old-cross-binutils/bfd/elf32-sparc.c
1994-10-10 20:30:32 +00:00

1337 lines
40 KiB
C
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/* SPARC-specific support for 32-bit ELF
Copyright 1993 Free Software Foundation, Inc.
This file is part of BFD, the Binary File Descriptor library.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
#include "bfd.h"
#include "sysdep.h"
#include "bfdlink.h"
#include "libbfd.h"
#include "libelf.h"
static CONST struct reloc_howto_struct *bfd_elf32_bfd_reloc_type_lookup
PARAMS ((bfd *, bfd_reloc_code_real_type));
static void elf_info_to_howto
PARAMS ((bfd *, arelent *, Elf_Internal_Rela *));
static boolean elf32_sparc_create_dynamic_sections
PARAMS ((bfd *, struct bfd_link_info *));
static boolean elf32_sparc_check_relocs
PARAMS ((bfd *, struct bfd_link_info *, asection *,
const Elf_Internal_Rela *));
static boolean elf32_sparc_adjust_dynamic_symbol
PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
static boolean elf32_sparc_size_dynamic_sections
PARAMS ((bfd *, struct bfd_link_info *));
static boolean elf32_sparc_relocate_section
PARAMS ((bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
Elf_Internal_Rela *, Elf_Internal_Sym *, asection **, char *));
static boolean elf32_sparc_finish_dynamic_symbol
PARAMS ((bfd *, struct bfd_link_info *, struct elf_link_hash_entry *,
Elf_Internal_Sym *));
static boolean elf32_sparc_finish_dynamic_sections
PARAMS ((bfd *, struct bfd_link_info *));
enum reloc_type
{
R_SPARC_NONE = 0,
R_SPARC_8, R_SPARC_16, R_SPARC_32,
R_SPARC_DISP8, R_SPARC_DISP16, R_SPARC_DISP32,
R_SPARC_WDISP30, R_SPARC_WDISP22,
R_SPARC_HI22, R_SPARC_22,
R_SPARC_13, R_SPARC_LO10,
R_SPARC_GOT10, R_SPARC_GOT13, R_SPARC_GOT22,
R_SPARC_PC10, R_SPARC_PC22,
R_SPARC_WPLT30,
R_SPARC_COPY,
R_SPARC_GLOB_DAT, R_SPARC_JMP_SLOT,
R_SPARC_RELATIVE,
R_SPARC_UA32,
R_SPARC_max
};
#if 0
static CONST char *CONST reloc_type_names[] =
{
"R_SPARC_NONE",
"R_SPARC_8", "R_SPARC_16", "R_SPARC_32",
"R_SPARC_DISP8", "R_SPARC_DISP16", "R_SPARC_DISP32",
"R_SPARC_WDISP30", "R_SPARC_WDISP22",
"R_SPARC_HI22", "R_SPARC_22",
"R_SPARC_13", "R_SPARC_LO10",
"R_SPARC_GOT10", "R_SPARC_GOT13", "R_SPARC_GOT22",
"R_SPARC_PC10", "R_SPARC_PC22",
"R_SPARC_WPLT30",
"R_SPARC_COPY",
"R_SPARC_GLOB_DAT", "R_SPARC_JMP_SLOT",
"R_SPARC_RELATIVE",
"R_SPARC_UA32",
};
#endif
static reloc_howto_type elf_sparc_howto_table[] =
{
HOWTO(R_SPARC_NONE, 0,0, 0,false,0,complain_overflow_dont, bfd_elf_generic_reloc,"R_SPARC_NONE", false,0,0x00000000,true),
HOWTO(R_SPARC_8, 0,0, 8,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc,"R_SPARC_8", false,0,0x000000ff,true),
HOWTO(R_SPARC_16, 0,1,16,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc,"R_SPARC_16", false,0,0x0000ffff,true),
HOWTO(R_SPARC_32, 0,2,32,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc,"R_SPARC_32", false,0,0xffffffff,true),
HOWTO(R_SPARC_DISP8, 0,0, 8,true, 0,complain_overflow_signed, bfd_elf_generic_reloc,"R_SPARC_DISP8", false,0,0x000000ff,true),
HOWTO(R_SPARC_DISP16, 0,1,16,true, 0,complain_overflow_signed, bfd_elf_generic_reloc,"R_SPARC_DISP16", false,0,0x0000ffff,true),
HOWTO(R_SPARC_DISP32, 0,2,32,true, 0,complain_overflow_signed, bfd_elf_generic_reloc,"R_SPARC_DISP32", false,0,0x00ffffff,true),
HOWTO(R_SPARC_WDISP30, 2,2,30,true, 0,complain_overflow_signed, bfd_elf_generic_reloc,"R_SPARC_WDISP30", false,0,0x3fffffff,true),
HOWTO(R_SPARC_WDISP22, 2,2,22,true, 0,complain_overflow_signed, bfd_elf_generic_reloc,"R_SPARC_WDISP22", false,0,0x003fffff,true),
HOWTO(R_SPARC_HI22, 10,2,22,false,0,complain_overflow_dont, bfd_elf_generic_reloc,"R_SPARC_HI22", false,0,0x003fffff,true),
HOWTO(R_SPARC_22, 0,2,22,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc,"R_SPARC_22", false,0,0x003fffff,true),
