d022bddd4f
This option serves as a workaround for processors, which fail on lock prefix. gas/ * config/tc-i386.c (omit_lock_prefix): New. (output_insn): Omit lock prefix if omit_lock_prefix is true. (OPTION_omit_lock_prefix): New. (md_longopts): Add momit-lock-prefix. (md_parse_option): Handle momit-lock-prefix. (md_show_usage): Add momit-lock-prefix=[no|yes]. * doc/c-i386.texi (momit-lock-prefix): Document. gas/testsuite/ * gas/i386/i386.exp: Run new tests. * gas/i386/omit-lock-no.d: New. * gas/i386/omit-lock-yes.d: Ditto. * gas/i386/omit-lock.s: Ditto.
10657 lines
283 KiB
C
10657 lines
283 KiB
C
/* tc-i386.c -- Assemble code for the Intel 80386
|
||
Copyright (C) 1989-2014 Free Software Foundation, Inc.
|
||
|
||
This file is part of GAS, the GNU Assembler.
|
||
|
||
GAS is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 3, or (at your option)
|
||
any later version.
|
||
|
||
GAS is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with GAS; see the file COPYING. If not, write to the Free
|
||
Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
|
||
02110-1301, USA. */
|
||
|
||
/* Intel 80386 machine specific gas.
|
||
Written by Eliot Dresselhaus (eliot@mgm.mit.edu).
|
||
x86_64 support by Jan Hubicka (jh@suse.cz)
|
||
VIA PadLock support by Michal Ludvig (mludvig@suse.cz)
|
||
Bugs & suggestions are completely welcome. This is free software.
|
||
Please help us make it better. */
|
||
|
||
#include "as.h"
|
||
#include "safe-ctype.h"
|
||
#include "subsegs.h"
|
||
#include "dwarf2dbg.h"
|
||
#include "dw2gencfi.h"
|
||
#include "elf/x86-64.h"
|
||
#include "opcodes/i386-init.h"
|
||
|
||
#ifndef REGISTER_WARNINGS
|
||
#define REGISTER_WARNINGS 1
|
||
#endif
|
||
|
||
#ifndef INFER_ADDR_PREFIX
|
||
#define INFER_ADDR_PREFIX 1
|
||
#endif
|
||
|
||
#ifndef DEFAULT_ARCH
|
||
#define DEFAULT_ARCH "i386"
|
||
#endif
|
||
|
||
#ifndef INLINE
|
||
#if __GNUC__ >= 2
|
||
#define INLINE __inline__
|
||
#else
|
||
#define INLINE
|
||
#endif
|
||
#endif
|
||
|
||
/* Prefixes will be emitted in the order defined below.
|
||
WAIT_PREFIX must be the first prefix since FWAIT is really is an
|
||
instruction, and so must come before any prefixes.
|
||
The preferred prefix order is SEG_PREFIX, ADDR_PREFIX, DATA_PREFIX,
|
||
REP_PREFIX/HLE_PREFIX, LOCK_PREFIX. */
|
||
#define WAIT_PREFIX 0
|
||
#define SEG_PREFIX 1
|
||
#define ADDR_PREFIX 2
|
||
#define DATA_PREFIX 3
|
||
#define REP_PREFIX 4
|
||
#define HLE_PREFIX REP_PREFIX
|
||
#define BND_PREFIX REP_PREFIX
|
||
#define LOCK_PREFIX 5
|
||
#define REX_PREFIX 6 /* must come last. */
|
||
#define MAX_PREFIXES 7 /* max prefixes per opcode */
|
||
|
||
/* we define the syntax here (modulo base,index,scale syntax) */
|
||
#define REGISTER_PREFIX '%'
|
||
#define IMMEDIATE_PREFIX '$'
|
||
#define ABSOLUTE_PREFIX '*'
|
||
|
||
/* these are the instruction mnemonic suffixes in AT&T syntax or
|
||
memory operand size in Intel syntax. */
|
||
#define WORD_MNEM_SUFFIX 'w'
|
||
#define BYTE_MNEM_SUFFIX 'b'
|
||
#define SHORT_MNEM_SUFFIX 's'
|
||
#define LONG_MNEM_SUFFIX 'l'
|
||
#define QWORD_MNEM_SUFFIX 'q'
|
||
#define XMMWORD_MNEM_SUFFIX 'x'
|
||
#define YMMWORD_MNEM_SUFFIX 'y'
|
||
#define ZMMWORD_MNEM_SUFFIX 'z'
|
||
/* Intel Syntax. Use a non-ascii letter since since it never appears
|
||
in instructions. */
|
||
#define LONG_DOUBLE_MNEM_SUFFIX '\1'
|
||
|
||
#define END_OF_INSN '\0'
|
||
|
||
/*
|
||
'templates' is for grouping together 'template' structures for opcodes
|
||
of the same name. This is only used for storing the insns in the grand
|
||
ole hash table of insns.
|
||
The templates themselves start at START and range up to (but not including)
|
||
END.
|
||
*/
|
||
typedef struct
|
||
{
|
||
const insn_template *start;
|
||
const insn_template *end;
|
||
}
|
||
templates;
|
||
|
||
/* 386 operand encoding bytes: see 386 book for details of this. */
|
||
typedef struct
|
||
{
|
||
unsigned int regmem; /* codes register or memory operand */
|
||
unsigned int reg; /* codes register operand (or extended opcode) */
|
||
unsigned int mode; /* how to interpret regmem & reg */
|
||
}
|
||
modrm_byte;
|
||
|
||
/* x86-64 extension prefix. */
|
||
typedef int rex_byte;
|
||
|
||
/* 386 opcode byte to code indirect addressing. */
|
||
typedef struct
|
||
{
|
||
unsigned base;
|
||
unsigned index;
|
||
unsigned scale;
|
||
}
|
||
sib_byte;
|
||
|
||
/* x86 arch names, types and features */
|
||
typedef struct
|
||
{
|
||
const char *name; /* arch name */
|
||
unsigned int len; /* arch string length */
|
||
enum processor_type type; /* arch type */
|
||
i386_cpu_flags flags; /* cpu feature flags */
|
||
unsigned int skip; /* show_arch should skip this. */
|
||
unsigned int negated; /* turn off indicated flags. */
|
||
}
|
||
arch_entry;
|
||
|
||
static void update_code_flag (int, int);
|
||
static void set_code_flag (int);
|
||
static void set_16bit_gcc_code_flag (int);
|
||
static void set_intel_syntax (int);
|
||
static void set_intel_mnemonic (int);
|
||
static void set_allow_index_reg (int);
|
||
static void set_check (int);
|
||
static void set_cpu_arch (int);
|
||
#ifdef TE_PE
|
||
static void pe_directive_secrel (int);
|
||
#endif
|
||
static void signed_cons (int);
|
||
static char *output_invalid (int c);
|
||
static int i386_finalize_immediate (segT, expressionS *, i386_operand_type,
|
||
const char *);
|
||
static int i386_finalize_displacement (segT, expressionS *, i386_operand_type,
|
||
const char *);
|
||
static int i386_att_operand (char *);
|
||
static int i386_intel_operand (char *, int);
|
||
static int i386_intel_simplify (expressionS *);
|
||
static int i386_intel_parse_name (const char *, expressionS *);
|
||
static const reg_entry *parse_register (char *, char **);
|
||
static char *parse_insn (char *, char *);
|
||
static char *parse_operands (char *, const char *);
|
||
static void swap_operands (void);
|
||
static void swap_2_operands (int, int);
|
||
static void optimize_imm (void);
|
||
static void optimize_disp (void);
|
||
static const insn_template *match_template (void);
|
||
static int check_string (void);
|
||
static int process_suffix (void);
|
||
static int check_byte_reg (void);
|
||
static int check_long_reg (void);
|
||
static int check_qword_reg (void);
|
||
static int check_word_reg (void);
|
||
static int finalize_imm (void);
|
||
static int process_operands (void);
|
||
static const seg_entry *build_modrm_byte (void);
|
||
static void output_insn (void);
|
||
static void output_imm (fragS *, offsetT);
|
||
static void output_disp (fragS *, offsetT);
|
||
#ifndef I386COFF
|
||
static void s_bss (int);
|
||
#endif
|
||
#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
|
||
static void handle_large_common (int small ATTRIBUTE_UNUSED);
|
||
#endif
|
||
|
||
static const char *default_arch = DEFAULT_ARCH;
|
||
|
||
/* This struct describes rounding control and SAE in the instruction. */
|
||
struct RC_Operation
|
||
{
|
||
enum rc_type
|
||
{
|
||
rne = 0,
|
||
rd,
|
||
ru,
|
||
rz,
|
||
saeonly
|
||
} type;
|
||
int operand;
|
||
};
|
||
|
||
static struct RC_Operation rc_op;
|
||
|
||
/* The struct describes masking, applied to OPERAND in the instruction.
|
||
MASK is a pointer to the corresponding mask register. ZEROING tells
|
||
whether merging or zeroing mask is used. */
|
||
struct Mask_Operation
|
||
{
|
||
const reg_entry *mask;
|
||
unsigned int zeroing;
|
||
/* The operand where this operation is associated. */
|
||
int operand;
|
||
};
|
||
|
||
static struct Mask_Operation mask_op;
|
||
|
||
/* The struct describes broadcasting, applied to OPERAND. FACTOR is
|
||
broadcast factor. */
|
||
struct Broadcast_Operation
|
||
{
|
||
/* Type of broadcast: no broadcast, {1to8}, or {1to16}. */
|
||
int type;
|
||
|
||
/* Index of broadcasted operand. */
|
||
int operand;
|
||
};
|
||
|
||
static struct Broadcast_Operation broadcast_op;
|
||
|
||
/* VEX prefix. */
|
||
typedef struct
|
||
{
|
||
/* VEX prefix is either 2 byte or 3 byte. EVEX is 4 byte. */
|
||
unsigned char bytes[4];
|
||
unsigned int length;
|
||
/* Destination or source register specifier. */
|
||
const reg_entry *register_specifier;
|
||
} vex_prefix;
|
||
|
||
/* 'md_assemble ()' gathers together information and puts it into a
|
||
i386_insn. */
|
||
|
||
union i386_op
|
||
{
|
||
expressionS *disps;
|
||
expressionS *imms;
|
||
const reg_entry *regs;
|
||
};
|
||
|
||
enum i386_error
|
||
{
|
||
operand_size_mismatch,
|
||
operand_type_mismatch,
|
||
register_type_mismatch,
|
||
number_of_operands_mismatch,
|
||
invalid_instruction_suffix,
|
||
bad_imm4,
|
||
old_gcc_only,
|
||
unsupported_with_intel_mnemonic,
|
||
unsupported_syntax,
|
||
unsupported,
|
||
invalid_vsib_address,
|
||
invalid_vector_register_set,
|
||
unsupported_vector_index_register,
|
||
unsupported_broadcast,
|
||
broadcast_not_on_src_operand,
|
||
broadcast_needed,
|
||
unsupported_masking,
|
||
mask_not_on_destination,
|
||
no_default_mask,
|
||
unsupported_rc_sae,
|
||
rc_sae_operand_not_last_imm,
|
||
invalid_register_operand,
|
||
try_vector_disp8
|
||
};
|
||
|
||
struct _i386_insn
|
||
{
|
||
/* TM holds the template for the insn were currently assembling. */
|
||
insn_template tm;
|
||
|
||
/* SUFFIX holds the instruction size suffix for byte, word, dword
|
||
or qword, if given. */
|
||
char suffix;
|
||
|
||
/* OPERANDS gives the number of given operands. */
|
||
unsigned int operands;
|
||
|
||
/* REG_OPERANDS, DISP_OPERANDS, MEM_OPERANDS, IMM_OPERANDS give the number
|
||
of given register, displacement, memory operands and immediate
|
||
operands. */
|
||
unsigned int reg_operands, disp_operands, mem_operands, imm_operands;
|
||
|
||
/* TYPES [i] is the type (see above #defines) which tells us how to
|
||
use OP[i] for the corresponding operand. */
|
||
i386_operand_type types[MAX_OPERANDS];
|
||
|
||
/* Displacement expression, immediate expression, or register for each
|
||
operand. */
|
||
union i386_op op[MAX_OPERANDS];
|
||
|
||
/* Flags for operands. */
|
||
unsigned int flags[MAX_OPERANDS];
|
||
#define Operand_PCrel 1
|
||
|
||
/* Relocation type for operand */
|
||
enum bfd_reloc_code_real reloc[MAX_OPERANDS];
|
||
|
||
/* BASE_REG, INDEX_REG, and LOG2_SCALE_FACTOR are used to encode
|
||
the base index byte below. */
|
||
const reg_entry *base_reg;
|
||
const reg_entry *index_reg;
|
||
unsigned int log2_scale_factor;
|
||
|
||
/* SEG gives the seg_entries of this insn. They are zero unless
|
||
explicit segment overrides are given. */
|
||
const seg_entry *seg[2];
|
||
|
||
/* PREFIX holds all the given prefix opcodes (usually null).
