4f4416b5f9
* spu.h (R_SPU_ADDR16X): Define. (R_SPU_PPU32, R_SPU_PPU64): Renumber. bfd/ * elf32-spu.c (elf_howto_table): Add howto for R_SPU_ADDR16X.
3141 lines
83 KiB
C
3141 lines
83 KiB
C
/* SPU specific support for 32-bit ELF
|
|
|
|
Copyright 2006, 2007 Free Software Foundation, Inc.
|
|
|
|
This file is part of BFD, the Binary File Descriptor library.
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 2 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License along
|
|
with this program; if not, write to the Free Software Foundation, Inc.,
|
|
51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */
|
|
|
|
#include "sysdep.h"
|
|
#include "bfd.h"
|
|
#include "bfdlink.h"
|
|
#include "libbfd.h"
|
|
#include "elf-bfd.h"
|
|
#include "elf/spu.h"
|
|
#include "elf32-spu.h"
|
|
|
|
/* We use RELA style relocs. Don't define USE_REL. */
|
|
|
|
static bfd_reloc_status_type spu_elf_rel9 (bfd *, arelent *, asymbol *,
|
|
void *, asection *,
|
|
bfd *, char **);
|
|
|
|
/* Values of type 'enum elf_spu_reloc_type' are used to index this
|
|
array, so it must be declared in the order of that type. */
|
|
|
|
static reloc_howto_type elf_howto_table[] = {
|
|
HOWTO (R_SPU_NONE, 0, 0, 0, FALSE, 0, complain_overflow_dont,
|
|
bfd_elf_generic_reloc, "SPU_NONE",
|
|
FALSE, 0, 0x00000000, FALSE),
|
|
HOWTO (R_SPU_ADDR10, 4, 2, 10, FALSE, 14, complain_overflow_bitfield,
|
|
bfd_elf_generic_reloc, "SPU_ADDR10",
|
|
FALSE, 0, 0x00ffc000, FALSE),
|
|
HOWTO (R_SPU_ADDR16, 2, 2, 16, FALSE, 7, complain_overflow_bitfield,
|
|
bfd_elf_generic_reloc, "SPU_ADDR16",
|
|
FALSE, 0, 0x007fff80, FALSE),
|
|
HOWTO (R_SPU_ADDR16_HI, 16, 2, 16, FALSE, 7, complain_overflow_bitfield,
|
|
bfd_elf_generic_reloc, "SPU_ADDR16_HI",
|
|
FALSE, 0, 0x007fff80, FALSE),
|
|
HOWTO (R_SPU_ADDR16_LO, 0, 2, 16, FALSE, 7, complain_overflow_dont,
|
|
bfd_elf_generic_reloc, "SPU_ADDR16_LO",
|
|
FALSE, 0, 0x007fff80, FALSE),
|
|
HOWTO (R_SPU_ADDR18, 0, 2, 18, FALSE, 7, complain_overflow_bitfield,
|
|
bfd_elf_generic_reloc, "SPU_ADDR18",
|
|
FALSE, 0, 0x01ffff80, FALSE),
|
|
HOWTO (R_SPU_ADDR32, 0, 2, 32, FALSE, 0, complain_overflow_dont,
|
|
bfd_elf_generic_reloc, "SPU_ADDR32",
|
|
FALSE, 0, 0xffffffff, FALSE),
|
|
HOWTO (R_SPU_REL16, 2, 2, 16, TRUE, 7, complain_overflow_bitfield,
|
|
bfd_elf_generic_reloc, "SPU_REL16",
|
|
FALSE, 0, 0x007fff80, TRUE),
|
|
HOWTO (R_SPU_ADDR7, 0, 2, 7, FALSE, 14, complain_overflow_dont,
|
|
bfd_elf_generic_reloc, "SPU_ADDR7",
|
|
FALSE, 0, 0x001fc000, FALSE),
|
|
HOWTO (R_SPU_REL9, 2, 2, 9, TRUE, 0, complain_overflow_signed,
|
|
spu_elf_rel9, "SPU_REL9",
|
|
FALSE, 0, 0x0180007f, TRUE),
|
|
HOWTO (R_SPU_REL9I, 2, 2, 9, TRUE, 0, complain_overflow_signed,
|
|
spu_elf_rel9, "SPU_REL9I",
|
|
FALSE, 0, 0x0000c07f, TRUE),
|
|
HOWTO (R_SPU_ADDR10I, 0, 2, 10, FALSE, 14, complain_overflow_signed,
|
|
bfd_elf_generic_reloc, "SPU_ADDR10I",
|
|
FALSE, 0, 0x00ffc000, FALSE),
|
|
HOWTO (R_SPU_ADDR16I, 0, 2, 16, FALSE, 7, complain_overflow_signed,
|
|
bfd_elf_generic_reloc, "SPU_ADDR16I",
|
|
FALSE, 0, 0x007fff80, FALSE),
|
|
HOWTO (R_SPU_REL32, 0, 2, 32, TRUE, 0, complain_overflow_dont,
|
|
bfd_elf_generic_reloc, "SPU_REL32",
|
|
FALSE, 0, 0xffffffff, TRUE),
|
|
HOWTO (R_SPU_ADDR16X, 0, 2, 16, FALSE, 7, complain_overflow_bitfield,
|
|
bfd_elf_generic_reloc, "SPU_ADDR16X",
|
|
FALSE, 0, 0x007fff80, FALSE),
|
|
HOWTO (R_SPU_PPU32, 0, 2, 32, FALSE, 0, complain_overflow_dont,
|
|
bfd_elf_generic_reloc, "SPU_PPU32",
|
|
FALSE, 0, 0xffffffff, FALSE),
|
|
HOWTO (R_SPU_PPU64, 0, 4, 64, FALSE, 0, complain_overflow_dont,
|
|
bfd_elf_generic_reloc, "SPU_PPU64",
|
|
FALSE, 0, -1, FALSE),
|
|
};
|
|
|
|
static struct bfd_elf_special_section const spu_elf_special_sections[] = {
|
|
{ ".toe", 4, 0, SHT_NOBITS, SHF_ALLOC },
|
|
{ NULL, 0, 0, 0, 0 }
|
|
};
|
|
|
|
static enum elf_spu_reloc_type
|
|
spu_elf_bfd_to_reloc_type (bfd_reloc_code_real_type code)
|
|
{
|
|
switch (code)
|
|
{
|
|
default:
|
|
return R_SPU_NONE;
|
|
case BFD_RELOC_SPU_IMM10W:
|
|
return R_SPU_ADDR10;
|
|
case BFD_RELOC_SPU_IMM16W:
|
|
return R_SPU_ADDR16;
|
|
case BFD_RELOC_SPU_LO16:
|
|
return R_SPU_ADDR16_LO;
|
|
case BFD_RELOC_SPU_HI16:
|
|
return R_SPU_ADDR16_HI;
|
|
case BFD_RELOC_SPU_IMM18:
|
|
return R_SPU_ADDR18;
|
|
case BFD_RELOC_SPU_PCREL16:
|
|
return R_SPU_REL16;
|
|
case BFD_RELOC_SPU_IMM7:
|
|
return R_SPU_ADDR7;
|
|
case BFD_RELOC_SPU_IMM8:
|
|
return R_SPU_NONE;
|
|
case BFD_RELOC_SPU_PCREL9a:
|
|
return R_SPU_REL9;
|
|
case BFD_RELOC_SPU_PCREL9b:
|
|
return R_SPU_REL9I;
|
|
case BFD_RELOC_SPU_IMM10:
|
|
return R_SPU_ADDR10I;
|
|
case BFD_RELOC_SPU_IMM16:
|
|
return R_SPU_ADDR16I;
|
|
case BFD_RELOC_32:
|
|
return R_SPU_ADDR32;
|
|
case BFD_RELOC_32_PCREL:
|
|
return R_SPU_REL32;
|
|
case BFD_RELOC_SPU_PPU32:
|
|
return R_SPU_PPU32;
|
|
case BFD_RELOC_SPU_PPU64:
|
|
return R_SPU_PPU64;
|
|
}
|
|
}
|
|
|
|
static void
|
|
spu_elf_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED,
|
|
arelent *cache_ptr,
|
|
Elf_Internal_Rela *dst)
|
|
{
|
|
enum elf_spu_reloc_type r_type;
|
|
|
|
r_type = (enum elf_spu_reloc_type) ELF32_R_TYPE (dst->r_info);
|
|
BFD_ASSERT (r_type < R_SPU_max);
|
|
cache_ptr->howto = &elf_howto_table[(int) r_type];
|
|
}
|
|
|
|
static reloc_howto_type *
|
|
spu_elf_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
|
|
bfd_reloc_code_real_type code)
|
|
{
|
|
enum elf_spu_reloc_type r_type = spu_elf_bfd_to_reloc_type (code);
|
|
|
|
if (r_type == R_SPU_NONE)
|
|
return NULL;
|
|
|
|
return elf_howto_table + r_type;
|
|
}
|
|
|
|
static reloc_howto_type *
|
|
spu_elf_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
|
|
const char *r_name)
|
|
{
|
|
unsigned int i;
|
|
|
|
for (i = 0; i < sizeof (elf_howto_table) / sizeof (elf_howto_table[0]); i++)
|
|
if (elf_howto_table[i].name != NULL
|
|
&& strcasecmp (elf_howto_table[i].name, r_name) == 0)
|
|
return &elf_howto_table[i];
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/* Apply R_SPU_REL9 and R_SPU_REL9I relocs. */
|
|
|
|
static bfd_reloc_status_type
|
|
spu_elf_rel9 (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
|
|
void *data, asection *input_section,
|
|
bfd *output_bfd, char **error_message)
|
|
{
|
|
bfd_size_type octets;
|
|
bfd_vma val;
|
|
long insn;
|
|
|
|
/* If this is a relocatable link (output_bfd test tells us), just
|
|
call the generic function. Any adjustment will be done at final
|
|
link time. */
|
|
if (output_bfd != NULL)
|
|
return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
|
|
input_section, output_bfd, error_message);
|
|
|
|
if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
|
|
return bfd_reloc_outofrange;
|
|
octets = reloc_entry->address * bfd_octets_per_byte (abfd);
|
|
|
|
/* Get symbol value. */
|
|
val = 0;
|
|
if (!bfd_is_com_section (symbol->section))
|
|
val = symbol->value;
|
|
if (symbol->section->output_section)
|
|
val += symbol->section->output_section->vma;
|
|
|
|
val += reloc_entry->addend;
|
|
|
|
/* Make it pc-relative. */
|
|
val -= input_section->output_section->vma + input_section->output_offset;
|
|
|
|
val >>= 2;
|
|
if (val + 256 >= 512)
|
|
return bfd_reloc_overflow;
|
|
|
|
insn = bfd_get_32 (abfd, (bfd_byte *) data + octets);
|
|
|
|
/* Move two high bits of value to REL9I and REL9 position.