HOWTO(R_SPARC_13, 0,2,13,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc,"R_SPARC_13", false,0,0x00001fff,true),
HOWTO(R_SPARC_LO10, 0,2,10,false,0,complain_overflow_dont, bfd_elf_generic_reloc,"R_SPARC_LO10", false,0,0x000003ff,true),
HOWTO(R_SPARC_GOT10, 0,2,10,false,0,complain_overflow_dont, bfd_elf_generic_reloc,"R_SPARC_GOT10", false,0,0x000003ff,true),
HOWTO(R_SPARC_GOT13, 0,2,13,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc,"R_SPARC_GOT13", false,0,0x00001fff,true),
HOWTO(R_SPARC_GOT22, 10,2,22,false,0,complain_overflow_dont, bfd_elf_generic_reloc,"R_SPARC_GOT22", false,0,0x003fffff,true),
HOWTO(R_SPARC_PC10, 0,2,10,true, 0,complain_overflow_dont, bfd_elf_generic_reloc,"R_SPARC_PC10", false,0,0x000003ff,true),
HOWTO(R_SPARC_PC22, 0,2,22,true, 0,complain_overflow_bitfield,bfd_elf_generic_reloc,"R_SPARC_PC22", false,0,0x003fffff,true),
HOWTO(R_SPARC_WPLT30, 0,0,00,true, 0,complain_overflow_dont, bfd_elf_generic_reloc,"R_SPARC_WPLT30", false,0,0x00000000,true),
HOWTO(R_SPARC_COPY, 0,0,00,false,0,complain_overflow_dont, bfd_elf_generic_reloc,"R_SPARC_COPY", false,0,0x00000000,true),
HOWTO(R_SPARC_GLOB_DAT,0,0,00,false,0,complain_overflow_dont, bfd_elf_generic_reloc,"R_SPARC_GLOB_DAT",false,0,0x00000000,true),
HOWTO(R_SPARC_JMP_SLOT,0,0,00,false,0,complain_overflow_dont, bfd_elf_generic_reloc,"R_SPARC_JMP_SLOT",false,0,0x00000000,true),
HOWTO(R_SPARC_RELATIVE,0,0,00,false,0,complain_overflow_dont, bfd_elf_generic_reloc,"R_SPARC_RELATIVE",false,0,0x00000000,true),
HOWTO(R_SPARC_UA32, 0,0,00,false,0,complain_overflow_dont, bfd_elf_generic_reloc,"R_SPARC_UA32", false,0,0x00000000,true),
};
struct elf_reloc_map {
unsigned char bfd_reloc_val;
unsigned char elf_reloc_val;
};
static CONST struct elf_reloc_map sparc_reloc_map[] =
{
{ BFD_RELOC_NONE, R_SPARC_NONE, },
{ BFD_RELOC_16, R_SPARC_16, },
{ BFD_RELOC_8, R_SPARC_8 },
{ BFD_RELOC_8_PCREL, R_SPARC_DISP8 },
{ BFD_RELOC_CTOR, R_SPARC_32 }, /* @@ Assumes 32 bits. */
{ BFD_RELOC_32, R_SPARC_32 },
{ BFD_RELOC_32_PCREL, R_SPARC_DISP32 },
{ BFD_RELOC_HI22, R_SPARC_HI22 },
{ BFD_RELOC_LO10, R_SPARC_LO10, },
{ BFD_RELOC_32_PCREL_S2, R_SPARC_WDISP30 },
{ BFD_RELOC_SPARC22, R_SPARC_22 },
{ BFD_RELOC_SPARC13, R_SPARC_13 },
{ BFD_RELOC_SPARC_GOT10, R_SPARC_GOT10 },
{ BFD_RELOC_SPARC_GOT13, R_SPARC_GOT13 },
{ BFD_RELOC_SPARC_GOT22, R_SPARC_GOT22 },
{ BFD_RELOC_SPARC_PC10, R_SPARC_PC10 },
{ BFD_RELOC_SPARC_PC22, R_SPARC_PC22 },
{ BFD_RELOC_SPARC_WPLT30, R_SPARC_WPLT30 },
{ BFD_RELOC_SPARC_COPY, R_SPARC_COPY },
{ BFD_RELOC_SPARC_GLOB_DAT, R_SPARC_GLOB_DAT },
{ BFD_RELOC_SPARC_JMP_SLOT, R_SPARC_JMP_SLOT },
{ BFD_RELOC_SPARC_RELATIVE, R_SPARC_RELATIVE },
{ BFD_RELOC_SPARC_WDISP22, R_SPARC_WDISP22 },
/*{ BFD_RELOC_SPARC_UA32, R_SPARC_UA32 }, not used?? */
};
static CONST struct reloc_howto_struct *
bfd_elf32_bfd_reloc_type_lookup (abfd, code)
bfd *abfd;
bfd_reloc_code_real_type code;
{
int i;
for (i = 0; i < sizeof (sparc_reloc_map) / sizeof (struct elf_reloc_map); i++)
{
if (sparc_reloc_map[i].bfd_reloc_val == code)
return &elf_sparc_howto_table[(int) sparc_reloc_map[i].elf_reloc_val];
}
return 0;
}
static void
elf_info_to_howto (abfd, cache_ptr, dst)
bfd *abfd;
arelent *cache_ptr;
Elf_Internal_Rela *dst;
{
BFD_ASSERT (ELF32_R_TYPE(dst->r_info) < (unsigned int) R_SPARC_max);
cache_ptr->howto = &elf_sparc_howto_table[ELF32_R_TYPE(dst->r_info)];
}
/* Functions for the SPARC ELF linker. */
/* The name of the dynamic interpreter. This is put in the .interp
section. */
#define ELF_DYNAMIC_INTERPRETER "/usr/lib/ld.so.1"
/* The nop opcode we use. */
#define SPARC_NOP 0x01000000
/* The size in bytes of an entry in the procedure linkage table. */
#define PLT_ENTRY_SIZE 12
/* The first four entries in a procedure linkage table are reserved,
and the initial contents are unimportant (we zero them out).
