old-cross-binutils/gdb/i386-darwin-nat.c
Gary Benson df7e526582 Rename 32- and 64-bit Intel files from "i386" to "x86"
This commit renames nine files that contain code used by both 32- and
64-bit Intel ports such that their names are prefixed with "x86"
rather than "i386".  All types, functions and variables within these
files are likewise renamed such that their names are prefixed with
"x86" rather than "i386".  This makes GDB follow the convention used
by gdbserver such that 32-bit Intel code lives in files called
"i386-*", 64-bit Intel code lives in files called "amd64-*", and code
for both 32- and 64-bit Intel lives in files called "x86-*".

This commit only renames OS-independent files.  The Linux ports of
both GDB and gdbserver now follow the i386/amd64/x86 convention fully.
Some ports still use the old convention where "i386" in file/function/
type/variable names can mean "32-bit only" or "32- and 64-bit" but I
don't want to touch ports I can't fully test except where absolutely
necessary.

gdb/ChangeLog:

	* i386-nat.h: Renamed as...
	* x86-nat.h: New file.  All type, function and variable name
	prefixes changed from "i386_" to "x86_".  All references updated.
	* i386-nat.c: Renamed as...
	* x86-nat.c: New file.  All type, function and variable name
	prefixes changed from "i386_" to "x86_".  All references updated.
	* common/i386-xstate.h: Renamed as...
	* common/x86-xstate.h: New file.  All type, function and variable
	name prefixes changed from "i386_" to "x86_".  All references
	updated.
	* nat/i386-cpuid.h: Renamed as...
	* nat/x86-cpuid.h: New file.  All type, function and variable name
	prefixes changed from "i386_" to "x86_".  All references updated.
	* nat/i386-gcc-cpuid.h: Renamed as...
	* nat/x86-gcc-cpuid.h: New file.  All type, function and variable
	name prefixes changed from "i386_" to "x86_".  All references
	updated.
	* nat/i386-dregs.h: Renamed as...
	* nat/x86-dregs.h: New file.  All type, function and variable name
	prefixes changed from "i386_" to "x86_".  All references updated.
	* nat/i386-dregs.c: Renamed as...
	* nat/x86-dregs.c: New file.  All type, function and variable name
	prefixes changed from "i386_" to "x86_".  All references updated.

gdb/gdbserver/ChangeLog:

	* i386-low.h: Renamed as...
	* x86-low.h: New file.  All type, function and variable name
	prefixes changed from "i386_" to "x86_".  All references updated.
	* i386-low.c: Renamed as...
	* x86-low.c: New file.  All type, function and variable name
	prefixes changed from "i386_" to "x86_".  All references updated.
2014-09-02 16:54:08 +01:00

648 lines
17 KiB
C

/* Darwin support for GDB, the GNU debugger.
Copyright (C) 1997-2014 Free Software Foundation, Inc.
Contributed by Apple Computer, Inc.
This file is part of GDB.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>. */
#include "defs.h"
#include "frame.h"
#include "inferior.h"
#include "target.h"
#include "symfile.h"
#include "symtab.h"
#include "objfiles.h"
#include "gdbcmd.h"
#include "regcache.h"
#include "i386-tdep.h"
#include "i387-tdep.h"
#include "gdbarch.h"
#include "arch-utils.h"
#include "gdbcore.h"
#include "x86-nat.h"
#include "darwin-nat.h"
#include "i386-darwin-tdep.h"
#ifdef BFD64
#include "amd64-nat.h"
#include "amd64-tdep.h"
#include "amd64-darwin-tdep.h"
#endif
/* Read register values from the inferior process.
If REGNO is -1, do this for all registers.
