
|
||
bfd_boolean follow)
|
||
{
|
||
bfd_size_type amt;
|
||
|
||
if (info->wrap_hash != NULL)
|
||
{
|
||
const char *l;
|
||
char prefix = '\0';
|
||
|
||
l = string;
|
||
if (*l == bfd_get_symbol_leading_char (abfd) || *l == info->wrap_char)
|
||
{
|
||
prefix = *l;
|
||
++l;
|
||
}
|
||
|
||
#undef WRAP
|
||
#define WRAP "__wrap_"
|
||
|
||
if (bfd_hash_lookup (info->wrap_hash, l, FALSE, FALSE) != NULL)
|
||
{
|
||
char *n;
|
||
struct bfd_link_hash_entry *h;
|
||
|
||
/* This symbol is being wrapped. We want to replace all
|
||
references to SYM with references to __wrap_SYM. */
|
||
|
||
amt = strlen (l) + sizeof WRAP + 1;
|
||
n = bfd_malloc (amt);
|
||
if (n == NULL)
|
||
return NULL;
|
||
|
||
n[0] = prefix;
|
||
n[1] = '\0';
|
||
strcat (n, WRAP);
|
||
strcat (n, l);
|
||
h = bfd_link_hash_lookup (info->hash, n, create, TRUE, follow);
|
||
free (n);
|
||
return h;
|
||
}
|
||
|
||
#undef WRAP
|
||
|
||
#undef REAL
|
||
#define REAL "__real_"
|
||
|
||
if (*l == '_'
|
||
&& CONST_STRNEQ (l, REAL)
|
||
&& bfd_hash_lookup (info->wrap_hash, l + sizeof REAL - 1,
|
||
FALSE, FALSE) != NULL)
|
||
{
|
||
char *n;
|
||
struct bfd_link_hash_entry *h;
|
||
|
||
/* This is a reference to __real_SYM, where SYM is being
|
||
wrapped. We want to replace all references to __real_SYM
|
||
with references to SYM. */
|
||
|
||
amt = strlen (l + sizeof REAL - 1) + 2;
|
||
n = bfd_malloc (amt);
|
||
if (n == NULL)
|
||
return NULL;
|
||
|
||
n[0] = prefix;
|
||
n[1] = '\0';
|
||
strcat (n, l + sizeof REAL - 1);
|
||
h = bfd_link_hash_lookup (info->hash, n, create, TRUE, follow);
|
||
free (n);
|
||
return h;
|
||
}
|
||
|
||
#undef REAL
|
||
}
|
||
|
||
return bfd_link_hash_lookup (info->hash, string, create, copy, follow);
|
||
}
|
||
|
||
/* Traverse a generic link hash table. The only reason this is not a
|
||
macro is to do better type checking. This code presumes that an
|
||
argument passed as a struct bfd_hash_entry * may be caught as a
|
||
struct bfd_link_hash_entry * with no explicit cast required on the
|
||
call. */
|
||
|
||
void
|
||
bfd_link_hash_traverse
|
||
(struct bfd_link_hash_table *table,
|
||
bfd_boolean (*func) (struct bfd_link_hash_entry *, void *),
|
||
void *info)
|
||
{
|
||
bfd_hash_traverse (&table->table,
|
||
(bfd_boolean (*) (struct bfd_hash_entry *, void *)) func,
|
||
info);
|
||
}
|
||
|
||
/* Add a symbol to the linker hash table undefs list. */
|
||
|
||
void
|
||
bfd_link_add_undef (struct bfd_link_hash_table *table,
|
||
struct bfd_link_hash_entry *h)
|
||
{
|
||
BFD_ASSERT (h->u.undef.next == NULL);
|
||
if (table->undefs_tail != NULL)
|
||
table->undefs_tail->u.undef.next = h;
|
||
if (table->undefs == NULL)
|
||
table->undefs = h;
|
||
table->undefs_tail = h;
|
||
}
|
||
|
||
/* The undefs list was designed so that in normal use we don't need to
|
||
remove entries. However, if symbols on the list are changed from
|
||
bfd_link_hash_undefined to either bfd_link_hash_undefweak or
|
||
bfd_link_hash_new for some reason, then they must be removed from the
|
||
list. Failure to do so might result in the linker attempting to add
|
||
the symbol to the list again at a later stage. */
|
||
|
||
void
|
||
bfd_link_repair_undef_list (struct bfd_link_hash_table *table)
|
||
{
|
||
struct bfd_link_hash_entry **pun;
|
||
|
||
pun = &table->undefs;
|
||
while (*pun != NULL)
|
||
{
|
||
struct bfd_link_hash_entry *h = *pun;
|
||
|
||
if (h->type == bfd_link_hash_new
|
||
|| h->type == bfd_link_hash_undefweak)
|
||
{
|
||
*pun = h->u.undef.next;
|
||
h->u.undef.next = NULL;
|
||
if (h == table->undefs_tail)
|
||
{
|
||
if (pun == &table->undefs)
|
||
table->undefs_tail = NULL;
|
||
else
|
||
/* pun points at an u.undef.next field. Go back to
|
||
the start of the link_hash_entry. */
|
||
table->undefs_tail = (struct bfd_link_hash_entry *)
|
||
((char *) pun - ((char *) &h->u.undef.next - (char *) h));
|
||
break;
|
||
}
|
||
}
|
||
else
|
||
pun = &h->u.undef.next;
|
||
}
|
||
}
|
||
|
||
/* Routine to create an entry in a generic link hash table. */
|
||
|
||
struct bfd_hash_entry *
|
||
_bfd_generic_link_hash_newfunc (struct bfd_hash_entry *entry,
|
||
struct bfd_hash_table *table,
|
||
const char *string)
|
||
{
|
||
/* Allocate the structure if it has not already been allocated by a
|
||
subclass. */
|
||
if (entry == NULL)
|
||
{
|
||
entry =
|
||
bfd_hash_allocate (table, sizeof (struct generic_link_hash_entry));
|
||
if (entry == NULL)
|
||
return entry;
|
||
}
|
||
|
||
/* Call the allocation method of the superclass. */
|
||
entry = _bfd_link_hash_newfunc (entry, table, string);
|
||
if (entry)
|
||
{
|
||
struct generic_link_hash_entry *ret;
|
||
|
||
/* Set local fields. */
|
||
ret = (struct generic_link_hash_entry *) entry;
|
||
ret->written = FALSE;
|
||
ret->sym = NULL;
|
||
}
|
||
|
||
return entry;
|
||
}
|
||
|
||
/* Create a generic link hash table. */
|
||
|
||
struct bfd_link_hash_table *
|
||
_bfd_generic_link_hash_table_create (bfd *abfd)
|
||
{
|
||
struct generic_link_hash_table *ret;
|
||
bfd_size_type amt = sizeof (struct generic_link_hash_table);
|
||
|
||
ret = bfd_malloc (amt);
|
||
if (ret == NULL)
|
||
return NULL;
|
||
if (! _bfd_link_hash_table_init (&ret->root, abfd,
|
||
_bfd_generic_link_hash_newfunc,
|
||
sizeof (struct generic_link_hash_entry)))
|
||
{
|
||
free (ret);
|
||
return NULL;
|
||
}
|
||
return &ret->root;
|
||
}
|
||
|
||
void
|
||
_bfd_generic_link_hash_table_free (struct bfd_link_hash_table *hash)
|
||
{
|
||
struct generic_link_hash_table *ret
|
||
= (struct generic_link_hash_table *) hash;
|
||
|
||
bfd_hash_table_free (&ret->root.table);
|
||
free (ret);
|
||
}
|
||
|
||
/* Grab the symbols for an object file when doing a generic link. We
|
||
store the symbols in the outsymbols field. We need to keep them
|
||
around for the entire link to ensure that we only read them once.
|
||
If we read them multiple times, we might wind up with relocs and
|
||
the hash table pointing to different instances of the symbol
|
||
structure. */
|
||
|
||
static bfd_boolean
|
||
generic_link_read_symbols (bfd *abfd)
|
||
{
|
||
if (bfd_get_outsymbols (abfd) == NULL)
|
||
{
|
||
long symsize;
|
||
long symcount;
|
||
|
||
symsize = bfd_get_symtab_upper_bound (abfd);
|
||
if (symsize < 0)
|
||
return FALSE;
|
||
bfd_get_outsymbols (abfd) = bfd_alloc (abfd, symsize);
|
||
if (bfd_get_outsymbols (abfd) == NULL && symsize != 0)
|
||
return FALSE;
|
||
symcount = bfd_canonicalize_symtab (abfd, bfd_get_outsymbols (abfd));
|
||
if (symcount < 0)
|
||
return FALSE;
|
||
bfd_get_symcount (abfd) = symcount;
|
||
}
|
||
|
||
return TRUE;
|
||
}
|
||
|
||
/* Generic function to add symbols to from an object file to the
|
||
global hash table. This version does not automatically collect
|
||
constructors by name. */
|
||
|
||
bfd_boolean
|
||
_bfd_generic_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
|
||
{
|
||
return generic_link_add_symbols (abfd, info, FALSE);
|
||
}
|
||
|
||
/* Generic function to add symbols from an object file to the global
|
||
hash table. This version automatically collects constructors by
|
||
name, as the collect2 program does. It should be used for any
|
||
target which does not provide some other mechanism for setting up
|
||
constructors and destructors; these are approximately those targets
|
||
for which gcc uses collect2 and do not support stabs. */
|
||
|
||
bfd_boolean
|
||
_bfd_generic_link_add_symbols_collect (bfd *abfd, struct bfd_link_info *info)
|
||
{
|
||
return generic_link_add_symbols (abfd, info, TRUE);
|
||
}
|
||
|
||
/* Indicate that we are only retrieving symbol values from this
|
||
section. We want the symbols to act as though the values in the
|
||
file are absolute. */
|
||
|
||
void
|
||
_bfd_generic_link_just_syms (asection *sec,
|
||
struct bfd_link_info *info ATTRIBUTE_UNUSED)
|
||
{
|
||
sec->output_section = bfd_abs_section_ptr;
|
||
sec->output_offset = sec->vma;
|
||
}
|
||
|
||
/* Add symbols from an object file to the global hash table. */
|
||
|
||
static bfd_boolean
|
||
generic_link_add_symbols (bfd *abfd,
|
||
struct bfd_link_info *info,
|
||
bfd_boolean collect)
|
||
{
|
||
bfd_boolean ret;
|
||
|
||
switch (bfd_get_format (abfd))
|
||
{
|
||
case bfd_object:
|
||
ret = generic_link_add_object_symbols (abfd, info, collect);
|
||
break;
|
||
case bfd_archive:
|
||
ret = (_bfd_generic_link_add_archive_symbols
|
||
(abfd, info,
|
||
(collect
|
||
? generic_link_check_archive_element_collect
|
||
: generic_link_check_archive_element_no_collect)));
|
||
break;
|
||
default:
|
||
bfd_set_error (bfd_error_wrong_format);
|
||
ret = FALSE;
|
||
}
|
||
|
||
return ret;
|
||
}
|
||
|
||
/* Add symbols from an object file to the global hash table. */
|
||
|
||
static bfd_boolean
|
||
generic_link_add_object_symbols (bfd *abfd,
|
||
struct bfd_link_info *info,
|
||
bfd_boolean collect)
|
||
{
|
||
bfd_size_type symcount;
|
||
struct bfd_symbol **outsyms;
|
||
|
||
if (! generic_link_read_symbols (abfd))
|
||
return FALSE;
|
||
symcount = _bfd_generic_link_get_symcount (abfd);
|
||
outsyms = _bfd_generic_link_get_symbols (abfd);
|
||
return generic_link_add_symbol_list (abfd, info, symcount, outsyms, collect);
|
||
}
|
||
|
||
/* We build a hash table of all symbols defined in an archive. */
|
||
|
||
/* An archive symbol may be defined by multiple archive elements.