Subsequent entries look like this. See the SVR4 ABI SPARC
supplement to see how this works. */
/* sethi %hi(.-.plt0),%g1. We fill in the address later. */
#define PLT_ENTRY_WORD0 0x03000000
/* b,a .plt0. We fill in the offset later. */
#define PLT_ENTRY_WORD1 0x30800000
/* nop. */
#define PLT_ENTRY_WORD2 SPARC_NOP
/* Create dynamic sections when linking against a dynamic object. */
static boolean
elf32_sparc_create_dynamic_sections (abfd, info)
bfd *abfd;
struct bfd_link_info *info;
{
flagword flags;
register asection *s;
struct elf_link_hash_entry *h;
/* We need to create .plt, .rela.plt, .got, .dynbss, and .rela.bss
sections. */
flags = SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY;
s = bfd_make_section (abfd, ".plt");
if (s == NULL
|| ! bfd_set_section_flags (abfd, s, flags | SEC_CODE)
|| ! bfd_set_section_alignment (abfd, s, 2))
return false;
/* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the
.plt section. */
h = NULL;
if (! (_bfd_generic_link_add_one_symbol
(info, abfd, "_PROCEDURE_LINKAGE_TABLE_", BSF_GLOBAL, s, (bfd_vma) 0,
(const char *) NULL, false, get_elf_backend_data (abfd)->collect,
(struct bfd_link_hash_entry **) &h)))
return false;
h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
h->type = STT_OBJECT;
if (info->shared
&& ! bfd_elf32_link_record_dynamic_symbol (info, h))
return false;
/* The first four entries in .plt are reserved. */
s->_raw_size = 4 * PLT_ENTRY_SIZE;
s = bfd_make_section (abfd, ".rela.plt");
if (s == NULL
|| ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
|| ! bfd_set_section_alignment (abfd, s, 2))
return false;
s = bfd_make_section (abfd, ".got");
if (s == NULL
|| ! bfd_set_section_flags (abfd, s, flags)
|| ! bfd_set_section_alignment (abfd, s, 2))
return false;
/* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
section. We don't do this in the linker script because we don't
want to define the symbol if we are not creating a global offset
table. FIXME: The Solaris linker puts _GLOBAL_OFFSET_TABLE_ at
the start of the .got section, but when using the small PIC model
the .got is accessed using a signed 13 bit offset. Shouldn't
_GLOBAL_OFFSET_TABLE_ be located at .got + 4096? */
h = NULL;
if (! (_bfd_generic_link_add_one_symbol
(info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s, (bfd_vma) 0,
(const char *) NULL, false, get_elf_backend_data (abfd)->collect,
(struct bfd_link_hash_entry **) &h)))
return false;
h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
h->type = STT_OBJECT;
if (info->shared
&& ! bfd_elf32_link_record_dynamic_symbol (info, h))
return false;
/* The first global offset table entry is reserved. */
s->_raw_size += 4;
/* The .dynbss section is a place to put symbols which are defined
by dynamic objects, are referenced by regular objects, and are
not functions. We must allocate space for them in the process
image and use a R_SPARC_COPY reloc to tell the dynamic linker to
initialize them at run time. The linker script puts the .dynbss
section into the .bss section of the final image. */
s = bfd_make_section (abfd, ".dynbss");
if (s == NULL
|| ! bfd_set_section_flags (abfd, s, SEC_ALLOC))
return false;
/* The .rela.bss section holds copy relocs. */
if (! info->shared)
{
s = bfd_make_section (abfd, ".rela.bss");
if (s == NULL
|| ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
|| ! bfd_set_section_alignment (abfd, s, 2))
return false;
}
return true;
}
/* Look through the relocs for a section during the first phase, and
allocate space in the global offset table or procedure linkage
table. */
static boolean
elf32_sparc_check_relocs (abfd, info, sec, relocs)
bfd *abfd;
struct bfd_link_info *info;
asection *sec;
const Elf_Internal_Rela *relocs;
{
bfd *dynobj;
Elf_Internal_Shdr *symtab_hdr;
struct elf_link_hash_entry **sym_hashes;
bfd_vma *local_got_offsets;
const Elf_Internal_Rela *rel;
const Elf_Internal_Rela *rel_end;
asection *sgot;
asection *srelgot;
asection *splt;
asection *srelplt;
asection *sreloc;
if (info->relocateable)
return true;
dynobj = elf_hash_table (info)->dynobj;
symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
sym_hashes = elf_sym_hashes (abfd);
local_got_offsets = elf_local_got_offsets (abfd);
sgot = NULL;
srelgot = NULL;
splt = NULL;
srelplt = NULL;
sreloc = NULL;
rel_end = relocs + sec->reloc_count;
for (rel = relocs; rel < rel_end; rel++)
{
long r_symndx;
struct elf_link_hash_entry *h;
r_symndx = ELF32_R_SYM (rel->r_info);
if (r_symndx < symtab_hdr->sh_info)
h = NULL;
else
h = sym_hashes[r_symndx - symtab_hdr->sh_info];
/* Some relocs require a global offset table. FIXME: If this is
a static link, we don't really need to create the full
dynamic linking information. */
if (dynobj == NULL)
{
switch (ELF32_R_TYPE (rel->r_info))
{
case R_SPARC_GOT10:
case R_SPARC_GOT13:
case R_SPARC_GOT22:
case R_SPARC_WPLT30:
elf_hash_table (info)->dynobj = dynobj = abfd;
if (! bfd_elf32_link_create_dynamic_sections (dynobj, info))
return false;
break;
default:
break;
}
}
switch (ELF32_R_TYPE (rel->r_info))
{
case R_SPARC_GOT10:
case R_SPARC_GOT13:
case R_SPARC_GOT22:
/* This symbol requires a global offset table entry. */
if (sgot == NULL)
{
sgot = bfd_get_section_by_name (dynobj, ".got");
srelgot = bfd_get_section_by_name (dynobj, ".rela.got");
if (srelgot == NULL)
{
srelgot = bfd_make_section (dynobj, ".rela.got");
if (srelgot == NULL
|| ! bfd_set_section_flags (dynobj, srelgot,
(SEC_ALLOC
| SEC_LOAD
| SEC_HAS_CONTENTS
| SEC_IN_MEMORY
| SEC_READONLY)))
return false;
}