|
||
PREFIXES is the number of prefix opcodes. */
|
||
unsigned int prefixes;
|
||
unsigned char prefix[MAX_PREFIXES];
|
||
|
||
/* RM and SIB are the modrm byte and the sib byte where the
|
||
addressing modes of this insn are encoded. */
|
||
modrm_byte rm;
|
||
rex_byte rex;
|
||
rex_byte vrex;
|
||
sib_byte sib;
|
||
vex_prefix vex;
|
||
|
||
/* Masking attributes. */
|
||
struct Mask_Operation *mask;
|
||
|
||
/* Rounding control and SAE attributes. */
|
||
struct RC_Operation *rounding;
|
||
|
||
/* Broadcasting attributes. */
|
||
struct Broadcast_Operation *broadcast;
|
||
|
||
/* Compressed disp8*N attribute. */
|
||
unsigned int memshift;
|
||
|
||
/* Swap operand in encoding. */
|
||
unsigned int swap_operand;
|
||
|
||
/* Prefer 8bit or 32bit displacement in encoding. */
|
||
enum
|
||
{
|
||
disp_encoding_default = 0,
|
||
disp_encoding_8bit,
|
||
disp_encoding_32bit
|
||
} disp_encoding;
|
||
|
||
/* REP prefix. */
|
||
const char *rep_prefix;
|
||
|
||
/* HLE prefix. */
|
||
const char *hle_prefix;
|
||
|
||
/* Have BND prefix. */
|
||
const char *bnd_prefix;
|
||
|
||
/* Need VREX to support upper 16 registers. */
|
||
int need_vrex;
|
||
|
||
/* Error message. */
|
||
enum i386_error error;
|
||
};
|
||
|
||
typedef struct _i386_insn i386_insn;
|
||
|
||
/* Link RC type with corresponding string, that'll be looked for in
|
||
asm. */
|
||
struct RC_name
|
||
{
|
||
enum rc_type type;
|
||
const char *name;
|
||
unsigned int len;
|
||
};
|
||
|
||
static const struct RC_name RC_NamesTable[] =
|
||
{
|
||
{ rne, STRING_COMMA_LEN ("rn-sae") },
|
||
{ rd, STRING_COMMA_LEN ("rd-sae") },
|
||
{ ru, STRING_COMMA_LEN ("ru-sae") },
|
||
{ rz, STRING_COMMA_LEN ("rz-sae") },
|
||
{ saeonly, STRING_COMMA_LEN ("sae") },
|
||
};
|
||
|
||
/* List of chars besides those in app.c:symbol_chars that can start an
|
||
operand. Used to prevent the scrubber eating vital white-space. */
|
||
const char extra_symbol_chars[] = "*%-([{"
|
||
#ifdef LEX_AT
|
||
"@"
|
||
#endif
|
||
#ifdef LEX_QM
|
||
"?"
|
||
#endif
|
||
;
|
||
|
||
#if (defined (TE_I386AIX) \
|
||
|| ((defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)) \
|
||
&& !defined (TE_GNU) \
|
||
&& !defined (TE_LINUX) \
|
||
&& !defined (TE_NACL) \
|
||
&& !defined (TE_NETWARE) \
|
||
&& !defined (TE_FreeBSD) \
|
||
&& !defined (TE_DragonFly) \
|
||
&& !defined (TE_NetBSD)))
|
||
/* This array holds the chars that always start a comment. If the
|
||
pre-processor is disabled, these aren't very useful. The option
|
||
--divide will remove '/' from this list. */
|
||
const char *i386_comment_chars = "#/";
|
||
#define SVR4_COMMENT_CHARS 1
|
||
#define PREFIX_SEPARATOR '\\'
|
||
|
||
#else
|
||
const char *i386_comment_chars = "#";
|
||
#define PREFIX_SEPARATOR '/'
|
||
#endif
|
||
|
||
/* This array holds the chars that only start a comment at the beginning of
|
||
a line. If the line seems to have the form '# 123 filename'
|
||
.line and .file directives will appear in the pre-processed output.
|
||
Note that input_file.c hand checks for '#' at the beginning of the
|
||
first line of the input file. This is because the compiler outputs
|
||
#NO_APP at the beginning of its output.
|
||
Also note that comments started like this one will always work if
|
||
'/' isn't otherwise defined. */
|
||
const char line_comment_chars[] = "#/";
|
||
|
||
const char line_separator_chars[] = ";";
|
||
|
||
/* Chars that can be used to separate mant from exp in floating point
|
||
nums. */
|
||
const char EXP_CHARS[] = "eE";
|
||
|
||
/* Chars that mean this number is a floating point constant
|
||
As in 0f12.456
|
||
or 0d1.2345e12. */
|
||
const char FLT_CHARS[] = "fFdDxX";
|
||
|
||
/* Tables for lexical analysis. */
|
||
static char mnemonic_chars[256];
|
||
static char register_chars[256];
|
||
static char operand_chars[256];
|
||
static char identifier_chars[256];
|
||
static char digit_chars[256];
|
||
|
||
/* Lexical macros. */
|
||
#define is_mnemonic_char(x) (mnemonic_chars[(unsigned char) x])
|
||
#define is_operand_char(x) (operand_chars[(unsigned char) x])
|
||
#define is_register_char(x) (register_chars[(unsigned char) x])
|
||
#define is_space_char(x) ((x) == ' ')
|
||
#define is_identifier_char(x) (identifier_chars[(unsigned char) x])
|
||
#define is_digit_char(x) (digit_chars[(unsigned char) x])
|
||
|
||
/* All non-digit non-letter characters that may occur in an operand. */
|
||
static char operand_special_chars[] = "%$-+(,)*._~/<>|&^!:[@]";
|
||
|
||
/* md_assemble() always leaves the strings it's passed unaltered. To
|
||
effect this we maintain a stack of saved characters that we've smashed
|
||
with '\0's (indicating end of strings for various sub-fields of the
|
||
assembler instruction). */
|
||
static char save_stack[32];
|
||
static char *save_stack_p;
|
||
#define END_STRING_AND_SAVE(s) \
|
||
do { *save_stack_p++ = *(s); *(s) = '\0'; } while (0)
|
||
#define RESTORE_END_STRING(s) \
|
||
do { *(s) = *--save_stack_p; } while (0)
|
||
|
||
/* The instruction we're assembling. */
|
||
static i386_insn i;
|
||
|
||
/* Possible templates for current insn. */
|
||
static const templates *current_templates;
|
||
|
||
/* Per instruction expressionS buffers: max displacements & immediates. */
|
||
static expressionS disp_expressions[MAX_MEMORY_OPERANDS];
|
||
static expressionS im_expressions[MAX_IMMEDIATE_OPERANDS];
|
||
|
||
/* Current operand we are working on. */
|
||
static int this_operand = -1;
|
||
|
||
/* We support four different modes. FLAG_CODE variable is used to distinguish
|
||
these. */
|
||
|
||
enum flag_code {
|
||
CODE_32BIT,
|
||
CODE_16BIT,
|
||
CODE_64BIT };
|
||
|
||
static enum flag_code flag_code;
|
||
static unsigned int object_64bit;
|
||
static unsigned int disallow_64bit_reloc;
|
||
static int use_rela_relocations = 0;
|
||
|
||
#if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
|
||
|| defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
|
||
|| defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
|
||
|
||
/* The ELF ABI to use. */
|
||
enum x86_elf_abi
|
||
{
|
||
I386_ABI,
|
||
X86_64_ABI,
|
||
X86_64_X32_ABI
|
||
};
|
||
|
||
static enum x86_elf_abi x86_elf_abi = I386_ABI;
|
||
#endif
|
||
|
||
#if defined (TE_PE) || defined (TE_PEP)
|
||
/* Use big object file format. */
|
||
static int use_big_obj = 0;
|
||
#endif
|
||
|
||
/* 1 for intel syntax,
|
||
0 if att syntax. */
|
||
static int intel_syntax = 0;
|
||
|
||
/* 1 for intel mnemonic,
|
||
0 if att mnemonic. */
|
||
static int intel_mnemonic = !SYSV386_COMPAT;
|
||
|
||
/* 1 if support old (<= 2.8.1) versions of gcc. */
|
||
static int old_gcc = OLDGCC_COMPAT;
|
||
|
||
/* 1 if pseudo registers are permitted. */
|
||
static int allow_pseudo_reg = 0;
|
||
|
||
/* 1 if register prefix % not required. */
|
||
static int allow_naked_reg = 0;
|
||
|
||
/* 1 if the assembler should add BND prefix for all control-tranferring
|
||
instructions supporting it, even if this prefix wasn't specified
|
||
explicitly. */
|
||
static int add_bnd_prefix = 0;
|
||
|
||
/* 1 if pseudo index register, eiz/riz, is allowed . */
|
||
static int allow_index_reg = 0;
|
||
|
||
/* 1 if the assembler should ignore LOCK prefix, even if it was
|
||
specified explicitly. */
|
||
static int omit_lock_prefix = 0;
|
||
|
||
static enum check_kind
|
||
{
|
||
check_none = 0,
|
||
check_warning,
|
||
check_error
|
||
}
|
||
sse_check, operand_check = check_warning;
|
||
|
||
/* Register prefix used for error message. */
|
||
static const char *register_prefix = "%";
|
||
|
||
/* Used in 16 bit gcc mode to add an l suffix to call, ret, enter,
|
||
leave, push, and pop instructions so that gcc has the same stack
|
||
frame as in 32 bit mode. */
|
||
static char stackop_size = '\0';
|
||
|
||
/* Non-zero to optimize code alignment. */
|
||
int optimize_align_code = 1;
|
||
|
||
/* Non-zero to quieten some warnings. */
|
||
static int quiet_warnings = 0;
|
||
|
||
/* CPU name. */
|
||
static const char *cpu_arch_name = NULL;
|
||
static char *cpu_sub_arch_name = NULL;
|
||
|
||
/* CPU feature flags. */
|
||
static i386_cpu_flags cpu_arch_flags = CPU_UNKNOWN_FLAGS;
|
||
|
||
/* If we have selected a cpu we are generating instructions for. */
|
||
static int cpu_arch_tune_set = 0;
|
||
|
||
/* Cpu we are generating instructions for. */
|
||
enum processor_type cpu_arch_tune = PROCESSOR_UNKNOWN;
|
||
|
||
/* CPU feature flags of cpu we are generating instructions for. */
|
||
static i386_cpu_flags cpu_arch_tune_flags;
|
||
|
||
/* CPU instruction set architecture used. */
|
||
enum processor_type cpu_arch_isa = PROCESSOR_UNKNOWN;
|
||
|
||
/* CPU feature flags of instruction set architecture used. */
|
||
i386_cpu_flags cpu_arch_isa_flags;
|
||
|
||
/* If set, conditional jumps are not automatically promoted to handle
|
||
larger than a byte offset. */
|
||
static unsigned int no_cond_jump_promotion = 0;
|
||
|
||
/* Encode SSE instructions with VEX prefix. */
|
||
static unsigned int sse2avx;
|
||
|
||
/* Encode scalar AVX instructions with specific vector length. */
|
||
static enum
|
||
{
|
||
vex128 = 0,
|
||
vex256
|
||
} avxscalar;
|
||
|
||
/* Encode scalar EVEX LIG instructions with specific vector length. */
|
||
static enum
|
||
{
|
||
evexl128 = 0,
|
||
evexl256,
|
||
evexl512
|
||
} evexlig;
|
||
|
||
/* Encode EVEX WIG instructions with specific evex.w. */
|
||
static enum
|
||
{
|
||
evexw0 = 0,
|
||
evexw1
|
||
} evexwig;
|
||
|
||
/* Pre-defined "_GLOBAL_OFFSET_TABLE_". */
|
||
static symbolS *GOT_symbol;
|
||
|
||
/* The dwarf2 return column, adjusted for 32 or 64 bit. */
|
||
unsigned int x86_dwarf2_return_column;
|
||
|
||
/* The dwarf2 data alignment, adjusted for 32 or 64 bit. */
|
||
int x86_cie_data_alignment;
|
||
|
||
/* Interface to relax_segment.