|
||
This linked list is used to hold the elements. */
|
||
|
||
struct archive_list
|
||
{
|
||
struct archive_list *next;
|
||
unsigned int indx;
|
||
};
|
||
|
||
/* An entry in an archive hash table. */
|
||
|
||
struct archive_hash_entry
|
||
{
|
||
struct bfd_hash_entry root;
|
||
/* Where the symbol is defined. */
|
||
struct archive_list *defs;
|
||
};
|
||
|
||
/* An archive hash table itself. */
|
||
|
||
struct archive_hash_table
|
||
{
|
||
struct bfd_hash_table table;
|
||
};
|
||
|
||
/* Create a new entry for an archive hash table. */
|
||
|
||
static struct bfd_hash_entry *
|
||
archive_hash_newfunc (struct bfd_hash_entry *entry,
|
||
struct bfd_hash_table *table,
|
||
const char *string)
|
||
{
|
||
struct archive_hash_entry *ret = (struct archive_hash_entry *) entry;
|
||
|
||
/* Allocate the structure if it has not already been allocated by a
|
||
subclass. */
|
||
if (ret == NULL)
|
||
ret = bfd_hash_allocate (table, sizeof (struct archive_hash_entry));
|
||
if (ret == NULL)
|
||
return NULL;
|
||
|
||
/* Call the allocation method of the superclass. */
|
||
ret = ((struct archive_hash_entry *)
|
||
bfd_hash_newfunc ((struct bfd_hash_entry *) ret, table, string));
|
||
|
||
if (ret)
|
||
{
|
||
/* Initialize the local fields. */
|
||
ret->defs = NULL;
|
||
}
|
||
|
||
return &ret->root;
|
||
}
|
||
|
||
/* Initialize an archive hash table. */
|
||
|
||
static bfd_boolean
|
||
archive_hash_table_init
|
||
(struct archive_hash_table *table,
|
||
struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
|
||
struct bfd_hash_table *,
|
||
const char *),
|
||
unsigned int entsize)
|
||
{
|
||
return bfd_hash_table_init (&table->table, newfunc, entsize);
|
||
}
|
||
|
||
/* Look up an entry in an archive hash table. */
|
||
|
||
#define archive_hash_lookup(t, string, create, copy) \
|
||
((struct archive_hash_entry *) \
|
||
bfd_hash_lookup (&(t)->table, (string), (create), (copy)))
|
||
|
||
/* Allocate space in an archive hash table. */
|
||
|
||
#define archive_hash_allocate(t, size) bfd_hash_allocate (&(t)->table, (size))
|
||
|
||
/* Free an archive hash table. */
|
||
|
||
#define archive_hash_table_free(t) bfd_hash_table_free (&(t)->table)
|
||
|
||
/* Generic function to add symbols from an archive file to the global
|
||
hash file. This function presumes that the archive symbol table
|
||
has already been read in (this is normally done by the
|
||
bfd_check_format entry point). It looks through the undefined and
|
||
common symbols and searches the archive symbol table for them. If
|
||
it finds an entry, it includes the associated object file in the
|
||
link.
|
||
|
||
The old linker looked through the archive symbol table for
|
||
undefined symbols. We do it the other way around, looking through
|
||
undefined symbols for symbols defined in the archive. The
|
||
advantage of the newer scheme is that we only have to look through
|
||
the list of undefined symbols once, whereas the old method had to
|
||
re-search the symbol table each time a new object file was added.
|
||
|
||
The CHECKFN argument is used to see if an object file should be
|
||
included. CHECKFN should set *PNEEDED to TRUE if the object file
|
||
should be included, and must also call the bfd_link_info
|
||
add_archive_element callback function and handle adding the symbols
|
||
to the global hash table. CHECKFN should only return FALSE if some
|
||
sort of error occurs.
|
||
|
||
For some formats, such as a.out, it is possible to look through an
|
||
object file but not actually include it in the link. The
|
||
archive_pass field in a BFD is used to avoid checking the symbols
|
||
of an object files too many times. When an object is included in
|
||
the link, archive_pass is set to -1. If an object is scanned but
|
||
not included, archive_pass is set to the pass number. The pass
|
||
number is incremented each time a new object file is included. The
|
||
pass number is used because when a new object file is included it
|
||
may create new undefined symbols which cause a previously examined
|
||
object file to be included. */
|
||
|
||
bfd_boolean
|
||
_bfd_generic_link_add_archive_symbols
|
||
(bfd *abfd,
|
||
struct bfd_link_info *info,
|
||
bfd_boolean (*checkfn) (bfd *, struct bfd_link_info *, bfd_boolean *))
|
||
{
|
||
carsym *arsyms;
|
||
carsym *arsym_end;
|
||
register carsym *arsym;
|
||
int pass;
|
||
struct archive_hash_table arsym_hash;
|
||
unsigned int indx;
|
||
struct bfd_link_hash_entry **pundef;
|
||
|
||
if (! bfd_has_map (abfd))
|
||
{
|
||
/* An empty archive is a special case. */
|
||
if (bfd_openr_next_archived_file (abfd, NULL) == NULL)
|
||
return TRUE;
|
||
bfd_set_error (bfd_error_no_armap);
|
||
return FALSE;
|
||
}
|
||
|
||
arsyms = bfd_ardata (abfd)->symdefs;
|
||
arsym_end = arsyms + bfd_ardata (abfd)->symdef_count;
|
||
|
||
/* In order to quickly determine whether an symbol is defined in
|
||
this archive, we build a hash table of the symbols. */
|
||
if (! archive_hash_table_init (&arsym_hash, archive_hash_newfunc,
|
||
sizeof (struct archive_hash_entry)))
|
||
return FALSE;
|
||
for (arsym = arsyms, indx = 0; arsym < arsym_end; arsym++, indx++)
|
||
{
|
||
struct archive_hash_entry *arh;
|
||
struct archive_list *l, **pp;
|
||
|
||
arh = archive_hash_lookup (&arsym_hash, arsym->name, TRUE, FALSE);
|
||
if (arh == NULL)
|
||
goto error_return;
|
||
l = ((struct archive_list *)
|
||
archive_hash_allocate (&arsym_hash, sizeof (struct archive_list)));
|
||
if (l == NULL)
|
||
goto error_return;
|
||
l->indx = indx;
|
||
for (pp = &arh->defs; *pp != NULL; pp = &(*pp)->next)
|
||
;
|
||
*pp = l;
|
||
l->next = NULL;
|
||
}
|
||
|
||
/* The archive_pass field in the archive itself is used to
|
||
initialize PASS, sine we may search the same archive multiple
|
||
times. */
|
||
pass = abfd->archive_pass + 1;
|
||
|
||
/* New undefined symbols are added to the end of the list, so we
|
||
only need to look through it once. */
|
||
pundef = &info->hash->undefs;
|
||
while (*pundef != NULL)
|
||
{
|
||
struct bfd_link_hash_entry *h;
|
||
struct archive_hash_entry *arh;
|
||
struct archive_list *l;
|
||
|
||
h = *pundef;
|
||
|
||
/* When a symbol is defined, it is not necessarily removed from
|
||
the list. */
|
||
if (h->type != bfd_link_hash_undefined
|
||
&& h->type != bfd_link_hash_common)
|
||
{
|
||
/* Remove this entry from the list, for general cleanliness
|
||
and because we are going to look through the list again
|
||
if we search any more libraries. We can't remove the
|
||
entry if it is the tail, because that would lose any
|
||
entries we add to the list later on (it would also cause
|
||
us to lose track of whether the symbol has been
|
||
referenced). */
|
||
if (*pundef != info->hash->undefs_tail)
|
||
*pundef = (*pundef)->u.undef.next;
|
||
else
|
||
pundef = &(*pundef)->u.undef.next;
|
||
continue;
|
||
}
|
||
|
||
/* Look for this symbol in the archive symbol map. */
|
||
arh = archive_hash_lookup (&arsym_hash, h->root.string, FALSE, FALSE);
|
||
if (arh == NULL)
|
||
{
|
||
/* If we haven't found the exact symbol we're looking for,
|
||
let's look for its import thunk */
|
||
if (info->pei386_auto_import)
|
||
{
|
||
bfd_size_type amt = strlen (h->root.string) + 10;
|
||
char *buf = bfd_malloc (amt);
|
||
if (buf == NULL)
|
||
return FALSE;
|
||
|
||
sprintf (buf, "__imp_%s", h->root.string);
|
||
arh = archive_hash_lookup (&arsym_hash, buf, FALSE, FALSE);
|
||
free(buf);
|
||
}
|
||
if (arh == NULL)
|
||
{
|
||
pundef = &(*pundef)->u.undef.next;
|
||
continue;
|
||
}
|
||
}
|
||
/* Look at all the objects which define this symbol. */
|
||
for (l = arh->defs; l != NULL; l = l->next)
|
||
{
|
||
bfd *element;
|
||
bfd_boolean needed;
|
||
|
||
/* If the symbol has gotten defined along the way, quit. */
|
||
if (h->type != bfd_link_hash_undefined
|
||
&& h->type != bfd_link_hash_common)
|
||
break;
|
||
|
||
element = bfd_get_elt_at_index (abfd, l->indx);
|
||
if (element == NULL)
|
||
goto error_return;
|
||
|
||
/* If we've already included this element, or if we've
|
||
already checked it on this pass, continue. */
|
||
if (element->archive_pass == -1
|
||
|| element->archive_pass == pass)
|
||
continue;
|
||
|
||
/* If we can't figure this element out, just ignore it. */
|
||
if (! bfd_check_format (element, bfd_object))
|
||
{
|
||
element->archive_pass = -1;
|
||
continue;
|
||
}
|
||
|
||
/* CHECKFN will see if this element should be included, and
|
||
go ahead and include it if appropriate. */
|
||
if (! (*checkfn) (element, info, &needed))
|
||
goto error_return;
|
||
|
||
if (! needed)
|
||
element->archive_pass = pass;
|
||
else
|
||
{
|
||
element->archive_pass = -1;
|
||
|
||
/* Increment the pass count to show that we may need to
|
||
recheck object files which were already checked. */
|
||
++pass;
|
||
}
|
||
}
|
||
|
||
pundef = &(*pundef)->u.undef.next;
|
||
}
|
||
|
||
archive_hash_table_free (&arsym_hash);
|
||
|
||
/* Save PASS in case we are called again. */
|
||
abfd->archive_pass = pass;
|
||
|
||
return TRUE;
|
||
|
||
error_return:
|
||
archive_hash_table_free (&arsym_hash);
|
||
return FALSE;
|
||
}
|
||
|
||
/* See if we should include an archive element. This version is used
|
||
when we do not want to automatically collect constructors based on
|
||
the symbol name, presumably because we have some other mechanism
|
||
for finding them. */
|
||
|
||
static bfd_boolean
|
||
generic_link_check_archive_element_no_collect (
|
||
bfd *abfd,
|
||
struct bfd_link_info *info,
|
||
bfd_boolean *pneeded)
|
||
{
|
||
return generic_link_check_archive_element (abfd, info, pneeded, FALSE);
|
||
}
|
||
|
||
/* See if we should include an archive element. This version is used
|
||
when we want to automatically collect constructors based on the
|
||
symbol name, as collect2 does. */
|
||
|
||
static bfd_boolean
|
||
generic_link_check_archive_element_collect (bfd *abfd,
|
||
struct bfd_link_info *info,
|
||
bfd_boolean *pneeded)
|
||
{
|
||
return generic_link_check_archive_element (abfd, info, pneeded, TRUE);
|
||
}
|
||
|
||
/* See if we should include an archive element. Optionally collect
|
||
constructors. */
|
||
|
||
static bfd_boolean
|
||
generic_link_check_archive_element (bfd *abfd,
|
||
struct bfd_link_info *info,
|
||
bfd_boolean *pneeded,
|
||
bfd_boolean collect)
|
||
{
|
||
asymbol **pp, **ppend;
|
||
|
||
*pneeded = FALSE;
|
||
|
||
if (! generic_link_read_symbols (abfd))
|
||
return FALSE;
|
||
|