BFD_ASSERT (sgot != NULL && srelgot != NULL);
}
if (h != NULL)
{
if (h->got_offset != (bfd_vma) -1)
{
/* We have already allocated space in the .got. */
break;
}
h->got_offset = sgot->_raw_size;
}
else
{
/* This is a global offset table entry for a local
symbol. */
if (local_got_offsets == NULL)
{
size_t size;
register int i;
size = symtab_hdr->sh_info * sizeof (bfd_vma);
local_got_offsets = (bfd_vma *) bfd_alloc (abfd, size);
if (local_got_offsets == NULL)
{
bfd_set_error (bfd_error_no_memory);
return false;
}
elf_local_got_offsets (abfd) = local_got_offsets;
for (i = 0; i < symtab_hdr->sh_info; i++)
local_got_offsets[i] = (bfd_vma) -1;
}
if (local_got_offsets[r_symndx] != (bfd_vma) -1)
{
/* We have already allocated space in the .got. */
break;
}
local_got_offsets[r_symndx] = sgot->_raw_size;
}
sgot->_raw_size += 4;
srelgot->_raw_size += sizeof (Elf32_External_Rela);
break;
case R_SPARC_WPLT30:
/* This symbol requires a procedure linkage table entry. */
if (h == NULL)
{
/* It does not make sense to have a procedure linkage
table entry for a local symbol. */
bfd_set_error (bfd_error_bad_value);
return false;
}
if (h->plt_offset != (bfd_vma) -1)
{
/* There is already an entry for this symbol in the
procedure linkage table. */
break;
}
if (splt == NULL)
{
splt = bfd_get_section_by_name (dynobj, ".plt");
srelplt = bfd_get_section_by_name (dynobj, ".rela.plt");
BFD_ASSERT (splt != NULL && srelplt != NULL);
}
/* The procedure linkage table has a maximum size. */
if (splt->_raw_size >= 0x400000)
{
bfd_set_error (bfd_error_bad_value);
return false;
}
h->plt_offset = splt->_raw_size;
/* Make room for this entry. */
splt->_raw_size += PLT_ENTRY_SIZE;
srelplt->_raw_size += sizeof (Elf32_External_Rela);
break;
case R_SPARC_PC10:
case R_SPARC_PC22:
if (h != NULL
&& strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0)
break;
/* Fall through. */
case R_SPARC_8:
case R_SPARC_16:
case R_SPARC_32:
case R_SPARC_DISP8:
case R_SPARC_DISP16:
case R_SPARC_DISP32:
case R_SPARC_WDISP30:
case R_SPARC_WDISP22:
case R_SPARC_HI22:
case R_SPARC_22:
case R_SPARC_13:
case R_SPARC_LO10:
case R_SPARC_UA32:
if (info->shared
&& (sec->flags & SEC_ALLOC) != 0)
{
/* When creating a shared object, we must copy these
relocs into the output file. We create a reloc
section in dynobj and make room for the reloc. */
if (sreloc == NULL)
{
const char *name;
name = (elf_string_from_elf_section
(abfd,
elf_elfheader (abfd)->e_shstrndx,
elf_section_data (sec)->rel_hdr.sh_name));
if (name == NULL)
return false;
BFD_ASSERT (strncmp (name, ".rela", 5) == 0
&& strcmp (bfd_get_section_name (abfd, sec),
name + 5) == 0);
sreloc = bfd_get_section_by_name (dynobj, name);
if (sreloc == NULL)
{
sreloc = bfd_make_section (dynobj, name);
if (sreloc == NULL
|| ! bfd_set_section_flags (dynobj, sreloc,
(SEC_ALLOC
| SEC_LOAD
| SEC_HAS_CONTENTS
| SEC_IN_MEMORY
| SEC_READONLY))
|| ! bfd_set_section_alignment (dynobj, sreloc, 2))
return false;
}
}
sreloc->_raw_size += sizeof (Elf32_External_Rela);
}
break;
default:
break;
}
}
return true;
}
/* Adjust a symbol defined by a dynamic object and referenced by a
regular object. The current definition is in some section of the
dynamic object, but we're not including those sections. We have to
change the definition to something the rest of the link can
understand. */
static boolean
elf32_sparc_adjust_dynamic_symbol (info, h)
struct bfd_link_info *info;
struct elf_link_hash_entry *h;
{
bfd *dynobj;
asection *s;
unsigned int power_of_two;
dynobj = elf_hash_table (info)->dynobj;
/* Make sure we know what is going on here. */
BFD_ASSERT (dynobj != NULL
&& (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
&& (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) != 0
&& (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
&& h->root.type == bfd_link_hash_defined
&& (bfd_get_flavour (h->root.u.def.section->owner)
== bfd_target_elf_flavour)
&& (elf_elfheader (h->root.u.def.section->owner)->e_type
== ET_DYN)
&& h->root.u.def.section->output_section == NULL);
/* If this is a function, put it in the procedure linkage table. We
will fill in the contents of the procedure linkage table later
(although we could actually do it here). */
if (h->type == STT_FUNC)
{
if (h->plt_offset == (bfd_vma) -1)
{
s = bfd_get_section_by_name (dynobj, ".plt");
BFD_ASSERT (s != NULL);
/* The procedure linkage table has a maximum size. */
if (s->_raw_size >= 0x400000)
{
bfd_set_error (bfd_error_bad_value);
return false;
}
/* Set the symbol to this location in the .plt. */
h->root.u.def.section = s;
h->root.u.def.value = s->_raw_size;
h->plt_offset = s->_raw_size;
/* Make room for this entry. */
s->_raw_size += PLT_ENTRY_SIZE;
/* We also need to make an entry in the .rela.plt section. */
s = bfd_get_section_by_name (dynobj, ".rela.plt");
BFD_ASSERT (s != NULL);
s->_raw_size += sizeof (Elf32_External_Rela);
}
return true;
}
/* If this is a weak symbol, and there is a real definition, the
processor independent code will have arranged for us to see the
real definition first, and we can just use the same value. */
if (h->weakdef != NULL)
{
BFD_ASSERT (h->weakdef->root.type == bfd_link_hash_defined);
h->root.u.def.section = h->weakdef->root.u.def.section;
h->root.u.def.value = h->weakdef->root.u.def.value;
return true;
}
/* This is a reference to a symbol defined by a dynamic object which
is not a function. */
/* If we are creating a shared library, we must presume that the
only references to the symbol are via the global offset table.