|
||
There are 3 major relax states for 386 jump insns because the
|
||
different types of jumps add different sizes to frags when we're
|
||
figuring out what sort of jump to choose to reach a given label. */
|
||
|
||
/* Types. */
|
||
#define UNCOND_JUMP 0
|
||
#define COND_JUMP 1
|
||
#define COND_JUMP86 2
|
||
|
||
/* Sizes. */
|
||
#define CODE16 1
|
||
#define SMALL 0
|
||
#define SMALL16 (SMALL | CODE16)
|
||
#define BIG 2
|
||
#define BIG16 (BIG | CODE16)
|
||
|
||
#ifndef INLINE
|
||
#ifdef __GNUC__
|
||
#define INLINE __inline__
|
||
#else
|
||
#define INLINE
|
||
#endif
|
||
#endif
|
||
|
||
#define ENCODE_RELAX_STATE(type, size) \
|
||
((relax_substateT) (((type) << 2) | (size)))
|
||
#define TYPE_FROM_RELAX_STATE(s) \
|
||
((s) >> 2)
|
||
#define DISP_SIZE_FROM_RELAX_STATE(s) \
|
||
((((s) & 3) == BIG ? 4 : (((s) & 3) == BIG16 ? 2 : 1)))
|
||
|
||
/* This table is used by relax_frag to promote short jumps to long
|
||
ones where necessary. SMALL (short) jumps may be promoted to BIG
|
||
(32 bit long) ones, and SMALL16 jumps to BIG16 (16 bit long). We
|
||
don't allow a short jump in a 32 bit code segment to be promoted to
|
||
a 16 bit offset jump because it's slower (requires data size
|
||
prefix), and doesn't work, unless the destination is in the bottom
|
||
64k of the code segment (The top 16 bits of eip are zeroed). */
|
||
|
||
const relax_typeS md_relax_table[] =
|
||
{
|
||
/* The fields are:
|
||
1) most positive reach of this state,
|
||
2) most negative reach of this state,
|
||
3) how many bytes this mode will have in the variable part of the frag
|
||
4) which index into the table to try if we can't fit into this one. */
|
||
|
||
/* UNCOND_JUMP states. */
|
||
{127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG)},
|
||
{127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16)},
|
||
/* dword jmp adds 4 bytes to frag:
|
||
0 extra opcode bytes, 4 displacement bytes. */
|
||
{0, 0, 4, 0},
|
||
/* word jmp adds 2 byte2 to frag:
|
||
0 extra opcode bytes, 2 displacement bytes. */
|
||
{0, 0, 2, 0},
|
||
|
||
/* COND_JUMP states. */
|
||
{127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG)},
|
||
{127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG16)},
|
||
/* dword conditionals adds 5 bytes to frag:
|
||
1 extra opcode byte, 4 displacement bytes. */
|
||
{0, 0, 5, 0},
|
||
/* word conditionals add 3 bytes to frag:
|
||
1 extra opcode byte, 2 displacement bytes. */
|
||
{0, 0, 3, 0},
|
||
|
||
/* COND_JUMP86 states. */
|
||
{127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG)},
|
||
{127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG16)},
|
||
/* dword conditionals adds 5 bytes to frag:
|
||
1 extra opcode byte, 4 displacement bytes. */
|
||
{0, 0, 5, 0},
|
||
/* word conditionals add 4 bytes to frag:
|
||
1 displacement byte and a 3 byte long branch insn. */
|
||
{0, 0, 4, 0}
|
||
};
|
||
|
||
static const arch_entry cpu_arch[] =
|
||
{
|
||
/* Do not replace the first two entries - i386_target_format()
|
||
relies on them being there in this order. */
|
||
{ STRING_COMMA_LEN ("generic32"), PROCESSOR_GENERIC32,
|
||
CPU_GENERIC32_FLAGS, 0, 0 },
|
||
{ STRING_COMMA_LEN ("generic64"), PROCESSOR_GENERIC64,
|
||
CPU_GENERIC64_FLAGS, 0, 0 },
|
||
{ STRING_COMMA_LEN ("i8086"), PROCESSOR_UNKNOWN,
|
||
CPU_NONE_FLAGS, 0, 0 },
|
||
{ STRING_COMMA_LEN ("i186"), PROCESSOR_UNKNOWN,
|
||
CPU_I186_FLAGS, 0, 0 },
|
||
{ STRING_COMMA_LEN ("i286"), PROCESSOR_UNKNOWN,
|
||
CPU_I286_FLAGS, 0, 0 },
|
||
{ STRING_COMMA_LEN ("i386"), PROCESSOR_I386,
|
||
CPU_I386_FLAGS, 0, 0 },
|
||
{ STRING_COMMA_LEN ("i486"), PROCESSOR_I486,
|
||
CPU_I486_FLAGS, 0, 0 },
|
||
{ STRING_COMMA_LEN ("i586"), PROCESSOR_PENTIUM,
|
||
CPU_I586_FLAGS, 0, 0 },
|
||
{ STRING_COMMA_LEN ("i686"), PROCESSOR_PENTIUMPRO,
|
||
CPU_I686_FLAGS, 0, 0 },
|
||
{ STRING_COMMA_LEN ("pentium"), PROCESSOR_PENTIUM,
|
||
CPU_I586_FLAGS, 0, 0 },
|
||
{ STRING_COMMA_LEN ("pentiumpro"), PROCESSOR_PENTIUMPRO,
|
||
CPU_PENTIUMPRO_FLAGS, 0, 0 },
|
||
{ STRING_COMMA_LEN ("pentiumii"), PROCESSOR_PENTIUMPRO,
|
||
CPU_P2_FLAGS, 0, 0 },
|
||
{ STRING_COMMA_LEN ("pentiumiii"),PROCESSOR_PENTIUMPRO,
|
||
CPU_P3_FLAGS, 0, 0 },
|
||
{ STRING_COMMA_LEN ("pentium4"), PROCESSOR_PENTIUM4,
|
||
CPU_P4_FLAGS, 0, 0 },
|
||
{ STRING_COMMA_LEN ("prescott"), PROCESSOR_NOCONA,
|
||
CPU_CORE_FLAGS, 0, 0 },
|
||
{ STRING_COMMA_LEN ("nocona"), PROCESSOR_NOCONA,
|
||
CPU_NOCONA_FLAGS, 0, 0 },
|
||
{ STRING_COMMA_LEN ("yonah"), PROCESSOR_CORE,
|
||
CPU_CORE_FLAGS, 1, 0 },
|
||
{ STRING_COMMA_LEN ("core"), PROCESSOR_CORE,
|
||
CPU_CORE_FLAGS, 0, 0 },
|
||
{ STRING_COMMA_LEN ("merom"), PROCESSOR_CORE2,
|
||
CPU_CORE2_FLAGS, 1, 0 },
|
||
{ STRING_COMMA_LEN ("core2"), PROCESSOR_CORE2,
|
||
CPU_CORE2_FLAGS, 0, 0 },
|
||
{ STRING_COMMA_LEN ("corei7"), PROCESSOR_COREI7,
|
||
CPU_COREI7_FLAGS, 0, 0 },
|
||
{ STRING_COMMA_LEN ("l1om"), PROCESSOR_L1OM,
|
||
CPU_L1OM_FLAGS, 0, 0 },
|
||
{ STRING_COMMA_LEN ("k1om"), PROCESSOR_K1OM,
|
||
CPU_K1OM_FLAGS, 0, 0 },
|
||
{ STRING_COMMA_LEN ("k6"), PROCESSOR_K6,
|
||
CPU_K6_FLAGS, 0, 0 },
|
||
{ STRING_COMMA_LEN ("k6_2"), PROCESSOR_K6,
|
||
CPU_K6_2_FLAGS, 0, 0 },
|
||
{ STRING_COMMA_LEN ("athlon"), PROCESSOR_ATHLON,
|
||
CPU_ATHLON_FLAGS, 0, 0 },
|
||
{ STRING_COMMA_LEN ("sledgehammer"), PROCESSOR_K8,
|
||
CPU_K8_FLAGS, 1, 0 },
|
||
{ STRING_COMMA_LEN ("opteron"), PROCESSOR_K8,
|
||
CPU_K8_FLAGS, 0, 0 },
|
||
{ STRING_COMMA_LEN ("k8"), PROCESSOR_K8,
|
||
CPU_K8_FLAGS, 0, 0 },
|
||
{ STRING_COMMA_LEN ("amdfam10"), PROCESSOR_AMDFAM10,
|
||
CPU_AMDFAM10_FLAGS, 0, 0 },
|
||
{ STRING_COMMA_LEN ("bdver1"), PROCESSOR_BD,
|
||
CPU_BDVER1_FLAGS, 0, 0 },
|
||
{ STRING_COMMA_LEN ("bdver2"), PROCESSOR_BD,
|
||
CPU_BDVER2_FLAGS, 0, 0 },
|
||
{ STRING_COMMA_LEN ("bdver3"), PROCESSOR_BD,
|
||
CPU_BDVER3_FLAGS, 0, 0 },
|
||
{ STRING_COMMA_LEN ("bdver4"), PROCESSOR_BD,
|
||
CPU_BDVER4_FLAGS, 0, 0 },
|
||
{ STRING_COMMA_LEN ("btver1"), PROCESSOR_BT,
|
||
CPU_BTVER1_FLAGS, 0, 0 },
|
||
{ STRING_COMMA_LEN ("btver2"), PROCESSOR_BT,
|
||
CPU_BTVER2_FLAGS, 0, 0 },
|
||
{ STRING_COMMA_LEN (".8087"), PROCESSOR_UNKNOWN,
|
||
CPU_8087_FLAGS, 0, 0 },
|
||
{ STRING_COMMA_LEN (".287"), PROCESSOR_UNKNOWN,
|
||
CPU_287_FLAGS, 0, 0 },
|
||
{ STRING_COMMA_LEN (".387"), PROCESSOR_UNKNOWN,
|
||
CPU_387_FLAGS, 0, 0 },
|
||
{ STRING_COMMA_LEN (".no87"), PROCESSOR_UNKNOWN,
|
||
CPU_ANY87_FLAGS, 0, 1 },
|
||
{ STRING_COMMA_LEN (".mmx"), PROCESSOR_UNKNOWN,
|
||
CPU_MMX_FLAGS, 0, 0 },
|
||
{ STRING_COMMA_LEN (".nommx"), PROCESSOR_UNKNOWN,
|
||
CPU_3DNOWA_FLAGS, 0, 1 },
|
||
{ STRING_COMMA_LEN (".sse"), PROCESSOR_UNKNOWN,
|
||
CPU_SSE_FLAGS, 0, 0 },
|
||
{ STRING_COMMA_LEN (".sse2"), PROCESSOR_UNKNOWN,
|
||
CPU_SSE2_FLAGS, 0, 0 },
|
||
{ STRING_COMMA_LEN (".sse3"), PROCESSOR_UNKNOWN,
|
||
CPU_SSE3_FLAGS, 0, 0 },
|
||
{ STRING_COMMA_LEN (".ssse3"), PROCESSOR_UNKNOWN,
|
||
CPU_SSSE3_FLAGS, 0, 0 },
|
||
{ STRING_COMMA_LEN (".sse4.1"), PROCESSOR_UNKNOWN,
|
||
CPU_SSE4_1_FLAGS, 0, 0 },
|
||
{ STRING_COMMA_LEN (".sse4.2"), PROCESSOR_UNKNOWN,
|
||
CPU_SSE4_2_FLAGS, 0, 0 },
|
||
{ STRING_COMMA_LEN (".sse4"), PROCESSOR_UNKNOWN,
|
||
CPU_SSE4_2_FLAGS, 0, 0 },
|
||
{ STRING_COMMA_LEN (".nosse"), PROCESSOR_UNKNOWN,
|
||
CPU_ANY_SSE_FLAGS, 0, 1 },
|
||
{ STRING_COMMA_LEN (".avx"), PROCESSOR_UNKNOWN,
|
||
CPU_AVX_FLAGS, 0, 0 },
|
||
{ STRING_COMMA_LEN (".avx2"), PROCESSOR_UNKNOWN,
|
||
CPU_AVX2_FLAGS, 0, 0 },
|
||