||
pp = _bfd_generic_link_get_symbols (abfd);
|
||
ppend = pp + _bfd_generic_link_get_symcount (abfd);
|
||
for (; pp < ppend; pp++)
|
||
{
|
||
asymbol *p;
|
||
struct bfd_link_hash_entry *h;
|
||
|
||
p = *pp;
|
||
|
||
/* We are only interested in globally visible symbols. */
|
||
if (! bfd_is_com_section (p->section)
|
||
&& (p->flags & (BSF_GLOBAL | BSF_INDIRECT | BSF_WEAK)) == 0)
|
||
continue;
|
||
|
||
/* We are only interested if we know something about this
|
||
symbol, and it is undefined or common. An undefined weak
|
||
symbol (type bfd_link_hash_undefweak) is not considered to be
|
||
a reference when pulling files out of an archive. See the
|
||
SVR4 ABI, p. 4-27. */
|
||
h = bfd_link_hash_lookup (info->hash, bfd_asymbol_name (p), FALSE,
|
||
FALSE, TRUE);
|
||
if (h == NULL
|
||
|| (h->type != bfd_link_hash_undefined
|
||
&& h->type != bfd_link_hash_common))
|
||
continue;
|
||
|
||
/* P is a symbol we are looking for. */
|
||
|
||
if (! bfd_is_com_section (p->section))
|
||
{
|
||
bfd_size_type symcount;
|
||
asymbol **symbols;
|
||
|
||
/* This object file defines this symbol, so pull it in. */
|
||
if (! (*info->callbacks->add_archive_element) (info, abfd,
|
||
bfd_asymbol_name (p)))
|
||
return FALSE;
|
||
symcount = _bfd_generic_link_get_symcount (abfd);
|
||
symbols = _bfd_generic_link_get_symbols (abfd);
|
||
if (! generic_link_add_symbol_list (abfd, info, symcount,
|
||
symbols, collect))
|
||
return FALSE;
|
||
*pneeded = TRUE;
|
||
return TRUE;
|
||
}
|
||
|
||
/* P is a common symbol. */
|
||
|
||
if (h->type == bfd_link_hash_undefined)
|
||
{
|
||
bfd *symbfd;
|
||
bfd_vma size;
|
||
unsigned int power;
|
||
|
||
symbfd = h->u.undef.abfd;
|
||
if (symbfd == NULL)
|
||
{
|
||
/* This symbol was created as undefined from outside
|
||
BFD. We assume that we should link in the object
|
||
file. This is for the -u option in the linker. */
|
||
if (! (*info->callbacks->add_archive_element)
|
||
(info, abfd, bfd_asymbol_name (p)))
|
||
return FALSE;
|
||
*pneeded = TRUE;
|
||
return TRUE;
|
||
}
|
||
|
||
/* Turn the symbol into a common symbol but do not link in
|
||
the object file. This is how a.out works. Object
|
||
formats that require different semantics must implement
|
||
this function differently. This symbol is already on the
|
||
undefs list. We add the section to a common section
|
||
attached to symbfd to ensure that it is in a BFD which
|
||
will be linked in. */
|
||
h->type = bfd_link_hash_common;
|
||
h->u.c.p =
|
||
bfd_hash_allocate (&info->hash->table,
|
||
sizeof (struct bfd_link_hash_common_entry));
|
||
if (h->u.c.p == NULL)
|
||
return FALSE;
|
||
|
||
size = bfd_asymbol_value (p);
|
||
h->u.c.size = size;
|
||
|
||
power = bfd_log2 (size);
|
||
if (power > 4)
|
||
power = 4;
|
||
h->u.c.p->alignment_power = power;
|
||
|
||
if (p->section == bfd_com_section_ptr)
|
||
h->u.c.p->section = bfd_make_section_old_way (symbfd, "COMMON");
|
||
else
|
||
h->u.c.p->section = bfd_make_section_old_way (symbfd,
|
||
p->section->name);
|
||
h->u.c.p->section->flags = SEC_ALLOC;
|
||
}
|
||
else
|
||
{
|
||
/* Adjust the size of the common symbol if necessary. This
|
||
is how a.out works. Object formats that require
|
||
different semantics must implement this function
|
||
differently. */
|
||
if (bfd_asymbol_value (p) > h->u.c.size)
|
||
h->u.c.size = bfd_asymbol_value (p);
|
||
}
|
||
}
|
||
|
||
/* This archive element is not needed. */
|
||
return TRUE;
|
||
}
|
||
|
||
/* Add the symbols from an object file to the global hash table. ABFD
|
||
is the object file. INFO is the linker information. SYMBOL_COUNT
|
||
is the number of symbols. SYMBOLS is the list of symbols. COLLECT
|
||
is TRUE if constructors should be automatically collected by name
|
||
as is done by collect2. */
|
||
|
||
static bfd_boolean
|
||
generic_link_add_symbol_list (bfd *abfd,
|
||
struct bfd_link_info *info,
|
||
bfd_size_type symbol_count,
|
||
asymbol **symbols,
|
||
bfd_boolean collect)
|
||
{
|
||
asymbol **pp, **ppend;
|
||
|
||
pp = symbols;
|
||
ppend = symbols + symbol_count;
|
||
for (; pp < ppend; pp++)
|
||
{
|
||
asymbol *p;
|
||
|
||
p = *pp;
|
||
|
||
if ((p->flags & (BSF_INDIRECT
|
||
| BSF_WARNING
|
||
| BSF_GLOBAL
|
||
| BSF_CONSTRUCTOR
|
||
| BSF_WEAK)) != 0
|
||
|| bfd_is_und_section (bfd_get_section (p))
|
||
|| bfd_is_com_section (bfd_get_section (p))
|
||
|| bfd_is_ind_section (bfd_get_section (p)))
|
||
{
|
||
const char *name;
|
||
const char *string;
|
||
struct generic_link_hash_entry *h;
|
||
struct bfd_link_hash_entry *bh;
|
||
|
||
name = bfd_asymbol_name (p);
|
||
if (((p->flags & BSF_INDIRECT) != 0
|
||
|| bfd_is_ind_section (p->section))
|
||
&& pp + 1 < ppend)
|
||
{
|
||
pp++;
|
||
string = bfd_asymbol_name (*pp);
|
||
}
|
||
else if ((p->flags & BSF_WARNING) != 0
|
||
&& pp + 1 < ppend)
|
||
{
|
||
/* The name of P is actually the warning string, and the
|
||
next symbol is the one to warn about. */
|
||
string = name;
|
||
pp++;
|
||
name = bfd_asymbol_name (*pp);
|
||
}
|
||
else
|
||
string = NULL;
|
||
|
||
bh = NULL;
|
||
if (! (_bfd_generic_link_add_one_symbol
|
||
(info, abfd, name, p->flags, bfd_get_section (p),
|
||
p->value, string, FALSE, collect, &bh)))
|
||
return FALSE;
|
||
h = (struct generic_link_hash_entry *) bh;
|
||
|
||
/* If this is a constructor symbol, and the linker didn't do
|
||
anything with it, then we want to just pass the symbol
|
||
through to the output file. This will happen when
|
||
linking with -r. */
|
||
if ((p->flags & BSF_CONSTRUCTOR) != 0
|
||
&& (h == NULL || h->root.type == bfd_link_hash_new))
|
||
{
|
||
p->udata.p = NULL;
|
||
continue;
|
||
}
|
||
|
||
/* Save the BFD symbol so that we don't lose any backend
|
||
specific information that may be attached to it. We only
|
||
want this one if it gives more information than the
|
||
existing one; we don't want to replace a defined symbol
|
||
with an undefined one. This routine may be called with a
|
||
hash table other than the generic hash table, so we only
|
||
do this if we are certain that the hash table is a
|
||
generic one. */
|
||
if (info->hash->creator == abfd->xvec)
|
||
{
|
||
if (h->sym == NULL
|
||
|| (! bfd_is_und_section (bfd_get_section (p))
|
||
&& (! bfd_is_com_section (bfd_get_section (p))
|
||
|| bfd_is_und_section (bfd_get_section (h->sym)))))
|
||
{
|
||
h->sym = p;
|
||
/* BSF_OLD_COMMON is a hack to support COFF reloc
|
||
reading, and it should go away when the COFF
|
||
linker is switched to the new version. */
|
||
if (bfd_is_com_section (bfd_get_section (p)))
|
||
p->flags |= BSF_OLD_COMMON;
|
||
}
|
||
}
|
||
|
||
/* Store a back pointer from the symbol to the hash
|
||
table entry for the benefit of relaxation code until
|
||
it gets rewritten to not use asymbol structures.
|
||
Setting this is also used to check whether these
|
||
symbols were set up by the generic linker. */
|
||
p->udata.p = h;
|
||
}
|
||
}
|
||
|
||
return TRUE;
|
||
}
|
||
|
||
/* We use a state table to deal with adding symbols from an object
|
||
file. The first index into the state table describes the symbol
|
||
from the object file. The second index into the state table is the
|
||
type of the symbol in the hash table. */
|
||
|
||
/* The symbol from the object file is turned into one of these row
|
||
values. */
|
||
|
||
enum link_row
|
||
{
|
||
UNDEF_ROW, /* Undefined. */
|
||
UNDEFW_ROW, /* Weak undefined. */
|
||
DEF_ROW, /* Defined. */
|
||
DEFW_ROW, /* Weak defined. */
|
||
COMMON_ROW, /* Common. */
|
||
INDR_ROW, /* Indirect. */
|
||
WARN_ROW, /* Warning. */
|
||
SET_ROW /* Member of set. */
|
||
};
|
||
|
||
/* apparently needed for Hitachi 3050R(HI-UX/WE2)? */
|
||
#undef FAIL
|
||
|
||
/* The actions to take in the state table. */
|
||
|
||
enum link_action
|
||
{
|
||
FAIL, /* Abort. */
|
||
UND, /* Mark symbol undefined. */
|
||
WEAK, /* Mark symbol weak undefined. */
|
||
DEF, /* Mark symbol defined. */
|
||
DEFW, /* Mark symbol weak defined. */
|
||
COM, /* Mark symbol common. */
|
||
REF, /* Mark defined symbol referenced. */
|
||
CREF, /* Possibly warn about common reference to defined symbol. */
|
||
CDEF, /* Define existing common symbol. */
|
||
NOACT, /* No action. */
|
||
BIG, /* Mark symbol common using largest size. */
|
||
MDEF, /* Multiple definition error. */
|
||
MIND, /* Multiple indirect symbols. */
|
||
IND, /* Make indirect symbol. */
|
||
CIND, /* Make indirect symbol from existing common symbol. */
|
||
SET, /* Add value to set. */
|
||
MWARN, /* Make warning symbol. */
|
||
WARN, /* Issue warning. */
|
||
CWARN, /* Warn if referenced, else MWARN. */
|
||
CYCLE, /* Repeat with symbol pointed to. */
|
||
REFC, /* Mark indirect symbol referenced and then CYCLE. */
|
||
WARNC /* Issue warning and then CYCLE. */
|
||
};
|
||
|
||
/* The state table itself. The first index is a link_row and the
|
||
second index is a bfd_link_hash_type. */
|
||
|
||
static const enum link_action link_action[8][8] =
|
||
{
|
||
/* current\prev new undef undefw def defw com indr warn */
|
||
/* UNDEF_ROW */ {UND, NOACT, UND, REF, REF, NOACT, REFC, WARNC },
|
||
/* UNDEFW_ROW */ {WEAK, NOACT, NOACT, REF, REF, NOACT, REFC, WARNC },
|
||
/* DEF_ROW */ {DEF, DEF, DEF, MDEF, DEF, CDEF, MDEF, CYCLE },
|
||
/* DEFW_ROW */ {DEFW, DEFW, DEFW, NOACT, NOACT, NOACT, NOACT, CYCLE },
|
||
/* COMMON_ROW */ {COM, COM, COM, CREF, COM, BIG, REFC, WARNC },
|
||
/* INDR_ROW */ {IND, IND, IND, MDEF, IND, CIND, MIND, CYCLE },
|
||
/* WARN_ROW */ {MWARN, WARN, WARN, CWARN, CWARN, WARN, CWARN, NOACT },
|
||
/* SET_ROW */ {SET, SET, SET, SET, SET, SET, CYCLE, CYCLE }
|
||
};
|
||
|
||
/* Most of the entries in the LINK_ACTION table are straightforward,
|
||
but a few are somewhat subtle.
|
||
|
||
A reference to an indirect symbol (UNDEF_ROW/indr or
|
||
UNDEFW_ROW/indr) is counted as a reference both to the indirect
|
||
symbol and to the symbol the indirect symbol points to.
|
||
|
||
A reference to a warning symbol (UNDEF_ROW/warn or UNDEFW_ROW/warn)
|
||
causes the warning to be issued.
|
||
|
||
A common definition of an indirect symbol (COMMON_ROW/indr) is
|
||
treated as a multiple definition error. Likewise for an indirect
|
||
definition of a common symbol (INDR_ROW/com).
|
||
|
||
An indirect definition of a warning (INDR_ROW/warn) does not cause
|
||
the warning to be issued.
|
||
|
||
If a warning is created for an indirect symbol (WARN_ROW/indr) no
|
||
warning is created for the symbol the indirect symbol points to.