For such cases we need not do anything here; the relocations will
be handled correctly by relocate_section. */
if (info->shared)
return true;
/* We must allocate the symbol in our .dynbss section, which will
become part of the .bss section of the executable. There will be
an entry for this symbol in the .dynsym section. The dynamic
object will contain position independent code, so all references
from the dynamic object to this symbol will go through the global
offset table. The dynamic linker will use the .dynsym entry to
determine the address it must put in the global offset table, so
both the dynamic object and the regular object will refer to the
same memory location for the variable. */
s = bfd_get_section_by_name (dynobj, ".dynbss");
BFD_ASSERT (s != NULL);
/* If the symbol is currently defined in the .bss section of the
dynamic object, then it is OK to simply initialize it to zero.
If the symbol is in some other section, we must generate a
R_SPARC_COPY reloc to tell the dynamic linker to copy the initial
value out of the dynamic object and into the runtime process
image. We need to remember the offset into the .rel.bss section
we are going to use. */
if ((h->root.u.def.section->flags & SEC_LOAD) != 0)
{
asection *srel;
srel = bfd_get_section_by_name (dynobj, ".rela.bss");
BFD_ASSERT (srel != NULL);
srel->_raw_size += sizeof (Elf32_External_Rela);
h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_COPY;
}
/* We need to figure out the alignment required for this symbol. I
have no idea how ELF linkers handle this. */
power_of_two = bfd_log2 (h->size);
if (power_of_two > 3)
power_of_two = 3;
/* Apply the required alignment. */
s->_raw_size = BFD_ALIGN (s->_raw_size,
(bfd_size_type) (1 << power_of_two));
if (power_of_two > bfd_get_section_alignment (dynobj, s))
{
if (! bfd_set_section_alignment (dynobj, s, power_of_two))
return false;
}
/* Define the symbol as being at this point in the section. */
h->root.u.def.section = s;
h->root.u.def.value = s->_raw_size;
/* Increment the section size to make room for the symbol. */
s->_raw_size += h->size;
return true;
}
/* Set the sizes of the dynamic sections. */
static boolean
elf32_sparc_size_dynamic_sections (output_bfd, info)
bfd *output_bfd;
struct bfd_link_info *info;
{
bfd *dynobj;
asection *s;
boolean reltext;
dynobj = elf_hash_table (info)->dynobj;
BFD_ASSERT (dynobj != NULL);
/* Set the contents of the .interp section to the interpreter. */
if (! info->shared)
{
s = bfd_get_section_by_name (dynobj, ".interp");
BFD_ASSERT (s != NULL);
s->_raw_size = sizeof ELF_DYNAMIC_INTERPRETER;
s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
}
/* Make space for the trailing nop in .plt. */
s = bfd_get_section_by_name (dynobj, ".plt");
BFD_ASSERT (s != NULL);
s->_raw_size += 4;
/* The check_relocs and adjust_dynamic_symbol entry points have
determined the sizes of the various dynamic sections. Allocate
memory for them. */
reltext = false;
for (s = dynobj->sections; s != NULL; s = s->next)
{
const char *name;
if ((s->flags & SEC_IN_MEMORY) == 0)
continue;
/* It's OK to base decisions on the section name, because none
of the dynobj section names depend upon the input files. */
name = bfd_get_section_name (dynobj, s);
if (strncmp (name, ".rela", 5) == 0
&& s->_raw_size > 0)
{
asection *target;
/* If this relocation section applies to a read only
section, then we probably need a DT_TEXTREL entry. */
target = bfd_get_section_by_name (output_bfd, name + 5);
if (target != NULL
&& (target->flags & SEC_READONLY) != 0)
reltext = true;
/* We use the reloc_count field as a counter if we need to
copy relocs into the output file. */
s->reloc_count = 0;
}
else if (strcmp (name, ".plt") != 0
&& strcmp (name, ".got") != 0)
{
/* It's not one of our sections, so don't allocate space. */
continue;
}
/* Allocate memory for the section contents. */
s->contents = (bfd_byte *) bfd_alloc (dynobj, s->_raw_size);
if (s->contents == NULL && s->_raw_size != 0)
{
bfd_set_error (bfd_error_no_memory);
return false;
}
}
/* Add some entries to the .dynamic section. We fill in the values
later, in elf32_sparc_finish_dynamic_sections, but we must add
the entries now so that we get the correct size for the .dynamic
section. The DT_DEBUG entry is filled in by the dynamic linker
and used by the debugger. */
if (! info->shared)
{
if (! bfd_elf32_add_dynamic_entry (info, DT_DEBUG, 0))
return false;