|
|
The mask will take care of selecting the right field. */
|
|
val = (val & 0x7f) | ((val & 0x180) << 7) | ((val & 0x180) << 16);
|
|
insn &= ~reloc_entry->howto->dst_mask;
|
|
insn |= val & reloc_entry->howto->dst_mask;
|
|
bfd_put_32 (abfd, insn, (bfd_byte *) data + octets);
|
|
return bfd_reloc_ok;
|
|
}
|
|
|
|
static bfd_boolean
|
|
spu_elf_new_section_hook (bfd *abfd, asection *sec)
|
|
{
|
|
if (!sec->used_by_bfd)
|
|
{
|
|
struct _spu_elf_section_data *sdata;
|
|
|
|
sdata = bfd_zalloc (abfd, sizeof (*sdata));
|
|
if (sdata == NULL)
|
|
return FALSE;
|
|
sec->used_by_bfd = sdata;
|
|
}
|
|
|
|
return _bfd_elf_new_section_hook (abfd, sec);
|
|
}
|
|
|
|
/* Specially mark defined symbols named _EAR_* with BSF_KEEP so that
|
|
strip --strip-unneeded will not remove them. */
|
|
|
|
static void
|
|
spu_elf_backend_symbol_processing (bfd *abfd ATTRIBUTE_UNUSED, asymbol *sym)
|
|
{
|
|
if (sym->name != NULL
|
|
&& sym->section != bfd_abs_section_ptr
|
|
&& strncmp (sym->name, "_EAR_", 5) == 0)
|
|
sym->flags |= BSF_KEEP;
|
|
}
|
|
|
|
/* SPU ELF linker hash table. */
|
|
|
|
struct spu_link_hash_table
|
|
{
|
|
struct elf_link_hash_table elf;
|
|
|
|
/* The stub hash table. */
|
|
struct bfd_hash_table stub_hash_table;
|
|
|
|
/* Shortcuts to overlay sections. */
|
|
asection *stub;
|
|
asection *ovtab;
|
|
|
|
struct elf_link_hash_entry *ovly_load;
|
|
|
|
/* An array of two output sections per overlay region, chosen such that
|
|
the first section vma is the overlay buffer vma (ie. the section has
|
|
the lowest vma in the group that occupy the region), and the second
|
|
section vma+size specifies the end of the region. We keep pointers
|
|
to sections like this because section vmas may change when laying
|
|
them out. */
|
|
asection **ovl_region;
|
|
|
|
/* Number of overlay buffers. */
|
|
unsigned int num_buf;
|
|
|
|
/* Total number of overlays. */
|
|
unsigned int num_overlays;
|
|
|
|
/* Set if we should emit symbols for stubs. */
|
|
unsigned int emit_stub_syms:1;
|
|
|
|
/* Set if we want stubs on calls out of overlay regions to
|
|
non-overlay regions. */
|
|
unsigned int non_overlay_stubs : 1;
|
|
|
|
/* Set on error. */
|
|
unsigned int stub_overflow : 1;
|
|
|
|
/* Set if stack size analysis should be done. */
|
|
unsigned int stack_analysis : 1;
|
|
|
|
/* Set if __stack_* syms will be emitted. */
|
|
unsigned int emit_stack_syms : 1;
|
|
};
|
|
|
|
#define spu_hash_table(p) \
|
|
((struct spu_link_hash_table *) ((p)->hash))
|
|
|
|
struct spu_stub_hash_entry
|
|
{
|
|
struct bfd_hash_entry root;
|
|
|
|
/* Destination of this stub. */
|
|
asection *target_section;
|
|
bfd_vma target_off;
|
|
|
|
/* Offset of entry in stub section. */
|
|
bfd_vma off;
|
|
|
|
/* Offset from this stub to stub that loads the overlay index. */
|
|
bfd_vma delta;
|
|
};
|
|
|
|
/* Create an entry in a spu stub hash table. */
|
|
|
|
static struct bfd_hash_entry *
|
|
stub_hash_newfunc (struct bfd_hash_entry *entry,
|
|
struct bfd_hash_table *table,
|
|
const char *string)
|
|
{
|
|
/* Allocate the structure if it has not already been allocated by a
|
|
subclass. */
|
|
if (entry == NULL)
|
|
{
|
|
entry = bfd_hash_allocate (table, sizeof (struct spu_stub_hash_entry));
|
|
if (entry == NULL)
|
|
return entry;
|
|
}
|
|
|
|
/* Call the allocation method of the superclass. */
|
|
entry = bfd_hash_newfunc (entry, table, string);
|
|
if (entry != NULL)
|
|
{
|
|
struct spu_stub_hash_entry *sh = (struct spu_stub_hash_entry *) entry;
|
|
|
|
sh->target_section = NULL;
|
|
sh->target_off = 0;
|
|
sh->off = 0;
|
|
sh->delta = 0;
|
|
}
|
|
|
|
return entry;
|
|
}
|
|
|
|
/* Create a spu ELF linker hash table. */
|
|
|
|
static struct bfd_link_hash_table *
|
|
spu_elf_link_hash_table_create (bfd *abfd)
|
|
{
|
|
struct spu_link_hash_table *htab;
|
|
|
|
htab = bfd_malloc (sizeof (*htab));
|
|
if (htab == NULL)
|
|
return NULL;
|
|
|
|
if (!_bfd_elf_link_hash_table_init (&htab->elf, abfd,
|
|
_bfd_elf_link_hash_newfunc,
|
|
sizeof (struct elf_link_hash_entry)))
|
|
{
|
|
free (htab);
|
|
return NULL;
|
|
}
|
|
|
|
/* Init the stub hash table too. */
|
|
if (!bfd_hash_table_init (&htab->stub_hash_table, stub_hash_newfunc,
|
|
sizeof (struct spu_stub_hash_entry)))
|
|
return NULL;
|
|
|
|
memset (&htab->stub, 0,
|
|
sizeof (*htab) - offsetof (struct spu_link_hash_table, stub));
|
|
|
|
return &htab->elf.root;
|
|
}
|
|
|
|
/* Free the derived linker hash table. */
|
|
|
|
static void
|
|
spu_elf_link_hash_table_free (struct bfd_link_hash_table *hash)
|
|
{
|
|
struct spu_link_hash_table *ret = (struct spu_link_hash_table *) hash;
|
|
|
|
bfd_hash_table_free (&ret->stub_hash_table);
|
|
_bfd_generic_link_hash_table_free (hash);
|
|
}
|
|
|
|
/* Find the symbol for the given R_SYMNDX in IBFD and set *HP and *SYMP
|
|
to (hash, NULL) for global symbols, and (NULL, sym) for locals. Set
|
|
*SYMSECP to the symbol's section. *LOCSYMSP caches local syms. */
|
|
|
|
static bfd_boolean
|
|
get_sym_h (struct elf_link_hash_entry **hp,
|
|
Elf_Internal_Sym **symp,
|
|
asection **symsecp,
|
|
Elf_Internal_Sym **locsymsp,
|
|
unsigned long r_symndx,
|
|
bfd *ibfd)
|
|
{
|
|
Elf_Internal_Shdr *symtab_hdr = &elf_tdata (ibfd)->symtab_hdr;
|
|
|
|
if (r_symndx >= symtab_hdr->sh_info)
|
|
{
|
|
struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (ibfd);
|
|
struct elf_link_hash_entry *h;
|
|
|
|
h = sym_hashes[r_symndx - symtab_hdr->sh_info];
|
|
while (h->root.type == bfd_link_hash_indirect
|
|
|| h->root.type == bfd_link_hash_warning)
|
|
h = (struct elf_link_hash_entry *) h->root.u.i.link;
|
|
|
|
if (hp != NULL)
|
|
*hp = h;
|
|
|
|
if (symp != NULL)
|
|
*symp = NULL;
|
|
|
|
if (symsecp != NULL)
|
|
{
|
|
asection *symsec = NULL;
|
|
if (h->root.type == bfd_link_hash_defined
|
|
|| h->root.type == bfd_link_hash_defweak)
|
|
symsec = h->root.u.def.section;
|
|
*symsecp = symsec;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
Elf_Internal_Sym *sym;
|
|
Elf_Internal_Sym *locsyms = *locsymsp;
|
|
|
|
if (locsyms == NULL)
|
|
{
|
|
locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
|
|
if (locsyms == NULL)
|
|
{
|
|
size_t symcount = symtab_hdr->sh_info;
|
|
|
|
/* If we are reading symbols into the contents, then
|
|
read the global syms too. This is done to cache
|
|
syms for later stack analysis. */
|
|
if ((unsigned char **) locsymsp == &symtab_hdr->contents)
|
|
symcount = symtab_hdr->sh_size / symtab_hdr->sh_entsize;
|
|
locsyms = bfd_elf_get_elf_syms (ibfd, symtab_hdr, symcount, 0,
|
|
NULL, NULL, NULL);
|
|
}
|
|
if (locsyms == NULL)
|
|
return FALSE;
|
|
*locsymsp = locsyms;
|
|
}
|
|
sym = locsyms + r_symndx;
|
|
|
|
if (hp != NULL)
|
|
*hp = NULL;
|
|
|
|
if (symp != NULL)
|
|
*symp = sym;
|
|
|
|
if (symsecp != NULL)
|
|
{
|
|
asection *symsec = NULL;
|
|
if ((sym->st_shndx != SHN_UNDEF
|
|
&& sym->st_shndx < SHN_LORESERVE)
|
|
|| sym->st_shndx > SHN_HIRESERVE)
|
|
symsec = bfd_section_from_elf_index (ibfd, sym->st_shndx);
|
|
*symsecp = symsec;
|
|
}
|
|
}
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
/* Build a name for an entry in the stub hash table. We can't use a
|
|
local symbol name because ld -r might generate duplicate local symbols. */
|
|
|
|
static char *
|
|
spu_stub_name (const asection *sym_sec,
|
|
const struct elf_link_hash_entry *h,
|
|
const Elf_Internal_Rela *rel)
|
|
{
|
|
char *stub_name;
|
|
bfd_size_type len;
|
|
|
|
if (h)
|
|
{
|
|
len = strlen (h->root.root.string) + 1 + 8 + 1;
|
|
stub_name = bfd_malloc (len);
|
|
if (stub_name == NULL)
|
|
return stub_name;
|
|
|
|
sprintf (stub_name, "%s+%x",
|
|
h->root.root.string,
|
|
(int) rel->r_addend & 0xffffffff);
|
|
len -= 8;
|
|
}
|
|
else
|
|
{
|
|
len = 8 + 1 + 8 + 1 + 8 + 1;
|
|
stub_name = bfd_malloc (len);
|
|
if (stub_name == NULL)
|
|
return stub_name;
|
|
|
|
sprintf (stub_name, "%x:%x+%x",
|
|
sym_sec->id & 0xffffffff,
|
|
(int) ELF32_R_SYM (rel->r_info) & 0xffffffff,
|
|
(int) rel->r_addend & 0xffffffff);
|
|
len = strlen (stub_name);
|
|
}
|
|
|
|
if (stub_name[len - 2] == '+'
|
|
&& stub_name[len - 1] == '0'
|
|
&& stub_name[len] == 0)
|
|
stub_name[len - 2] = 0;
|
|
|
|
return stub_name;
|
|
}
|
|
|
|
/* Create the note section if not already present. This is done early so
|
|
that the linker maps the sections to the right place in the output. */
|
|
|
|
bfd_boolean
|
|
spu_elf_create_sections (bfd *output_bfd,
|
|
struct bfd_link_info *info,
|
|
int stack_analysis,
|
|
int emit_stack_syms)
|
|
{
|
|
bfd *ibfd;
|
|
struct spu_link_hash_table *htab = spu_hash_table (info);
|
|
|
|
/* Stash some options away where we can get at them later. */
|
|
htab->stack_analysis = stack_analysis;
|
|
htab->emit_stack_syms = emit_stack_syms;
|
|
|
|
for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->next)
|
|
if (bfd_get_section_by_name (ibfd, SPU_PTNOTE_SPUNAME) != NULL)
|
|
break;
|
|
|
|
if (ibfd == NULL)
|
|
{
|
|
/* Make SPU_PTNOTE_SPUNAME section. */
|
|
asection *s;
|
|
size_t name_len;
|
|
size_t size;
|
|
bfd_byte *data;
|
|
flagword flags;
|
|
|
|
ibfd = info->input_bfds;
|
|
flags = SEC_LOAD | SEC_READONLY | SEC_HAS_CONTENTS | SEC_IN_MEMORY;
|
|
s = bfd_make_section_anyway_with_flags (ibfd, SPU_PTNOTE_SPUNAME, flags);
|
|
if (s == NULL
|
|
|| !bfd_set_section_alignment (ibfd, s, 4))
|
|
return FALSE;
|
|
|
|
name_len = strlen (bfd_get_filename (output_bfd)) + 1;
|
|
size = 12 + ((sizeof (SPU_PLUGIN_NAME) + 3) & -4);
|
|
size += (name_len + 3) & -4;
|
|
|
|
if (!bfd_set_section_size (ibfd, s, size))
|
|
return FALSE;
|
|
|
|
data = bfd_zalloc (ibfd, size);
|
|
if (data == NULL)
|
|
return FALSE;
|
|
|
|
bfd_put_32 (ibfd, sizeof (SPU_PLUGIN_NAME), data + 0);
|
|
bfd_put_32 (ibfd, name_len, data + 4);
|
|
bfd_put_32 (ibfd, 1, data + 8);
|
|
memcpy (data + 12, SPU_PLUGIN_NAME, sizeof (SPU_PLUGIN_NAME));
|
|
memcpy (data + 12 + ((sizeof (SPU_PLUGIN_NAME) + 3) & -4),
|
|
bfd_get_filename (output_bfd), name_len);
|
|
s->contents = data;
|
|
}
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
/* qsort predicate to sort sections by vma. */
|
|
|
|
static int
|
|
sort_sections (const void *a, const void *b)
|
|
{
|
|
const asection *const *s1 = a;
|
|
const asection *const *s2 = b;
|
|
bfd_signed_vma delta = (*s1)->vma - (*s2)->vma;
|
|
|
|
if (delta != 0)
|
|
return delta < 0 ? -1 : 1;
|
|
|
|
return (*s1)->index - (*s2)->index;
|
|
}
|
|
|
|
/* Identify overlays in the output bfd, and number them. */
|
|
|
|
bfd_boolean
|
|
spu_elf_find_overlays (bfd *output_bfd, struct bfd_link_info *info)
|
|
{
|
|
struct spu_link_hash_table *htab = spu_hash_table (info);
|
|
asection **alloc_sec;
|
|
unsigned int i, n, ovl_index, num_buf;
|
|
asection *s;
|
|
bfd_vma ovl_end;
|
|
|
|
if (output_bfd->section_count < 2)
|
|
return FALSE;
|
|
|
|
alloc_sec = bfd_malloc (output_bfd->section_count * sizeof (*alloc_sec));
|
|
if (alloc_sec == NULL)
|
|
return FALSE;
|
|
|
|
/* Pick out all the alloced sections. */
|
|
for (n = 0, s = output_bfd->sections; s != NULL; s = s->next)
|
|
if ((s->flags & SEC_ALLOC) != 0
|
|
&& (s->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) != SEC_THREAD_LOCAL
|
|
&& s->size != 0)
|
|
alloc_sec[n++] = s;
|
|
|
|
if (n == 0)
|
|
{
|
|
free (alloc_sec);
|
|
return FALSE;
|
|
}
|
|
|
|
/* Sort them by vma. */
|
|
qsort (alloc_sec, n, sizeof (*alloc_sec), sort_sections);
|
|
|
|
/* Look for overlapping vmas. Any with overlap must be overlays.
|
|
Count them. Also count the number of overlay regions and for
|
|
each region save a section from that region with the lowest vma
|
|
and another section with the highest end vma. */
|
|
ovl_end = alloc_sec[0]->vma + alloc_sec[0]->size;
|
|
for (ovl_index = 0, num_buf = 0, i = 1; i < n; i++)
|
|
{
|
|
s = alloc_sec[i];
|
|
if (s->vma < ovl_end)
|
|
{
|
|
asection *s0 = alloc_sec[i - 1];
|
|
|
|
if (spu_elf_section_data (s0)->ovl_index == 0)
|
|
{
|
|
spu_elf_section_data (s0)->ovl_index = ++ovl_index;
|
|
alloc_sec[num_buf * 2] = s0;
|
|
alloc_sec[num_buf * 2 + 1] = s0;
|
|
num_buf++;
|
|
}
|
|
spu_elf_section_data (s)->ovl_index = ++ovl_index;
|
|
if (ovl_end < s->vma + s->size)
|
|
{
|
|
ovl_end = s->vma + s->size;
|
|
alloc_sec[num_buf * 2 - 1] = s;
|
|
}
|
|
}
|
|
else
|
|
ovl_end = s->vma + s->size;
|
|
}
|
|
|
|
htab->num_overlays = ovl_index;
|
|
htab->num_buf = num_buf;
|
|
if (ovl_index == 0)
|
|
{
|
|
free (alloc_sec);
|
|
return FALSE;
|
|
}
|
|
|
|
alloc_sec = bfd_realloc (alloc_sec, num_buf * 2 * sizeof (*alloc_sec));
|
|
if (alloc_sec == NULL)
|
|
return FALSE;
|
|
|
|
htab->ovl_region = alloc_sec;
|
|
return TRUE;
|
|
}
|
|
|
|
/* One of these per stub. */
|
|
#define SIZEOF_STUB1 8
|
|
#define ILA_79 0x4200004f /* ila $79,function_address */
|
|
#define BR 0x32000000 /* br stub2 */
|
|
|
|
/* One of these per overlay. */
|
|
#define SIZEOF_STUB2 8
|
|
#define ILA_78 0x4200004e /* ila $78,overlay_number */
|
|
/* br __ovly_load */
|
|
#define NOP 0x40200000
|
|
|
|
/* Return true for all relative and absolute branch instructions.
|
|
bra 00110000 0..
|
|
brasl 00110001 0..
|
|
br 00110010 0..
|
|
brsl 00110011 0..
|
|
brz 00100000 0..
|
|
brnz 00100001 0..
|
|
brhz 00100010 0..
|
|
brhnz 00100011 0.. */
|
|
|
|
static bfd_boolean
|
|
is_branch (const unsigned char *insn)
|
|
{
|
|
return (insn[0] & 0xec) == 0x20 && (insn[1] & 0x80) == 0;
|
|
}
|
|
|
|
/* Return true for branch hint instructions.
|
|
hbra 0001000..