|
||
|
||
Adding an entry to a set does not count as a reference to a set,
|
||
and no warning is issued (SET_ROW/warn). */
|
||
|
||
/* Return the BFD in which a hash entry has been defined, if known. */
|
||
|
||
static bfd *
|
||
hash_entry_bfd (struct bfd_link_hash_entry *h)
|
||
{
|
||
while (h->type == bfd_link_hash_warning)
|
||
h = h->u.i.link;
|
||
switch (h->type)
|
||
{
|
||
default:
|
||
return NULL;
|
||
case bfd_link_hash_undefined:
|
||
case bfd_link_hash_undefweak:
|
||
return h->u.undef.abfd;
|
||
case bfd_link_hash_defined:
|
||
case bfd_link_hash_defweak:
|
||
return h->u.def.section->owner;
|
||
case bfd_link_hash_common:
|
||
return h->u.c.p->section->owner;
|
||
}
|
||
/*NOTREACHED*/
|
||
}
|
||
|
||
/* Add a symbol to the global hash table.
|
||
ABFD is the BFD the symbol comes from.
|
||
NAME is the name of the symbol.
|
||
FLAGS is the BSF_* bits associated with the symbol.
|
||
SECTION is the section in which the symbol is defined; this may be
|
||
bfd_und_section_ptr or bfd_com_section_ptr.
|
||
VALUE is the value of the symbol, relative to the section.
|
||
STRING is used for either an indirect symbol, in which case it is
|
||
the name of the symbol to indirect to, or a warning symbol, in
|
||
which case it is the warning string.
|
||
COPY is TRUE if NAME or STRING must be copied into locally
|
||
allocated memory if they need to be saved.
|
||
COLLECT is TRUE if we should automatically collect gcc constructor
|
||
or destructor names as collect2 does.
|
||
HASHP, if not NULL, is a place to store the created hash table
|
||
entry; if *HASHP is not NULL, the caller has already looked up
|
||
the hash table entry, and stored it in *HASHP. */
|
||
|
||
bfd_boolean
|
||
_bfd_generic_link_add_one_symbol (struct bfd_link_info *info,
|
||
bfd *abfd,
|
||
const char *name,
|
||
flagword flags,
|
||
asection *section,
|
||
bfd_vma value,
|
||
const char *string,
|
||
bfd_boolean copy,
|
||
bfd_boolean collect,
|
||
struct bfd_link_hash_entry **hashp)
|
||
{
|
||
enum link_row row;
|
||
struct bfd_link_hash_entry *h;
|
||
bfd_boolean cycle;
|
||
|
||
if (bfd_is_ind_section (section)
|
||
|| (flags & BSF_INDIRECT) != 0)
|
||
row = INDR_ROW;
|
||
else if ((flags & BSF_WARNING) != 0)
|
||
row = WARN_ROW;
|
||
else if ((flags & BSF_CONSTRUCTOR) != 0)
|
||
row = SET_ROW;
|
||
else if (bfd_is_und_section (section))
|
||
{
|
||
if ((flags & BSF_WEAK) != 0)
|
||
row = UNDEFW_ROW;
|
||
else
|
||
row = UNDEF_ROW;
|
||
}
|
||
else if ((flags & BSF_WEAK) != 0)
|
||
row = DEFW_ROW;
|
||
else if (bfd_is_com_section (section))
|
||
row = COMMON_ROW;
|
||
else
|
||
row = DEF_ROW;
|
||
|
||
if (hashp != NULL && *hashp != NULL)
|
||
h = *hashp;
|
||
else
|
||
{
|
||
if (row == UNDEF_ROW || row == UNDEFW_ROW)
|
||
h = bfd_wrapped_link_hash_lookup (abfd, info, name, TRUE, copy, FALSE);
|
||
else
|
||
h = bfd_link_hash_lookup (info->hash, name, TRUE, copy, FALSE);
|
||
if (h == NULL)
|
||
{
|
||
if (hashp != NULL)
|
||
*hashp = NULL;
|
||
return FALSE;
|
||
}
|
||
}
|
||
|
||
if (info->notice_all
|
||
|| (info->notice_hash != NULL
|
||
&& bfd_hash_lookup (info->notice_hash, name, FALSE, FALSE) != NULL))
|
||
{
|
||
if (! (*info->callbacks->notice) (info, h->root.string, abfd, section,
|
||
value))
|
||
return FALSE;
|
||
}
|
||
|
||
if (hashp != NULL)
|
||
*hashp = h;
|
||
|
||
do
|
||
{
|
||
enum link_action action;
|
||
|
||
cycle = FALSE;
|
||
action = link_action[(int) row][(int) h->type];
|
||
switch (action)
|
||
{
|
||
case FAIL:
|
||
abort ();
|
||
|
||
case NOACT:
|
||
/* Do nothing. */
|
||
break;
|
||
|
||
case UND:
|
||
/* Make a new undefined symbol. */
|
||
h->type = bfd_link_hash_undefined;
|
||
h->u.undef.abfd = abfd;
|
||
bfd_link_add_undef (info->hash, h);
|
||
break;
|
||
|
||
case WEAK:
|
||
/* Make a new weak undefined symbol. */
|
||
h->type = bfd_link_hash_undefweak;
|
||
h->u.undef.abfd = abfd;
|
||
h->u.undef.weak = abfd;
|
||
break;
|
||
|
||
case CDEF:
|
||
/* We have found a definition for a symbol which was
|
||
previously common. */
|
||
BFD_ASSERT (h->type == bfd_link_hash_common);
|
||
if (! ((*info->callbacks->multiple_common)
|
||
(info, h->root.string,
|
||
h->u.c.p->section->owner, bfd_link_hash_common, h->u.c.size,
|
||
abfd, bfd_link_hash_defined, 0)))
|
||
return FALSE;
|
||
/* Fall through. */
|
||
case DEF:
|
||
case DEFW:
|
||
{
|
||
enum bfd_link_hash_type oldtype;
|
||
|
||
/* Define a symbol. */
|
||
oldtype = h->type;
|
||
if (action == DEFW)
|
||
h->type = bfd_link_hash_defweak;
|
||
else
|
||
h->type = bfd_link_hash_defined;
|
||
h->u.def.section = section;
|
||
h->u.def.value = value;
|
||
|
||
/* If we have been asked to, we act like collect2 and
|
||
identify all functions that might be global
|
||
constructors and destructors and pass them up in a
|
||
callback. We only do this for certain object file
|
||
types, since many object file types can handle this
|
||
automatically. */
|
||
if (collect && name[0] == '_')
|
||
{
|
||
const char *s;
|
||
|
||
/* A constructor or destructor name starts like this:
|
||
_+GLOBAL_[_.$][ID][_.$] where the first [_.$] and
|
||
the second are the same character (we accept any
|
||
character there, in case a new object file format
|
||
comes along with even worse naming restrictions). */
|
||
|
||
#define CONS_PREFIX "GLOBAL_"
|
||
#define CONS_PREFIX_LEN (sizeof CONS_PREFIX - 1)
|
||
|
||
s = name + 1;
|
||
while (*s == '_')
|
||
++s;
|
||
if (s[0] == 'G' && CONST_STRNEQ (s, CONS_PREFIX))
|
||
{
|
||
char c;
|
||
|
||
c = s[CONS_PREFIX_LEN + 1];
|
||
if ((c == 'I' || c == 'D')
|
||
&& s[CONS_PREFIX_LEN] == s[CONS_PREFIX_LEN + 2])
|
||
{
|
||
/* If this is a definition of a symbol which
|
||
was previously weakly defined, we are in
|
||
trouble. We have already added a
|
||
constructor entry for the weak defined
|
||
symbol, and now we are trying to add one
|
||
for the new symbol. Fortunately, this case
|
||
should never arise in practice. */
|
||
if (oldtype == bfd_link_hash_defweak)
|
||
abort ();
|
||
|
||
if (! ((*info->callbacks->constructor)
|
||
(info, c == 'I',
|
||
h->root.string, abfd, section, value)))
|
||
return FALSE;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
break;
|
||
|
||
case COM:
|
||
/* We have found a common definition for a symbol. */
|
||
if (h->type == bfd_link_hash_new)
|
||
bfd_link_add_undef (info->hash, h);
|
||
h->type = bfd_link_hash_common;
|
||
h->u.c.p =
|
||
bfd_hash_allocate (&info->hash->table,
|
||
sizeof (struct bfd_link_hash_common_entry));
|
||
if (h->u.c.p == NULL)
|
||
return FALSE;
|
||
|
||
h->u.c.size = value;
|
||
|
||
/* Select a default alignment based on the size. This may
|
||
be overridden by the caller. */
|
||
{
|
||
unsigned int power;
|
||
|
||
power = bfd_log2 (value);
|
||
if (power > 4)
|
||
power = 4;
|
||
h->u.c.p->alignment_power = power;
|
||
}
|
||
|
||
/* The section of a common symbol is only used if the common
|
||
symbol is actually allocated. It basically provides a
|
||
hook for the linker script to decide which output section
|
||
the common symbols should be put in. In most cases, the
|
||
section of a common symbol will be bfd_com_section_ptr,
|
||
the code here will choose a common symbol section named
|
||
"COMMON", and the linker script will contain *(COMMON) in
|
||
the appropriate place. A few targets use separate common
|
||
sections for small symbols, and they require special
|
||
handling. */
|
||
if (section == bfd_com_section_ptr)
|
||
{
|
||
h->u.c.p->section = bfd_make_section_old_way (abfd, "COMMON");
|
||
h->u.c.p->section->flags = SEC_ALLOC;
|
||
}
|
||
else if (section->owner != abfd)
|
||
{
|
||
h->u.c.p->section = bfd_make_section_old_way (abfd,
|
||
section->name);
|
||
h->u.c.p->section->flags = SEC_ALLOC;
|
||
}
|
||
else
|
||
h->u.c.p->section = section;
|
||
break;
|
||
|
||
case REF:
|
||
/* A reference to a defined symbol. */
|
||
if (h->u.undef.next == NULL && info->hash->undefs_tail != h)
|
||
h->u.undef.next = h;
|
||
break;
|
||
|
||
case BIG:
|
||
/* We have found a common definition for a symbol which
|
||
already had a common definition. Use the maximum of the
|
||
two sizes, and use the section required by the larger symbol. */
|
||
BFD_ASSERT (h->type == bfd_link_hash_common);
|
||
if (! ((*info->callbacks->multiple_common)
|
||
(info, h->root.string,
|
||
h->u.c.p->section->owner, bfd_link_hash_common, h->u.c.size,
|
||
abfd, bfd_link_hash_common, value)))
|
||
return FALSE;
|
||
if (value > h->u.c.size)
|
||
{
|
||
unsigned int power;
|
||
|
||
h->u.c.size = value;
|
||
|
||
/* Select a default alignment based on the size. This may
|
||
be overridden by the caller. */
|
||
power = bfd_log2 (value);
|
||
if (power > 4)
|
||
power = 4;
|
||
h->u.c.p->alignment_power = power;
|
||
|
||
/* Some systems have special treatment for small commons,
|
||
hence we want to select the section used by the larger
|
||
symbol. This makes sure the symbol does not go in a
|
||
small common section if it is now too large. */
|
||
if (section == bfd_com_section_ptr)
|
||
{
|
||
h->u.c.p->section
|
||
= bfd_make_section_old_way (abfd, "COMMON");
|
||
h->u.c.p->section->flags = SEC_ALLOC;
|
||
}
|
||
else if (section->owner != abfd)
|
||
{
|
||
h->u.c.p->section
|
||
= bfd_make_section_old_way (abfd, section->name);
|
||
h->u.c.p->section->flags = SEC_ALLOC;
|
||
}
|
||
else
|
||
h->u.c.p->section = section;
|
||
}
|
||
break;
|
||
|
||
case CREF:
|
||
{
|
||
bfd *obfd;
|
||
|
||
/* We have found a common definition for a symbol which
|
||
was already defined. FIXME: It would nice if we could
|
||
report the BFD which defined an indirect symbol, but we
|
||
don't have anywhere to store the information. */
|
||
if (h->type == bfd_link_hash_defined
|
||
|| h->type == bfd_link_hash_defweak)
|
||
obfd = h->u.def.section->owner;
|
||
else
|
||
obfd = NULL;
|
||
if (! ((*info->callbacks->multiple_common)
|
||
(info, h->root.string, obfd, h->type, 0,
|
||
abfd, bfd_link_hash_common, value)))
|
||
return FALSE;
|
||
}
|
||
break;
|
||
|
||
case MIND:
|
||
/* Multiple indirect symbols. This is OK if they both point
|
||
to the same symbol. */
|
||