{ STRING_COMMA_LEN (".avx512f"), PROCESSOR_UNKNOWN,
|
||
CPU_AVX512F_FLAGS, 0, 0 },
|
||
{ STRING_COMMA_LEN (".avx512cd"), PROCESSOR_UNKNOWN,
|
||
CPU_AVX512CD_FLAGS, 0, 0 },
|
||
{ STRING_COMMA_LEN (".avx512er"), PROCESSOR_UNKNOWN,
|
||
CPU_AVX512ER_FLAGS, 0, 0 },
|
||
{ STRING_COMMA_LEN (".avx512pf"), PROCESSOR_UNKNOWN,
|
||
CPU_AVX512PF_FLAGS, 0, 0 },
|
||
{ STRING_COMMA_LEN (".noavx"), PROCESSOR_UNKNOWN,
|
||
CPU_ANY_AVX_FLAGS, 0, 1 },
|
||
{ STRING_COMMA_LEN (".vmx"), PROCESSOR_UNKNOWN,
|
||
CPU_VMX_FLAGS, 0, 0 },
|
||
{ STRING_COMMA_LEN (".vmfunc"), PROCESSOR_UNKNOWN,
|
||
CPU_VMFUNC_FLAGS, 0, 0 },
|
||
{ STRING_COMMA_LEN (".smx"), PROCESSOR_UNKNOWN,
|
||
CPU_SMX_FLAGS, 0, 0 },
|
||
{ STRING_COMMA_LEN (".xsave"), PROCESSOR_UNKNOWN,
|
||
CPU_XSAVE_FLAGS, 0, 0 },
|
||
{ STRING_COMMA_LEN (".xsaveopt"), PROCESSOR_UNKNOWN,
|
||
CPU_XSAVEOPT_FLAGS, 0, 0 },
|
||
{ STRING_COMMA_LEN (".aes"), PROCESSOR_UNKNOWN,
|
||
CPU_AES_FLAGS, 0, 0 },
|
||
{ STRING_COMMA_LEN (".pclmul"), PROCESSOR_UNKNOWN,
|
||
CPU_PCLMUL_FLAGS, 0, 0 },
|
||
{ STRING_COMMA_LEN (".clmul"), PROCESSOR_UNKNOWN,
|
||
CPU_PCLMUL_FLAGS, 1, 0 },
|
||
{ STRING_COMMA_LEN (".fsgsbase"), PROCESSOR_UNKNOWN,
|
||
CPU_FSGSBASE_FLAGS, 0, 0 },
|
||
{ STRING_COMMA_LEN (".rdrnd"), PROCESSOR_UNKNOWN,
|
||
CPU_RDRND_FLAGS, 0, 0 },
|
||
{ STRING_COMMA_LEN (".f16c"), PROCESSOR_UNKNOWN,
|
||
CPU_F16C_FLAGS, 0, 0 },
|
||
{ STRING_COMMA_LEN (".bmi2"), PROCESSOR_UNKNOWN,
|
||
CPU_BMI2_FLAGS, 0, 0 },
|
||
{ STRING_COMMA_LEN (".fma"), PROCESSOR_UNKNOWN,
|
||
CPU_FMA_FLAGS, 0, 0 },
|
||
{ STRING_COMMA_LEN (".fma4"), PROCESSOR_UNKNOWN,
|
||
CPU_FMA4_FLAGS, 0, 0 },
|
||
{ STRING_COMMA_LEN (".xop"), PROCESSOR_UNKNOWN,
|
||
CPU_XOP_FLAGS, 0, 0 },
|
||
{ STRING_COMMA_LEN (".lwp"), PROCESSOR_UNKNOWN,
|
||
CPU_LWP_FLAGS, 0, 0 },
|
||
{ STRING_COMMA_LEN (".movbe"), PROCESSOR_UNKNOWN,
|
||
CPU_MOVBE_FLAGS, 0, 0 },
|
||
{ STRING_COMMA_LEN (".cx16"), PROCESSOR_UNKNOWN,
|
||
CPU_CX16_FLAGS, 0, 0 },
|
||
{ STRING_COMMA_LEN (".ept"), PROCESSOR_UNKNOWN,
|
||
CPU_EPT_FLAGS, 0, 0 },
|
||
{ STRING_COMMA_LEN (".lzcnt"), PROCESSOR_UNKNOWN,
|
||
CPU_LZCNT_FLAGS, 0, 0 },
|
||
{ STRING_COMMA_LEN (".hle"), PROCESSOR_UNKNOWN,
|
||
CPU_HLE_FLAGS, 0, 0 },
|
||
{ STRING_COMMA_LEN (".rtm"), PROCESSOR_UNKNOWN,
|
||
CPU_RTM_FLAGS, 0, 0 },
|
||
{ STRING_COMMA_LEN (".invpcid"), PROCESSOR_UNKNOWN,
|
||
CPU_INVPCID_FLAGS, 0, 0 },
|
||
{ STRING_COMMA_LEN (".clflush"), PROCESSOR_UNKNOWN,
|
||
CPU_CLFLUSH_FLAGS, 0, 0 },
|
||
{ STRING_COMMA_LEN (".nop"), PROCESSOR_UNKNOWN,
|
||
CPU_NOP_FLAGS, 0, 0 },
|
||
{ STRING_COMMA_LEN (".syscall"), PROCESSOR_UNKNOWN,
|
||
CPU_SYSCALL_FLAGS, 0, 0 },
|
||
{ STRING_COMMA_LEN (".rdtscp"), PROCESSOR_UNKNOWN,
|
||
CPU_RDTSCP_FLAGS, 0, 0 },
|
||
{ STRING_COMMA_LEN (".3dnow"), PROCESSOR_UNKNOWN,
|
||
CPU_3DNOW_FLAGS, 0, 0 },
|
||
{ STRING_COMMA_LEN (".3dnowa"), PROCESSOR_UNKNOWN,
|
||
CPU_3DNOWA_FLAGS, 0, 0 },
|
||
{ STRING_COMMA_LEN (".padlock"), PROCESSOR_UNKNOWN,
|
||
CPU_PADLOCK_FLAGS, 0, 0 },
|
||
{ STRING_COMMA_LEN (".pacifica"), PROCESSOR_UNKNOWN,
|
||
CPU_SVME_FLAGS, 1, 0 },
|
||
{ STRING_COMMA_LEN (".svme"), PROCESSOR_UNKNOWN,
|
||
CPU_SVME_FLAGS, 0, 0 },
|
||
{ STRING_COMMA_LEN (".sse4a"), PROCESSOR_UNKNOWN,
|
||
CPU_SSE4A_FLAGS, 0, 0 },
|
||
{ STRING_COMMA_LEN (".abm"), PROCESSOR_UNKNOWN,
|
||
CPU_ABM_FLAGS, 0, 0 },
|
||
{ STRING_COMMA_LEN (".bmi"), PROCESSOR_UNKNOWN,
|
||
CPU_BMI_FLAGS, 0, 0 },
|
||
{ STRING_COMMA_LEN (".tbm"), PROCESSOR_UNKNOWN,
|
||
CPU_TBM_FLAGS, 0, 0 },
|
||
{ STRING_COMMA_LEN (".adx"), PROCESSOR_UNKNOWN,
|
||
CPU_ADX_FLAGS, 0, 0 },
|
||
{ STRING_COMMA_LEN (".rdseed"), PROCESSOR_UNKNOWN,
|
||
CPU_RDSEED_FLAGS, 0, 0 },
|
||
{ STRING_COMMA_LEN (".prfchw"), PROCESSOR_UNKNOWN,
|
||
CPU_PRFCHW_FLAGS, 0, 0 },
|
||
{ STRING_COMMA_LEN (".smap"), PROCESSOR_UNKNOWN,
|
||
CPU_SMAP_FLAGS, 0, 0 },
|
||
{ STRING_COMMA_LEN (".mpx"), PROCESSOR_UNKNOWN,
|
||
CPU_MPX_FLAGS, 0, 0 },
|
||
{ STRING_COMMA_LEN (".sha"), PROCESSOR_UNKNOWN,
|
||
CPU_SHA_FLAGS, 0, 0 },
|
||
{ STRING_COMMA_LEN (".clflushopt"), PROCESSOR_UNKNOWN,
|
||
CPU_CLFLUSHOPT_FLAGS, 0, 0 },
|
||
{ STRING_COMMA_LEN (".xsavec"), PROCESSOR_UNKNOWN,
|
||
CPU_XSAVEC_FLAGS, 0, 0 },
|
||
{ STRING_COMMA_LEN (".xsaves"), PROCESSOR_UNKNOWN,
|
||
CPU_XSAVES_FLAGS, 0, 0 },
|
||
{ STRING_COMMA_LEN (".prefetchwt1"), PROCESSOR_UNKNOWN,
|
||
CPU_PREFETCHWT1_FLAGS, 0, 0 },
|
||
{ STRING_COMMA_LEN (".se1"), PROCESSOR_UNKNOWN,
|
||
CPU_SE1_FLAGS, 0, 0 },
|
||
{ STRING_COMMA_LEN (".avx512dq"), PROCESSOR_UNKNOWN,
|
||
CPU_AVX512DQ_FLAGS, 0, 0 },
|
||
{ STRING_COMMA_LEN (".avx512bw"), PROCESSOR_UNKNOWN,
|
||
CPU_AVX512BW_FLAGS, 0, 0 },
|
||
{ STRING_COMMA_LEN (".avx512vl"), PROCESSOR_UNKNOWN,
|
||
CPU_AVX512VL_FLAGS, 0, 0 },
|
||
};
|
||
|
||
#ifdef I386COFF
|
||
/* Like s_lcomm_internal in gas/read.c but the alignment string
|
||
is allowed to be optional. */
|
||
|
||
static symbolS *
|
||
pe_lcomm_internal (int needs_align, symbolS *symbolP, addressT size)
|
||
{
|
||
addressT align = 0;
|
||
|
||
SKIP_WHITESPACE ();
|
||
|
||
if (needs_align
|
||
&& *input_line_pointer == ',')
|
||
{
|
||
align = parse_align (needs_align - 1);
|
||
|
||
if (align == (addressT) -1)
|
||
return NULL;
|
||
}
|
||
else
|
||
{
|
||
if (size >= 8)
|
||
align = 3;
|
||
else if (size >= 4)
|
||
align = 2;
|
||
else if (size >= 2)
|
||
align = 1;
|
||
else
|
||
align = 0;
|
||
}
|
||
|
||
bss_alloc (symbolP, size, align);
|
||
return symbolP;
|
||
}
|
||
|
||
static void
|
||
pe_lcomm (int needs_align)
|
||
{
|
||
s_comm_internal (needs_align * 2, pe_lcomm_internal);
|
||
}
|
||
#endif
|
||
|
||
const pseudo_typeS md_pseudo_table[] =
|
||
{
|
||
#if !defined(OBJ_AOUT) && !defined(USE_ALIGN_PTWO)
|
||
{"align", s_align_bytes, 0},
|
||
#else
|
||
{"align", s_align_ptwo, 0},
|
||
#endif
|
||
{"arch", set_cpu_arch, 0},
|
||
#ifndef I386COFF
|
||
{"bss", s_bss, 0},
|
||
#else
|
||
{"lcomm", pe_lcomm, 1},
|
||
#endif
|
||
{"ffloat", float_cons, 'f'},
|
||
{"dfloat", float_cons, 'd'},
|
||
{"tfloat", float_cons, 'x'},
|
||
{"value", cons, 2},
|
||
{"slong", signed_cons, 4},
|
||
{"noopt", s_ignore, 0},
|
||
{"optim", s_ignore, 0},
|
||
{"code16gcc", set_16bit_gcc_code_flag, CODE_16BIT},
|
||
{"code16", set_code_flag, CODE_16BIT},
|
||
{"code32", set_code_flag, CODE_32BIT},
|
||
{"code64", set_code_flag, CODE_64BIT},
|
||
{"intel_syntax", set_intel_syntax, 1},
|
||
{"att_syntax", set_intel_syntax, 0},
|
||
{"intel_mnemonic", set_intel_mnemonic, 1},
|
||
{"att_mnemonic", set_intel_mnemonic, 0},
|
||
{"allow_index_reg", set_allow_index_reg, 1},
|
||
{"disallow_index_reg", set_allow_index_reg, 0},
|
||
{"sse_check", set_check, 0},
|
||
{"operand_check", set_check, 1},
|
||
#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
|
||
{"largecomm", handle_large_common, 0},
|
||
#else
|
||
{"file", (void (*) (int)) dwarf2_directive_file, 0},
|
||
{"loc", dwarf2_directive_loc, 0},
|
||
{"loc_mark_labels", dwarf2_directive_loc_mark_labels, 0},
|
||
#endif
|
||
#ifdef TE_PE
|
||
{"secrel32", pe_directive_secrel, 0},
|
||
#endif
|
||
{0, 0, 0}
|
||
};
|
||
|
||
/* For interface with expression (). */
|
||
extern char *input_line_pointer;
|
||
|
||
/* Hash table for instruction mnemonic lookup. */
|
||
static struct hash_control *op_hash;
|
||
|
||
/* Hash table for register lookup. */
|
||
static struct hash_control *reg_hash;
|
||
|
||
void
|
||
i386_align_code (fragS *fragP, int count)
|
||
{
|
||
/* Various efficient no-op patterns for aligning code labels.