|
|
hbrr 0001001.. */
|
|
|
|
static bfd_boolean
|
|
is_hint (const unsigned char *insn)
|
|
{
|
|
return (insn[0] & 0xfc) == 0x10;
|
|
}
|
|
|
|
/* Return TRUE if this reloc symbol should possibly go via an overlay stub. */
|
|
|
|
static bfd_boolean
|
|
needs_ovl_stub (const char *sym_name,
|
|
asection *sym_sec,
|
|
asection *input_section,
|
|
struct spu_link_hash_table *htab,
|
|
bfd_boolean is_branch)
|
|
{
|
|
if (htab->num_overlays == 0)
|
|
return FALSE;
|
|
|
|
if (sym_sec == NULL
|
|
|| sym_sec->output_section == NULL
|
|
|| spu_elf_section_data (sym_sec->output_section) == NULL)
|
|
return FALSE;
|
|
|
|
/* setjmp always goes via an overlay stub, because then the return
|
|
and hence the longjmp goes via __ovly_return. That magically
|
|
makes setjmp/longjmp between overlays work. */
|
|
if (strncmp (sym_name, "setjmp", 6) == 0
|
|
&& (sym_name[6] == '\0' || sym_name[6] == '@'))
|
|
return TRUE;
|
|
|
|
/* Usually, symbols in non-overlay sections don't need stubs. */
|
|
if (spu_elf_section_data (sym_sec->output_section)->ovl_index == 0
|
|
&& !htab->non_overlay_stubs)
|
|
return FALSE;
|
|
|
|
/* A reference from some other section to a symbol in an overlay
|
|
section needs a stub. */
|
|
if (spu_elf_section_data (sym_sec->output_section)->ovl_index
|
|
!= spu_elf_section_data (input_section->output_section)->ovl_index)
|
|
return TRUE;
|
|
|
|
/* If this insn isn't a branch then we are possibly taking the
|
|
address of a function and passing it out somehow. */
|
|
return !is_branch;
|
|
}
|
|
|
|
struct stubarr {
|
|
struct bfd_hash_table *stub_hash_table;
|
|
struct spu_stub_hash_entry **sh;
|
|
unsigned int count;
|
|
int err;
|
|
};
|
|
|
|
/* Called via elf_link_hash_traverse to allocate stubs for any _SPUEAR_
|
|
symbols. */
|
|
|
|
static bfd_boolean
|
|
allocate_spuear_stubs (struct elf_link_hash_entry *h, void *inf)
|
|
{
|
|
/* Symbols starting with _SPUEAR_ need a stub because they may be
|
|
invoked by the PPU. */
|
|
if ((h->root.type == bfd_link_hash_defined
|
|
|| h->root.type == bfd_link_hash_defweak)
|
|
&& h->def_regular
|
|
&& strncmp (h->root.root.string, "_SPUEAR_", 8) == 0)
|
|
{
|
|
struct stubarr *stubs = inf;
|
|
static Elf_Internal_Rela zero_rel;
|
|
char *stub_name = spu_stub_name (h->root.u.def.section, h, &zero_rel);
|
|
struct spu_stub_hash_entry *sh;
|
|
|
|
if (stub_name == NULL)
|
|
{
|
|
stubs->err = 1;
|
|
return FALSE;
|
|
}
|
|
|
|
sh = (struct spu_stub_hash_entry *)
|
|
bfd_hash_lookup (stubs->stub_hash_table, stub_name, TRUE, FALSE);
|
|
if (sh == NULL)
|
|
{
|
|
free (stub_name);
|
|
return FALSE;
|
|
}
|
|
|
|
/* If this entry isn't new, we already have a stub. */
|
|
if (sh->target_section != NULL)
|
|
{
|
|
free (stub_name);
|
|
return TRUE;
|
|
}
|
|
|
|
sh->target_section = h->root.u.def.section;
|
|
sh->target_off = h->root.u.def.value;
|
|
stubs->count += 1;
|
|
}
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
/* Called via bfd_hash_traverse to set up pointers to all symbols
|
|
in the stub hash table. */
|
|
|
|
static bfd_boolean
|
|
populate_stubs (struct bfd_hash_entry *bh, void *inf)
|
|
{
|
|
struct stubarr *stubs = inf;
|
|
|
|
stubs->sh[--stubs->count] = (struct spu_stub_hash_entry *) bh;
|
|
return TRUE;
|
|
}
|
|
|
|
/* qsort predicate to sort stubs by overlay number. */
|
|
|
|
static int
|
|
sort_stubs (const void *a, const void *b)
|
|
{
|
|
const struct spu_stub_hash_entry *const *sa = a;
|
|
const struct spu_stub_hash_entry *const *sb = b;
|
|
int i;
|
|
bfd_signed_vma d;
|
|
|
|
i = spu_elf_section_data ((*sa)->target_section->output_section)->ovl_index;
|
|
i -= spu_elf_section_data ((*sb)->target_section->output_section)->ovl_index;
|
|
if (i != 0)
|
|
return i;
|
|
|
|
d = ((*sa)->target_section->output_section->vma
|
|
+ (*sa)->target_section->output_offset
|
|
+ (*sa)->target_off
|
|
- (*sb)->target_section->output_section->vma
|
|
- (*sb)->target_section->output_offset
|
|
- (*sb)->target_off);
|
|
if (d != 0)
|
|
return d < 0 ? -1 : 1;
|
|
|
|
/* Two functions at the same address. Aliases perhaps. */
|
|
i = strcmp ((*sb)->root.string, (*sa)->root.string);
|
|
BFD_ASSERT (i != 0);
|
|
return i;
|
|
}
|
|
|
|
/* Allocate space for overlay call and return stubs. */
|
|
|
|
bfd_boolean
|
|
spu_elf_size_stubs (bfd *output_bfd,
|
|
struct bfd_link_info *info,
|
|
int non_overlay_stubs,
|
|
int stack_analysis,
|
|
asection **stub,
|
|
asection **ovtab,
|
|
asection **toe)
|
|
{
|
|
struct spu_link_hash_table *htab = spu_hash_table (info);
|
|
bfd *ibfd;
|
|
struct stubarr stubs;
|
|
unsigned i, group;
|
|
flagword flags;
|
|
|
|
htab->non_overlay_stubs = non_overlay_stubs;
|
|
stubs.stub_hash_table = &htab->stub_hash_table;
|
|
stubs.count = 0;
|
|
stubs.err = 0;
|
|
for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
|
|
{
|
|
extern const bfd_target bfd_elf32_spu_vec;
|
|
Elf_Internal_Shdr *symtab_hdr;
|
|
asection *section;
|
|
Elf_Internal_Sym *local_syms = NULL;
|
|
void *psyms;
|
|
|
|
if (ibfd->xvec != &bfd_elf32_spu_vec)
|
|
continue;
|
|
|
|
/* We'll need the symbol table in a second. */
|
|
symtab_hdr = &elf_tdata (ibfd)->symtab_hdr;
|
|
if (symtab_hdr->sh_info == 0)
|
|
continue;
|
|
|
|
/* Arrange to read and keep global syms for later stack analysis. */
|
|
psyms = &local_syms;
|
|
if (stack_analysis)
|
|
psyms = &symtab_hdr->contents;
|
|
|
|
/* Walk over each section attached to the input bfd. */
|
|
for (section = ibfd->sections; section != NULL; section = section->next)
|
|
{
|
|
Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
|
|
|
|
/* If there aren't any relocs, then there's nothing more to do. */
|
|
if ((section->flags & SEC_RELOC) == 0
|
|
|| (section->flags & SEC_ALLOC) == 0
|
|
|| (section->flags & SEC_LOAD) == 0
|
|
|| section->reloc_count == 0)
|
|
continue;
|
|
|
|
/* If this section is a link-once section that will be
|
|
discarded, then don't create any stubs. */
|
|
if (section->output_section == NULL
|
|
|| section->output_section->owner != output_bfd)
|
|
continue;
|
|
|
|
/* Get the relocs. */
|
|
internal_relocs
|
|
= _bfd_elf_link_read_relocs (ibfd, section, NULL, NULL,
|
|
info->keep_memory);
|
|
if (internal_relocs == NULL)
|
|
goto error_ret_free_local;
|
|
|
|
/* Now examine each relocation. */
|
|
irela = internal_relocs;
|
|
irelaend = irela + section->reloc_count;
|
|
for (; irela < irelaend; irela++)
|
|
{
|
|
enum elf_spu_reloc_type r_type;
|
|
unsigned int r_indx;
|
|
asection *sym_sec;
|
|
Elf_Internal_Sym *sym;
|
|
struct elf_link_hash_entry *h;
|
|
const char *sym_name;
|
|
char *stub_name;
|
|
struct spu_stub_hash_entry *sh;
|
|
unsigned int sym_type;
|
|
enum _insn_type { non_branch, branch, call } insn_type;
|
|
|
|
r_type = ELF32_R_TYPE (irela->r_info);
|
|
r_indx = ELF32_R_SYM (irela->r_info);
|
|
|
|
if (r_type >= R_SPU_max)
|
|
{
|
|
bfd_set_error (bfd_error_bad_value);
|
|
goto error_ret_free_internal;
|
|
}
|
|
|
|
/* Determine the reloc target section. */
|
|
if (!get_sym_h (&h, &sym, &sym_sec, psyms, r_indx, ibfd))
|
|
goto error_ret_free_internal;
|
|
|
|
if (sym_sec == NULL
|
|
|| sym_sec->output_section == NULL
|
|
|| sym_sec->output_section->owner != output_bfd)
|
|
continue;
|
|
|
|
/* Ensure no stubs for user supplied overlay manager syms. */
|
|
if (h != NULL
|
|
&& (strcmp (h->root.root.string, "__ovly_load") == 0
|
|
|| strcmp (h->root.root.string, "__ovly_return") == 0))
|
|
continue;
|
|
|
|
insn_type = non_branch;
|
|
if (r_type == R_SPU_REL16
|
|
|| r_type == R_SPU_ADDR16)
|
|
{
|
|
unsigned char insn[4];
|
|
|
|
if (!bfd_get_section_contents (ibfd, section, insn,
|
|
irela->r_offset, 4))
|
|
goto error_ret_free_internal;
|
|
|
|
if (is_branch (insn) || is_hint (insn))
|
|
{
|
|
insn_type = branch;
|
|
if ((insn[0] & 0xfd) == 0x31)
|
|
insn_type = call;
|
|
}
|
|
}
|
|
|
|
/* We are only interested in function symbols. */
|
|
if (h != NULL)
|
|
{
|
|
sym_type = h->type;
|
|
sym_name = h->root.root.string;
|
|
}
|
|
else
|
|
{
|
|
sym_type = ELF_ST_TYPE (sym->st_info);
|
|
sym_name = bfd_elf_sym_name (sym_sec->owner,
|
|
symtab_hdr,
|
|
sym,
|
|
sym_sec);
|
|
}
|
|
if (sym_type != STT_FUNC)
|
|
{
|
|
/* It's common for people to write assembly and forget
|
|
to give function symbols the right type. Handle
|
|
calls to such symbols, but warn so that (hopefully)
|
|
people will fix their code. We need the symbol
|
|
type to be correct to distinguish function pointer
|
|
initialisation from other pointer initialisation. */
|
|
if (insn_type == call)
|
|
(*_bfd_error_handler) (_("warning: call to non-function"
|
|
" symbol %s defined in %B"),
|
|
sym_sec->owner, sym_name);
|
|
else
|
|
continue;
|
|
}
|
|
|
|
if (!needs_ovl_stub (sym_name, sym_sec, section, htab,
|
|
insn_type != non_branch))
|
|
continue;
|
|
|
|
stub_name = spu_stub_name (sym_sec, h, irela);
|
|
if (stub_name == NULL)
|
|
goto error_ret_free_internal;
|
|
|
|
sh = (struct spu_stub_hash_entry *)
|
|
bfd_hash_lookup (&htab->stub_hash_table, stub_name,
|
|
TRUE, FALSE);
|
|
if (sh == NULL)
|
|
{
|
|
free (stub_name);
|
|
error_ret_free_internal:
|
|
if (elf_section_data (section)->relocs != internal_relocs)
|
|
free (internal_relocs);
|
|
error_ret_free_local:
|
|
if (local_syms != NULL
|
|
&& (symtab_hdr->contents
|
|
!= (unsigned char *) local_syms))
|
|
free (local_syms);
|
|
return FALSE;
|
|
}
|
|
|
|
/* If this entry isn't new, we already have a stub. */
|
|
if (sh->target_section != NULL)
|
|
{
|
|
free (stub_name);
|
|
continue;
|
|
}
|
|
|
|
sh->target_section = sym_sec;
|
|
if (h != NULL)
|
|
sh->target_off = h->root.u.def.value;
|
|
else
|
|
sh->target_off = sym->st_value;
|
|
sh->target_off += irela->r_addend;
|
|
|
|
stubs.count += 1;
|
|
}
|
|
|
|
/* We're done with the internal relocs, free them. */
|
|
if (elf_section_data (section)->relocs != internal_relocs)
|
|
free (internal_relocs);
|
|
}
|
|
|
|
if (local_syms != NULL
|
|
&& symtab_hdr->contents != (unsigned char *) local_syms)
|
|
{
|
|
if (!info->keep_memory)
|
|
free (local_syms);
|
|
else
|
|
symtab_hdr->contents = (unsigned char *) local_syms;
|
|
}
|
|
}
|
|
|
|
elf_link_hash_traverse (&htab->elf, allocate_spuear_stubs, &stubs);
|
|
if (stubs.err)
|
|
return FALSE;
|
|
|
|
*stub = NULL;
|
|
if (stubs.count == 0)
|
|
return TRUE;
|
|
|
|
ibfd = info->input_bfds;
|
|
flags = (SEC_ALLOC | SEC_LOAD | SEC_CODE | SEC_READONLY
|
|
| SEC_HAS_CONTENTS | SEC_IN_MEMORY);
|
|
htab->stub = bfd_make_section_anyway_with_flags (ibfd, ".stub", flags);
|
|
*stub = htab->stub;
|
|
if (htab->stub == NULL
|
|
|| !bfd_set_section_alignment (ibfd, htab->stub, 2))
|
|
return FALSE;
|
|
|
|
flags = (SEC_ALLOC | SEC_LOAD
|
|
| SEC_HAS_CONTENTS | SEC_IN_MEMORY);
|
|
htab->ovtab = bfd_make_section_anyway_with_flags (ibfd, ".ovtab", flags);
|
|
*ovtab = htab->ovtab;
|
|
if (htab->ovtab == NULL
|
|
|| !bfd_set_section_alignment (ibfd, htab->stub, 4))
|
|
return FALSE;
|
|
|
|
*toe = bfd_make_section_anyway_with_flags (ibfd, ".toe", SEC_ALLOC);
|
|
if (*toe == NULL
|
|
|| !bfd_set_section_alignment (ibfd, *toe, 4))
|
|
return FALSE;
|
|
(*toe)->size = 16;
|
|
|
|
/* Retrieve all the stubs and sort. */
|
|
stubs.sh = bfd_malloc (stubs.count * sizeof (*stubs.sh));
|
|
if (stubs.sh == NULL)
|
|
return FALSE;
|
|
i = stubs.count;
|
|
bfd_hash_traverse (&htab->stub_hash_table, populate_stubs, &stubs);
|
|
BFD_ASSERT (stubs.count == 0);
|
|
|
|
stubs.count = i;
|
|
qsort (stubs.sh, stubs.count, sizeof (*stubs.sh), sort_stubs);
|
|
|
|
/* Now that the stubs are sorted, place them in the stub section.
|
|
Stubs are grouped per overlay
|
|
. ila $79,func1
|
|
. br 1f
|
|
. ila $79,func2
|
|
. br 1f
|
|
.
|
|
.
|
|
. ila $79,funcn
|
|
. nop
|
|
. 1:
|
|
. ila $78,ovl_index
|
|
. br __ovly_load */
|
|
|
|
group = 0;
|
|
for (i = 0; i < stubs.count; i++)
|
|
{
|
|
if (spu_elf_section_data (stubs.sh[group]->target_section
|
|
->output_section)->ovl_index
|
|
!= spu_elf_section_data (stubs.sh[i]->target_section
|
|
->output_section)->ovl_index)
|
|
{
|
|
htab->stub->size += SIZEOF_STUB2;
|
|
for (; group != i; group++)
|
|
stubs.sh[group]->delta
|
|
= stubs.sh[i - 1]->off - stubs.sh[group]->off;
|
|
}
|
|
if (group == i
|
|
|| ((stubs.sh[i - 1]->target_section->output_section->vma
|
|
+ stubs.sh[i - 1]->target_section->output_offset
|
|
+ stubs.sh[i - 1]->target_off)
|
|
!= (stubs.sh[i]->target_section->output_section->vma
|
|
+ stubs.sh[i]->target_section->output_offset
|
|
+ stubs.sh[i]->target_off)))
|
|
{
|
|
stubs.sh[i]->off = htab->stub->size;
|
|
htab->stub->size += SIZEOF_STUB1;
|
|
}
|
|
else
|
|
stubs.sh[i]->off = stubs.sh[i - 1]->off;
|
|
}
|
|
if (group != i)
|
|
htab->stub->size += SIZEOF_STUB2;
|
|
for (; group != i; group++)
|
|
stubs.sh[group]->delta = stubs.sh[i - 1]->off - stubs.sh[group]->off;
|
|
|
|
/* htab->ovtab consists of two arrays.