}
if (! bfd_elf32_add_dynamic_entry (info, DT_PLTGOT, 0)
|| ! bfd_elf32_add_dynamic_entry (info, DT_PLTRELSZ, 0)
|| ! bfd_elf32_add_dynamic_entry (info, DT_PLTREL, DT_RELA)
|| ! bfd_elf32_add_dynamic_entry (info, DT_JMPREL, 0)
|| ! bfd_elf32_add_dynamic_entry (info, DT_RELA, 0)
|| ! bfd_elf32_add_dynamic_entry (info, DT_RELASZ, 0)
|| ! bfd_elf32_add_dynamic_entry (info, DT_RELAENT,
sizeof (Elf32_External_Rela)))
return false;
if (reltext)
{
if (! bfd_elf32_add_dynamic_entry (info, DT_TEXTREL, 0))
return false;
}
return true;
}
/* Relocate a SPARC ELF section. */
static boolean
elf32_sparc_relocate_section (output_bfd, info, input_bfd, input_section,
contents, relocs, local_syms, local_sections,
output_names)
bfd *output_bfd;
struct bfd_link_info *info;
bfd *input_bfd;
asection *input_section;
bfd_byte *contents;
Elf_Internal_Rela *relocs;
Elf_Internal_Sym *local_syms;
asection **local_sections;
char *output_names;
{
bfd *dynobj;
Elf_Internal_Shdr *symtab_hdr;
struct elf_link_hash_entry **sym_hashes;
bfd_vma *local_got_offsets;
asection *sgot;
asection *splt;
asection *sreloc;
Elf_Internal_Rela *rel;
Elf_Internal_Rela *relend;
dynobj = elf_hash_table (info)->dynobj;
symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
sym_hashes = elf_sym_hashes (input_bfd);
local_got_offsets = elf_local_got_offsets (input_bfd);
sgot = NULL;
splt = NULL;
sreloc = NULL;
rel = relocs;
relend = relocs + input_section->reloc_count;
for (; rel < relend; rel++)
{
int r_type;
const reloc_howto_type *howto;
long r_symndx;
struct elf_link_hash_entry *h;
Elf_Internal_Sym *sym;
asection *sec;
bfd_vma relocation;
bfd_reloc_status_type r;
r_type = ELF32_R_TYPE (rel->r_info);
if (r_type < 0 || r_type >= (int) R_SPARC_max)
{
bfd_set_error (bfd_error_bad_value);
return false;
}
howto = elf_sparc_howto_table + r_type;
r_symndx = ELF32_R_SYM (rel->r_info);
if (info->relocateable)
{
/* This is a relocateable link. We don't have to change
anything, unless the reloc is against a section symbol,
in which case we have to adjust according to where the
section symbol winds up in the output section. */
if (r_symndx < symtab_hdr->sh_info)
{
sym = local_syms + r_symndx;
if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
{
sec = local_sections[r_symndx];
rel->r_addend += sec->output_offset + sym->st_value;
}
}
continue;
}
/* This is a final link. */
h = NULL;
sym = NULL;
sec = NULL;
if (r_symndx < symtab_hdr->sh_info)
{
sym = local_syms + r_symndx;
sec = local_sections[r_symndx];
relocation = (sec->output_section->vma
+ sec->output_offset
+ sym->st_value);
}
else
{
h = sym_hashes[r_symndx - symtab_hdr->sh_info];
if (h->root.type == bfd_link_hash_defined)
{
sec = h->root.u.def.section;
relocation = (h->root.u.def.value
+ sec->output_section->vma
+ sec->output_offset);
}
else if (h->root.type == bfd_link_hash_weak)
relocation = 0;
else if (info->shared)
relocation = 0;
else
{
if (! ((*info->callbacks->undefined_symbol)
(info, h->root.root.string, input_bfd,
input_section, rel->r_offset)))
return false;
relocation = 0;
}
}
switch (r_type)
{
case R_SPARC_GOT10:
case R_SPARC_GOT13:
case R_SPARC_GOT22:
/* Relocation is to the entry for this symbol in the global
offset table. */
if (sgot == NULL)
{
sgot = bfd_get_section_by_name (dynobj, ".got");
BFD_ASSERT (sgot != NULL);
}
if (h != NULL)
{
BFD_ASSERT (h->got_offset != (bfd_vma) -1);
relocation = sgot->output_offset + h->got_offset;
}
else
{
bfd_vma off;
BFD_ASSERT (local_got_offsets != NULL
&& local_got_offsets[r_symndx] != (bfd_vma) -1);
off = local_got_offsets[r_symndx];
/* The offset must always be a multiple of 4. We use
the least significant bit to record whether we have
already generated the necessary reloc. */
if ((off & 1) != 0)
off &= ~1;
else
{
asection *srelgot;
Elf_Internal_Rela outrel;
bfd_put_32 (output_bfd, relocation, sgot->contents + off);
srelgot = bfd_get_section_by_name (dynobj, ".rela.got");
BFD_ASSERT (srelgot != NULL);
outrel.r_offset = (sgot->output_section->vma
+ sgot->output_offset
+ off);
outrel.r_info = ELF32_R_INFO (0, R_SPARC_RELATIVE);
outrel.r_addend = 0;
bfd_elf32_swap_reloca_out (output_bfd, &outrel,
(((Elf32_External_Rela *)
srelgot->contents)
+ srelgot->reloc_count));
++srelgot->reloc_count;
local_got_offsets[r_symndx] |= 1;
}
relocation = sgot->output_offset + off;
}
break;
case R_SPARC_WPLT30:
/* Relocation is to the entry for this symbol in the