|
||
Note: Don't try to assemble the instructions in the comments.
|
||
0L and 0w are not legal. */
|
||
static const char f32_1[] =
|
||
{0x90}; /* nop */
|
||
static const char f32_2[] =
|
||
{0x66,0x90}; /* xchg %ax,%ax */
|
||
static const char f32_3[] =
|
||
{0x8d,0x76,0x00}; /* leal 0(%esi),%esi */
|
||
static const char f32_4[] =
|
||
{0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
|
||
static const char f32_5[] =
|
||
{0x90, /* nop */
|
||
0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
|
||
static const char f32_6[] =
|
||
{0x8d,0xb6,0x00,0x00,0x00,0x00}; /* leal 0L(%esi),%esi */
|
||
static const char f32_7[] =
|
||
{0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
|
||
static const char f32_8[] =
|
||
{0x90, /* nop */
|
||
0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
|
||
static const char f32_9[] =
|
||
{0x89,0xf6, /* movl %esi,%esi */
|
||
0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
|
||
static const char f32_10[] =
|
||
{0x8d,0x76,0x00, /* leal 0(%esi),%esi */
|
||
0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
|
||
static const char f32_11[] =
|
||
{0x8d,0x74,0x26,0x00, /* leal 0(%esi,1),%esi */
|
||
0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
|
||
static const char f32_12[] =
|
||
{0x8d,0xb6,0x00,0x00,0x00,0x00, /* leal 0L(%esi),%esi */
|
||
0x8d,0xbf,0x00,0x00,0x00,0x00}; /* leal 0L(%edi),%edi */
|
||
static const char f32_13[] =
|
||
{0x8d,0xb6,0x00,0x00,0x00,0x00, /* leal 0L(%esi),%esi */
|
||
0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
|
||
static const char f32_14[] =
|
||
{0x8d,0xb4,0x26,0x00,0x00,0x00,0x00, /* leal 0L(%esi,1),%esi */
|
||
0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
|
||
static const char f16_3[] =
|
||
{0x8d,0x74,0x00}; /* lea 0(%esi),%esi */
|
||
static const char f16_4[] =
|
||
{0x8d,0xb4,0x00,0x00}; /* lea 0w(%si),%si */
|
||
static const char f16_5[] =
|
||
{0x90, /* nop */
|
||
0x8d,0xb4,0x00,0x00}; /* lea 0w(%si),%si */
|
||
static const char f16_6[] =
|
||
{0x89,0xf6, /* mov %si,%si */
|
||
0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
|
||
static const char f16_7[] =
|
||
{0x8d,0x74,0x00, /* lea 0(%si),%si */
|
||
0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
|
||
static const char f16_8[] =
|
||
{0x8d,0xb4,0x00,0x00, /* lea 0w(%si),%si */
|
||
0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
|
||
static const char jump_31[] =
|
||
{0xeb,0x1d,0x90,0x90,0x90,0x90,0x90, /* jmp .+31; lotsa nops */
|
||
0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90,
|
||
0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90,
|
||
0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90};
|
||
static const char *const f32_patt[] = {
|
||
f32_1, f32_2, f32_3, f32_4, f32_5, f32_6, f32_7, f32_8,
|
||
f32_9, f32_10, f32_11, f32_12, f32_13, f32_14
|
||
};
|
||
static const char *const f16_patt[] = {
|
||
f32_1, f32_2, f16_3, f16_4, f16_5, f16_6, f16_7, f16_8
|
||
};
|
||
/* nopl (%[re]ax) */
|
||
static const char alt_3[] =
|
||
{0x0f,0x1f,0x00};
|
||
/* nopl 0(%[re]ax) */
|
||
static const char alt_4[] =
|
||
{0x0f,0x1f,0x40,0x00};
|
||
/* nopl 0(%[re]ax,%[re]ax,1) */
|
||
static const char alt_5[] =
|
||
{0x0f,0x1f,0x44,0x00,0x00};
|
||
/* nopw 0(%[re]ax,%[re]ax,1) */
|
||
static const char alt_6[] =
|
||
{0x66,0x0f,0x1f,0x44,0x00,0x00};
|
||
/* nopl 0L(%[re]ax) */
|
||
static const char alt_7[] =
|
||
{0x0f,0x1f,0x80,0x00,0x00,0x00,0x00};
|
||
/* nopl 0L(%[re]ax,%[re]ax,1) */
|
||
static const char alt_8[] =
|
||
{0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
|
||
/* nopw 0L(%[re]ax,%[re]ax,1) */
|
||
static const char alt_9[] =
|
||
{0x66,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
|
||
/* nopw %cs:0L(%[re]ax,%[re]ax,1) */
|
||
static const char alt_10[] =
|
||
{0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
|
||
/* data16
|
||
nopw %cs:0L(%[re]ax,%[re]ax,1) */
|
||
static const char alt_long_11[] =
|
||
{0x66,
|
||
0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
|
||
/* data16
|
||
data16
|
||
nopw %cs:0L(%[re]ax,%[re]ax,1) */
|
||
static const char alt_long_12[] =
|
||
{0x66,
|
||
0x66,
|
||
0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
|
||
/* data16
|
||
data16
|
||
data16
|
||
nopw %cs:0L(%[re]ax,%[re]ax,1) */
|
||
static const char alt_long_13[] =
|
||
{0x66,
|
||
0x66,
|
||
0x66,
|
||
0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
|
||
/* data16
|
||
data16
|
||
data16
|
||
data16
|
||
nopw %cs:0L(%[re]ax,%[re]ax,1) */
|
||
static const char alt_long_14[] =
|
||
{0x66,
|
||
0x66,
|
||
0x66,
|
||
0x66,
|
||
0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
|
||
/* data16
|
||
data16
|
||
data16
|
||
data16
|
||
data16
|
||
nopw %cs:0L(%[re]ax,%[re]ax,1) */
|
||
static const char alt_long_15[] =
|
||
{0x66,
|
||
0x66,
|
||
0x66,
|
||
0x66,
|
||
0x66,
|
||
0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
|
||
/* nopl 0(%[re]ax,%[re]ax,1)
|
||
nopw 0(%[re]ax,%[re]ax,1) */
|
||
static const char alt_short_11[] =
|
||
{0x0f,0x1f,0x44,0x00,0x00,
|
||
0x66,0x0f,0x1f,0x44,0x00,0x00};
|
||
/* nopw 0(%[re]ax,%[re]ax,1)
|
||
nopw 0(%[re]ax,%[re]ax,1) */
|
||
static const char alt_short_12[] =
|
||
{0x66,0x0f,0x1f,0x44,0x00,0x00,
|
||
0x66,0x0f,0x1f,0x44,0x00,0x00};
|
||
/* nopw 0(%[re]ax,%[re]ax,1)
|
||
nopl 0L(%[re]ax) */
|
||
static const char alt_short_13[] =
|
||
{0x66,0x0f,0x1f,0x44,0x00,0x00,
|
||
0x0f,0x1f,0x80,0x00,0x00,0x00,0x00};
|
||
/* nopl 0L(%[re]ax)
|
||
nopl 0L(%[re]ax) */
|
||
static const char alt_short_14[] =
|
||
{0x0f,0x1f,0x80,0x00,0x00,0x00,0x00,
|
||
0x0f,0x1f,0x80,0x00,0x00,0x00,0x00};
|
||
/* nopl 0L(%[re]ax)
|
||
nopl 0L(%[re]ax,%[re]ax,1) */
|
||
static const char alt_short_15[] =
|
||
{0x0f,0x1f,0x80,0x00,0x00,0x00,0x00,
|
||
0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
|
||
static const char *const alt_short_patt[] = {
|
||
f32_1, f32_2, alt_3, alt_4, alt_5, alt_6, alt_7, alt_8,
|
||
alt_9, alt_10, alt_short_11, alt_short_12, alt_short_13,
|
||
alt_short_14, alt_short_15
|
||
};
|
||
static const char *const alt_long_patt[] = {
|
||
f32_1, f32_2, alt_3, alt_4, alt_5, alt_6, alt_7, alt_8,
|
||
alt_9, alt_10, alt_long_11, alt_long_12, alt_long_13,
|
||
alt_long_14, alt_long_15
|
||
};
|
||
|
||
/* Only align for at least a positive non-zero boundary. */
|
||
if (count <= 0 || count > MAX_MEM_FOR_RS_ALIGN_CODE)
|
||
return;
|
||
|
||
/* We need to decide which NOP sequence to use for 32bit and
|
||
64bit. When -mtune= is used:
|
||
|
||
1. For PROCESSOR_I386, PROCESSOR_I486, PROCESSOR_PENTIUM and
|
||
PROCESSOR_GENERIC32, f32_patt will be used.
|
||
2. For PROCESSOR_PENTIUMPRO, PROCESSOR_PENTIUM4, PROCESSOR_NOCONA,
|
||
PROCESSOR_CORE, PROCESSOR_CORE2, PROCESSOR_COREI7, and
|
||
PROCESSOR_GENERIC64, alt_long_patt will be used.