|
|
. struct {
|
|
. u32 vma;
|
|
. u32 size;
|
|
. u32 file_off;
|
|
. u32 buf;
|
|
. } _ovly_table[];
|
|
.
|
|
. struct {
|
|
. u32 mapped;
|
|
. } _ovly_buf_table[]; */
|
|
|
|
htab->ovtab->alignment_power = 4;
|
|
htab->ovtab->size = htab->num_overlays * 16 + htab->num_buf * 4;
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
/* Functions to handle embedded spu_ovl.o object. */
|
|
|
|
static void *
|
|
ovl_mgr_open (struct bfd *nbfd ATTRIBUTE_UNUSED, void *stream)
|
|
{
|
|
return stream;
|
|
}
|
|
|
|
static file_ptr
|
|
ovl_mgr_pread (struct bfd *abfd ATTRIBUTE_UNUSED,
|
|
void *stream,
|
|
void *buf,
|
|
file_ptr nbytes,
|
|
file_ptr offset)
|
|
{
|
|
struct _ovl_stream *os;
|
|
size_t count;
|
|
size_t max;
|
|
|
|
os = (struct _ovl_stream *) stream;
|
|
max = (const char *) os->end - (const char *) os->start;
|
|
|
|
if ((ufile_ptr) offset >= max)
|
|
return 0;
|
|
|
|
count = nbytes;
|
|
if (count > max - offset)
|
|
count = max - offset;
|
|
|
|
memcpy (buf, (const char *) os->start + offset, count);
|
|
return count;
|
|
}
|
|
|
|
bfd_boolean
|
|
spu_elf_open_builtin_lib (bfd **ovl_bfd, const struct _ovl_stream *stream)
|
|
{
|
|
*ovl_bfd = bfd_openr_iovec ("builtin ovl_mgr",
|
|
"elf32-spu",
|
|
ovl_mgr_open,
|
|
(void *) stream,
|
|
ovl_mgr_pread,
|
|
NULL,
|
|
NULL);
|
|
return *ovl_bfd != NULL;
|
|
}
|
|
|
|
/* Fill in the ila and br for a stub. On the last stub for a group,
|
|
write the stub that sets the overlay number too. */
|
|
|
|
static bfd_boolean
|
|
write_one_stub (struct bfd_hash_entry *bh, void *inf)
|
|
{
|
|
struct spu_stub_hash_entry *ent = (struct spu_stub_hash_entry *) bh;
|
|
struct spu_link_hash_table *htab = inf;
|
|
asection *sec = htab->stub;
|
|
asection *s = ent->target_section;
|
|
unsigned int ovl;
|
|
bfd_vma val;
|
|
|
|
val = ent->target_off + s->output_offset + s->output_section->vma;
|
|
bfd_put_32 (sec->owner, ILA_79 + ((val << 7) & 0x01ffff80),
|
|
sec->contents + ent->off);
|
|
val = ent->delta + 4;
|
|
bfd_put_32 (sec->owner, BR + ((val << 5) & 0x007fff80),
|
|
sec->contents + ent->off + 4);
|
|
|
|
/* If this is the last stub of this group, write stub2. */
|
|
if (ent->delta == 0)
|
|
{
|
|
bfd_put_32 (sec->owner, NOP,
|
|
sec->contents + ent->off + 4);
|
|
|
|
ovl = spu_elf_section_data (s->output_section)->ovl_index;
|
|
bfd_put_32 (sec->owner, ILA_78 + ((ovl << 7) & 0x01ffff80),
|
|
sec->contents + ent->off + 8);
|
|
|
|
val = (htab->ovly_load->root.u.def.section->output_section->vma
|
|
+ htab->ovly_load->root.u.def.section->output_offset
|
|
+ htab->ovly_load->root.u.def.value
|
|
- (sec->output_section->vma
|
|
+ sec->output_offset
|
|
+ ent->off + 12));
|
|
|
|
if (val + 0x20000 >= 0x40000)
|
|
htab->stub_overflow = TRUE;
|
|
|
|
bfd_put_32 (sec->owner, BR + ((val << 5) & 0x007fff80),
|
|
sec->contents + ent->off + 12);
|
|
}
|
|
|
|
if (htab->emit_stub_syms)
|
|
{
|
|
struct elf_link_hash_entry *h;
|
|
size_t len1, len2;
|
|
char *name;
|
|
|
|
len1 = sizeof ("00000000.ovl_call.") - 1;
|
|
len2 = strlen (ent->root.string);
|
|
name = bfd_malloc (len1 + len2 + 1);
|
|
if (name == NULL)
|
|
return FALSE;
|
|
memcpy (name, "00000000.ovl_call.", len1);
|
|
memcpy (name + len1, ent->root.string, len2 + 1);
|
|
h = elf_link_hash_lookup (&htab->elf, name, TRUE, TRUE, FALSE);
|
|
free (name);
|
|
if (h == NULL)
|
|
return FALSE;
|
|
if (h->root.type == bfd_link_hash_new)
|
|
{
|
|
h->root.type = bfd_link_hash_defined;
|
|
h->root.u.def.section = sec;
|
|
h->root.u.def.value = ent->off;
|
|
h->size = (ent->delta == 0
|
|
? SIZEOF_STUB1 + SIZEOF_STUB2 : SIZEOF_STUB1);
|
|
h->type = STT_FUNC;
|
|
h->ref_regular = 1;
|
|
h->def_regular = 1;
|
|
h->ref_regular_nonweak = 1;
|
|
h->forced_local = 1;
|
|
h->non_elf = 0;
|
|
}
|
|
}
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
/* Define an STT_OBJECT symbol. */
|
|
|
|
static struct elf_link_hash_entry *
|
|
define_ovtab_symbol (struct spu_link_hash_table *htab, const char *name)
|
|
{
|
|
struct elf_link_hash_entry *h;
|
|
|
|
h = elf_link_hash_lookup (&htab->elf, name, TRUE, FALSE, FALSE);
|
|
if (h == NULL)
|
|
return NULL;
|
|
|
|
if (h->root.type != bfd_link_hash_defined
|
|
|| !h->def_regular)
|
|
{
|
|
h->root.type = bfd_link_hash_defined;
|
|
h->root.u.def.section = htab->ovtab;
|
|
h->type = STT_OBJECT;
|
|
h->ref_regular = 1;
|
|
h->def_regular = 1;
|
|
h->ref_regular_nonweak = 1;
|
|
h->non_elf = 0;
|
|
}
|
|
else
|
|
{
|
|
(*_bfd_error_handler) (_("%B is not allowed to define %s"),
|
|
h->root.u.def.section->owner,
|
|
h->root.root.string);
|
|
bfd_set_error (bfd_error_bad_value);
|
|
return NULL;
|
|
}
|
|
|
|
return h;
|
|
}
|
|
|
|
/* Fill in all stubs and the overlay tables. */
|
|
|
|
bfd_boolean
|
|
spu_elf_build_stubs (struct bfd_link_info *info, int emit_syms, asection *toe)
|
|
{
|
|
struct spu_link_hash_table *htab = spu_hash_table (info);
|
|
struct elf_link_hash_entry *h;
|
|
bfd_byte *p;
|
|
asection *s;
|
|
bfd *obfd;
|
|
unsigned int i;
|
|
|
|
htab->emit_stub_syms = emit_syms;
|
|
htab->stub->contents = bfd_zalloc (htab->stub->owner, htab->stub->size);
|
|
if (htab->stub->contents == NULL)
|
|
return FALSE;
|
|
|
|
h = elf_link_hash_lookup (&htab->elf, "__ovly_load", FALSE, FALSE, FALSE);
|
|
htab->ovly_load = h;
|
|
BFD_ASSERT (h != NULL
|
|
&& (h->root.type == bfd_link_hash_defined
|
|
|| h->root.type == bfd_link_hash_defweak)
|
|
&& h->def_regular);
|
|
|
|
s = h->root.u.def.section->output_section;
|
|
if (spu_elf_section_data (s)->ovl_index)
|
|
{
|
|
(*_bfd_error_handler) (_("%s in overlay section"),
|
|
h->root.u.def.section->owner);
|
|
bfd_set_error (bfd_error_bad_value);
|
|
return FALSE;
|
|
}
|
|
|
|
/* Write out all the stubs. */
|
|
bfd_hash_traverse (&htab->stub_hash_table, write_one_stub, htab);
|
|
|
|
if (htab->stub_overflow)
|
|
{
|
|
(*_bfd_error_handler) (_("overlay stub relocation overflow"));
|
|
bfd_set_error (bfd_error_bad_value);
|
|
return FALSE;
|
|
}
|
|
|
|
htab->ovtab->contents = bfd_zalloc (htab->ovtab->owner, htab->ovtab->size);
|
|
if (htab->ovtab->contents == NULL)
|
|
return FALSE;
|
|
|
|
/* Write out _ovly_table. */
|
|
p = htab->ovtab->contents;
|
|
obfd = htab->ovtab->output_section->owner;
|
|
for (s = obfd->sections; s != NULL; s = s->next)
|
|
{
|
|
unsigned int ovl_index = spu_elf_section_data (s)->ovl_index;
|
|
|
|
if (ovl_index != 0)
|
|
{
|
|
unsigned int lo, hi, mid;
|
|
unsigned long off = (ovl_index - 1) * 16;
|
|
bfd_put_32 (htab->ovtab->owner, s->vma, p + off);
|
|
bfd_put_32 (htab->ovtab->owner, (s->size + 15) & -16, p + off + 4);
|
|
/* file_off written later in spu_elf_modify_program_headers. */
|
|
|
|
lo = 0;
|
|
hi = htab->num_buf;
|
|
while (lo < hi)
|
|
{
|
|
mid = (lo + hi) >> 1;
|
|
if (htab->ovl_region[2 * mid + 1]->vma
|
|
+ htab->ovl_region[2 * mid + 1]->size <= s->vma)
|
|
lo = mid + 1;
|
|
else if (htab->ovl_region[2 * mid]->vma > s->vma)
|
|
hi = mid;
|
|
else
|
|
{
|
|
bfd_put_32 (htab->ovtab->owner, mid + 1, p + off + 12);
|
|
break;
|
|
}
|
|
}
|
|
BFD_ASSERT (lo < hi);
|
|
}
|
|
}
|
|
|
|
/* Write out _ovly_buf_table. */
|
|
p = htab->ovtab->contents + htab->num_overlays * 16;
|
|
for (i = 0; i < htab->num_buf; i++)
|
|
{
|
|
bfd_put_32 (htab->ovtab->owner, 0, p);
|
|
p += 4;
|
|
}
|
|
|
|
h = define_ovtab_symbol (htab, "_ovly_table");
|
|
if (h == NULL)
|
|
return FALSE;
|
|
h->root.u.def.value = 0;
|
|
h->size = htab->num_overlays * 16;
|
|
|
|
h = define_ovtab_symbol (htab, "_ovly_table_end");
|
|
if (h == NULL)
|
|
return FALSE;
|
|
h->root.u.def.value = htab->num_overlays * 16;
|
|
h->size = 0;
|
|
|
|
h = define_ovtab_symbol (htab, "_ovly_buf_table");
|
|
if (h == NULL)
|
|
return FALSE;
|
|
h->root.u.def.value = htab->num_overlays * 16;
|
|
h->size = htab->num_buf * 4;
|
|
|
|
h = define_ovtab_symbol (htab, "_ovly_buf_table_end");
|
|
if (h == NULL)
|
|
return FALSE;
|
|
h->root.u.def.value = htab->num_overlays * 16 + htab->num_buf * 4;
|
|
h->size = 0;
|
|
|
|
h = define_ovtab_symbol (htab, "_EAR_");
|
|
if (h == NULL)
|
|
return FALSE;
|
|
h->root.u.def.section = toe;
|
|
h->root.u.def.value = 0;
|
|
h->size = 16;
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
/* OFFSET in SEC (presumably) is the beginning of a function prologue.