if (strcmp (h->u.i.link->root.string, string) == 0)
|
||
break;
|
||
/* Fall through. */
|
||
case MDEF:
|
||
/* Handle a multiple definition. */
|
||
if (!info->allow_multiple_definition)
|
||
{
|
||
asection *msec = NULL;
|
||
bfd_vma mval = 0;
|
||
|
||
switch (h->type)
|
||
{
|
||
case bfd_link_hash_defined:
|
||
msec = h->u.def.section;
|
||
mval = h->u.def.value;
|
||
break;
|
||
case bfd_link_hash_indirect:
|
||
msec = bfd_ind_section_ptr;
|
||
mval = 0;
|
||
break;
|
||
default:
|
||
abort ();
|
||
}
|
||
|
||
/* Ignore a redefinition of an absolute symbol to the
|
||
same value; it's harmless. */
|
||
if (h->type == bfd_link_hash_defined
|
||
&& bfd_is_abs_section (msec)
|
||
&& bfd_is_abs_section (section)
|
||
&& value == mval)
|
||
break;
|
||
|
||
if (! ((*info->callbacks->multiple_definition)
|
||
(info, h->root.string, msec->owner, msec, mval,
|
||
abfd, section, value)))
|
||
return FALSE;
|
||
}
|
||
break;
|
||
|
||
case CIND:
|
||
/* Create an indirect symbol from an existing common symbol. */
|
||
BFD_ASSERT (h->type == bfd_link_hash_common);
|
||
if (! ((*info->callbacks->multiple_common)
|
||
(info, h->root.string,
|
||
h->u.c.p->section->owner, bfd_link_hash_common, h->u.c.size,
|
||
abfd, bfd_link_hash_indirect, 0)))
|
||
return FALSE;
|
||
/* Fall through. */
|
||
case IND:
|
||
/* Create an indirect symbol. */
|
||
{
|
||
struct bfd_link_hash_entry *inh;
|
||
|
||
/* STRING is the name of the symbol we want to indirect
|
||
to. */
|
||
inh = bfd_wrapped_link_hash_lookup (abfd, info, string, TRUE,
|
||
copy, FALSE);
|
||
if (inh == NULL)
|
||
return FALSE;
|
||
if (inh->type == bfd_link_hash_indirect
|
||
&& inh->u.i.link == h)
|
||
{
|
||
(*_bfd_error_handler)
|
||
(_("%B: indirect symbol `%s' to `%s' is a loop"),
|
||
abfd, name, string);
|
||
bfd_set_error (bfd_error_invalid_operation);
|
||
return FALSE;
|
||
}
|
||
if (inh->type == bfd_link_hash_new)
|
||
{
|
||
inh->type = bfd_link_hash_undefined;
|
||
inh->u.undef.abfd = abfd;
|
||
bfd_link_add_undef (info->hash, inh);
|
||
}
|
||
|
||
/* If the indirect symbol has been referenced, we need to
|
||
push the reference down to the symbol we are
|
||
referencing. */
|
||
if (h->type != bfd_link_hash_new)
|
||
{
|
||
row = UNDEF_ROW;
|
||
cycle = TRUE;
|
||
}
|
||
|
||
h->type = bfd_link_hash_indirect;
|
||
h->u.i.link = inh;
|
||
}
|
||
break;
|
||
|
||
case SET:
|
||
/* Add an entry to a set. */
|
||
if (! (*info->callbacks->add_to_set) (info, h, BFD_RELOC_CTOR,
|
||
abfd, section, value))
|
||
return FALSE;
|
||
break;
|
||
|
||
case WARNC:
|
||
/* Issue a warning and cycle. */
|
||
if (h->u.i.warning != NULL)
|
||
{
|
||
if (! (*info->callbacks->warning) (info, h->u.i.warning,
|
||
h->root.string, abfd,
|
||
NULL, 0))
|
||
return FALSE;
|
||
/* Only issue a warning once. */
|
||
h->u.i.warning = NULL;
|
||
}
|
||
/* Fall through. */
|
||
case CYCLE:
|
||
/* Try again with the referenced symbol. */
|
||
h = h->u.i.link;
|
||
cycle = TRUE;
|
||
break;
|
||
|
||
case REFC:
|
||
/* A reference to an indirect symbol. */
|
||
if (h->u.undef.next == NULL && info->hash->undefs_tail != h)
|
||
h->u.undef.next = h;
|
||
h = h->u.i.link;
|
||
cycle = TRUE;
|
||
break;
|
||
|
||
case WARN:
|
||
/* Issue a warning. */
|
||
if (! (*info->callbacks->warning) (info, string, h->root.string,
|
||
hash_entry_bfd (h), NULL, 0))
|
||
return FALSE;
|
||
break;
|
||
|
||
case CWARN:
|
||
/* Warn if this symbol has been referenced already,
|
||
otherwise add a warning. A symbol has been referenced if
|
||
the u.undef.next field is not NULL, or it is the tail of the
|
||
undefined symbol list. The REF case above helps to
|
||
ensure this. */
|
||
if (h->u.undef.next != NULL || info->hash->undefs_tail == h)
|
||
{
|
||
if (! (*info->callbacks->warning) (info, string, h->root.string,
|
||
hash_entry_bfd (h), NULL, 0))
|
||
return FALSE;
|
||
break;
|
||
}
|
||
/* Fall through. */
|
||
case MWARN:
|
||
/* Make a warning symbol. */
|
||
{
|
||
struct bfd_link_hash_entry *sub;
|
||
|
||
/* STRING is the warning to give. */
|
||
sub = ((struct bfd_link_hash_entry *)
|
||
((*info->hash->table.newfunc)
|
||
(NULL, &info->hash->table, h->root.string)));
|
||
if (sub == NULL)
|
||
return FALSE;
|
||
*sub = *h;
|
||
sub->type = bfd_link_hash_warning;
|
||
sub->u.i.link = h;
|
||
if (! copy)
|
||
sub->u.i.warning = string;
|
||
else
|
||
{
|
||
char *w;
|
||
size_t len = strlen (string) + 1;
|
||
|
||
w = bfd_hash_allocate (&info->hash->table, len);
|
||
if (w == NULL)
|
||
return FALSE;
|
||
memcpy (w, string, len);
|
||
sub->u.i.warning = w;
|
||
}
|
||
|
||
bfd_hash_replace (&info->hash->table,
|
||
(struct bfd_hash_entry *) h,
|
||
(struct bfd_hash_entry *) sub);
|
||
if (hashp != NULL)
|
||
*hashp = sub;
|
||
}
|
||
break;
|
||
}
|
||
}
|
||
while (cycle);
|
||
|
||
return TRUE;
|
||
}
|
||
|
||
/* Generic final link routine. */
|
||
|
||
bfd_boolean
|
||
_bfd_generic_final_link (bfd *abfd, struct bfd_link_info *info)
|
||
{
|
||
bfd *sub;
|
||
asection *o;
|
||
struct bfd_link_order *p;
|
||
size_t outsymalloc;
|
||
struct generic_write_global_symbol_info wginfo;
|
||
|
||
bfd_get_outsymbols (abfd) = NULL;
|
||
bfd_get_symcount (abfd) = 0;
|
||
outsymalloc = 0;
|
||
|
||
/* Mark all sections which will be included in the output file. */
|
||
for (o = abfd->sections; o != NULL; o = o->next)
|
||
for (p = o->map_head.link_order; p != NULL; p = p->next)
|
||
if (p->type == bfd_indirect_link_order)
|
||
p->u.indirect.section->linker_mark = TRUE;
|
||
|
||
/* Build the output symbol table. */
|
||
for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
|
||
if (! _bfd_generic_link_output_symbols (abfd, sub, info, &outsymalloc))
|
||
return FALSE;
|
||
|
||
/* Accumulate the global symbols. */
|
||
wginfo.info = info;
|
||
wginfo.output_bfd = abfd;
|
||
wginfo.psymalloc = &outsymalloc;
|
||
_bfd_generic_link_hash_traverse (_bfd_generic_hash_table (info),
|
||
_bfd_generic_link_write_global_symbol,
|
||
&wginfo);
|
||
|
||
/* Make sure we have a trailing NULL pointer on OUTSYMBOLS. We
|
||
shouldn't really need one, since we have SYMCOUNT, but some old
|
||
code still expects one. */
|
||
if (! generic_add_output_symbol (abfd, &outsymalloc, NULL))
|
||
return FALSE;
|
||
|
||
if (info->relocatable)
|
||
{
|
||
/* Allocate space for the output relocs for each section. */
|
||
for (o = abfd->sections; o != NULL; o = o->next)
|
||
{
|
||
o->reloc_count = 0;
|
||
for (p = o->map_head.link_order; p != NULL; p = p->next)
|
||
{
|
||
if (p->type == bfd_section_reloc_link_order
|
||
|| p->type == bfd_symbol_reloc_link_order)
|
||
++o->reloc_count;
|
||
else if (p->type == bfd_indirect_link_order)
|
||
{
|
||
asection *input_section;
|
||
bfd *input_bfd;
|
||
long relsize;
|
||
arelent **relocs;
|
||
asymbol **symbols;
|
||
long reloc_count;
|
||
|
||
input_section = p->u.indirect.section;
|
||
input_bfd = input_section->owner;
|
||
relsize = bfd_get_reloc_upper_bound (input_bfd,
|
||
input_section);
|
||
if (relsize < 0)
|
||
return FALSE;
|
||
relocs = bfd_malloc (relsize);
|
||
if (!relocs && relsize != 0)
|
||
return FALSE;
|
||
symbols = _bfd_generic_link_get_symbols (input_bfd);
|
||
reloc_count = bfd_canonicalize_reloc (input_bfd,
|
||
input_section,
|
||
relocs,
|
||
symbols);
|
||
free (relocs);
|
||
if (reloc_count < 0)
|
||
return FALSE;
|
||
BFD_ASSERT ((unsigned long) reloc_count
|
||
== input_section->reloc_count);
|
||
o->reloc_count += reloc_count;
|
||
}
|
||
}
|
||
if (o->reloc_count > 0)
|
||
{
|
||
bfd_size_type amt;
|
||
|
||
amt = o->reloc_count;
|
||
amt *= sizeof (arelent *);
|
||
o->orelocation = bfd_alloc (abfd, amt);
|
||
if (!o->orelocation)
|
||
return FALSE;
|
||
o->flags |= SEC_RELOC;
|
||
/* Reset the count so that it can be used as an index
|
||
when putting in the output relocs. */
|
||
o->reloc_count = 0;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Handle all the link order information for the sections. */
|
||
for (o = abfd->sections; o != NULL; o = o->next)
|
||
{
|
||
for (p = o->map_head.link_order; p != NULL; p = p->next)
|
||
{
|
||
switch (p->type)
|
||
{
|
||
case bfd_section_reloc_link_order:
|
||
case bfd_symbol_reloc_link_order:
|
||
if (! _bfd_generic_reloc_link_order (abfd, info, o, p))
|
||
return FALSE;
|
||
break;
|
||
case bfd_indirect_link_order:
|
||
if (! default_indirect_link_order (abfd, info, o, p, TRUE))
|
||
return FALSE;
|
||
break;
|
||
default:
|
||
if (! _bfd_default_link_order (abfd, info, o, p))
|
||
return FALSE;
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
|
||
return TRUE;
|
||
}
|
||
|
||
/* Add an output symbol to the output BFD. */
|
||
|
||
static bfd_boolean
|
||
generic_add_output_symbol (bfd *output_bfd, size_t *psymalloc, asymbol *sym)
|
||
{
|
||
if (bfd_get_symcount (output_bfd) >= *psymalloc)
|
||
{
|
||
asymbol **newsyms;
|
||
bfd_size_type amt;
|
||
|
||
if (*psymalloc == 0)
|
||
*psymalloc = 124;
|
||
else
|
||
*psymalloc *= 2;
|
||
amt = *psymalloc;
|
||
amt *= sizeof (asymbol *);
|
||
newsyms = bfd_realloc (bfd_get_outsymbols (output_bfd), amt);
|
||
if (newsyms == NULL)
|
||
return FALSE;
|
||
bfd_get_outsymbols (output_bfd) = newsyms;
|
||
}
|
||
|
||
bfd_get_outsymbols (output_bfd) [bfd_get_symcount (output_bfd)] = sym;
|
||
if (sym != NULL)
|
||
++ bfd_get_symcount (output_bfd);
|
||
|
||
return TRUE;
|
||
}
|
||
|
||
/* Handle the symbols for an input BFD. */
|
||
|
||
bfd_boolean
|
||
_bfd_generic_link_output_symbols (bfd *output_bfd,
|
||
bfd *input_bfd,
|
||
struct bfd_link_info *info,
|
||
size_t *psymalloc)
|
||
{
|
||
asymbol **sym_ptr;
|
||
asymbol **sym_end;
|
||
|
||
if (! generic_link_read_symbols (input_bfd))
|
||
return FALSE;
|
||
|
||
/* Create a filename symbol if we are supposed to. */
|
||
if (info->create_object_symbols_section != NULL)
|
||
{
|
||
asection *sec;
|
||
|
||
for (sec = input_bfd->sections; sec != NULL; sec = sec->next)
|
||
{
|
||
if (sec->output_section == info->create_object_symbols_section)
|
||
{
|
||
asymbol *newsym;
|
||
|
||
newsym = bfd_make_empty_symbol (input_bfd);
|
||
if (!newsym)
|
||
return FALSE;
|
||
newsym->name = input_bfd->filename;
|
||
newsym->value = 0;
|
||