Otherwise, REGNO specifies which register (so we can save time). */
static void
i386_darwin_fetch_inferior_registers (struct target_ops *ops,
struct regcache *regcache, int regno)
{
thread_t current_thread = ptid_get_tid (inferior_ptid);
int fetched = 0;
struct gdbarch *gdbarch = get_regcache_arch (regcache);
#ifdef BFD64
if (gdbarch_ptr_bit (gdbarch) == 64)
{
if (regno == -1 || amd64_native_gregset_supplies_p (gdbarch, regno))
{
x86_thread_state_t gp_regs;
unsigned int gp_count = x86_THREAD_STATE_COUNT;
kern_return_t ret;
ret = thread_get_state
(current_thread, x86_THREAD_STATE, (thread_state_t) & gp_regs,
&gp_count);
if (ret != KERN_SUCCESS)
{
printf_unfiltered (_("Error calling thread_get_state for "
"GP registers for thread 0x%lx\n"),
(unsigned long) current_thread);
MACH_CHECK_ERROR (ret);
}
amd64_supply_native_gregset (regcache, &gp_regs.uts, -1);
fetched++;
}
if (regno == -1 || !amd64_native_gregset_supplies_p (gdbarch, regno))
{
x86_float_state_t fp_regs;
unsigned int fp_count = x86_FLOAT_STATE_COUNT;
kern_return_t ret;
ret = thread_get_state
(current_thread, x86_FLOAT_STATE, (thread_state_t) & fp_regs,
&fp_count);
if (ret != KERN_SUCCESS)
{
printf_unfiltered (_("Error calling thread_get_state for "
"float registers for thread 0x%lx\n"),
(unsigned long) current_thread);
MACH_CHECK_ERROR (ret);
}
amd64_supply_fxsave (regcache, -1, &fp_regs.ufs.fs64.__fpu_fcw);
fetched++;
}
}
else
#endif
{
if (regno == -1 || regno < I386_NUM_GREGS)
{
x86_thread_state32_t gp_regs;
unsigned int gp_count = x86_THREAD_STATE32_COUNT;
kern_return_t ret;
int i;
ret = thread_get_state
(current_thread, x86_THREAD_STATE32, (thread_state_t) &gp_regs,
&gp_count);
if (ret != KERN_SUCCESS)
{
printf_unfiltered (_("Error calling thread_get_state for "
"GP registers for thread 0x%lx\n"),
(unsigned long) current_thread);
MACH_CHECK_ERROR (ret);
}
for (i = 0; i < I386_NUM_GREGS; i++)
regcache_raw_supply
(regcache, i,
(char *)&gp_regs + i386_darwin_thread_state_reg_offset[i]);
fetched++;
}
if (regno == -1
|| (regno >= I386_ST0_REGNUM && regno < I386_SSE_NUM_REGS))
{
x86_float_state32_t fp_regs;
unsigned int fp_count = x86_FLOAT_STATE32_COUNT;
kern_return_t ret;
ret = thread_get_state
(current_thread, x86_FLOAT_STATE32, (thread_state_t) &fp_regs,
&fp_count);
if (ret != KERN_SUCCESS)
{
printf_unfiltered (_("Error calling thread_get_state for "
"float registers for thread 0x%lx\n"),
(unsigned long) current_thread);
MACH_CHECK_ERROR (ret);
}
i387_supply_fxsave (regcache, -1, &fp_regs.__fpu_fcw);
fetched++;
}
}
if (! fetched)
{
warning (_("unknown register %d"), regno);
regcache_raw_supply (regcache, regno, NULL);
}
}
/* Store our register values back into the inferior.
If REGNO is -1, do this for all registers.