|
|
Search for stack adjusting insns, and return the sp delta. */
|
|
|
|
static int
|
|
find_function_stack_adjust (asection *sec, bfd_vma offset)
|
|
{
|
|
int unrecog;
|
|
int reg[128];
|
|
|
|
memset (reg, 0, sizeof (reg));
|
|
for (unrecog = 0; offset + 4 <= sec->size && unrecog < 32; offset += 4)
|
|
{
|
|
unsigned char buf[4];
|
|
int rt, ra;
|
|
int imm;
|
|
|
|
/* Assume no relocs on stack adjusing insns. */
|
|
if (!bfd_get_section_contents (sec->owner, sec, buf, offset, 4))
|
|
break;
|
|
|
|
if (buf[0] == 0x24 /* stqd */)
|
|
continue;
|
|
|
|
rt = buf[3] & 0x7f;
|
|
ra = ((buf[2] & 0x3f) << 1) | (buf[3] >> 7);
|
|
/* Partly decoded immediate field. */
|
|
imm = (buf[1] << 9) | (buf[2] << 1) | (buf[3] >> 7);
|
|
|
|
if (buf[0] == 0x1c /* ai */)
|
|
{
|
|
imm >>= 7;
|
|
imm = (imm ^ 0x200) - 0x200;
|
|
reg[rt] = reg[ra] + imm;
|
|
|
|
if (rt == 1 /* sp */)
|
|
{
|
|
if (imm > 0)
|
|
break;
|
|
return reg[rt];
|
|
}
|
|
}
|
|
else if (buf[0] == 0x18 && (buf[1] & 0xe0) == 0 /* a */)
|
|
{
|
|
int rb = ((buf[1] & 0x1f) << 2) | ((buf[2] & 0xc0) >> 6);
|
|
|
|
reg[rt] = reg[ra] + reg[rb];
|
|
if (rt == 1)
|
|
return reg[rt];
|
|
}
|
|
else if ((buf[0] & 0xfc) == 0x40 /* il, ilh, ilhu, ila */)
|
|
{
|
|
if (buf[0] >= 0x42 /* ila */)
|
|
imm |= (buf[0] & 1) << 17;
|
|
else
|
|
{
|
|
imm &= 0xffff;
|
|
|
|
if (buf[0] == 0x40 /* il */)
|
|
{
|
|
if ((buf[1] & 0x80) == 0)
|
|
goto unknown_insn;
|
|
imm = (imm ^ 0x8000) - 0x8000;
|
|
}
|
|
else if ((buf[1] & 0x80) == 0 /* ilhu */)
|
|
imm <<= 16;
|
|
}
|
|
reg[rt] = imm;
|
|
continue;
|
|
}
|
|
else if (buf[0] == 0x60 && (buf[1] & 0x80) != 0 /* iohl */)
|
|
{
|
|
reg[rt] |= imm & 0xffff;
|
|
continue;
|
|
}
|
|
else if (buf[0] == 0x04 /* ori */)
|
|
{
|
|
imm >>= 7;
|
|
imm = (imm ^ 0x200) - 0x200;
|
|
reg[rt] = reg[ra] | imm;
|
|
continue;
|
|
}
|
|
else if ((buf[0] == 0x33 && imm == 1 /* brsl .+4 */)
|
|
|| (buf[0] == 0x08 && (buf[1] & 0xe0) == 0 /* sf */))
|
|
{
|
|
/* Used in pic reg load. Say rt is trashed. */
|
|
reg[rt] = 0;
|
|
continue;
|
|
}
|
|
else if (is_branch (buf))
|
|
/* If we hit a branch then we must be out of the prologue. */
|
|
break;
|
|
unknown_insn:
|
|
++unrecog;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* qsort predicate to sort symbols by section and value. */
|
|
|
|
static Elf_Internal_Sym *sort_syms_syms;
|
|
static asection **sort_syms_psecs;
|
|
|
|
static int
|
|
sort_syms (const void *a, const void *b)
|
|
{
|
|
Elf_Internal_Sym *const *s1 = a;
|
|
Elf_Internal_Sym *const *s2 = b;
|
|
asection *sec1,*sec2;
|
|
bfd_signed_vma delta;
|
|
|
|
sec1 = sort_syms_psecs[*s1 - sort_syms_syms];
|
|
sec2 = sort_syms_psecs[*s2 - sort_syms_syms];
|
|
|
|
if (sec1 != sec2)
|
|
return sec1->index - sec2->index;
|
|
|
|
delta = (*s1)->st_value - (*s2)->st_value;
|
|
if (delta != 0)
|
|
return delta < 0 ? -1 : 1;
|
|
|
|
delta = (*s2)->st_size - (*s1)->st_size;
|
|
if (delta != 0)
|
|
return delta < 0 ? -1 : 1;
|
|
|
|
return *s1 < *s2 ? -1 : 1;
|
|
}
|
|
|
|
struct call_info
|
|
{
|
|
struct function_info *fun;
|
|
struct call_info *next;
|
|
int is_tail;
|
|
};
|
|
|
|
struct function_info
|
|
{
|
|
/* List of functions called. Also branches to hot/cold part of
|
|
function. */
|
|
struct call_info *call_list;
|
|
/* For hot/cold part of function, point to owner. */
|
|
struct function_info *start;
|
|
/* Symbol at start of function. */
|
|
union {
|
|
Elf_Internal_Sym *sym;
|
|
struct elf_link_hash_entry *h;
|
|
} u;
|
|
/* Function section. */
|
|
asection *sec;
|
|
/* Address range of (this part of) function. */
|
|
bfd_vma lo, hi;
|
|
/* Stack usage. */
|
|
int stack;
|
|
/* Set if global symbol. */
|
|
unsigned int global : 1;
|
|
/* Set if known to be start of function (as distinct from a hunk
|
|
in hot/cold section. */
|
|
unsigned int is_func : 1;
|
|
/* Flags used during call tree traversal. */
|
|
unsigned int visit1 : 1;
|
|
unsigned int non_root : 1;
|
|
unsigned int visit2 : 1;
|
|
unsigned int marking : 1;
|
|
unsigned int visit3 : 1;
|
|
};
|
|
|
|
struct spu_elf_stack_info
|
|
{
|
|
int num_fun;
|
|
int max_fun;
|
|
/* Variable size array describing functions, one per contiguous
|
|
address range belonging to a function. */
|
|
struct function_info fun[1];
|
|
};
|
|
|
|
/* Allocate a struct spu_elf_stack_info with MAX_FUN struct function_info
|
|
entries for section SEC. */
|
|
|
|
static struct spu_elf_stack_info *
|
|
alloc_stack_info (asection *sec, int max_fun)
|
|
{
|
|
struct _spu_elf_section_data *sec_data = spu_elf_section_data (sec);
|
|
bfd_size_type amt;
|
|
|
|
amt = sizeof (struct spu_elf_stack_info);
|
|
amt += (max_fun - 1) * sizeof (struct function_info);
|
|
sec_data->stack_info = bfd_zmalloc (amt);
|
|
if (sec_data->stack_info != NULL)
|
|
sec_data->stack_info->max_fun = max_fun;
|
|
return sec_data->stack_info;
|
|
}
|
|
|
|
/* Add a new struct function_info describing a (part of a) function
|
|
starting at SYM_H. Keep the array sorted by address. */
|
|
|
|
static struct function_info *
|
|
maybe_insert_function (asection *sec,
|
|
void *sym_h,
|
|
bfd_boolean global,
|
|
bfd_boolean is_func)
|
|
{
|
|
struct _spu_elf_section_data *sec_data = spu_elf_section_data (sec);
|
|
struct spu_elf_stack_info *sinfo = sec_data->stack_info;
|
|
int i;
|
|
bfd_vma off, size;
|
|
|
|
if (sinfo == NULL)
|
|
{
|
|
sinfo = alloc_stack_info (sec, 20);
|
|
if (sinfo == NULL)
|
|
return NULL;
|
|
}
|
|
|
|
if (!global)
|
|
{
|
|
Elf_Internal_Sym *sym = sym_h;
|
|
off = sym->st_value;
|
|
size = sym->st_size;
|
|
}
|
|
else
|
|
{
|
|
struct elf_link_hash_entry *h = sym_h;
|
|
off = h->root.u.def.value;
|
|
size = h->size;
|
|
}
|
|
|
|
for (i = sinfo->num_fun; --i >= 0; )
|
|
if (sinfo->fun[i].lo <= off)
|
|
break;
|
|
|
|
if (i >= 0)
|
|
{
|
|
/* Don't add another entry for an alias, but do update some
|
|
info. */
|
|
if (sinfo->fun[i].lo == off)
|
|
{
|
|
/* Prefer globals over local syms. */
|
|
if (global && !sinfo->fun[i].global)
|
|
{
|
|
sinfo->fun[i].global = TRUE;
|
|
sinfo->fun[i].u.h = sym_h;
|
|
}
|
|
if (is_func)
|
|
sinfo->fun[i].is_func = TRUE;
|
|
return &sinfo->fun[i];
|
|
}
|
|
/* Ignore a zero-size symbol inside an existing function. */
|
|
else if (sinfo->fun[i].hi > off && size == 0)
|
|
return &sinfo->fun[i];
|
|
}
|
|
|
|
if (++i < sinfo->num_fun)
|
|
memmove (&sinfo->fun[i + 1], &sinfo->fun[i],
|
|
(sinfo->num_fun - i) * sizeof (sinfo->fun[i]));
|
|
else if (i >= sinfo->max_fun)
|
|
{
|
|
bfd_size_type amt = sizeof (struct spu_elf_stack_info);
|
|
bfd_size_type old = amt;
|
|
|
|
old += (sinfo->max_fun - 1) * sizeof (struct function_info);
|
|
sinfo->max_fun += 20 + (sinfo->max_fun >> 1);
|
|
amt += (sinfo->max_fun - 1) * sizeof (struct function_info);
|
|
sinfo = bfd_realloc (sinfo, amt);
|
|
if (sinfo == NULL)
|
|
return NULL;
|
|
memset ((char *) sinfo + old, 0, amt - old);
|
|
sec_data->stack_info = sinfo;
|
|
}
|
|
sinfo->fun[i].is_func = is_func;
|
|
sinfo->fun[i].global = global;
|
|
sinfo->fun[i].sec = sec;
|
|
if (global)
|
|
sinfo->fun[i].u.h = sym_h;
|
|
else
|
|
sinfo->fun[i].u.sym = sym_h;
|
|
sinfo->fun[i].lo = off;
|
|
sinfo->fun[i].hi = off + size;
|
|
sinfo->fun[i].stack = -find_function_stack_adjust (sec, off);
|
|
sinfo->num_fun += 1;
|
|
return &sinfo->fun[i];
|
|
}
|
|
|
|
/* Return the name of FUN. */
|
|
|
|
static const char *
|
|
func_name (struct function_info *fun)
|
|
{
|
|
asection *sec;
|
|
bfd *ibfd;
|
|
Elf_Internal_Shdr *symtab_hdr;
|
|
|
|
while (fun->start != NULL)
|
|
fun = fun->start;
|
|
|
|
if (fun->global)
|
|
return fun->u.h->root.root.string;
|
|
|
|
sec = fun->sec;
|
|
if (fun->u.sym->st_name == 0)
|
|
{
|
|
size_t len = strlen (sec->name);
|
|
char *name = bfd_malloc (len + 10);
|
|
if (name == NULL)
|
|
return "(null)";
|
|
sprintf (name, "%s+%lx", sec->name,
|
|
(unsigned long) fun->u.sym->st_value & 0xffffffff);
|
|
return name;
|
|
}
|
|
ibfd = sec->owner;
|
|
symtab_hdr = &elf_tdata (ibfd)->symtab_hdr;
|
|
return bfd_elf_sym_name (ibfd, symtab_hdr, fun->u.sym, sec);
|
|
}
|
|
|
|
/* Read the instruction at OFF in SEC. Return true iff the instruction
|
|
is a nop, lnop, or stop 0 (all zero insn). */
|
|
|
|
static bfd_boolean
|
|
is_nop (asection *sec, bfd_vma off)
|
|
{
|
|
unsigned char insn[4];
|
|
|
|
if (off + 4 > sec->size
|
|
|| !bfd_get_section_contents (sec->owner, sec, insn, off, 4))
|
|
return FALSE;
|
|
if ((insn[0] & 0xbf) == 0 && (insn[1] & 0xe0) == 0x20)
|
|
return TRUE;
|
|
if (insn[0] == 0 && insn[1] == 0 && insn[2] == 0 && insn[3] == 0)
|
|
return TRUE;
|
|
return FALSE;
|
|
}
|
|
|
|
/* Extend the range of FUN to cover nop padding up to LIMIT.
|
|
Return TRUE iff some instruction other than a NOP was found. */
|
|
|
|
static bfd_boolean
|
|
insns_at_end (struct function_info *fun, bfd_vma limit)
|
|
{
|
|
bfd_vma off = (fun->hi + 3) & -4;
|
|
|
|
while (off < limit && is_nop (fun->sec, off))
|
|
off += 4;
|
|
if (off < limit)
|
|
{
|
|
fun->hi = off;
|
|
return TRUE;
|
|
}
|
|
fun->hi = limit;
|
|
return FALSE;
|
|
}
|
|
|
|
/* Check and fix overlapping function ranges. Return TRUE iff there
|
|
are gaps in the current info we have about functions in SEC. */
|
|
|
|
static bfd_boolean
|
|
check_function_ranges (asection *sec, struct bfd_link_info *info)
|
|
{
|
|
struct _spu_elf_section_data *sec_data = spu_elf_section_data (sec);
|
|
struct spu_elf_stack_info *sinfo = sec_data->stack_info;
|
|
int i;
|
|
bfd_boolean gaps = FALSE;
|
|
|
|
if (sinfo == NULL)
|
|
return FALSE;
|
|
|
|
for (i = 1; i < sinfo->num_fun; i++)
|
|
if (sinfo->fun[i - 1].hi > sinfo->fun[i].lo)
|
|
{
|
|
/* Fix overlapping symbols. */
|
|
const char *f1 = func_name (&sinfo->fun[i - 1]);
|
|
const char *f2 = func_name (&sinfo->fun[i]);
|
|
|
|
info->callbacks->einfo (_("warning: %s overlaps %s\n"), f1, f2);
|
|
sinfo->fun[i - 1].hi = sinfo->fun[i].lo;
|
|
}
|
|
else if (insns_at_end (&sinfo->fun[i - 1], sinfo->fun[i].lo))
|
|
gaps = TRUE;
|
|
|
|
if (sinfo->num_fun == 0)
|
|
gaps = TRUE;
|
|
else
|
|
{
|
|
if (sinfo->fun[0].lo != 0)
|
|
gaps = TRUE;
|
|
if (sinfo->fun[sinfo->num_fun - 1].hi > sec->size)
|
|
{
|
|
const char *f1 = func_name (&sinfo->fun[sinfo->num_fun - 1]);
|
|
|
|
info->callbacks->einfo (_("warning: %s exceeds section size\n"), f1);
|
|
sinfo->fun[sinfo->num_fun - 1].hi = sec->size;
|
|
}
|
|
else if (insns_at_end (&sinfo->fun[sinfo->num_fun - 1], sec->size))
|
|
gaps = TRUE;
|
|
}
|
|
return gaps;
|
|
}
|
|
|
|
/* Search current function info for a function that contains address
|
|
OFFSET in section SEC. */
|
|
|
|
static struct function_info *
|
|
find_function (asection *sec, bfd_vma offset, struct bfd_link_info *info)
|
|
{
|
|
struct _spu_elf_section_data *sec_data = spu_elf_section_data (sec);
|
|
struct spu_elf_stack_info *sinfo = sec_data->stack_info;
|
|
int lo, hi, mid;
|
|
|
|
lo = 0;
|
|
hi = sinfo->num_fun;
|
|
while (lo < hi)
|
|
{
|
|
mid = (lo + hi) / 2;
|
|
if (offset < sinfo->fun[mid].lo)
|
|
hi = mid;
|
|
else if (offset >= sinfo->fun[mid].hi)
|
|
lo = mid + 1;
|
|
else
|
|
return &sinfo->fun[mid];
|
|
}
|
|
info->callbacks->einfo (_("%A:0x%v not found in function table\n"),
|
|
sec, offset);
|
|
return NULL;
|
|
}
|
|
|
|
/* Add CALLEE to CALLER call list if not already present. */
|
|
|
|
static bfd_boolean
|
|
insert_callee (struct function_info *caller, struct call_info *callee)
|
|
{
|
|
struct call_info *p;
|
|
for (p = caller->call_list; p != NULL; p = p->next)
|
|
if (p->fun == callee->fun)
|
|
{
|
|
/* Tail calls use less stack than normal calls. Retain entry
|
|
for normal call over one for tail call. */
|
|
if (p->is_tail > callee->is_tail)
|
|
p->is_tail = callee->is_tail;
|
|
return FALSE;
|
|
}
|
|
callee->next = caller->call_list;
|
|
caller->call_list = callee;
|
|
return TRUE;
|
|
}
|
|
|
|
/* Rummage through the relocs for SEC, looking for function calls.