|
||
3. For PROCESSOR_ATHLON, PROCESSOR_K6, PROCESSOR_K8 and
|
||
PROCESSOR_AMDFAM10, PROCESSOR_BD and PROCESSOR_BT, alt_short_patt
|
||
will be used.
|
||
|
||
When -mtune= isn't used, alt_long_patt will be used if
|
||
cpu_arch_isa_flags has CpuNop. Otherwise, f32_patt will
|
||
be used.
|
||
|
||
When -march= or .arch is used, we can't use anything beyond
|
||
cpu_arch_isa_flags. */
|
||
|
||
if (flag_code == CODE_16BIT)
|
||
{
|
||
if (count > 8)
|
||
{
|
||
memcpy (fragP->fr_literal + fragP->fr_fix,
|
||
jump_31, count);
|
||
/* Adjust jump offset. */
|
||
fragP->fr_literal[fragP->fr_fix + 1] = count - 2;
|
||
}
|
||
else
|
||
memcpy (fragP->fr_literal + fragP->fr_fix,
|
||
f16_patt[count - 1], count);
|
||
}
|
||
else
|
||
{
|
||
const char *const *patt = NULL;
|
||
|
||
if (fragP->tc_frag_data.isa == PROCESSOR_UNKNOWN)
|
||
{
|
||
/* PROCESSOR_UNKNOWN means that all ISAs may be used. */
|
||
switch (cpu_arch_tune)
|
||
{
|
||
case PROCESSOR_UNKNOWN:
|
||
/* We use cpu_arch_isa_flags to check if we SHOULD
|
||
optimize with nops. */
|
||
if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
|
||
patt = alt_long_patt;
|
||
else
|
||
patt = f32_patt;
|
||
break;
|
||
case PROCESSOR_PENTIUM4:
|
||
case PROCESSOR_NOCONA:
|
||
case PROCESSOR_CORE:
|
||
case PROCESSOR_CORE2:
|
||
case PROCESSOR_COREI7:
|
||
case PROCESSOR_L1OM:
|
||
case PROCESSOR_K1OM:
|
||
case PROCESSOR_GENERIC64:
|
||
patt = alt_long_patt;
|
||
break;
|
||
case PROCESSOR_K6:
|
||
case PROCESSOR_ATHLON:
|
||
case PROCESSOR_K8:
|
||
case PROCESSOR_AMDFAM10:
|
||
case PROCESSOR_BD:
|
||
case PROCESSOR_BT:
|
||
patt = alt_short_patt;
|
||
break;
|
||
case PROCESSOR_I386:
|
||
case PROCESSOR_I486:
|
||
case PROCESSOR_PENTIUM:
|
||
case PROCESSOR_PENTIUMPRO:
|
||
case PROCESSOR_GENERIC32:
|
||
patt = f32_patt;
|
||
break;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
switch (fragP->tc_frag_data.tune)
|
||
{
|
||
case PROCESSOR_UNKNOWN:
|
||
/* When cpu_arch_isa is set, cpu_arch_tune shouldn't be
|
||
PROCESSOR_UNKNOWN. */
|
||
abort ();
|
||
break;
|
||
|
||
case PROCESSOR_I386:
|
||
case PROCESSOR_I486:
|
||
case PROCESSOR_PENTIUM:
|
||
case PROCESSOR_K6:
|
||
case PROCESSOR_ATHLON:
|
||
case PROCESSOR_K8:
|
||
case PROCESSOR_AMDFAM10:
|
||
case PROCESSOR_BD:
|
||
case PROCESSOR_BT:
|
||
case PROCESSOR_GENERIC32:
|
||
/* We use cpu_arch_isa_flags to check if we CAN optimize
|
||
with nops. */
|
||
if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
|
||
patt = alt_short_patt;
|
||
else
|
||
patt = f32_patt;
|
||
break;
|
||
case PROCESSOR_PENTIUMPRO:
|
||
case PROCESSOR_PENTIUM4:
|
||
case PROCESSOR_NOCONA:
|
||
case PROCESSOR_CORE:
|
||
case PROCESSOR_CORE2:
|
||
case PROCESSOR_COREI7:
|
||
case PROCESSOR_L1OM:
|
||
case PROCESSOR_K1OM:
|
||
if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
|
||
patt = alt_long_patt;
|
||
else
|
||
patt = f32_patt;
|
||
break;
|
||
case PROCESSOR_GENERIC64:
|
||
patt = alt_long_patt;
|
||
break;
|
||
}
|
||
}
|
||
|
||
if (patt == f32_patt)
|
||
{
|
||
/* If the padding is less than 15 bytes, we use the normal
|
||
ones. Otherwise, we use a jump instruction and adjust
|
||
its offset. */
|
||
int limit;
|
||
|
||
/* For 64bit, the limit is 3 bytes. */
|
||
if (flag_code == CODE_64BIT
|
||
&& fragP->tc_frag_data.isa_flags.bitfield.cpulm)
|
||
limit = 3;
|
||
else
|
||
limit = 15;
|
||
if (count < limit)
|
||
memcpy (fragP->fr_literal + fragP->fr_fix,
|
||
patt[count - 1], count);
|
||
else
|
||
{
|
||
memcpy (fragP->fr_literal + fragP->fr_fix,
|
||
jump_31, count);
|
||
/* Adjust jump offset. */
|
||
fragP->fr_literal[fragP->fr_fix + 1] = count - 2;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
/* Maximum length of an instruction is 15 byte. If the
|
||
padding is greater than 15 bytes and we don't use jump,
|
||
we have to break it into smaller pieces. */
|
||
int padding = count;
|
||
while (padding > 15)
|
||
{
|
||
padding -= 15;
|
||
memcpy (fragP->fr_literal + fragP->fr_fix + padding,
|
||
patt [14], 15);
|
||
}
|
||
|
||
if (padding)
|
||
memcpy (fragP->fr_literal + fragP->fr_fix,
|
||
patt [padding - 1], padding);
|
||
}
|
||
}
|
||
fragP->fr_var = count;
|
||
}
|
||
|
||
static INLINE int
|
||
operand_type_all_zero (const union i386_operand_type *x)
|
||
{
|
||
switch (ARRAY_SIZE(x->array))
|
||
{
|
||
case 3:
|
||
if (x->array[2])
|
||
return 0;
|
||
case 2:
|
||
if (x->array[1])
|
||
return 0;
|
||
case 1:
|
||
return !x->array[0];
|
||
default:
|
||
abort ();
|
||
}
|
||
}
|
||
|
||
static INLINE void
|
||
operand_type_set (union i386_operand_type *x, unsigned int v)
|
||
{
|
||
switch (ARRAY_SIZE(x->array))
|
||
{
|
||
case 3:
|
||
x->array[2] = v;
|
||
case 2:
|
||
x->array[1] = v;
|
||
case 1:
|
||
x->array[0] = v;
|
||
break;
|
||
default:
|
||
abort ();
|
||
}
|
||
}
|
||
|
||
static INLINE int
|
||
operand_type_equal (const union i386_operand_type *x,
|
||
const union i386_operand_type *y)
|
||
{
|
||
switch (ARRAY_SIZE(x->array))
|
||
{
|
||
case 3:
|
||
if (x->array[2] != y->array[2])
|
||
return 0;
|
||
case 2:
|
||
if (x->array[1] != y->array[1])
|
||
return 0;
|
||
case 1:
|
||
return x->array[0] == y->array[0];
|
||
break;
|
||
default:
|
||
abort ();
|
||
}
|
||
}
|
||
|
||
static INLINE int
|
||
cpu_flags_all_zero (const union i386_cpu_flags *x)
|
||
{
|
||
switch (ARRAY_SIZE(x->array))
|
||
{
|
||
case 3:
|
||
if (x->array[2])
|
||
return 0;
|
||
case 2:
|
||
if (x->array[1])
|
||
return 0;
|
||
case 1:
|
||
return !x->array[0];
|
||
default:
|
||
abort ();
|
||
}
|
||
}
|
||
|
||
static INLINE void
|
||
cpu_flags_set (union i386_cpu_flags *x, unsigned int v)
|
||
{
|
||
switch (ARRAY_SIZE(x->array))
|
||
{
|
||
case 3:
|
||
x->array[2] = v;
|
||
case 2:
|
||
x->array[1] = v;
|
||
case 1:
|
||
x->array[0] = v;
|
||
break;
|
||
default:
|
||
abort ();
|
||
}
|
||
}
|
||
|
||
static INLINE int
|
||
cpu_flags_equal (const union i386_cpu_flags *x,
|
||
const union i386_cpu_flags *y)
|
||
{
|
||
switch (ARRAY_SIZE(x->array))
|
||
{
|
||
case 3:
|
||
if (x->array[2] != y->array[2])
|
||
return 0;
|
||
case 2:
|
||
if (x->array[1] != y->array[1])
|
||
return 0;
|
||
case 1:
|
||
return x->array[0] == y->array[0];
|
||
break;
|
||
default:
|
||
abort ();
|
||
}
|
||
}
|
||
|
||
static INLINE int
|
||
cpu_flags_check_cpu64 (i386_cpu_flags f)
|
||
{
|
||
return !((flag_code == CODE_64BIT && f.bitfield.cpuno64)
|
||
|| (flag_code != CODE_64BIT && f.bitfield.cpu64));
|
||
}
|
||
|
||
static INLINE i386_cpu_flags
|
||
cpu_flags_and (i386_cpu_flags x, i386_cpu_flags y)
|
||
{
|
||
switch (ARRAY_SIZE (x.array))
|
||
{
|
||
case 3:
|
||
x.array [2] &= y.array [2];
|
||
case 2:
|
||
x.array [1] &= y.array [1];
|
||
case 1:
|
||
x.array [0] &= y.array [0];
|
||
break;
|
||
default:
|
||
abort ();
|
||
}
|
||
return x;
|
||
}
|
||
|
||
static INLINE i386_cpu_flags
|
||
cpu_flags_or (i386_cpu_flags x, i386_cpu_flags y)
|
||
{
|
||
switch (ARRAY_SIZE (x.array))
|
||
{
|
||
case 3:
|
||
x.array [2] |= y.array [2];
|
||
case 2:
|
||
x.array [1] |= y.array [1];
|
||
case 1:
|
||
x.array [0] |= y.array [0];
|
||
break;
|
||
default:
|
||
abort ();
|
||
}
|
||
return x;
|
||
}
|
||
|
||
static INLINE i386_cpu_flags
|
||
cpu_flags_and_not (i386_cpu_flags x, i386_cpu_flags y)
|
||
{
|
||
switch (ARRAY_SIZE (x.array))
|
||
{
|
||
case 3:
|
||
x.array [2] &= ~y.array [2];
|
||
case 2:
|
||
x.array [1] &= ~y.array [1];
|
||
case 1:
|
||
x.array [0] &= ~y.array [0];
|
||
break;
|
||
default:
|
||
abort ();
|
||
}
|
||
return x;
|
||
}
|
||
|
||
#define CPU_FLAGS_ARCH_MATCH 0x1
|
||
#define CPU_FLAGS_64BIT_MATCH 0x2
|
||
#define CPU_FLAGS_AES_MATCH 0x4
|
||
#define CPU_FLAGS_PCLMUL_MATCH 0x8
|
||
#define CPU_FLAGS_AVX_MATCH 0x10
|
||
|
||
#define CPU_FLAGS_32BIT_MATCH \
|
||
(CPU_FLAGS_ARCH_MATCH | CPU_FLAGS_AES_MATCH \
|
||
| CPU_FLAGS_PCLMUL_MATCH | CPU_FLAGS_AVX_MATCH)
|
||
#define CPU_FLAGS_PERFECT_MATCH \
|
||
(CPU_FLAGS_32BIT_MATCH | CPU_FLAGS_64BIT_MATCH)
|
||
|
||
/* Return CPU flags match bits. */
|
||
|
||
static int
|
||
cpu_flags_match (const insn_template *t)
|
||
{
|
||
i386_cpu_flags x = t->cpu_flags;
|
||
int match = cpu_flags_check_cpu64 (x) ? CPU_FLAGS_64BIT_MATCH : 0;
|
||
|
||
x.bitfield.cpu64 = 0;
|
||
x.bitfield.cpuno64 = 0;
|
||
|
||
if (cpu_flags_all_zero (&x))
|
||
{
|
||
/* This instruction is available on all archs. */