Otherwise, REGNO specifies which register (so we can save time). */
static void
i386_darwin_store_inferior_registers (struct target_ops *ops,
struct regcache *regcache, int regno)
{
thread_t current_thread = ptid_get_tid (inferior_ptid);
struct gdbarch *gdbarch = get_regcache_arch (regcache);
#ifdef BFD64
if (gdbarch_ptr_bit (gdbarch) == 64)
{
if (regno == -1 || amd64_native_gregset_supplies_p (gdbarch, regno))
{
x86_thread_state_t gp_regs;
kern_return_t ret;
unsigned int gp_count = x86_THREAD_STATE_COUNT;
ret = thread_get_state
(current_thread, x86_THREAD_STATE, (thread_state_t) &gp_regs,
&gp_count);
MACH_CHECK_ERROR (ret);
gdb_assert (gp_regs.tsh.flavor == x86_THREAD_STATE64);
gdb_assert (gp_regs.tsh.count == x86_THREAD_STATE64_COUNT);
amd64_collect_native_gregset (regcache, &gp_regs.uts, regno);
ret = thread_set_state (current_thread, x86_THREAD_STATE,
(thread_state_t) &gp_regs,
x86_THREAD_STATE_COUNT);
MACH_CHECK_ERROR (ret);
}
if (regno == -1 || !amd64_native_gregset_supplies_p (gdbarch, regno))
{
x86_float_state_t fp_regs;
kern_return_t ret;
unsigned int fp_count = x86_FLOAT_STATE_COUNT;
ret = thread_get_state
(current_thread, x86_FLOAT_STATE, (thread_state_t) & fp_regs,
&fp_count);
MACH_CHECK_ERROR (ret);
gdb_assert (fp_regs.fsh.flavor == x86_FLOAT_STATE64);
gdb_assert (fp_regs.fsh.count == x86_FLOAT_STATE64_COUNT);
amd64_collect_fxsave (regcache, regno, &fp_regs.ufs.fs64.__fpu_fcw);
ret = thread_set_state (current_thread, x86_FLOAT_STATE,
(thread_state_t) & fp_regs,
x86_FLOAT_STATE_COUNT);
MACH_CHECK_ERROR (ret);
}
}
else
#endif
{
if (regno == -1 || regno < I386_NUM_GREGS)
{
x86_thread_state32_t gp_regs;
kern_return_t ret;
unsigned int gp_count = x86_THREAD_STATE32_COUNT;
int i;
ret = thread_get_state
(current_thread, x86_THREAD_STATE32, (thread_state_t) &gp_regs,
&gp_count);
MACH_CHECK_ERROR (ret);
for (i = 0; i < I386_NUM_GREGS; i++)
if (regno == -1 || regno == i)
regcache_raw_collect
(regcache, i,
(char *)&gp_regs + i386_darwin_thread_state_reg_offset[i]);
ret = thread_set_state (current_thread, x86_THREAD_STATE32,
(thread_state_t) &gp_regs,
x86_THREAD_STATE32_COUNT);
MACH_CHECK_ERROR (ret);
}
if (regno == -1
|| (regno >= I386_ST0_REGNUM && regno < I386_SSE_NUM_REGS))
{
x86_float_state32_t fp_regs;
unsigned int fp_count = x86_FLOAT_STATE32_COUNT;
kern_return_t ret;
ret = thread_get_state
(current_thread, x86_FLOAT_STATE32, (thread_state_t) & fp_regs,
&fp_count);
MACH_CHECK_ERROR (ret);
i387_collect_fxsave (regcache, regno, &fp_regs.__fpu_fcw);
ret = thread_set_state (current_thread, x86_FLOAT_STATE32,
(thread_state_t) &fp_regs,
x86_FLOAT_STATE32_COUNT);
MACH_CHECK_ERROR (ret);
}
}
}
/* Support for debug registers, boosted mostly from i386-linux-nat.c. */
static void
i386_darwin_dr_set (int regnum, CORE_ADDR value)
{
int current_pid;
thread_t current_thread;
x86_debug_state_t dr_regs;