|
|
If CALL_TREE is true, fill in call graph. If CALL_TREE is false,
|
|
mark destination symbols on calls as being functions. Also
|
|
look at branches, which may be tail calls or go to hot/cold
|
|
section part of same function. */
|
|
|
|
static bfd_boolean
|
|
mark_functions_via_relocs (asection *sec,
|
|
struct bfd_link_info *info,
|
|
int call_tree)
|
|
{
|
|
Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
|
|
Elf_Internal_Shdr *symtab_hdr = &elf_tdata (sec->owner)->symtab_hdr;
|
|
Elf_Internal_Sym *syms;
|
|
void *psyms;
|
|
static bfd_boolean warned;
|
|
|
|
internal_relocs = _bfd_elf_link_read_relocs (sec->owner, sec, NULL, NULL,
|
|
info->keep_memory);
|
|
if (internal_relocs == NULL)
|
|
return FALSE;
|
|
|
|
symtab_hdr = &elf_tdata (sec->owner)->symtab_hdr;
|
|
psyms = &symtab_hdr->contents;
|
|
syms = *(Elf_Internal_Sym **) psyms;
|
|
irela = internal_relocs;
|
|
irelaend = irela + sec->reloc_count;
|
|
for (; irela < irelaend; irela++)
|
|
{
|
|
enum elf_spu_reloc_type r_type;
|
|
unsigned int r_indx;
|
|
asection *sym_sec;
|
|
Elf_Internal_Sym *sym;
|
|
struct elf_link_hash_entry *h;
|
|
bfd_vma val;
|
|
unsigned char insn[4];
|
|
bfd_boolean is_call;
|
|
struct function_info *caller;
|
|
struct call_info *callee;
|
|
|
|
r_type = ELF32_R_TYPE (irela->r_info);
|
|
if (r_type != R_SPU_REL16
|
|
&& r_type != R_SPU_ADDR16)
|
|
continue;
|
|
|
|
r_indx = ELF32_R_SYM (irela->r_info);
|
|
if (!get_sym_h (&h, &sym, &sym_sec, psyms, r_indx, sec->owner))
|
|
return FALSE;
|
|
|
|
if (sym_sec == NULL
|
|
|| sym_sec->output_section == NULL
|
|
|| sym_sec->output_section->owner != sec->output_section->owner)
|
|
continue;
|
|
|
|
if (!bfd_get_section_contents (sec->owner, sec, insn,
|
|
irela->r_offset, 4))
|
|
return FALSE;
|
|
if (!is_branch (insn))
|
|
continue;
|
|
|
|
if ((sym_sec->flags & (SEC_ALLOC | SEC_LOAD | SEC_CODE))
|
|
!= (SEC_ALLOC | SEC_LOAD | SEC_CODE))
|
|
{
|
|
if (!call_tree)
|
|
warned = TRUE;
|
|
if (!call_tree || !warned)
|
|
info->callbacks->einfo (_("%B(%A+0x%v): call to non-code section"
|
|
" %B(%A), stack analysis incomplete\n"),
|
|
sec->owner, sec, irela->r_offset,
|
|
sym_sec->owner, sym_sec);
|
|
continue;
|
|
}
|
|
|
|
is_call = (insn[0] & 0xfd) == 0x31;
|
|
|
|
if (h)
|
|
val = h->root.u.def.value;
|
|
else
|
|
val = sym->st_value;
|
|
val += irela->r_addend;
|
|
|
|
if (!call_tree)
|
|
{
|
|
struct function_info *fun;
|
|
|
|
if (irela->r_addend != 0)
|
|
{
|
|
Elf_Internal_Sym *fake = bfd_zmalloc (sizeof (*fake));
|
|
if (fake == NULL)
|
|
return FALSE;
|
|
fake->st_value = val;
|
|
fake->st_shndx
|
|
= _bfd_elf_section_from_bfd_section (sym_sec->owner, sym_sec);
|
|
sym = fake;
|
|
}
|
|
if (sym)
|
|
fun = maybe_insert_function (sym_sec, sym, FALSE, is_call);
|
|
else
|
|
fun = maybe_insert_function (sym_sec, h, TRUE, is_call);
|
|
if (fun == NULL)
|
|
return FALSE;
|
|
if (irela->r_addend != 0
|
|
&& fun->u.sym != sym)
|
|
free (sym);
|
|
continue;
|
|
}
|
|
|
|
caller = find_function (sec, irela->r_offset, info);
|
|
if (caller == NULL)
|
|
return FALSE;
|
|
callee = bfd_malloc (sizeof *callee);
|
|
if (callee == NULL)
|
|
return FALSE;
|
|
|
|
callee->fun = find_function (sym_sec, val, info);
|
|
if (callee->fun == NULL)
|
|
return FALSE;
|
|
callee->is_tail = !is_call;
|
|
if (!insert_callee (caller, callee))
|
|
free (callee);
|
|
else if (!is_call
|
|
&& !callee->fun->is_func
|
|
&& callee->fun->stack == 0)
|
|
{
|
|
/* This is either a tail call or a branch from one part of
|
|
the function to another, ie. hot/cold section. If the
|
|
destination has been called by some other function then
|
|
it is a separate function. We also assume that functions
|
|
are not split across input files. */
|
|
if (callee->fun->start != NULL
|
|
|| sec->owner != sym_sec->owner)
|
|
{
|
|
callee->fun->start = NULL;
|
|
callee->fun->is_func = TRUE;
|
|
}
|
|
else
|
|
callee->fun->start = caller;
|
|
}
|
|
}
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
/* Handle something like .init or .fini, which has a piece of a function.
|
|
These sections are pasted together to form a single function. */
|
|
|
|
static bfd_boolean
|
|
pasted_function (asection *sec, struct bfd_link_info *info)
|
|
{
|
|
struct bfd_link_order *l;
|
|
struct _spu_elf_section_data *sec_data;
|
|
struct spu_elf_stack_info *sinfo;
|
|
Elf_Internal_Sym *fake;
|
|
struct function_info *fun, *fun_start;
|
|
|
|
fake = bfd_zmalloc (sizeof (*fake));
|
|
if (fake == NULL)
|
|
return FALSE;
|
|
fake->st_value = 0;
|
|
fake->st_size = sec->size;
|
|
fake->st_shndx
|
|
= _bfd_elf_section_from_bfd_section (sec->owner, sec);
|
|
fun = maybe_insert_function (sec, fake, FALSE, FALSE);
|
|
if (!fun)
|
|
return FALSE;
|
|
|
|
/* Find a function immediately preceding this section. */
|
|
fun_start = NULL;
|
|
for (l = sec->output_section->map_head.link_order; l != NULL; l = l->next)
|
|
{
|
|
if (l->u.indirect.section == sec)
|
|
{
|
|
if (fun_start != NULL)
|
|
{
|
|
if (fun_start->start)
|
|
fun_start = fun_start->start;
|
|
fun->start = fun_start;
|
|
}
|
|
return TRUE;
|
|
}
|
|
if (l->type == bfd_indirect_link_order
|
|
&& (sec_data = spu_elf_section_data (l->u.indirect.section)) != NULL
|
|
&& (sinfo = sec_data->stack_info) != NULL
|
|
&& sinfo->num_fun != 0)
|
|
fun_start = &sinfo->fun[sinfo->num_fun - 1];
|
|
}
|
|
|
|
info->callbacks->einfo (_("%A link_order not found\n"), sec);
|
|
return FALSE;
|
|
}
|
|
|
|
/* We're only interested in code sections. */
|
|
|
|
static bfd_boolean
|
|
interesting_section (asection *s, bfd *obfd, struct spu_link_hash_table *htab)
|
|
{
|
|
return (s != htab->stub
|
|
&& s->output_section != NULL
|
|
&& s->output_section->owner == obfd
|
|
&& ((s->flags & (SEC_ALLOC | SEC_LOAD | SEC_CODE))
|
|
== (SEC_ALLOC | SEC_LOAD | SEC_CODE))
|
|
&& s->size != 0);
|
|
}
|
|
|
|
/* Map address ranges in code sections to functions. */
|
|
|
|
static bfd_boolean
|
|
discover_functions (bfd *output_bfd, struct bfd_link_info *info)
|
|
{
|
|
struct spu_link_hash_table *htab = spu_hash_table (info);
|
|
bfd *ibfd;
|
|
int bfd_idx;
|
|
Elf_Internal_Sym ***psym_arr;
|
|
asection ***sec_arr;
|
|
bfd_boolean gaps = FALSE;
|
|
|
|
bfd_idx = 0;
|
|
for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
|
|
bfd_idx++;
|
|
|
|
psym_arr = bfd_zmalloc (bfd_idx * sizeof (*psym_arr));
|
|
if (psym_arr == NULL)
|
|
return FALSE;
|
|
sec_arr = bfd_zmalloc (bfd_idx * sizeof (*sec_arr));
|
|
if (sec_arr == NULL)
|
|
return FALSE;
|
|
|
|
|
|
for (ibfd = info->input_bfds, bfd_idx = 0;
|
|
ibfd != NULL;
|
|
ibfd = ibfd->link_next, bfd_idx++)
|
|
{
|
|
extern const bfd_target bfd_elf32_spu_vec;
|
|
Elf_Internal_Shdr *symtab_hdr;
|
|
asection *sec;
|
|
size_t symcount;
|
|
Elf_Internal_Sym *syms, *sy, **psyms, **psy;
|
|
asection **psecs, **p;
|
|
|
|
if (ibfd->xvec != &bfd_elf32_spu_vec)
|
|
continue;
|
|
|
|
/* Read all the symbols. */
|
|
symtab_hdr = &elf_tdata (ibfd)->symtab_hdr;
|
|
symcount = symtab_hdr->sh_size / symtab_hdr->sh_entsize;
|
|
if (symcount == 0)
|
|
continue;
|
|
|
|
syms = (Elf_Internal_Sym *) symtab_hdr->contents;
|
|
if (syms == NULL)
|
|
{
|
|
syms = bfd_elf_get_elf_syms (ibfd, symtab_hdr, symcount, 0,
|
|
NULL, NULL, NULL);
|
|
symtab_hdr->contents = (void *) syms;
|
|
if (syms == NULL)
|
|
return FALSE;
|
|
}
|
|
|
|
/* Select defined function symbols that are going to be output. */
|
|
psyms = bfd_malloc ((symcount + 1) * sizeof (*psyms));
|
|
if (psyms == NULL)
|
|
return FALSE;
|
|
psym_arr[bfd_idx] = psyms;
|
|
psecs = bfd_malloc (symcount * sizeof (*psecs));
|
|
if (psecs == NULL)
|
|
return FALSE;
|
|
sec_arr[bfd_idx] = psecs;
|
|
for (psy = psyms, p = psecs, sy = syms; sy < syms + symcount; ++p, ++sy)
|
|
if (ELF_ST_TYPE (sy->st_info) == STT_NOTYPE
|
|
|| ELF_ST_TYPE (sy->st_info) == STT_FUNC)
|
|
{
|
|
asection *s;
|
|
|
|
*p = s = bfd_section_from_elf_index (ibfd, sy->st_shndx);
|
|
if (s != NULL && interesting_section (s, output_bfd, htab))
|
|
*psy++ = sy;
|
|
}
|
|
symcount = psy - psyms;
|
|
*psy = NULL;
|
|
|
|
/* Sort them by section and offset within section. */
|
|
sort_syms_syms = syms;
|
|
sort_syms_psecs = psecs;
|
|
qsort (psyms, symcount, sizeof (*psyms), sort_syms);
|
|
|
|
/* Now inspect the function symbols. */
|
|
for (psy = psyms; psy < psyms + symcount; )
|
|
{
|
|
asection *s = psecs[*psy - syms];
|
|
Elf_Internal_Sym **psy2;
|
|
|
|
for (psy2 = psy; ++psy2 < psyms + symcount; )
|
|
if (psecs[*psy2 - syms] != s)
|
|
break;
|
|
|
|
if (!alloc_stack_info (s, psy2 - psy))
|
|
return FALSE;
|
|
psy = psy2;
|
|
}
|
|
|
|
/* First install info about properly typed and sized functions.