|
||
match |= CPU_FLAGS_32BIT_MATCH;
|
||
}
|
||
else
|
||
{
|
||
/* This instruction is available only on some archs. */
|
||
i386_cpu_flags cpu = cpu_arch_flags;
|
||
|
||
cpu.bitfield.cpu64 = 0;
|
||
cpu.bitfield.cpuno64 = 0;
|
||
cpu = cpu_flags_and (x, cpu);
|
||
if (!cpu_flags_all_zero (&cpu))
|
||
{
|
||
if (x.bitfield.cpuavx)
|
||
{
|
||
/* We only need to check AES/PCLMUL/SSE2AVX with AVX. */
|
||
if (cpu.bitfield.cpuavx)
|
||
{
|
||
/* Check SSE2AVX. */
|
||
if (!t->opcode_modifier.sse2avx|| sse2avx)
|
||
{
|
||
match |= (CPU_FLAGS_ARCH_MATCH
|
||
| CPU_FLAGS_AVX_MATCH);
|
||
/* Check AES. */
|
||
if (!x.bitfield.cpuaes || cpu.bitfield.cpuaes)
|
||
match |= CPU_FLAGS_AES_MATCH;
|
||
/* Check PCLMUL. */
|
||
if (!x.bitfield.cpupclmul
|
||
|| cpu.bitfield.cpupclmul)
|
||
match |= CPU_FLAGS_PCLMUL_MATCH;
|
||
}
|
||
}
|
||
else
|
||
match |= CPU_FLAGS_ARCH_MATCH;
|
||
}
|
||
else
|
||
match |= CPU_FLAGS_32BIT_MATCH;
|
||
}
|
||
}
|
||
return match;
|
||
}
|
||
|
||
static INLINE i386_operand_type
|
||
operand_type_and (i386_operand_type x, i386_operand_type y)
|
||
{
|
||
switch (ARRAY_SIZE (x.array))
|
||
{
|
||
case 3:
|
||
x.array [2] &= y.array [2];
|
||
case 2:
|
||
x.array [1] &= y.array [1];
|
||
case 1:
|
||
x.array [0] &= y.array [0];
|
||
break;
|
||
default:
|
||
abort ();
|
||
}
|
||
return x;
|
||
}
|
||
|
||
static INLINE i386_operand_type
|
||
operand_type_or (i386_operand_type x, i386_operand_type y)
|
||
{
|
||
switch (ARRAY_SIZE (x.array))
|
||
{
|
||
case 3:
|
||
x.array [2] |= y.array [2];
|
||
case 2:
|
||
x.array [1] |= y.array [1];
|
||
case 1:
|
||
x.array [0] |= y.array [0];
|
||
break;
|
||
default:
|
||
abort ();
|
||
}
|
||
return x;
|
||
}
|
||
|
||
static INLINE i386_operand_type
|
||
operand_type_xor (i386_operand_type x, i386_operand_type y)
|
||
{
|
||
switch (ARRAY_SIZE (x.array))
|
||
{
|
||
case 3:
|
||
x.array [2] ^= y.array [2];
|
||
case 2:
|
||
x.array [1] ^= y.array [1];
|
||
case 1:
|
||
x.array [0] ^= y.array [0];
|
||
break;
|
||
default:
|
||
abort ();
|
||
}
|
||
return x;
|
||
}
|
||
|
||
static const i386_operand_type acc32 = OPERAND_TYPE_ACC32;
|
||
static const i386_operand_type acc64 = OPERAND_TYPE_ACC64;
|
||
static const i386_operand_type control = OPERAND_TYPE_CONTROL;
|
||
static const i386_operand_type inoutportreg
|
||
= OPERAND_TYPE_INOUTPORTREG;
|
||
static const i386_operand_type reg16_inoutportreg
|
||
= OPERAND_TYPE_REG16_INOUTPORTREG;
|
||
static const i386_operand_type disp16 = OPERAND_TYPE_DISP16;
|
||
static const i386_operand_type disp32 = OPERAND_TYPE_DISP32;
|
||
static const i386_operand_type disp32s = OPERAND_TYPE_DISP32S;
|
||
static const i386_operand_type disp16_32 = OPERAND_TYPE_DISP16_32;
|
||
static const i386_operand_type anydisp
|
||
= OPERAND_TYPE_ANYDISP;
|
||
static const i386_operand_type regxmm = OPERAND_TYPE_REGXMM;
|
||
static const i386_operand_type regymm = OPERAND_TYPE_REGYMM;
|
||
static const i386_operand_type regzmm = OPERAND_TYPE_REGZMM;
|
||
static const i386_operand_type regmask = OPERAND_TYPE_REGMASK;
|
||
static const i386_operand_type imm8 = OPERAND_TYPE_IMM8;
|
||
static const i386_operand_type imm8s = OPERAND_TYPE_IMM8S;
|
||
static const i386_operand_type imm16 = OPERAND_TYPE_IMM16;
|
||
static const i386_operand_type imm32 = OPERAND_TYPE_IMM32;
|
||
static const i386_operand_type imm32s = OPERAND_TYPE_IMM32S;
|
||
static const i386_operand_type imm64 = OPERAND_TYPE_IMM64;
|
||
static const i386_operand_type imm16_32 = OPERAND_TYPE_IMM16_32;
|
||
static const i386_operand_type imm16_32s = OPERAND_TYPE_IMM16_32S;
|
||
static const i386_operand_type imm16_32_32s = OPERAND_TYPE_IMM16_32_32S;
|
||
static const i386_operand_type vec_imm4 = OPERAND_TYPE_VEC_IMM4;
|
||
|
||
enum operand_type
|
||
{
|
||
reg,
|
||
imm,
|
||
disp,
|
||
anymem
|
||
};
|
||
|
||
static INLINE int
|
||
operand_type_check (i386_operand_type t, enum operand_type c)
|
||
{
|
||
switch (c)
|
||
{
|
||
case reg:
|
||
return (t.bitfield.reg8
|
||
|| t.bitfield.reg16
|
||
|| t.bitfield.reg32
|
||
|| t.bitfield.reg64);
|
||
|
||
case imm:
|
||
return (t.bitfield.imm8
|
||
|| t.bitfield.imm8s
|
||
|| t.bitfield.imm16
|
||
|| t.bitfield.imm32
|
||
|| t.bitfield.imm32s
|
||
|| t.bitfield.imm64);
|
||
|
||
case disp:
|
||
return (t.bitfield.disp8
|
||
|| t.bitfield.disp16
|
||
|| t.bitfield.disp32
|
||
|| t.bitfield.disp32s
|
||
|| t.bitfield.disp64);
|
||
|
||
case anymem:
|
||
return (t.bitfield.disp8
|
||
|| t.bitfield.disp16
|
||
|| t.bitfield.disp32
|
||
|| t.bitfield.disp32s
|
||
|| t.bitfield.disp64
|
||
|| t.bitfield.baseindex);
|
||
|
||
default:
|
||
abort ();
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Return 1 if there is no conflict in 8bit/16bit/32bit/64bit on
|
||
operand J for instruction template T. */
|
||
|
||
static INLINE int
|
||
match_reg_size (const insn_template *t, unsigned int j)
|
||
{
|
||
return !((i.types[j].bitfield.byte
|
||
&& !t->operand_types[j].bitfield.byte)
|
||
|| (i.types[j].bitfield.word
|
||
&& !t->operand_types[j].bitfield.word)
|
||
|| (i.types[j].bitfield.dword
|
||
&& !t->operand_types[j].bitfield.dword)
|
||
|| (i.types[j].bitfield.qword
|
||
&& !t->operand_types[j].bitfield.qword));
|
||
}
|
||
|
||
/* Return 1 if there is no conflict in any size on operand J for
|
||
instruction template T. */
|
||
|
||
static INLINE int
|
||
match_mem_size (const insn_template *t, unsigned int j)
|
||
{
|
||
return (match_reg_size (t, j)
|
||
&& !((i.types[j].bitfield.unspecified
|
||
&& !t->operand_types[j].bitfield.unspecified)
|
||
|| (i.types[j].bitfield.fword
|
||
&& !t->operand_types[j].bitfield.fword)
|
||
|| (i.types[j].bitfield.tbyte
|
||
&& !t->operand_types[j].bitfield.tbyte)
|
||
|| (i.types[j].bitfield.xmmword
|
||
&& !t->operand_types[j].bitfield.xmmword)
|
||
|| (i.types[j].bitfield.ymmword
|
||
&& !t->operand_types[j].bitfield.ymmword)
|
||
|| (i.types[j].bitfield.zmmword
|
||
&& !t->operand_types[j].bitfield.zmmword)));
|
||
}
|
||
|
||
/* Return 1 if there is no size conflict on any operands for
|
||
instruction template T. */
|
||
|
||
static INLINE int
|
||
operand_size_match (const insn_template *t)
|
||
{
|
||
unsigned int j;
|
||
int match = 1;
|
||
|
||
/* Don't check jump instructions. */
|
||
if (t->opcode_modifier.jump
|
||
|| t->opcode_modifier.jumpbyte
|
||
|| t->opcode_modifier.jumpdword
|
||
|| t->opcode_modifier.jumpintersegment)
|
||
return match;
|
||
|
||
/* Check memory and accumulator operand size. */
|
||
for (j = 0; j < i.operands; j++)
|
||
{
|
||
if (t->operand_types[j].bitfield.anysize)
|
||
continue;
|
||
|
||
if (t->operand_types[j].bitfield.acc && !match_reg_size (t, j))
|
||
{
|
||
match = 0;
|
||
break;
|
||
}
|
||
|
||
if (i.types[j].bitfield.mem && !match_mem_size (t, j))
|
||
{
|
||
match = 0;
|
||
break;
|
||
}
|
||
}
|
||
|
||
if (match)
|
||
return match;
|
||
else if (!t->opcode_modifier.d && !t->opcode_modifier.floatd)
|
||
{
|
||
mismatch:
|
||
i.error = operand_size_mismatch;
|
||
return 0;
|
||
}
|
||
|
||
/* Check reverse. */
|
||
gas_assert (i.operands == 2);
|
||
|
||
match = 1;
|
||
for (j = 0; j < 2; j++)
|
||
{
|
||
if (t->operand_types[j].bitfield.acc
|
||
&& !match_reg_size (t, j ? 0 : 1))
|
||
goto mismatch;
|
||
|
||
if (i.types[j].bitfield.mem
|
||
&& !match_mem_size (t, j ? 0 : 1))
|
||
goto mismatch;
|
||
}
|
||
|
||
return match;
|
||
}
|
||
|
||
static INLINE int
|
||
operand_type_match (i386_operand_type overlap,
|
||
i386_operand_type given)
|
||
{
|
||
i386_operand_type temp = overlap;
|
||
|
||
temp.bitfield.jumpabsolute = 0;
|
||
temp.bitfield.unspecified = 0;
|
||
temp.bitfield.byte = 0;
|
||
temp.bitfield.word = 0;
|
||
temp.bitfield.dword = 0;
|
||
temp.bitfield.fword = 0;
|
||
temp.bitfield.qword = 0;
|
||
temp.bitfield.tbyte = 0;
|
||
temp.bitfield.xmmword = 0;
|
||
temp.bitfield.ymmword = 0;
|
||
temp.bitfield.zmmword = 0;
|
||
if (operand_type_all_zero (&temp))
|
||
goto mismatch;
|
||
|
||
if (given.bitfield.baseindex == overlap.bitfield.baseindex
|
||
&& given.bitfield.jumpabsolute == overlap.bitfield.jumpabsolute)
|
||
return 1;
|
||
|
||
mismatch:
|
||
i.error = operand_type_mismatch;
|
||
return 0;
|
||
}
|
||
|
||
/* If given types g0 and g1 are registers they must be of the same type
|
||
unless the expected operand type register overlap is null.