kern_return_t ret;
unsigned int dr_count;
gdb_assert (regnum >= 0 && regnum <= DR_CONTROL);
current_thread = ptid_get_tid (inferior_ptid);
dr_regs.dsh.flavor = x86_DEBUG_STATE;
dr_regs.dsh.count = x86_DEBUG_STATE_COUNT;
dr_count = x86_DEBUG_STATE_COUNT;
ret = thread_get_state (current_thread, x86_DEBUG_STATE,
(thread_state_t) &dr_regs, &dr_count);
MACH_CHECK_ERROR (ret);
switch (dr_regs.dsh.flavor)
{
case x86_DEBUG_STATE32:
switch (regnum)
{
case 0:
dr_regs.uds.ds32.__dr0 = value;
break;
case 1:
dr_regs.uds.ds32.__dr1 = value;
break;
case 2:
dr_regs.uds.ds32.__dr2 = value;
break;
case 3:
dr_regs.uds.ds32.__dr3 = value;
break;
case 4:
dr_regs.uds.ds32.__dr4 = value;
break;
case 5:
dr_regs.uds.ds32.__dr5 = value;
break;
case 6:
dr_regs.uds.ds32.__dr6 = value;
break;
case 7:
dr_regs.uds.ds32.__dr7 = value;
break;
}
break;
#ifdef BFD64
case x86_DEBUG_STATE64:
switch (regnum)
{
case 0:
dr_regs.uds.ds64.__dr0 = value;
break;
case 1:
dr_regs.uds.ds64.__dr1 = value;
break;
case 2:
dr_regs.uds.ds64.__dr2 = value;
break;
case 3:
dr_regs.uds.ds64.__dr3 = value;
break;
case 4:
dr_regs.uds.ds64.__dr4 = value;
break;
case 5:
dr_regs.uds.ds64.__dr5 = value;
break;
case 6:
dr_regs.uds.ds64.__dr6 = value;
break;
case 7:
dr_regs.uds.ds64.__dr7 = value;
break;
}
break;
#endif
}
ret = thread_set_state (current_thread, dr_regs.dsh.flavor,
(thread_state_t) &dr_regs.uds, dr_count);
MACH_CHECK_ERROR (ret);
}
static CORE_ADDR
i386_darwin_dr_get (int regnum)
{
thread_t current_thread;
x86_debug_state_t dr_regs;
kern_return_t ret;
unsigned int dr_count;
gdb_assert (regnum >= 0 && regnum <= DR_CONTROL);
current_thread = ptid_get_tid (inferior_ptid);
dr_regs.dsh.flavor = x86_DEBUG_STATE;
dr_regs.dsh.count = x86_DEBUG_STATE_COUNT;
dr_count = x86_DEBUG_STATE_COUNT;
ret = thread_get_state (current_thread, x86_DEBUG_STATE,
(thread_state_t) &dr_regs, &dr_count);
MACH_CHECK_ERROR (ret);
switch (dr_regs.dsh.flavor)
{
case x86_DEBUG_STATE32:
switch (regnum)
{
case 0:
return dr_regs.uds.ds32.__dr0;
case 1:
return dr_regs.uds.ds32.__dr1;
case 2:
return dr_regs.uds.ds32.__dr2;
case 3:
return dr_regs.uds.ds32.__dr3;
case 4:
return dr_regs.uds.ds32.__dr4;
case 5:
return dr_regs.uds.ds32.__dr5;
case 6:
return dr_regs.uds.ds32.__dr6;
case 7:
return dr_regs.uds.ds32.__dr7;
default:
return -1;
}
break;
#ifdef BFD64
case x86_DEBUG_STATE64:
switch (regnum)
{
case 0:
return dr_regs.uds.ds64.__dr0;
case 1:
return dr_regs.uds.ds64.__dr1;
case 2:
return dr_regs.uds.ds64.__dr2;
case 3:
return dr_regs.uds.ds64.__dr3;
case 4:
return dr_regs.uds.ds64.__dr4;
case 5:
return dr_regs.uds.ds64.__dr5;
case 6:
return dr_regs.uds.ds64.__dr6;
case 7:
return dr_regs.uds.ds64.__dr7;
default:
return -1;
}
break;
#endif
default:
return -1;
}
}
static void
i386_darwin_dr_set_control (unsigned long control)
{
i386_darwin_dr_set (DR_CONTROL, control);