|
|
In an ideal world this will cover all code sections, except
|
|
when partitioning functions into hot and cold sections,
|
|
and the horrible pasted together .init and .fini functions. */
|
|
for (psy = psyms; psy < psyms + symcount; ++psy)
|
|
{
|
|
sy = *psy;
|
|
if (ELF_ST_TYPE (sy->st_info) == STT_FUNC)
|
|
{
|
|
asection *s = psecs[sy - syms];
|
|
if (!maybe_insert_function (s, sy, FALSE, TRUE))
|
|
return FALSE;
|
|
}
|
|
}
|
|
|
|
for (sec = ibfd->sections; sec != NULL && !gaps; sec = sec->next)
|
|
if (interesting_section (sec, output_bfd, htab))
|
|
gaps |= check_function_ranges (sec, info);
|
|
}
|
|
|
|
if (gaps)
|
|
{
|
|
/* See if we can discover more function symbols by looking at
|
|
relocations. */
|
|
for (ibfd = info->input_bfds, bfd_idx = 0;
|
|
ibfd != NULL;
|
|
ibfd = ibfd->link_next, bfd_idx++)
|
|
{
|
|
asection *sec;
|
|
|
|
if (psym_arr[bfd_idx] == NULL)
|
|
continue;
|
|
|
|
for (sec = ibfd->sections; sec != NULL; sec = sec->next)
|
|
if (interesting_section (sec, output_bfd, htab)
|
|
&& sec->reloc_count != 0)
|
|
{
|
|
if (!mark_functions_via_relocs (sec, info, FALSE))
|
|
return FALSE;
|
|
}
|
|
}
|
|
|
|
for (ibfd = info->input_bfds, bfd_idx = 0;
|
|
ibfd != NULL;
|
|
ibfd = ibfd->link_next, bfd_idx++)
|
|
{
|
|
Elf_Internal_Shdr *symtab_hdr;
|
|
asection *sec;
|
|
Elf_Internal_Sym *syms, *sy, **psyms, **psy;
|
|
asection **psecs;
|
|
|
|
if ((psyms = psym_arr[bfd_idx]) == NULL)
|
|
continue;
|
|
|
|
psecs = sec_arr[bfd_idx];
|
|
|
|
symtab_hdr = &elf_tdata (ibfd)->symtab_hdr;
|
|
syms = (Elf_Internal_Sym *) symtab_hdr->contents;
|
|
|
|
gaps = FALSE;
|
|
for (sec = ibfd->sections; sec != NULL && !gaps; sec = sec->next)
|
|
if (interesting_section (sec, output_bfd, htab))
|
|
gaps |= check_function_ranges (sec, info);
|
|
if (!gaps)
|
|
continue;
|
|
|
|
/* Finally, install all globals. */
|
|
for (psy = psyms; (sy = *psy) != NULL; ++psy)
|
|
{
|
|
asection *s;
|
|
|
|
s = psecs[sy - syms];
|
|
|
|
/* Global syms might be improperly typed functions. */
|
|
if (ELF_ST_TYPE (sy->st_info) != STT_FUNC
|
|
&& ELF_ST_BIND (sy->st_info) == STB_GLOBAL)
|
|
{
|
|
if (!maybe_insert_function (s, sy, FALSE, FALSE))
|
|
return FALSE;
|
|
}
|
|
}
|
|
|
|
/* Some of the symbols we've installed as marking the
|
|
beginning of functions may have a size of zero. Extend
|
|
the range of such functions to the beginning of the
|
|
next symbol of interest. */
|
|
for (sec = ibfd->sections; sec != NULL; sec = sec->next)
|
|
if (interesting_section (sec, output_bfd, htab))
|
|
{
|
|
struct _spu_elf_section_data *sec_data;
|
|
struct spu_elf_stack_info *sinfo;
|
|
|
|
sec_data = spu_elf_section_data (sec);
|
|
sinfo = sec_data->stack_info;
|
|
if (sinfo != NULL)
|
|
{
|
|
int fun_idx;
|
|
bfd_vma hi = sec->size;
|
|
|
|
for (fun_idx = sinfo->num_fun; --fun_idx >= 0; )
|
|
{
|
|
sinfo->fun[fun_idx].hi = hi;
|
|
hi = sinfo->fun[fun_idx].lo;
|
|
}
|
|
}
|
|
/* No symbols in this section. Must be .init or .fini
|
|
or something similar. */
|
|
else if (!pasted_function (sec, info))
|
|
return FALSE;
|
|
}
|
|
}
|
|
}
|
|
|
|
for (ibfd = info->input_bfds, bfd_idx = 0;
|
|
ibfd != NULL;
|
|
ibfd = ibfd->link_next, bfd_idx++)
|
|
{
|
|
if (psym_arr[bfd_idx] == NULL)
|
|
continue;
|
|
|
|
free (psym_arr[bfd_idx]);
|
|
free (sec_arr[bfd_idx]);
|
|
}
|
|
|
|
free (psym_arr);
|
|
free (sec_arr);
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
/* Mark nodes in the call graph that are called by some other node. */
|
|
|
|
static void
|
|
mark_non_root (struct function_info *fun)
|
|
{
|
|
struct call_info *call;
|
|
|
|
fun->visit1 = TRUE;
|
|
for (call = fun->call_list; call; call = call->next)
|
|
{
|
|
call->fun->non_root = TRUE;
|
|
if (!call->fun->visit1)
|
|
mark_non_root (call->fun);
|
|
}
|
|
}
|
|
|
|
/* Remove cycles from the call graph. */
|
|
|
|
static void
|
|
call_graph_traverse (struct function_info *fun, struct bfd_link_info *info)
|
|
{
|
|
struct call_info **callp, *call;
|
|
|
|
fun->visit2 = TRUE;
|
|
fun->marking = TRUE;
|
|
|
|
callp = &fun->call_list;
|
|
while ((call = *callp) != NULL)
|
|
{
|
|
if (!call->fun->visit2)
|
|
call_graph_traverse (call->fun, info);
|
|
else if (call->fun->marking)
|
|
{
|
|
const char *f1 = func_name (fun);
|
|
const char *f2 = func_name (call->fun);
|
|
|
|
info->callbacks->info (_("Stack analysis will ignore the call "
|
|
"from %s to %s\n"),
|
|
f1, f2);
|
|
*callp = call->next;
|
|
continue;
|
|
}
|
|
callp = &call->next;
|
|
}
|
|
fun->marking = FALSE;
|
|
}
|
|
|
|
/* Populate call_list for each function. */
|
|
|
|
static bfd_boolean
|
|
build_call_tree (bfd *output_bfd, struct bfd_link_info *info)
|
|
{
|
|
struct spu_link_hash_table *htab = spu_hash_table (info);
|
|
bfd *ibfd;
|
|
|
|
for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
|
|
{
|
|
extern const bfd_target bfd_elf32_spu_vec;
|
|
asection *sec;
|
|
|
|
if (ibfd->xvec != &bfd_elf32_spu_vec)
|
|
continue;
|
|
|
|
for (sec = ibfd->sections; sec != NULL; sec = sec->next)
|
|
{
|
|
if (!interesting_section (sec, output_bfd, htab)
|
|
|| sec->reloc_count == 0)
|
|
continue;
|
|
|
|
if (!mark_functions_via_relocs (sec, info, TRUE))
|
|
return FALSE;
|
|
}
|
|
|
|
/* Transfer call info from hot/cold section part of function
|
|
to main entry. */
|
|
for (sec = ibfd->sections; sec != NULL; sec = sec->next)
|
|
{
|
|
struct _spu_elf_section_data *sec_data;
|
|
struct spu_elf_stack_info *sinfo;
|
|
|
|
if ((sec_data = spu_elf_section_data (sec)) != NULL
|
|
&& (sinfo = sec_data->stack_info) != NULL)
|
|
{
|
|
int i;
|
|
for (i = 0; i < sinfo->num_fun; ++i)
|
|
{
|
|
if (sinfo->fun[i].start != NULL)
|
|
{
|
|
struct call_info *call = sinfo->fun[i].call_list;
|
|
|
|
while (call != NULL)
|
|
{
|
|
struct call_info *call_next = call->next;
|
|
if (!insert_callee (sinfo->fun[i].start, call))
|
|
free (call);
|
|
call = call_next;
|
|
}
|
|
sinfo->fun[i].call_list = NULL;
|
|
sinfo->fun[i].non_root = TRUE;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Find the call graph root(s). */
|
|
for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
|
|
{
|
|
extern const bfd_target bfd_elf32_spu_vec;
|
|
asection *sec;
|
|
|
|
if (ibfd->xvec != &bfd_elf32_spu_vec)
|
|
continue;
|
|
|
|
for (sec = ibfd->sections; sec != NULL; sec = sec->next)
|
|
{
|
|
struct _spu_elf_section_data *sec_data;
|
|
struct spu_elf_stack_info *sinfo;
|
|
|
|
if ((sec_data = spu_elf_section_data (sec)) != NULL
|
|
&& (sinfo = sec_data->stack_info) != NULL)
|
|
{
|
|
int i;
|
|
for (i = 0; i < sinfo->num_fun; ++i)
|
|
if (!sinfo->fun[i].visit1)
|
|
mark_non_root (&sinfo->fun[i]);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Remove cycles from the call graph. We start from the root node(s)
|
|
so that we break cycles in a reasonable place. */
|
|
for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
|
|
{
|
|
extern const bfd_target bfd_elf32_spu_vec;
|
|
asection *sec;
|
|
|
|
if (ibfd->xvec != &bfd_elf32_spu_vec)
|
|
continue;
|
|
|
|
for (sec = ibfd->sections; sec != NULL; sec = sec->next)
|
|
{
|
|
struct _spu_elf_section_data *sec_data;
|
|
struct spu_elf_stack_info *sinfo;
|
|
|
|
if ((sec_data = spu_elf_section_data (sec)) != NULL
|
|
&& (sinfo = sec_data->stack_info) != NULL)
|
|
{
|
|
int i;
|
|
for (i = 0; i < sinfo->num_fun; ++i)
|
|
if (!sinfo->fun[i].non_root)
|
|
call_graph_traverse (&sinfo->fun[i], info);
|
|
}
|
|
}
|
|
}
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
/* Descend the call graph for FUN, accumulating total stack required. */
|
|
|
|
static bfd_vma
|
|
sum_stack (struct function_info *fun,
|
|
struct bfd_link_info *info,
|
|
int emit_stack_syms)
|
|
{
|
|
struct call_info *call;
|
|
struct function_info *max = NULL;
|
|
bfd_vma max_stack = fun->stack;
|
|
bfd_vma stack;
|
|
const char *f1;
|
|
|
|
if (fun->visit3)
|
|
return max_stack;
|
|
|
|
for (call = fun->call_list; call; call = call->next)
|
|
{
|
|
stack = sum_stack (call->fun, info, emit_stack_syms);
|
|
/* Include caller stack for normal calls, don't do so for
|
|
tail calls. fun->stack here is local stack usage for
|
|
this function. */
|
|
if (!call->is_tail)
|
|
stack += fun->stack;
|
|
if (max_stack < stack)
|
|
{
|
|
max_stack = stack;
|
|
max = call->fun;
|
|
}
|
|
}
|
|
|
|
f1 = func_name (fun);
|
|
info->callbacks->minfo (_("%s: 0x%v 0x%v\n"), f1, fun->stack, max_stack);
|
|
|
|
if (fun->call_list)
|
|
{
|
|
info->callbacks->minfo (_(" calls:\n"));
|
|
for (call = fun->call_list; call; call = call->next)
|
|
{
|
|
const char *f2 = func_name (call->fun);
|
|
const char *ann1 = call->fun == max ? "*" : " ";
|
|
const char *ann2 = call->is_tail ? "t" : " ";
|
|
|
|
info->callbacks->minfo (_(" %s%s %s\n"), ann1, ann2, f2);
|
|
}
|
|
}
|
|
|
|
/* Now fun->stack holds cumulative stack. */
|
|
fun->stack = max_stack;
|
|
fun->visit3 = TRUE;
|
|
|
|
if (emit_stack_syms)
|
|
{
|
|
struct spu_link_hash_table *htab = spu_hash_table (info);
|
|
char *name = bfd_malloc (18 + strlen (f1));
|
|
struct elf_link_hash_entry *h;
|
|
|
|
if (name != NULL)
|
|
{
|
|
if (fun->global || ELF_ST_BIND (fun->u.sym->st_info) == STB_GLOBAL)
|
|
sprintf (name, "__stack_%s", f1);
|
|
else
|
|
sprintf (name, "__stack_%x_%s", fun->sec->id & 0xffffffff, f1);
|
|
|
|
h = elf_link_hash_lookup (&htab->elf, name, TRUE, TRUE, FALSE);
|
|
free (name);
|
|
if (h != NULL
|
|
&& (h->root.type == bfd_link_hash_new
|
|
|| h->root.type == bfd_link_hash_undefined
|
|
|| h->root.type == bfd_link_hash_undefweak))
|
|
{
|
|
h->root.type = bfd_link_hash_defined;
|
|
h->root.u.def.section = bfd_abs_section_ptr;
|
|
h->root.u.def.value = max_stack;
|
|
h->size = 0;
|
|
h->type = 0;
|
|
h->ref_regular = 1;
|
|
h->def_regular = 1;
|
|
h->ref_regular_nonweak = 1;
|
|
h->forced_local = 1;
|
|
h->non_elf = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
return max_stack;
|
|
}
|
|
|
|
/* Provide an estimate of total stack required. */
|
|
|
|
static bfd_boolean
|
|
spu_elf_stack_analysis (bfd *output_bfd,
|
|
struct bfd_link_info *info,
|
|
int emit_stack_syms)
|
|
{
|
|
bfd *ibfd;
|
|
bfd_vma max_stack = 0;
|
|
|
|
if (!discover_functions (output_bfd, info))
|
|
return FALSE;
|
|
|
|
if (!build_call_tree (output_bfd, info))
|
|
return FALSE;
|
|
|
|
info->callbacks->info (_("Stack size for call graph root nodes.\n"));
|
|
info->callbacks->minfo (_("\nStack size for functions. "
|
|
"Annotations: '*' max stack, 't' tail call\n"));
|
|
for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
|
|
{
|
|
extern const bfd_target bfd_elf32_spu_vec;
|
|
asection *sec;
|
|
|
|
if (ibfd->xvec != &bfd_elf32_spu_vec)
|
|
continue;
|
|
|
|
for (sec = ibfd->sections; sec != NULL; sec = sec->next)
|
|
{
|
|
struct _spu_elf_section_data *sec_data;
|
|
struct spu_elf_stack_info *sinfo;
|
|
|
|
if ((sec_data = spu_elf_section_data (sec)) != NULL
|
|
&& (sinfo = sec_data->stack_info) != NULL)
|
|
{
|
|
int i;
|
|
for (i = 0; i < sinfo->num_fun; ++i)
|
|
{
|
|
if (!sinfo->fun[i].non_root)
|
|
{
|
|
bfd_vma stack;
|
|
const char *f1;
|
|
|
|
stack = sum_stack (&sinfo->fun[i], info,
|
|
emit_stack_syms);
|
|
f1 = func_name (&sinfo->fun[i]);
|
|
info->callbacks->info (_(" %s: 0x%v\n"),
|
|
f1, stack);
|
|
if (max_stack < stack)
|
|
max_stack = stack;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
info->callbacks->info (_("Maximum stack required is 0x%v\n"), max_stack);
|
|
return TRUE;
|
|
}
|
|
|
|
/* Perform a final link. */
|
|
|
|
static bfd_boolean
|
|
spu_elf_final_link (bfd *output_bfd, struct bfd_link_info *info)
|
|
{
|
|
struct spu_link_hash_table *htab = spu_hash_table (info);
|
|
|
|
if (htab->stack_analysis
|
|
&& !spu_elf_stack_analysis (output_bfd, info, htab->emit_stack_syms))
|
|
info->callbacks->einfo ("%X%P: stack analysis error: %E\n");
|
|
|
|
return bfd_elf_final_link (output_bfd, info);
|
|
}
|
|
|
|
/* Called when not normally emitting relocs, ie. !info->relocatable
|
|
and !info->emitrelocations. Returns a count of special relocs
|
|
that need to be emitted. */
|
|
|
|
static unsigned int
|
|
spu_elf_count_relocs (asection *sec, Elf_Internal_Rela *relocs)
|
|
{
|
|
unsigned int count = 0;
|
|
Elf_Internal_Rela *relend = relocs + sec->reloc_count;
|
|
|
|
for (; relocs < relend; relocs++)
|
|
{
|
|
int r_type = ELF32_R_TYPE (relocs->r_info);
|
|
if (r_type == R_SPU_PPU32 || r_type == R_SPU_PPU64)
|
|
++count;
|
|
}
|
|
|
|
return count;
|
|
}
|
|
|
|
/* Apply RELOCS to CONTENTS of INPUT_SECTION from INPUT_BFD. */
|
|
|
|
static bfd_boolean
|
|
spu_elf_relocate_section (bfd *output_bfd,
|
|
struct bfd_link_info *info,
|
|
bfd *input_bfd,
|
|
asection *input_section,
|
|
bfd_byte *contents,
|
|
Elf_Internal_Rela *relocs,
|
|
Elf_Internal_Sym *local_syms,
|
|
asection **local_sections)
|
|
{
|
|
Elf_Internal_Shdr *symtab_hdr;
|
|
struct elf_link_hash_entry **sym_hashes;
|
|
Elf_Internal_Rela *rel, *relend;
|
|
struct spu_link_hash_table *htab;
|
|
bfd_boolean ret = TRUE;
|
|
bfd_boolean emit_these_relocs = FALSE;
|
|
|