newsym->flags = BSF_LOCAL | BSF_FILE;
|
||
newsym->section = sec;
|
||
|
||
if (! generic_add_output_symbol (output_bfd, psymalloc,
|
||
newsym))
|
||
return FALSE;
|
||
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Adjust the values of the globally visible symbols, and write out
|
||
local symbols. */
|
||
sym_ptr = _bfd_generic_link_get_symbols (input_bfd);
|
||
sym_end = sym_ptr + _bfd_generic_link_get_symcount (input_bfd);
|
||
for (; sym_ptr < sym_end; sym_ptr++)
|
||
{
|
||
asymbol *sym;
|
||
struct generic_link_hash_entry *h;
|
||
bfd_boolean output;
|
||
|
||
h = NULL;
|
||
sym = *sym_ptr;
|
||
if ((sym->flags & (BSF_INDIRECT
|
||
| BSF_WARNING
|
||
| BSF_GLOBAL
|
||
| BSF_CONSTRUCTOR
|
||
| BSF_WEAK)) != 0
|
||
|| bfd_is_und_section (bfd_get_section (sym))
|
||
|| bfd_is_com_section (bfd_get_section (sym))
|
||
|| bfd_is_ind_section (bfd_get_section (sym)))
|
||
{
|
||
if (sym->udata.p != NULL)
|
||
h = sym->udata.p;
|
||
else if ((sym->flags & BSF_CONSTRUCTOR) != 0)
|
||
{
|
||
/* This case normally means that the main linker code
|
||
deliberately ignored this constructor symbol. We
|
||
should just pass it through. This will screw up if
|
||
the constructor symbol is from a different,
|
||
non-generic, object file format, but the case will
|
||
only arise when linking with -r, which will probably
|
||
fail anyhow, since there will be no way to represent
|
||
the relocs in the output format being used. */
|
||
h = NULL;
|
||
}
|
||
else if (bfd_is_und_section (bfd_get_section (sym)))
|
||
h = ((struct generic_link_hash_entry *)
|
||
bfd_wrapped_link_hash_lookup (output_bfd, info,
|
||
bfd_asymbol_name (sym),
|
||
FALSE, FALSE, TRUE));
|
||
else
|
||
h = _bfd_generic_link_hash_lookup (_bfd_generic_hash_table (info),
|
||
bfd_asymbol_name (sym),
|
||
FALSE, FALSE, TRUE);
|
||
|
||
if (h != NULL)
|
||
{
|
||
/* Force all references to this symbol to point to
|
||
the same area in memory. It is possible that
|
||
this routine will be called with a hash table
|
||
other than a generic hash table, so we double
|
||
check that. */
|
||
if (info->hash->creator == input_bfd->xvec)
|
||
{
|
||
if (h->sym != NULL)
|
||
*sym_ptr = sym = h->sym;
|
||
}
|
||
|
||
switch (h->root.type)
|
||
{
|
||
default:
|
||
case bfd_link_hash_new:
|
||
abort ();
|
||
case bfd_link_hash_undefined:
|
||
break;
|
||
case bfd_link_hash_undefweak:
|
||
sym->flags |= BSF_WEAK;
|
||
break;
|
||
case bfd_link_hash_indirect:
|
||
h = (struct generic_link_hash_entry *) h->root.u.i.link;
|
||
/* fall through */
|
||
case bfd_link_hash_defined:
|
||
sym->flags |= BSF_GLOBAL;
|
||
sym->flags &=~ BSF_CONSTRUCTOR;
|
||
sym->value = h->root.u.def.value;
|
||
sym->section = h->root.u.def.section;
|
||
break;
|
||
case bfd_link_hash_defweak:
|
||
sym->flags |= BSF_WEAK;
|
||
sym->flags &=~ BSF_CONSTRUCTOR;
|
||
sym->value = h->root.u.def.value;
|
||
sym->section = h->root.u.def.section;
|
||
break;
|
||
case bfd_link_hash_common:
|
||
sym->value = h->root.u.c.size;
|
||
sym->flags |= BSF_GLOBAL;
|
||
if (! bfd_is_com_section (sym->section))
|
||
{
|
||
BFD_ASSERT (bfd_is_und_section (sym->section));
|
||
sym->section = bfd_com_section_ptr;
|
||
}
|
||
/* We do not set the section of the symbol to
|
||
h->root.u.c.p->section. That value was saved so
|
||
that we would know where to allocate the symbol
|
||
if it was defined. In this case the type is
|
||
still bfd_link_hash_common, so we did not define
|
||
it, so we do not want to use that section. */
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* This switch is straight from the old code in
|
||
write_file_locals in ldsym.c. */
|
||
if (info->strip == strip_all
|
||
|| (info->strip == strip_some
|
||
&& bfd_hash_lookup (info->keep_hash, bfd_asymbol_name (sym),
|
||
FALSE, FALSE) == NULL))
|
||
output = FALSE;
|
||
else if ((sym->flags & (BSF_GLOBAL | BSF_WEAK)) != 0)
|
||
{
|
||
/* If this symbol is marked as occurring now, rather
|
||
than at the end, output it now. This is used for
|
||
COFF C_EXT FCN symbols. FIXME: There must be a
|
||
better way. */
|
||
if (bfd_asymbol_bfd (sym) == input_bfd
|
||
&& (sym->flags & BSF_NOT_AT_END) != 0)
|
||
output = TRUE;
|
||
else
|
||
output = FALSE;
|
||
}
|
||
else if (bfd_is_ind_section (sym->section))
|
||
output = FALSE;
|
||
else if ((sym->flags & BSF_DEBUGGING) != 0)
|
||
{
|
||
if (info->strip == strip_none)
|
||
output = TRUE;
|
||
else
|
||
output = FALSE;
|
||
}
|
||
else if (bfd_is_und_section (sym->section)
|
||
|| bfd_is_com_section (sym->section))
|
||
output = FALSE;
|
||
else if ((sym->flags & BSF_LOCAL) != 0)
|
||
{
|
||
if ((sym->flags & BSF_WARNING) != 0)
|
||
output = FALSE;
|
||
else
|
||
{
|
||
switch (info->discard)
|
||
{
|
||
default:
|
||
case discard_all:
|
||
output = FALSE;
|
||
break;
|
||
case discard_sec_merge:
|
||
output = TRUE;
|
||
if (info->relocatable
|
||
|| ! (sym->section->flags & SEC_MERGE))
|
||
break;
|
||
/* FALLTHROUGH */
|
||
case discard_l:
|
||
if (bfd_is_local_label (input_bfd, sym))
|
||
output = FALSE;
|
||
else
|
||
output = TRUE;
|
||
break;
|
||
case discard_none:
|
||
output = TRUE;
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
else if ((sym->flags & BSF_CONSTRUCTOR))
|
||
{
|
||
if (info->strip != strip_all)
|
||
output = TRUE;
|
||
else
|
||
output = FALSE;
|
||
}
|
||
else
|
||
abort ();
|
||
|
||
/* If this symbol is in a section which is not being included
|
||
in the output file, then we don't want to output the
|
||
symbol. */
|
||
if (!bfd_is_abs_section (sym->section)
|
||
&& bfd_section_removed_from_list (output_bfd,
|
||
sym->section->output_section))
|
||
output = FALSE;
|
||
|
||
if (output)
|
||
{
|
||
if (! generic_add_output_symbol (output_bfd, psymalloc, sym))
|
||
return FALSE;
|
||
if (h != NULL)
|
||
h->written = TRUE;
|
||
}
|
||
}
|
||
|
||
return TRUE;
|
||
}
|
||
|
||
/* Set the section and value of a generic BFD symbol based on a linker
|
||
hash table entry. */
|
||
|
||
static void
|
||
set_symbol_from_hash (asymbol *sym, struct bfd_link_hash_entry *h)
|
||
{
|
||
switch (h->type)
|
||
{
|
||
default:
|
||
abort ();
|
||
break;
|
||
case bfd_link_hash_new:
|
||
/* This can happen when a constructor symbol is seen but we are
|
||
not building constructors. */
|
||
if (sym->section != NULL)
|
||
{
|
||
BFD_ASSERT ((sym->flags & BSF_CONSTRUCTOR) != 0);
|
||
}
|
||
else
|
||
{
|
||
sym->flags |= BSF_CONSTRUCTOR;
|
||
sym->section = bfd_abs_section_ptr;
|
||
sym->value = 0;
|
||
}
|
||
break;
|
||
case bfd_link_hash_undefined:
|
||
sym->section = bfd_und_section_ptr;
|
||
sym->value = 0;
|
||
break;
|
||
case bfd_link_hash_undefweak:
|
||
sym->section = bfd_und_section_ptr;
|
||
sym->value = 0;
|
||
sym->flags |= BSF_WEAK;
|
||
break;
|
||
case bfd_link_hash_defined:
|
||
sym->section = h->u.def.section;
|
||
sym->value = h->u.def.value;
|
||
break;
|
||
case bfd_link_hash_defweak:
|
||
sym->flags |= BSF_WEAK;
|
||
sym->section = h->u.def.section;
|
||
sym->value = h->u.def.value;
|
||
break;
|
||
case bfd_link_hash_common:
|
||
sym->value = h->u.c.size;
|
||
if (sym->section == NULL)
|
||
sym->section = bfd_com_section_ptr;
|
||
else if (! bfd_is_com_section (sym->section))
|
||
{
|
||
BFD_ASSERT (bfd_is_und_section (sym->section));
|
||
sym->section = bfd_com_section_ptr;
|
||
}
|
||
/* Do not set the section; see _bfd_generic_link_output_symbols. */
|
||
break;
|
||
case bfd_link_hash_indirect:
|
||
case bfd_link_hash_warning:
|
||
/* FIXME: What should we do here? */
|
||
break;
|
||
}
|
||
}
|
||
|
||
/* Write out a global symbol, if it hasn't already been written out.
|
||
This is called for each symbol in the hash table. */
|
||
|
||
bfd_boolean
|
||
_bfd_generic_link_write_global_symbol (struct generic_link_hash_entry *h,
|
||
void *data)
|
||
{
|
||
struct generic_write_global_symbol_info *wginfo = data;
|
||
asymbol *sym;
|
||
|
||
if (h->root.type == bfd_link_hash_warning)
|
||
h = (struct generic_link_hash_entry *) h->root.u.i.link;
|
||
|
||
if (h->written)
|
||
return TRUE;
|
||
|
||
h->written = TRUE;
|
||
|
||
if (wginfo->info->strip == strip_all
|
||
|| (wginfo->info->strip == strip_some
|
||
&& bfd_hash_lookup (wginfo->info->keep_hash, h->root.root.string,
|
||
FALSE, FALSE) == NULL))
|
||
return TRUE;
|
||
|
||
if (h->sym != NULL)
|
||
sym = h->sym;
|
||
else
|
||
{
|
||
sym = bfd_make_empty_symbol (wginfo->output_bfd);
|
||
if (!sym)
|
||
return FALSE;
|
||
sym->name = h->root.root.string;
|
||
sym->flags = 0;
|
||
}
|
||
|
||
set_symbol_from_hash (sym, &h->root);
|
||
|
||
sym->flags |= BSF_GLOBAL;
|
||
|
||
if (! generic_add_output_symbol (wginfo->output_bfd, wginfo->psymalloc,
|
||
sym))
|
||
{
|
||
/* FIXME: No way to return failure. */
|
||
abort ();
|
||
}
|
||
|
||
return TRUE;
|
||
}
|
||
|
||
/* Create a relocation. */
|
||
|
||
bfd_boolean
|
||
_bfd_generic_reloc_link_order (bfd *abfd,
|
||
struct bfd_link_info *info,
|
||
asection *sec,
|
||
struct bfd_link_order *link_order)
|
||
{
|
||
arelent *r;
|
||
|
||
if (! info->relocatable)
|
||
abort ();
|
||
if (sec->orelocation == NULL)
|
||
abort ();
|
||
|
||
r = bfd_alloc (abfd, sizeof (arelent));
|
||
if (r == NULL)
|
||
return FALSE;
|
||
|
||
r->address = link_order->offset;
|
||
r->howto = bfd_reloc_type_lookup (abfd, link_order->u.reloc.p->reloc);
|
||
if (r->howto == 0)
|
||
{
|
||
bfd_set_error (bfd_error_bad_value);
|
||
return FALSE;
|
||
}
|
||
|
||
/* Get the symbol to use for the relocation. */
|
||
if (link_order->type == bfd_section_reloc_link_order)
|
||
r->sym_ptr_ptr = link_order->u.reloc.p->u.section->symbol_ptr_ptr;
|
||
else
|
||
{
|
||
struct generic_link_hash_entry *h;
|
||
|
||
h = ((struct generic_link_hash_entry *)
|
||
bfd_wrapped_link_hash_lookup (abfd, info,
|
||
link_order->u.reloc.p->u.name,
|
||
FALSE, FALSE, TRUE));
|
||
if (h == NULL
|
||
|| ! h->written)
|
||
{
|
||
if (! ((*info->callbacks->unattached_reloc)
|
||
(info, link_order->u.reloc.p->u.name, NULL, NULL, 0)))
|
||
return FALSE;
|
||
bfd_set_error (bfd_error_bad_value);
|
||
return FALSE;
|
||
}
|
||
r->sym_ptr_ptr = &h->sym;
|
||
}
|
||
|
||
/* If this is an inplace reloc, write the addend to the object file.