}
static void
i386_darwin_dr_set_addr (int regnum, CORE_ADDR addr)
{
gdb_assert (regnum >= 0 && regnum <= DR_LASTADDR - DR_FIRSTADDR);
i386_darwin_dr_set (DR_FIRSTADDR + regnum, addr);
}
static CORE_ADDR
i386_darwin_dr_get_addr (int regnum)
{
return i386_darwin_dr_get (regnum);
}
static unsigned long
i386_darwin_dr_get_status (void)
{
return i386_darwin_dr_get (DR_STATUS);
}
static unsigned long
i386_darwin_dr_get_control (void)
{
return i386_darwin_dr_get (DR_CONTROL);
}
void
darwin_check_osabi (darwin_inferior *inf, thread_t thread)
{
if (gdbarch_osabi (target_gdbarch ()) == GDB_OSABI_UNKNOWN)
{
/* Attaching to a process. Let's figure out what kind it is. */
x86_thread_state_t gp_regs;
struct gdbarch_info info;
unsigned int gp_count = x86_THREAD_STATE_COUNT;
kern_return_t ret;
ret = thread_get_state (thread, x86_THREAD_STATE,
(thread_state_t) &gp_regs, &gp_count);
if (ret != KERN_SUCCESS)
{
MACH_CHECK_ERROR (ret);
return;
}
gdbarch_info_init (&info);
gdbarch_info_fill (&info);
info.byte_order = gdbarch_byte_order (target_gdbarch ());
info.osabi = GDB_OSABI_DARWIN;
if (gp_regs.tsh.flavor == x86_THREAD_STATE64)
info.bfd_arch_info = bfd_lookup_arch (bfd_arch_i386,
bfd_mach_x86_64);
else
info.bfd_arch_info = bfd_lookup_arch (bfd_arch_i386,
bfd_mach_i386_i386);
gdbarch_update_p (info);
}
}
#define X86_EFLAGS_T 0x100UL
/* Returning from a signal trampoline is done by calling a
special system call (sigreturn). This system call
restores the registers that were saved when the signal was
raised, including %eflags/%rflags. That means that single-stepping
won't work. Instead, we'll have to modify the signal context
that's about to be restored, and set the trace flag there. */
static int
i386_darwin_sstep_at_sigreturn (x86_thread_state_t *regs)
{
enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
static const gdb_byte darwin_syscall[] = { 0xcd, 0x80 }; /* int 0x80 */
gdb_byte buf[sizeof (darwin_syscall)];
/* Check if PC is at a sigreturn system call. */
if (target_read_memory (regs->uts.ts32.__eip, buf, sizeof (buf)) == 0
&& memcmp (buf, darwin_syscall, sizeof (darwin_syscall)) == 0
&& regs->uts.ts32.__eax == 0xb8 /* SYS_sigreturn */)
{
ULONGEST uctx_addr;
ULONGEST mctx_addr;
ULONGEST flags_addr;
unsigned int eflags;
uctx_addr = read_memory_unsigned_integer
(regs->uts.ts32.__esp + 4, 4, byte_order);
mctx_addr = read_memory_unsigned_integer
(uctx_addr + 28, 4, byte_order);
flags_addr = mctx_addr + 12 + 9 * 4;
read_memory (flags_addr, (gdb_byte *) &eflags, 4);
eflags |= X86_EFLAGS_T;
write_memory (flags_addr, (gdb_byte *) &eflags, 4);
return 1;
}
return 0;
}
#ifdef BFD64
static int
amd64_darwin_sstep_at_sigreturn (x86_thread_state_t *regs)
{
enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
static const gdb_byte darwin_syscall[] = { 0x0f, 0x05 }; /* syscall */
gdb_byte buf[sizeof (darwin_syscall)];