procedure linkage table. */
if (splt == NULL)
{
splt = bfd_get_section_by_name (dynobj, ".plt");
BFD_ASSERT (splt != NULL);
}
BFD_ASSERT (h != NULL && h->plt_offset != (bfd_vma) -1);
relocation = (splt->output_section->vma
+ splt->output_offset
+ h->plt_offset);
break;
case R_SPARC_PC10:
case R_SPARC_PC22:
if (h != NULL
&& strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0)
break;
/* Fall through. */
case R_SPARC_8:
case R_SPARC_16:
case R_SPARC_32:
case R_SPARC_DISP8:
case R_SPARC_DISP16:
case R_SPARC_DISP32:
case R_SPARC_WDISP30:
case R_SPARC_WDISP22:
case R_SPARC_HI22:
case R_SPARC_22:
case R_SPARC_13:
case R_SPARC_LO10:
case R_SPARC_UA32:
if (info->shared
&& (input_section->flags & SEC_ALLOC) != 0)
{
Elf_Internal_Rela outrel;
/* When generating a shared object, these relocations
are copied into the output file to be resolved at run
time. */
if (sreloc == NULL)
{
const char *name;
name = (elf_string_from_elf_section
(input_bfd,
elf_elfheader (input_bfd)->e_shstrndx,
elf_section_data (input_section)->rel_hdr.sh_name));
if (name == NULL)
return false;
BFD_ASSERT (strncmp (name, ".rela", 5) == 0
&& strcmp (bfd_get_section_name (input_bfd,
input_section),
name + 5) == 0);
sreloc = bfd_get_section_by_name (dynobj, name);
BFD_ASSERT (sreloc != NULL);
}
outrel.r_offset = (rel->r_offset
+ input_section->output_section->vma
+ input_section->output_offset);
if (h != NULL)
{
BFD_ASSERT (h->dynindx != (bfd_vma) -1);
outrel.r_info = ELF32_R_INFO (h->dynindx, r_type);
outrel.r_addend = 0;
}
else
{
long indx;
sym = local_syms + r_symndx;
/* If this isn't a section symbol, we need to map it
to something that is going to be put into the
dynamic symbols. The case will probably never
arise. */
BFD_ASSERT (ELF_ST_TYPE (sym->st_info) == STT_SECTION);
sec = local_sections[r_symndx];
if (sec != NULL && bfd_is_abs_section (sec))
indx = 0;
else if (sec == NULL || sec->owner == NULL)
{
bfd_set_error (bfd_error_bad_value);
return false;
}
else
{
indx = sec->output_section->target_index;
if (indx == 0)
abort ();
}
outrel.r_info = ELF32_R_INFO (indx, r_type);
outrel.r_addend = sec->output_offset + sym->st_value;
}
bfd_elf32_swap_reloca_out (output_bfd, &outrel,
(((Elf32_External_Rela *)
sreloc->contents)
+ sreloc->reloc_count));
++sreloc->reloc_count;
/* This reloc will be computed at runtime, so there's no
need to do anything now. */
continue;
}
default:
break;
}
r = _bfd_final_link_relocate (howto, input_bfd, input_section,
contents, rel->r_offset,
relocation, rel->r_addend);
if (r != bfd_reloc_ok)
{
switch (r)
{
default:
case bfd_reloc_outofrange:
abort ();
case bfd_reloc_overflow:
{
const char *name;
if (h != NULL)
name = h->root.root.string;
else
{
name = output_names + sym->st_name;
if (name == NULL)
return false;
if (*name == '\0')
name = bfd_section_name (input_bfd, sec);
}
if (! ((*info->callbacks->reloc_overflow)
(info, name, howto->name, (bfd_vma) 0,
input_bfd, input_section, rel->r_offset)))
return false;
}
break;
}
}
}
return true;
}
/* Finish up dynamic symbol handling. We set the contents of various
dynamic sections here. */
static boolean
elf32_sparc_finish_dynamic_symbol (output_bfd, info, h, sym)
bfd *output_bfd;
struct bfd_link_info *info;
struct elf_link_hash_entry *h;
Elf_Internal_Sym *sym;
{
bfd *dynobj;
dynobj = elf_hash_table (info)->dynobj;
if (h->plt_offset != (bfd_vma) -1)
{
asection *splt;
asection *srela;
Elf_Internal_Rela rela;
/* This symbol has an entry in the procedure linkage table. Set
it up. */
BFD_ASSERT (h->dynindx != -1);
splt = bfd_get_section_by_name (dynobj, ".plt");
srela = bfd_get_section_by_name (dynobj, ".rela.plt");
BFD_ASSERT (splt != NULL && srela != NULL);
/* Fill in the entry in the procedure linkage table. */
bfd_put_32 (output_bfd,
PLT_ENTRY_WORD0 + h->plt_offset,
splt->contents + h->plt_offset);
bfd_put_32 (output_bfd,
(PLT_ENTRY_WORD1
+ (((- (h->plt_offset + 4)) >> 2) & 0x3fffff)),
splt->contents + h->plt_offset + 4);
bfd_put_32 (output_bfd, PLT_ENTRY_WORD2,
splt->contents + h->plt_offset + 8);
/* Fill in the entry in the .rela.plt section. */
rela.r_offset = (splt->output_section->vma
+ splt->output_offset
+ h->plt_offset);
rela.r_info = ELF32_R_INFO (h->dynindx, R_SPARC_JMP_SLOT);
rela.r_addend = 0;
bfd_elf32_swap_reloca_out (output_bfd, &rela,
((Elf32_External_Rela *) srela->contents
+ h->plt_offset / PLT_ENTRY_SIZE - 4));
if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