|
||
Otherwise, store it in the reloc addend. */
|
||
if (! r->howto->partial_inplace)
|
||
r->addend = link_order->u.reloc.p->addend;
|
||
else
|
||
{
|
||
bfd_size_type size;
|
||
bfd_reloc_status_type rstat;
|
||
bfd_byte *buf;
|
||
bfd_boolean ok;
|
||
file_ptr loc;
|
||
|
||
size = bfd_get_reloc_size (r->howto);
|
||
buf = bfd_zmalloc (size);
|
||
if (buf == NULL)
|
||
return FALSE;
|
||
rstat = _bfd_relocate_contents (r->howto, abfd,
|
||
(bfd_vma) link_order->u.reloc.p->addend,
|
||
buf);
|
||
switch (rstat)
|
||
{
|
||
case bfd_reloc_ok:
|
||
break;
|
||
default:
|
||
case bfd_reloc_outofrange:
|
||
abort ();
|
||
case bfd_reloc_overflow:
|
||
if (! ((*info->callbacks->reloc_overflow)
|
||
(info, NULL,
|
||
(link_order->type == bfd_section_reloc_link_order
|
||
? bfd_section_name (abfd, link_order->u.reloc.p->u.section)
|
||
: link_order->u.reloc.p->u.name),
|
||
r->howto->name, link_order->u.reloc.p->addend,
|
||
NULL, NULL, 0)))
|
||
{
|
||
free (buf);
|
||
return FALSE;
|
||
}
|
||
break;
|
||
}
|
||
loc = link_order->offset * bfd_octets_per_byte (abfd);
|
||
ok = bfd_set_section_contents (abfd, sec, buf, loc, size);
|
||
free (buf);
|
||
if (! ok)
|
||
return FALSE;
|
||
|
||
r->addend = 0;
|
||
}
|
||
|
||
sec->orelocation[sec->reloc_count] = r;
|
||
++sec->reloc_count;
|
||
|
||
return TRUE;
|
||
}
|
||
|
||
/* Allocate a new link_order for a section. */
|
||
|
||
struct bfd_link_order *
|
||
bfd_new_link_order (bfd *abfd, asection *section)
|
||
{
|
||
bfd_size_type amt = sizeof (struct bfd_link_order);
|
||
struct bfd_link_order *new;
|
||
|
||
new = bfd_zalloc (abfd, amt);
|
||
if (!new)
|
||
return NULL;
|
||
|
||
new->type = bfd_undefined_link_order;
|
||
|
||
if (section->map_tail.link_order != NULL)
|
||
section->map_tail.link_order->next = new;
|
||
else
|
||
section->map_head.link_order = new;
|
||
section->map_tail.link_order = new;
|
||
|
||
return new;
|
||
}
|
||
|
||
/* Default link order processing routine. Note that we can not handle
|
||
the reloc_link_order types here, since they depend upon the details
|
||
of how the particular backends generates relocs. */
|
||
|
||
bfd_boolean
|
||
_bfd_default_link_order (bfd *abfd,
|
||
struct bfd_link_info *info,
|
||
asection *sec,
|
||
struct bfd_link_order *link_order)
|
||
{
|
||
switch (link_order->type)
|
||
{
|
||
case bfd_undefined_link_order:
|
||
case bfd_section_reloc_link_order:
|
||
case bfd_symbol_reloc_link_order:
|
||
default:
|
||
abort ();
|
||
case bfd_indirect_link_order:
|
||
return default_indirect_link_order (abfd, info, sec, link_order,
|
||
FALSE);
|
||
case bfd_data_link_order:
|
||
return default_data_link_order (abfd, info, sec, link_order);
|
||
}
|
||
}
|
||
|
||
/* Default routine to handle a bfd_data_link_order. */
|
||
|
||
static bfd_boolean
|
||
default_data_link_order (bfd *abfd,
|
||
struct bfd_link_info *info ATTRIBUTE_UNUSED,
|
||
asection *sec,
|
||
struct bfd_link_order *link_order)
|
||
{
|
||
bfd_size_type size;
|
||
size_t fill_size;
|
||
bfd_byte *fill;
|
||
file_ptr loc;
|
||
bfd_boolean result;
|
||
|
||
BFD_ASSERT ((sec->flags & SEC_HAS_CONTENTS) != 0);
|
||
|
||
size = link_order->size;
|
||
if (size == 0)
|
||
return TRUE;
|
||
|
||
fill = link_order->u.data.contents;
|
||
fill_size = link_order->u.data.size;
|
||
if (fill_size != 0 && fill_size < size)
|
||
{
|
||
bfd_byte *p;
|
||
fill = bfd_malloc (size);
|
||
if (fill == NULL)
|
||
return FALSE;
|
||
p = fill;
|
||
if (fill_size == 1)
|
||
memset (p, (int) link_order->u.data.contents[0], (size_t) size);
|
||
else
|
||
{
|
||
do
|
||
{
|
||
memcpy (p, link_order->u.data.contents, fill_size);
|
||
p += fill_size;
|
||
size -= fill_size;
|
||
}
|
||
while (size >= fill_size);
|
||
if (size != 0)
|
||
memcpy (p, link_order->u.data.contents, (size_t) size);
|
||
size = link_order->size;
|
||
}
|
||
}
|
||
|
||
loc = link_order->offset * bfd_octets_per_byte (abfd);
|
||
result = bfd_set_section_contents (abfd, sec, fill, loc, size);
|
||
|
||
if (fill != link_order->u.data.contents)
|
||
free (fill);
|
||
return result;
|
||
}
|
||
|
||
/* Default routine to handle a bfd_indirect_link_order. */
|
||
|
||
static bfd_boolean
|
||
default_indirect_link_order (bfd *output_bfd,
|
||
struct bfd_link_info *info,
|
||
asection *output_section,
|
||
struct bfd_link_order *link_order,
|
||
bfd_boolean generic_linker)
|
||
{
|
||
asection *input_section;
|
||
bfd *input_bfd;
|
||
bfd_byte *contents = NULL;
|
||
bfd_byte *new_contents;
|
||
bfd_size_type sec_size;
|
||
file_ptr loc;
|
||
|
||
BFD_ASSERT ((output_section->flags & SEC_HAS_CONTENTS) != 0);
|
||
|
||
input_section = link_order->u.indirect.section;
|
||
input_bfd = input_section->owner;
|
||
if (input_section->size == 0)
|
||
return TRUE;
|
||
|
||
BFD_ASSERT (input_section->output_section == output_section);
|
||
BFD_ASSERT (input_section->output_offset == link_order->offset);
|
||
BFD_ASSERT (input_section->size == link_order->size);
|
||
|
||
if (info->relocatable
|
||
&& input_section->reloc_count > 0
|
||
&& output_section->orelocation == NULL)
|
||
{
|
||
/* Space has not been allocated for the output relocations.
|
||
This can happen when we are called by a specific backend
|
||
because somebody is attempting to link together different
|
||
types of object files. Handling this case correctly is
|
||
difficult, and sometimes impossible. */
|
||
(*_bfd_error_handler)
|
||
(_("Attempt to do relocatable link with %s input and %s output"),
|
||
bfd_get_target (input_bfd), bfd_get_target (output_bfd));
|
||
bfd_set_error (bfd_error_wrong_format);
|
||
return FALSE;
|
||
}
|
||
|
||
if (! generic_linker)
|
||
{
|
||
asymbol **sympp;
|
||
asymbol **symppend;
|
||
|
||
/* Get the canonical symbols. The generic linker will always
|
||
have retrieved them by this point, but we are being called by
|
||
a specific linker, presumably because we are linking
|
||
different types of object files together. */
|
||
if (! generic_link_read_symbols (input_bfd))
|
||
return FALSE;
|
||
|
||
/* Since we have been called by a specific linker, rather than
|
||
the generic linker, the values of the symbols will not be
|
||
right. They will be the values as seen in the input file,
|
||
not the values of the final link. We need to fix them up
|
||
before we can relocate the section. */
|
||
sympp = _bfd_generic_link_get_symbols (input_bfd);
|
||
symppend = sympp + _bfd_generic_link_get_symcount (input_bfd);
|
||
for (; sympp < symppend; sympp++)
|
||
{
|
||
asymbol *sym;
|
||
struct bfd_link_hash_entry *h;
|
||
|
||
sym = *sympp;
|
||
|
||
if ((sym->flags & (BSF_INDIRECT
|
||
| BSF_WARNING
|
||
| BSF_GLOBAL
|
||
| BSF_CONSTRUCTOR
|
||
| BSF_WEAK)) != 0
|
||
|| bfd_is_und_section (bfd_get_section (sym))
|
||
|| bfd_is_com_section (bfd_get_section (sym))
|
||
|| bfd_is_ind_section (bfd_get_section (sym)))
|
||
{
|
||
/* sym->udata may have been set by
|
||
generic_link_add_symbol_list. */
|
||
if (sym->udata.p != NULL)
|
||
h = sym->udata.p;
|
||
else if (bfd_is_und_section (bfd_get_section (sym)))
|
||
h = bfd_wrapped_link_hash_lookup (output_bfd, info,
|
||
bfd_asymbol_name (sym),
|
||
FALSE, FALSE, TRUE);
|
||
else
|
||
h = bfd_link_hash_lookup (info->hash,
|
||
bfd_asymbol_name (sym),
|
||
FALSE, FALSE, TRUE);
|
||
if (h != NULL)
|
||
set_symbol_from_hash (sym, h);
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Get and relocate the section contents. */
|
||
sec_size = (input_section->rawsize > input_section->size
|
||
? input_section->rawsize
|
||
: input_section->size);
|
||
contents = bfd_malloc (sec_size);
|
||
if (contents == NULL && sec_size != 0)
|
||
goto error_return;
|
||
new_contents = (bfd_get_relocated_section_contents
|
||
(output_bfd, info, link_order, contents, info->relocatable,
|
||
_bfd_generic_link_get_symbols (input_bfd)));
|
||
if (!new_contents)
|
||
goto error_return;
|
||
|
||
/* Output the section contents. */
|
||
loc = input_section->output_offset * bfd_octets_per_byte (output_bfd);
|
||
if (! bfd_set_section_contents (output_bfd, output_section,
|
||
new_contents, loc, input_section->size))
|
||
goto error_return;
|
||
|
||
if (contents != NULL)
|
||
free (contents);
|
||
return TRUE;
|
||
|
||
error_return:
|
||
if (contents != NULL)
|
||
free (contents);
|
||
return FALSE;
|
||
}
|
||
|
||
/* A little routine to count the number of relocs in a link_order
|
||
list. */
|
||
|
||
unsigned int
|
||
_bfd_count_link_order_relocs (struct bfd_link_order *link_order)
|
||
{
|
||
register unsigned int c;
|
||
register struct bfd_link_order *l;
|
||
|
||
c = 0;
|
||
for (l = link_order; l != NULL; l = l->next)
|
||
{
|
||
if (l->type == bfd_section_reloc_link_order
|
||
|| l->type == bfd_symbol_reloc_link_order)
|
||
++c;
|
||
}
|
||
|
||
return c;
|
||
}
|
||
|
||
/*
|
||
FUNCTION
|
||
bfd_link_split_section
|
||
|
||
SYNOPSIS
|
||
bfd_boolean bfd_link_split_section (bfd *abfd, asection *sec);
|
||
|
||
DESCRIPTION
|
||
Return nonzero if @var{sec} should be split during a
|
||
reloceatable or final link.