/* Check if PC is at a sigreturn system call. */
if (target_read_memory (regs->uts.ts64.__rip, buf, sizeof (buf)) == 0
&& memcmp (buf, darwin_syscall, sizeof (darwin_syscall)) == 0
&& (regs->uts.ts64.__rax & 0xffffffff) == 0x20000b8 /* SYS_sigreturn */)
{
ULONGEST mctx_addr;
ULONGEST flags_addr;
unsigned int rflags;
mctx_addr = read_memory_unsigned_integer
(regs->uts.ts64.__rdi + 48, 8, byte_order);
flags_addr = mctx_addr + 16 + 17 * 8;
/* AMD64 is little endian. */
read_memory (flags_addr, (gdb_byte *) &rflags, 4);
rflags |= X86_EFLAGS_T;
write_memory (flags_addr, (gdb_byte *) &rflags, 4);
return 1;
}
return 0;
}
#endif
void
darwin_set_sstep (thread_t thread, int enable)
{
x86_thread_state_t regs;
unsigned int count = x86_THREAD_STATE_COUNT;
kern_return_t kret;
kret = thread_get_state (thread, x86_THREAD_STATE,
(thread_state_t) &regs, &count);
if (kret != KERN_SUCCESS)
{
printf_unfiltered (_("darwin_set_sstep: error %x, thread=%x\n"),
kret, thread);
return;
}
switch (regs.tsh.flavor)
{
case x86_THREAD_STATE32:
{
__uint32_t bit = enable ? X86_EFLAGS_T : 0;
if (enable && i386_darwin_sstep_at_sigreturn (&regs))
return;
if ((regs.uts.ts32.__eflags & X86_EFLAGS_T) == bit)
return;
regs.uts.ts32.__eflags
= (regs.uts.ts32.__eflags & ~X86_EFLAGS_T) | bit;
kret = thread_set_state (thread, x86_THREAD_STATE,
(thread_state_t) &regs, count);
MACH_CHECK_ERROR (kret);
}
break;
#ifdef BFD64
case x86_THREAD_STATE64:
{
__uint64_t bit = enable ? X86_EFLAGS_T : 0;
if (enable && amd64_darwin_sstep_at_sigreturn (&regs))
return;
if ((regs.uts.ts64.__rflags & X86_EFLAGS_T) == bit)
return;
regs.uts.ts64.__rflags
= (regs.uts.ts64.__rflags & ~X86_EFLAGS_T) | bit;
kret = thread_set_state (thread, x86_THREAD_STATE,
(thread_state_t) &regs, count);
MACH_CHECK_ERROR (kret);
}
break;
#endif
default:
error (_("darwin_set_sstep: unknown flavour: %d"), regs.tsh.flavor);
}
}
void
darwin_complete_target (struct target_ops *target)
{
#ifdef BFD64
amd64_native_gregset64_reg_offset = amd64_darwin_thread_state_reg_offset;
amd64_native_gregset64_num_regs = amd64_darwin_thread_state_num_regs;
amd64_native_gregset32_reg_offset = i386_darwin_thread_state_reg_offset;
amd64_native_gregset32_num_regs = i386_darwin_thread_state_num_regs;
#endif
x86_use_watchpoints (target);
x86_dr_low.set_control = i386_darwin_dr_set_control;
x86_dr_low.set_addr = i386_darwin_dr_set_addr;
x86_dr_low.get_addr = i386_darwin_dr_get_addr;
x86_dr_low.get_status = i386_darwin_dr_get_status;
x86_dr_low.get_control = i386_darwin_dr_get_control;
/* Let's assume that the kernel is 64 bits iff the executable is. */
#ifdef __x86_64__
x86_set_debug_register_length (8);
#else
x86_set_debug_register_length (4);
#endif
target->to_fetch_registers = i386_darwin_fetch_inferior_registers;
target->to_store_registers = i386_darwin_store_inferior_registers;
}