{
/* Mark the symbol as undefined, rather than as defined in
the .plt section. Leave the value alone. */
sym->st_shndx = SHN_UNDEF;
}
}
if (h->got_offset != (bfd_vma) -1)
{
asection *sgot;
asection *srela;
Elf_Internal_Rela rela;
/* This symbol has an entry in the global offset table. Set it
up. */
BFD_ASSERT (h->dynindx != -1);
sgot = bfd_get_section_by_name (dynobj, ".got");
srela = bfd_get_section_by_name (dynobj, ".rela.got");
BFD_ASSERT (sgot != NULL && srela != NULL);
bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + h->got_offset);
rela.r_offset = (sgot->output_section->vma
+ sgot->output_offset
+ h->got_offset);
rela.r_info = ELF32_R_INFO (h->dynindx, R_SPARC_GLOB_DAT);
rela.r_addend = 0;
bfd_elf32_swap_reloca_out (output_bfd, &rela,
((Elf32_External_Rela *) srela->contents
+ srela->reloc_count));
++srela->reloc_count;
}
if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_COPY) != 0)
{
asection *s;
Elf_Internal_Rela rela;
/* This symbols needs a copy reloc. Set it up. */
BFD_ASSERT (h->dynindx != -1);
s = bfd_get_section_by_name (h->root.u.def.section->owner,
".rela.bss");
BFD_ASSERT (s != NULL);
rela.r_offset = (h->root.u.def.value
+ h->root.u.def.section->output_section->vma
+ h->root.u.def.section->output_offset);
rela.r_info = ELF32_R_INFO (h->dynindx, R_SPARC_COPY);
rela.r_addend = 0;
bfd_elf32_swap_reloca_out (output_bfd, &rela,
((Elf32_External_Rela *) s->contents
+ s->reloc_count));
++s->reloc_count;
}
/* Mark some specially defined symbols as absolute. */
if (strcmp (h->root.root.string, "_DYNAMIC") == 0
|| strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0
|| strcmp (h->root.root.string, "_PROCEDURE_LINKAGE_TABLE_") == 0)
sym->st_shndx = SHN_ABS;
return true;
}
/* Finish up the dynamic sections. */
static boolean
elf32_sparc_finish_dynamic_sections (output_bfd, info)
bfd *output_bfd;
struct bfd_link_info *info;
{
bfd *dynobj;
asection *splt;
asection *sgot;
asection *sdyn;
Elf32_External_Dyn *dyncon, *dynconend;
dynobj = elf_hash_table (info)->dynobj;
splt = bfd_get_section_by_name (dynobj, ".plt");
sgot = bfd_get_section_by_name (dynobj, ".got");
sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
BFD_ASSERT (splt != NULL && sgot != NULL && sdyn != NULL);
dyncon = (Elf32_External_Dyn *) sdyn->contents;
dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->_raw_size);
for (; dyncon < dynconend; dyncon++)
{
Elf_Internal_Dyn dyn;
const char *name;
boolean size;
bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
switch (dyn.d_tag)
{
case DT_PLTGOT: name = ".plt"; size = false; break;
case DT_PLTRELSZ: name = ".rela.plt"; size = true; break;
case DT_JMPREL: name = ".rela.plt"; size = false; break;
default: name = NULL; size = false; break;
}
if (name != NULL)
{
asection *s;
s = bfd_get_section_by_name (output_bfd, name);
BFD_ASSERT (s != NULL);
if (! size)
dyn.d_un.d_ptr = s->vma;
else
{
if (s->_cooked_size != 0)
dyn.d_un.d_val = s->_cooked_size;
else
dyn.d_un.d_val = s->_raw_size;
}
bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
}
}
/* Clear the first four entries in the procedure linkage table, and
put a nop in the last four bytes. */
if (splt->_raw_size > 0)
{
memset (splt->contents, 0, 4 * PLT_ENTRY_SIZE);
bfd_put_32 (output_bfd, SPARC_NOP,
splt->contents + splt->_raw_size - 4);
}
/* Set the first entry in the global offset table to the address of
the dynamic section. */
if (sgot->_raw_size > 0)
bfd_put_32 (output_bfd,
sdyn->output_section->vma + sdyn->output_offset,
sgot->contents);
elf_section_data (sgot->output_section)->this_hdr.sh_entsize = 4;
elf_section_data (splt->output_section)->this_hdr.sh_entsize =
PLT_ENTRY_SIZE;
return true;
}
#define TARGET_BIG_SYM bfd_elf32_sparc_vec
#define TARGET_BIG_NAME "elf32-sparc"
#define ELF_ARCH bfd_arch_sparc
#define ELF_MACHINE_CODE EM_SPARC
#define ELF_MAXPAGESIZE 0x10000
#define elf_backend_create_dynamic_sections \
elf32_sparc_create_dynamic_sections
#define elf_backend_check_relocs elf32_sparc_check_relocs
#define elf_backend_adjust_dynamic_symbol \
elf32_sparc_adjust_dynamic_symbol
#define elf_backend_size_dynamic_sections \
elf32_sparc_size_dynamic_sections
#define elf_backend_relocate_section elf32_sparc_relocate_section
#define elf_backend_finish_dynamic_symbol \
elf32_sparc_finish_dynamic_symbol
#define elf_backend_finish_dynamic_sections \
elf32_sparc_finish_dynamic_sections
#include "elf32-target.h"