|
||
|
||
.#define bfd_link_split_section(abfd, sec) \
|
||
. BFD_SEND (abfd, _bfd_link_split_section, (abfd, sec))
|
||
.
|
||
|
||
*/
|
||
|
||
bfd_boolean
|
||
_bfd_generic_link_split_section (bfd *abfd ATTRIBUTE_UNUSED,
|
||
asection *sec ATTRIBUTE_UNUSED)
|
||
{
|
||
return FALSE;
|
||
}
|
||
|
||
/*
|
||
FUNCTION
|
||
bfd_section_already_linked
|
||
|
||
SYNOPSIS
|
||
void bfd_section_already_linked (bfd *abfd, asection *sec,
|
||
struct bfd_link_info *info);
|
||
|
||
DESCRIPTION
|
||
Check if @var{sec} has been already linked during a reloceatable
|
||
or final link.
|
||
|
||
.#define bfd_section_already_linked(abfd, sec, info) \
|
||
. BFD_SEND (abfd, _section_already_linked, (abfd, sec, info))
|
||
.
|
||
|
||
*/
|
||
|
||
/* Sections marked with the SEC_LINK_ONCE flag should only be linked
|
||
once into the output. This routine checks each section, and
|
||
arrange to discard it if a section of the same name has already
|
||
been linked. This code assumes that all relevant sections have the
|
||
SEC_LINK_ONCE flag set; that is, it does not depend solely upon the
|
||
section name. bfd_section_already_linked is called via
|
||
bfd_map_over_sections. */
|
||
|
||
/* The hash table. */
|
||
|
||
static struct bfd_hash_table _bfd_section_already_linked_table;
|
||
|
||
/* Support routines for the hash table used by section_already_linked,
|
||
initialize the table, traverse, lookup, fill in an entry and remove
|
||
the table. */
|
||
|
||
void
|
||
bfd_section_already_linked_table_traverse
|
||
(bfd_boolean (*func) (struct bfd_section_already_linked_hash_entry *,
|
||
void *), void *info)
|
||
{
|
||
bfd_hash_traverse (&_bfd_section_already_linked_table,
|
||
(bfd_boolean (*) (struct bfd_hash_entry *,
|
||
void *)) func,
|
||
info);
|
||
}
|
||
|
||
struct bfd_section_already_linked_hash_entry *
|
||
bfd_section_already_linked_table_lookup (const char *name)
|
||
{
|
||
return ((struct bfd_section_already_linked_hash_entry *)
|
||
bfd_hash_lookup (&_bfd_section_already_linked_table, name,
|
||
TRUE, FALSE));
|
||
}
|
||
|
||
void
|
||
bfd_section_already_linked_table_insert
|
||
(struct bfd_section_already_linked_hash_entry *already_linked_list,
|
||
asection *sec)
|
||
{
|
||
struct bfd_section_already_linked *l;
|
||
|
||
/* Allocate the memory from the same obstack as the hash table is
|
||
kept in. */
|
||
l = bfd_hash_allocate (&_bfd_section_already_linked_table, sizeof *l);
|
||
l->sec = sec;
|
||
l->next = already_linked_list->entry;
|
||
already_linked_list->entry = l;
|
||
}
|
||
|
||
static struct bfd_hash_entry *
|
||
already_linked_newfunc (struct bfd_hash_entry *entry ATTRIBUTE_UNUSED,
|
||
struct bfd_hash_table *table,
|
||
const char *string ATTRIBUTE_UNUSED)
|
||
{
|
||
struct bfd_section_already_linked_hash_entry *ret =
|
||
bfd_hash_allocate (table, sizeof *ret);
|
||
|
||
ret->entry = NULL;
|
||
|
||
return &ret->root;
|
||
}
|
||
|
||
bfd_boolean
|
||
bfd_section_already_linked_table_init (void)
|
||
{
|
||
return bfd_hash_table_init_n (&_bfd_section_already_linked_table,
|
||
already_linked_newfunc,
|
||
sizeof (struct bfd_section_already_linked_hash_entry),
|
||
42);
|
||
}
|
||
|
||
void
|
||
bfd_section_already_linked_table_free (void)
|
||
{
|
||
bfd_hash_table_free (&_bfd_section_already_linked_table);
|
||
}
|
||
|
||
/* This is used on non-ELF inputs. */
|
||
|
||
void
|
||
_bfd_generic_section_already_linked (bfd *abfd, asection *sec,
|
||
struct bfd_link_info *info ATTRIBUTE_UNUSED)
|
||
{
|
||
flagword flags;
|
||
const char *name;
|
||
struct bfd_section_already_linked *l;
|
||
struct bfd_section_already_linked_hash_entry *already_linked_list;
|
||
|
||
flags = sec->flags;
|
||
if ((flags & SEC_LINK_ONCE) == 0)
|
||
return;
|
||
|
||
/* FIXME: When doing a relocatable link, we may have trouble
|
||
copying relocations in other sections that refer to local symbols
|
||
in the section being discarded. Those relocations will have to
|
||
be converted somehow; as of this writing I'm not sure that any of
|
||
the backends handle that correctly.
|
||
|
||
It is tempting to instead not discard link once sections when
|
||
doing a relocatable link (technically, they should be discarded
|
||
whenever we are building constructors). However, that fails,
|
||
because the linker winds up combining all the link once sections
|
||
into a single large link once section, which defeats the purpose
|
||
of having link once sections in the first place. */
|
||
|
||
name = bfd_get_section_name (abfd, sec);
|
||
|
||
already_linked_list = bfd_section_already_linked_table_lookup (name);
|
||
|
||
for (l = already_linked_list->entry; l != NULL; l = l->next)
|
||
{
|
||
bfd_boolean skip = FALSE;
|
||
struct coff_comdat_info *s_comdat
|
||
= bfd_coff_get_comdat_section (abfd, sec);
|
||
struct coff_comdat_info *l_comdat
|
||
= bfd_coff_get_comdat_section (l->sec->owner, l->sec);
|
||
|
||
/* We may have 3 different sections on the list: group section,
|
||
comdat section and linkonce section. SEC may be a linkonce or
|
||
comdat section. We always ignore group section. For non-COFF
|
||
inputs, we also ignore comdat section.
|
||
|
||
FIXME: Is that safe to match a linkonce section with a comdat
|
||
section for COFF inputs? */
|
||
if ((l->sec->flags & SEC_GROUP) != 0)
|
||
skip = TRUE;
|
||
else if (bfd_get_flavour (abfd) == bfd_target_coff_flavour)
|
||
{
|
||
if (s_comdat != NULL
|
||
&& l_comdat != NULL
|
||
&& strcmp (s_comdat->name, l_comdat->name) != 0)
|
||
skip = TRUE;
|
||
}
|
||
else if (l_comdat != NULL)
|
||
skip = TRUE;
|
||
|
||
if (!skip)
|
||
{
|
||
/* The section has already been linked. See if we should
|
||
issue a warning. */
|
||
switch (flags & SEC_LINK_DUPLICATES)
|
||
{
|
||
default:
|
||
abort ();
|
||
|
||
case SEC_LINK_DUPLICATES_DISCARD:
|
||
break;
|
||
|
||
case SEC_LINK_DUPLICATES_ONE_ONLY:
|
||
(*_bfd_error_handler)
|
||
(_("%B: warning: ignoring duplicate section `%A'\n"),
|
||
abfd, sec);
|
||
break;
|
||
|
||
case SEC_LINK_DUPLICATES_SAME_CONTENTS:
|
||
/* FIXME: We should really dig out the contents of both
|
||
sections and memcmp them. The COFF/PE spec says that
|
||
the Microsoft linker does not implement this
|
||
correctly, so I'm not going to bother doing it
|
||
either. */
|
||
/* Fall through. */
|
||
case SEC_LINK_DUPLICATES_SAME_SIZE:
|
||
if (sec->size != l->sec->size)
|
||
(*_bfd_error_handler)
|
||
(_("%B: warning: duplicate section `%A' has different size\n"),
|
||
abfd, sec);
|
||
break;
|
||
}
|
||
|
||
/* Set the output_section field so that lang_add_section
|
||
does not create a lang_input_section structure for this
|
||
section. Since there might be a symbol in the section
|
||
being discarded, we must retain a pointer to the section
|
||
which we are really going to use. */
|
||
sec->output_section = bfd_abs_section_ptr;
|
||
sec->kept_section = l->sec;
|
||
|
||
return;
|
||
}
|
||
}
|
||
|
||
/* This is the first section with this name. Record it. */
|
||
bfd_section_already_linked_table_insert (already_linked_list, sec);
|
||
}
|
||
|
||
/* Convert symbols in excluded output sections to use a kept section. */
|
||
|
||
static bfd_boolean
|
||
fix_syms (struct bfd_link_hash_entry *h, void *data)
|
||
{
|
||
bfd *obfd = (bfd *) data;
|
||
|
||
if (h->type == bfd_link_hash_warning)
|
||
h = h->u.i.link;
|
||
|
||
if (h->type == bfd_link_hash_defined
|
||
|| h->type == bfd_link_hash_defweak)
|
||
{
|
||
asection *s = h->u.def.section;
|
||
if (s != NULL
|
||
&& s->output_section != NULL
|
||
&& (s->output_section->flags & SEC_EXCLUDE) != 0
|
||
&& bfd_section_removed_from_list (obfd, s->output_section))
|
||
{
|
||
asection *op, *op1;
|
||
|
||
h->u.def.value += s->output_offset + s->output_section->vma;
|
||
|
||
/* Find preceding kept section. */
|
||
for (op1 = s->output_section->prev; op1 != NULL; op1 = op1->prev)
|
||
if ((op1->flags & SEC_EXCLUDE) == 0
|
||
&& !bfd_section_removed_from_list (obfd, op1))
|
||
break;
|
||
|
||
/* Find following kept section. Start at prev->next because
|
||
other sections may have been added after S was removed. */
|
||
if (s->output_section->prev != NULL)
|
||
op = s->output_section->prev->next;
|
||
else
|
||
op = s->output_section->owner->sections;
|
||
for (; op != NULL; op = op->next)
|
||
if ((op->flags & SEC_EXCLUDE) == 0
|
||
&& !bfd_section_removed_from_list (obfd, op))
|
||
break;
|
||
|
||
/* Choose better of two sections, based on flags. The idea
|
||
is to choose a section that will be in the same segment
|
||
as S would have been if it was kept. */
|
||
if (op1 == NULL)
|
||
{
|
||
if (op == NULL)
|
||
op = bfd_abs_section_ptr;
|
||
}
|
||
else if (op == NULL)
|
||
op = op1;
|
||
else if (((op1->flags ^ op->flags)
|
||
& (SEC_ALLOC | SEC_THREAD_LOCAL)) != 0)
|
||
{
|
||
if (((op->flags ^ s->flags)
|
||
& (SEC_ALLOC | SEC_THREAD_LOCAL)) != 0)
|
||
op = op1;
|
||
}
|
||
else if (((op1->flags ^ op->flags) & SEC_READONLY) != 0)
|
||
{
|
||
if (((op->flags ^ s->flags) & SEC_READONLY) != 0)
|
||
op = op1;
|
||
}
|
||
else if (((op1->flags ^ op->flags) & SEC_CODE) != 0)
|
||
{
|
||
if (((op->flags ^ s->flags) & SEC_CODE) != 0)
|
||
op = op1;
|
||
}
|
||
else
|
||
{
|
||
/* Flags we care about are the same. Prefer the following
|
||
section if that will result in a positive valued sym. */
|
||
if (h->u.def.value < op->vma)
|
||
op = op1;
|
||
}
|
||
|
||
h->u.def.value -= op->vma;
|
||
h->u.def.section = op;
|
||
}
|
||
}
|
||
|
||
return TRUE;
|
||
}
|
||
|
||
void
|
||
_bfd_fix_excluded_sec_syms (bfd *obfd, struct bfd_link_info *info)
|
||
{
|
||
bfd_link_hash_traverse (info->hash, fix_syms, obfd);
|
||
}
|