|
htab = spu_hash_table (info);
|
|
symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
|
|
sym_hashes = (struct elf_link_hash_entry **) (elf_sym_hashes (input_bfd));
|
|
|
|
rel = relocs;
|
|
relend = relocs + input_section->reloc_count;
|
|
for (; rel < relend; rel++)
|
|
{
|
|
int r_type;
|
|
reloc_howto_type *howto;
|
|
unsigned long r_symndx;
|
|
Elf_Internal_Sym *sym;
|
|
asection *sec;
|
|
struct elf_link_hash_entry *h;
|
|
const char *sym_name;
|
|
bfd_vma relocation;
|
|
bfd_vma addend;
|
|
bfd_reloc_status_type r;
|
|
bfd_boolean unresolved_reloc;
|
|
bfd_boolean warned;
|
|
bfd_boolean branch;
|
|
|
|
r_symndx = ELF32_R_SYM (rel->r_info);
|
|
r_type = ELF32_R_TYPE (rel->r_info);
|
|
if (r_type == R_SPU_PPU32 || r_type == R_SPU_PPU64)
|
|
{
|
|
emit_these_relocs = TRUE;
|
|
continue;
|
|
}
|
|
|
|
howto = elf_howto_table + r_type;
|
|
unresolved_reloc = FALSE;
|
|
warned = FALSE;
|
|
h = NULL;
|
|
sym = NULL;
|
|
sec = NULL;
|
|
if (r_symndx < symtab_hdr->sh_info)
|
|
{
|
|
sym = local_syms + r_symndx;
|
|
sec = local_sections[r_symndx];
|
|
sym_name = bfd_elf_sym_name (input_bfd, symtab_hdr, sym, sec);
|
|
relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
|
|
}
|
|
else
|
|
{
|
|
RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
|
|
r_symndx, symtab_hdr, sym_hashes,
|
|
h, sec, relocation,
|
|
unresolved_reloc, warned);
|
|
sym_name = h->root.root.string;
|
|
}
|
|
|
|
if (sec != NULL && elf_discarded_section (sec))
|
|
{
|
|
/* For relocs against symbols from removed linkonce sections,
|
|
or sections discarded by a linker script, we just want the
|
|
section contents zeroed. Avoid any special processing. */
|
|
_bfd_clear_contents (howto, input_bfd, contents + rel->r_offset);
|
|
rel->r_info = 0;
|
|
rel->r_addend = 0;
|
|
continue;
|
|
}
|
|
|
|
if (info->relocatable)
|
|
continue;
|
|
|
|
if (unresolved_reloc)
|
|
{
|
|
(*_bfd_error_handler)
|
|
(_("%B(%s+0x%lx): unresolvable %s relocation against symbol `%s'"),
|
|
input_bfd,
|
|
bfd_get_section_name (input_bfd, input_section),
|
|
(long) rel->r_offset,
|
|
howto->name,
|
|
sym_name);
|
|
ret = FALSE;
|
|
}
|
|
|
|
/* If this symbol is in an overlay area, we may need to relocate
|
|
to the overlay stub. */
|
|
addend = rel->r_addend;
|
|
branch = (is_branch (contents + rel->r_offset)
|
|
|| is_hint (contents + rel->r_offset));
|
|
if (needs_ovl_stub (sym_name, sec, input_section, htab, branch))
|
|
{
|
|
char *stub_name;
|
|
struct spu_stub_hash_entry *sh;
|
|
|
|
stub_name = spu_stub_name (sec, h, rel);
|
|
if (stub_name == NULL)
|
|
return FALSE;
|
|
|
|
sh = (struct spu_stub_hash_entry *)
|
|
bfd_hash_lookup (&htab->stub_hash_table, stub_name, FALSE, FALSE);
|
|
if (sh != NULL)
|
|
{
|
|
relocation = (htab->stub->output_section->vma
|
|
+ htab->stub->output_offset
|
|
+ sh->off);
|
|
addend = 0;
|
|
}
|
|
free (stub_name);
|
|
}
|
|
|
|
r = _bfd_final_link_relocate (howto,
|
|
input_bfd,
|
|
input_section,
|
|
contents,
|
|
rel->r_offset, relocation, addend);
|
|
|
|
if (r != bfd_reloc_ok)
|
|
{
|
|
const char *msg = (const char *) 0;
|
|
|
|
switch (r)
|
|
{
|
|
case bfd_reloc_overflow:
|
|
if (!((*info->callbacks->reloc_overflow)
|
|
(info, (h ? &h->root : NULL), sym_name, howto->name,
|
|
(bfd_vma) 0, input_bfd, input_section, rel->r_offset)))
|
|
return FALSE;
|
|
break;
|
|
|
|
case bfd_reloc_undefined:
|
|
if (!((*info->callbacks->undefined_symbol)
|
|
(info, sym_name, input_bfd, input_section,
|
|
rel->r_offset, TRUE)))
|
|
return FALSE;
|
|
break;
|
|
|
|
case bfd_reloc_outofrange:
|
|
msg = _("internal error: out of range error");
|
|
goto common_error;
|
|
|
|
case bfd_reloc_notsupported:
|
|
msg = _("internal error: unsupported relocation error");
|
|
goto common_error;
|
|
|
|
case bfd_reloc_dangerous:
|
|
msg = _("internal error: dangerous error");
|
|
goto common_error;
|
|
|
|
default:
|
|
msg = _("internal error: unknown error");
|
|
/* fall through */
|
|
|
|
common_error:
|
|
if (!((*info->callbacks->warning)
|
|
(info, msg, sym_name, input_bfd, input_section,
|
|
rel->r_offset)))
|
|
return FALSE;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (ret
|
|
&& emit_these_relocs
|
|
&& !info->relocatable
|
|
&& !info->emitrelocations)
|
|
{
|
|
Elf_Internal_Rela *wrel;
|
|
Elf_Internal_Shdr *rel_hdr;
|
|
|
|
wrel = rel = relocs;
|
|
relend = relocs + input_section->reloc_count;
|
|
for (; rel < relend; rel++)
|
|
{
|
|
int r_type;
|
|
|
|
r_type = ELF32_R_TYPE (rel->r_info);
|
|
if (r_type == R_SPU_PPU32 || r_type == R_SPU_PPU64)
|
|
*wrel++ = *rel;
|
|
}
|
|
input_section->reloc_count = wrel - relocs;
|
|
/* Backflips for _bfd_elf_link_output_relocs. */
|
|
rel_hdr = &elf_section_data (input_section)->rel_hdr;
|
|
rel_hdr->sh_size = input_section->reloc_count * rel_hdr->sh_entsize;
|
|
ret = 2;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/* Adjust _SPUEAR_ syms to point at their overlay stubs. */
|
|
|
|
static bfd_boolean
|
|
spu_elf_output_symbol_hook (struct bfd_link_info *info,
|
|
const char *sym_name ATTRIBUTE_UNUSED,
|
|
Elf_Internal_Sym *sym,
|
|
asection *sym_sec ATTRIBUTE_UNUSED,
|
|
struct elf_link_hash_entry *h)
|
|
{
|
|
struct spu_link_hash_table *htab = spu_hash_table (info);
|
|
|
|
if (!info->relocatable
|
|
&& htab->num_overlays != 0
|
|
&& h != NULL
|
|
&& (h->root.type == bfd_link_hash_defined
|
|
|| h->root.type == bfd_link_hash_defweak)
|
|
&& h->def_regular
|
|
&& strncmp (h->root.root.string, "_SPUEAR_", 8) == 0)
|
|
{
|
|
static Elf_Internal_Rela zero_rel;
|
|
char *stub_name = spu_stub_name (h->root.u.def.section, h, &zero_rel);
|
|
struct spu_stub_hash_entry *sh;
|
|
|
|
if (stub_name == NULL)
|
|
return FALSE;
|
|
sh = (struct spu_stub_hash_entry *)
|
|
bfd_hash_lookup (&htab->stub_hash_table, stub_name, FALSE, FALSE);
|
|
free (stub_name);
|
|
if (sh == NULL)
|
|
return TRUE;
|
|
sym->st_shndx
|
|
= _bfd_elf_section_from_bfd_section (htab->stub->output_section->owner,
|
|
htab->stub->output_section);
|
|
sym->st_value = (htab->stub->output_section->vma
|
|
+ htab->stub->output_offset
|
|
+ sh->off);
|
|
}
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
static int spu_plugin = 0;
|
|
|
|
void
|
|
spu_elf_plugin (int val)
|
|
{
|
|
spu_plugin = val;
|
|
}
|
|
|
|
/* Set ELF header e_type for plugins. */
|
|
|
|
static void
|
|
spu_elf_post_process_headers (bfd *abfd,
|
|
struct bfd_link_info *info ATTRIBUTE_UNUSED)
|
|
{
|
|
if (spu_plugin)
|
|
{
|
|
Elf_Internal_Ehdr *i_ehdrp = elf_elfheader (abfd);
|
|
|
|
i_ehdrp->e_type = ET_DYN;
|
|
}
|
|
}
|
|
|
|
/* We may add an extra PT_LOAD segment for .toe. We also need extra
|
|
segments for overlays. */
|
|
|
|
static int
|
|
spu_elf_additional_program_headers (bfd *abfd, struct bfd_link_info *info)
|
|
{
|
|
struct spu_link_hash_table *htab = spu_hash_table (info);
|
|
int extra = htab->num_overlays;
|
|
asection *sec;
|
|
|
|
if (extra)
|
|
++extra;
|
|
|
|
sec = bfd_get_section_by_name (abfd, ".toe");
|
|
if (sec != NULL && (sec->flags & SEC_LOAD) != 0)
|
|
++extra;
|
|
|
|
return extra;
|
|
}
|
|
|
|
/* Remove .toe section from other PT_LOAD segments and put it in
|
|
a segment of its own. Put overlays in separate segments too. */
|
|
|
|
static bfd_boolean
|
|
spu_elf_modify_segment_map (bfd *abfd, struct bfd_link_info *info)
|
|
{
|
|
asection *toe, *s;
|
|
struct elf_segment_map *m;
|
|
unsigned int i;
|
|
|
|
if (info == NULL)
|
|
return TRUE;
|
|
|
|
toe = bfd_get_section_by_name (abfd, ".toe");
|
|
for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
|
|
if (m->p_type == PT_LOAD && m->count > 1)
|
|
for (i = 0; i < m->count; i++)
|
|
if ((s = m->sections[i]) == toe
|
|
|| spu_elf_section_data (s)->ovl_index != 0)
|
|
{
|
|
struct elf_segment_map *m2;
|
|
bfd_vma amt;
|
|
|
|
if (i + 1 < m->count)
|
|
{
|
|
amt = sizeof (struct elf_segment_map);
|
|
amt += (m->count - (i + 2)) * sizeof (m->sections[0]);
|
|
m2 = bfd_zalloc (abfd, amt);
|
|
if (m2 == NULL)
|
|
return FALSE;
|
|
m2->count = m->count - (i + 1);
|
|
memcpy (m2->sections, m->sections + i + 1,
|
|
m2->count * sizeof (m->sections[0]));
|
|
m2->p_type = PT_LOAD;
|
|
m2->next = m->next;
|
|
m->next = m2;
|
|
}
|
|
m->count = 1;
|
|
if (i != 0)
|
|
{
|
|
m->count = i;
|
|
amt = sizeof (struct elf_segment_map);
|
|
m2 = bfd_zalloc (abfd, amt);
|
|
if (m2 == NULL)
|
|
return FALSE;
|
|
m2->p_type = PT_LOAD;
|
|
m2->count = 1;
|
|
m2->sections[0] = s;
|
|
m2->next = m->next;
|
|
m->next = m2;
|
|
}
|
|
break;
|
|
}
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
/* Check that all loadable section VMAs lie in the range
|
|
LO .. HI inclusive. */
|
|
|
|
asection *
|
|
spu_elf_check_vma (bfd *abfd, bfd_vma lo, bfd_vma hi)
|
|
{
|
|
struct elf_segment_map *m;
|
|
unsigned int i;
|
|
|
|
for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
|
|
if (m->p_type == PT_LOAD)
|
|
for (i = 0; i < m->count; i++)
|
|
if (m->sections[i]->size != 0
|
|
&& (m->sections[i]->vma < lo
|
|
|| m->sections[i]->vma > hi
|
|
|| m->sections[i]->vma + m->sections[i]->size - 1 > hi))
|
|
return m->sections[i];
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/* Tweak phdrs before writing them out. */
|
|
|
|
static int
|
|
spu_elf_modify_program_headers (bfd *abfd, struct bfd_link_info *info)
|
|
{
|
|
const struct elf_backend_data *bed;
|
|
struct elf_obj_tdata *tdata;
|
|
Elf_Internal_Phdr *phdr, *last;
|
|
struct spu_link_hash_table *htab;
|
|
unsigned int count;
|
|
unsigned int i;
|
|
|
|
if (info == NULL)
|
|
return TRUE;
|
|
|
|
bed = get_elf_backend_data (abfd);
|
|
tdata = elf_tdata (abfd);
|
|
phdr = tdata->phdr;
|
|
count = tdata->program_header_size / bed->s->sizeof_phdr;
|
|
htab = spu_hash_table (info);
|
|
if (htab->num_overlays != 0)
|
|
{
|
|
struct elf_segment_map *m;
|
|
unsigned int o;
|
|
|
|
for (i = 0, m = elf_tdata (abfd)->segment_map; m; ++i, m = m->next)
|
|
if (m->count != 0
|
|
&& (o = spu_elf_section_data (m->sections[0])->ovl_index) != 0)
|
|
{
|
|
/* Mark this as an overlay header. */
|
|
phdr[i].p_flags |= PF_OVERLAY;
|
|
|
|
if (htab->ovtab != NULL && htab->ovtab->size != 0)
|
|
{
|
|
bfd_byte *p = htab->ovtab->contents;
|
|
unsigned int off = (o - 1) * 16 + 8;
|
|
|
|
/* Write file_off into _ovly_table. */
|
|
bfd_put_32 (htab->ovtab->owner, phdr[i].p_offset, p + off);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Round up p_filesz and p_memsz of PT_LOAD segments to multiples
|
|
of 16. This should always be possible when using the standard
|
|
linker scripts, but don't create overlapping segments if
|
|
someone is playing games with linker scripts. */
|
|
last = NULL;
|
|
for (i = count; i-- != 0; )
|
|
if (phdr[i].p_type == PT_LOAD)
|
|
{
|
|
unsigned adjust;
|
|
|
|
adjust = -phdr[i].p_filesz & 15;
|
|
if (adjust != 0
|
|
&& last != NULL
|
|
&& phdr[i].p_offset + phdr[i].p_filesz > last->p_offset - adjust)
|
|
break;
|
|
|
|
adjust = -phdr[i].p_memsz & 15;
|
|
if (adjust != 0
|
|
&& last != NULL
|
|
&& phdr[i].p_filesz != 0
|
|
&& phdr[i].p_vaddr + phdr[i].p_memsz > last->p_vaddr - adjust
|
|
&& phdr[i].p_vaddr + phdr[i].p_memsz <= last->p_vaddr)
|
|
break;
|
|
|
|
if (phdr[i].p_filesz != 0)
|
|
last = &phdr[i];
|
|
}
|
|
|
|
if (i == (unsigned int) -1)
|
|
for (i = count; i-- != 0; )
|
|
if (phdr[i].p_type == PT_LOAD)
|
|
{
|
|
unsigned adjust;
|
|
|
|
adjust = -phdr[i].p_filesz & 15;
|
|
phdr[i].p_filesz += adjust;
|
|
|
|
adjust = -phdr[i].p_memsz & 15;
|
|
phdr[i].p_memsz += adjust;
|
|
}
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
#define TARGET_BIG_SYM bfd_elf32_spu_vec
|
|
#define TARGET_BIG_NAME "elf32-spu"
|
|
#define ELF_ARCH bfd_arch_spu
|
|
#define ELF_MACHINE_CODE EM_SPU
|
|
/* This matches the alignment need for DMA. */
|
|
#define ELF_MAXPAGESIZE 0x80
|
|
#define elf_backend_rela_normal 1
|
|
#define elf_backend_can_gc_sections 1
|
|
|
|
#define bfd_elf32_bfd_reloc_type_lookup spu_elf_reloc_type_lookup
|
|
#define bfd_elf32_bfd_reloc_name_lookup spu_elf_reloc_name_lookup
|
|
#define elf_info_to_howto spu_elf_info_to_howto
|
|
#define elf_backend_count_relocs spu_elf_count_relocs
|
|
#define elf_backend_relocate_section spu_elf_relocate_section
|
|
#define elf_backend_symbol_processing spu_elf_backend_symbol_processing
|
|
#define elf_backend_link_output_symbol_hook spu_elf_output_symbol_hook
|
|
#define bfd_elf32_new_section_hook spu_elf_new_section_hook
|
|
#define bfd_elf32_bfd_link_hash_table_create spu_elf_link_hash_table_create
|
|
#define bfd_elf32_bfd_link_hash_table_free spu_elf_link_hash_table_free
|
|
|
|
#define elf_backend_additional_program_headers spu_elf_additional_program_headers
|
|
#define elf_backend_modify_segment_map spu_elf_modify_segment_map
|
|
#define elf_backend_modify_program_headers spu_elf_modify_program_headers
|
|
#define elf_backend_post_process_headers spu_elf_post_process_headers
|
|
#define elf_backend_special_sections spu_elf_special_sections
|
|
#define bfd_elf32_bfd_final_link spu_elf_final_link
|
|
|
|
#include "elf32-target.h"
|