|
||
Note that Acc in a template matches every size of reg. */
|
||
|
||
static INLINE int
|
||
operand_type_register_match (i386_operand_type m0,
|
||
i386_operand_type g0,
|
||
i386_operand_type t0,
|
||
i386_operand_type m1,
|
||
i386_operand_type g1,
|
||
i386_operand_type t1)
|
||
{
|
||
if (!operand_type_check (g0, reg))
|
||
return 1;
|
||
|
||
if (!operand_type_check (g1, reg))
|
||
return 1;
|
||
|
||
if (g0.bitfield.reg8 == g1.bitfield.reg8
|
||
&& g0.bitfield.reg16 == g1.bitfield.reg16
|
||
&& g0.bitfield.reg32 == g1.bitfield.reg32
|
||
&& g0.bitfield.reg64 == g1.bitfield.reg64)
|
||
return 1;
|
||
|
||
if (m0.bitfield.acc)
|
||
{
|
||
t0.bitfield.reg8 = 1;
|
||
t0.bitfield.reg16 = 1;
|
||
t0.bitfield.reg32 = 1;
|
||
t0.bitfield.reg64 = 1;
|
||
}
|
||
|
||
if (m1.bitfield.acc)
|
||
{
|
||
t1.bitfield.reg8 = 1;
|
||
t1.bitfield.reg16 = 1;
|
||
t1.bitfield.reg32 = 1;
|
||
t1.bitfield.reg64 = 1;
|
||
}
|
||
|
||
if (!(t0.bitfield.reg8 & t1.bitfield.reg8)
|
||
&& !(t0.bitfield.reg16 & t1.bitfield.reg16)
|
||
&& !(t0.bitfield.reg32 & t1.bitfield.reg32)
|
||
&& !(t0.bitfield.reg64 & t1.bitfield.reg64))
|
||
return 1;
|
||
|
||
i.error = register_type_mismatch;
|
||
|
||
return 0;
|
||
}
|
||
|
||
static INLINE unsigned int
|
||
register_number (const reg_entry *r)
|
||
{
|
||
unsigned int nr = r->reg_num;
|
||
|
||
if (r->reg_flags & RegRex)
|
||
nr += 8;
|
||
|
||
return nr;
|
||
}
|
||
|
||
static INLINE unsigned int
|
||
mode_from_disp_size (i386_operand_type t)
|
||
{
|
||
if (t.bitfield.disp8 || t.bitfield.vec_disp8)
|
||
return 1;
|
||
else if (t.bitfield.disp16
|
||
|| t.bitfield.disp32
|
||
|| t.bitfield.disp32s)
|
||
return 2;
|
||
else
|
||
return 0;
|
||
}
|
||
|
||
static INLINE int
|
||
fits_in_signed_byte (offsetT num)
|
||
{
|
||
return (num >= -128) && (num <= 127);
|
||
}
|
||
|
||
static INLINE int
|
||
fits_in_unsigned_byte (offsetT num)
|
||
{
|
||
return (num & 0xff) == num;
|
||
}
|
||
|
||
static INLINE int
|
||
fits_in_unsigned_word (offsetT num)
|
||
{
|
||
return (num & 0xffff) == num;
|
||
}
|
||
|
||
static INLINE int
|
||
fits_in_signed_word (offsetT num)
|
||
{
|
||
return (-32768 <= num) && (num <= 32767);
|
||
}
|
||
|
||
static INLINE int
|
||
fits_in_signed_long (offsetT num ATTRIBUTE_UNUSED)
|
||
{
|
||
#ifndef BFD64
|
||
return 1;
|
||
#else
|
||
return (!(((offsetT) -1 << 31) & num)
|
||
|| (((offsetT) -1 << 31) & num) == ((offsetT) -1 << 31));
|
||
#endif
|
||
} /* fits_in_signed_long() */
|
||
|
||
static INLINE int
|
||
fits_in_unsigned_long (offsetT num ATTRIBUTE_UNUSED)
|
||
{
|
||
#ifndef BFD64
|
||
return 1;
|
||
#else
|
||
return (num & (((offsetT) 2 << 31) - 1)) == num;
|
||
#endif
|
||
} /* fits_in_unsigned_long() */
|
||
|
||
static INLINE int
|
||
fits_in_vec_disp8 (offsetT num)
|
||
{
|
||
int shift = i.memshift;
|
||
unsigned int mask;
|
||
|
||
if (shift == -1)
|
||
abort ();
|
||
|
||
mask = (1 << shift) - 1;
|
||
|
||
/* Return 0 if NUM isn't properly aligned. */
|
||
if ((num & mask))
|
||
return 0;
|
||
|
||
/* Check if NUM will fit in 8bit after shift. */
|
||
return fits_in_signed_byte (num >> shift);
|
||
}
|
||
|
||
static INLINE int
|
||
fits_in_imm4 (offsetT num)
|
||
{
|
||
return (num & 0xf) == num;
|
||
}
|
||
|
||
static i386_operand_type
|
||
smallest_imm_type (offsetT num)
|
||
{
|
||
i386_operand_type t;
|
||
|
||
operand_type_set (&t, 0);
|
||
t.bitfield.imm64 = 1;
|
||
|
||
if (cpu_arch_tune != PROCESSOR_I486 && num == 1)
|
||
{
|
||
/* This code is disabled on the 486 because all the Imm1 forms
|
||
in the opcode table are slower on the i486. They're the
|
||
versions with the implicitly specified single-position
|
||
displacement, which has another syntax if you really want to
|
||
use that form. */
|
||
t.bitfield.imm1 = 1;
|
||
t.bitfield.imm8 = 1;
|
||
t.bitfield.imm8s = 1;
|
||
t.bitfield.imm16 = 1;
|
||
t.bitfield.imm32 = 1;
|
||
t.bitfield.imm32s = 1;
|
||
}
|
||
else if (fits_in_signed_byte (num))
|
||
{
|
||
t.bitfield.imm8 = 1;
|
||
t.bitfield.imm8s = 1;
|
||
t.bitfield.imm16 = 1;
|
||
t.bitfield.imm32 = 1;
|
||
t.bitfield.imm32s = 1;
|
||
}
|
||
else if (fits_in_unsigned_byte (num))
|
||
{
|
||
t.bitfield.imm8 = 1;
|
||
t.bitfield.imm16 = 1;
|
||
t.bitfield.imm32 = 1;
|
||
t.bitfield.imm32s = 1;
|
||
}
|
||
else if (fits_in_signed_word (num) || fits_in_unsigned_word (num))
|
||
{
|
||
t.bitfield.imm16 = 1;
|
||
t.bitfield.imm32 = 1;
|
||
t.bitfield.imm32s = 1;
|
||
}
|
||
else if (fits_in_signed_long (num))
|
||
{
|
||
t.bitfield.imm32 = 1;
|
||
t.bitfield.imm32s = 1;
|
||
}
|
||
else if (fits_in_unsigned_long (num))
|
||
t.bitfield.imm32 = 1;
|
||
|
||
return t;
|
||
}
|
||
|
||
static offsetT
|
||
offset_in_range (offsetT val, int size)
|
||
{
|
||
addressT mask;
|
||
|
||
switch (size)
|
||
{
|
||
case 1: mask = ((addressT) 1 << 8) - 1; break;
|
||
case 2: mask = ((addressT) 1 << 16) - 1; break;
|
||
case 4: mask = ((addressT) 2 << 31) - 1; break;
|
||
#ifdef BFD64
|
||
case 8: mask = ((addressT) 2 << 63) - 1; break;
|
||
#endif
|
||
default: abort ();
|
||
}
|
||
|
||
#ifdef BFD64
|
||
/* If BFD64, sign extend val for 32bit address mode. */
|
||
if (flag_code != CODE_64BIT
|
||
|| i.prefix[ADDR_PREFIX])
|
||
if ((val & ~(((addressT) 2 << 31) - 1)) == 0)
|
||
val = (val ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
|
||
#endif
|
||
|
||
if ((val & ~mask) != 0 && (val & ~mask) != ~mask)
|
||
{
|
||
char buf1[40], buf2[40];
|
||
|
||
sprint_value (buf1, val);
|
||
sprint_value (buf2, val & mask);
|
||
as_warn (_("%s shortened to %s"), buf1, buf2);
|
||
}
|
||
return val & mask;
|
||
}
|
||
|
||
enum PREFIX_GROUP
|
||
{
|
||
PREFIX_EXIST = 0,
|
||
PREFIX_LOCK,
|
||
PREFIX_REP,
|
||
PREFIX_OTHER
|
||
};
|
||
|
||
/* Returns
|
||
a. PREFIX_EXIST if attempting to add a prefix where one from the
|
||
same class already exists.
|
||
b. PREFIX_LOCK if lock prefix is added.
|
||
c. PREFIX_REP if rep/repne prefix is added.
|
||
d. PREFIX_OTHER if other prefix is added.
|
||
*/
|
||
|
||
static enum PREFIX_GROUP
|
||
add_prefix (unsigned int prefix)
|
||
{
|
||
enum PREFIX_GROUP ret = PREFIX_OTHER;
|
||
unsigned int q;
|
||
|
||
if (prefix >= REX_OPCODE && prefix < REX_OPCODE + 16
|
||
&& flag_code == CODE_64BIT)
|
||
{
|
||
if ((i.prefix[REX_PREFIX] & prefix & REX_W)
|
||
|| ((i.prefix[REX_PREFIX] & (REX_R | REX_X | REX_B))
|
||
&& (prefix & (REX_R | REX_X | REX_B))))
|
||
ret = PREFIX_EXIST;
|
||
q = REX_PREFIX;
|
||
}
|
||
else
|
||
{
|
||
switch (prefix)
|
||
{
|
||
default:
|
||
abort ();
|
||
|
||
case CS_PREFIX_OPCODE:
|
||
case DS_PREFIX_OPCODE:
|
||
case ES_PREFIX_OPCODE:
|
||
case FS_PREFIX_OPCODE:
|
||
case GS_PREFIX_OPCODE:
|
||
case SS_PREFIX_OPCODE:
|
||
q = SEG_PREFIX;
|
||
break;
|
||
|
||
case REPNE_PREFIX_OPCODE:
|
||
case REPE_PREFIX_OPCODE:
|
||
q = REP_PREFIX;
|
||
ret = PREFIX_REP;
|
||
break;
|
||
|
||
case LOCK_PREFIX_OPCODE:
|
||
q = LOCK_PREFIX;
|
||
ret = PREFIX_LOCK;
|
||
break;
|
||
|
||
case FWAIT_OPCODE:
|
||
q = WAIT_PREFIX;
|
||
break;
|
||
|
||
case ADDR_PREFIX_OPCODE:
|
||
q = ADDR_PREFIX;
|
||
break;
|
||
|
||
case DATA_PREFIX_OPCODE:
|
||
q = DATA_PREFIX;
|
||
break;
|
||
}
|
||
if (i.prefix[q] != 0)
|
||
ret = PREFIX_EXIST;
|
||
}
|
||
|
||
if (ret)
|
||
{
|
||
if (!i.prefix[q])
|
||
++i.prefixes;
|
||
i.prefix[q] |= prefix;
|
||
}
|
||
else
|
||
as_bad (_("same type of prefix used twice"));
|
||
|
||
return ret;
|
||
}
|
||
|
||
static void
|
||
update_code_flag (int value, int check)
|
||
{
|
||
PRINTF_LIKE ((*as_error));
|
||
|
||
flag_code = (enum flag_code) value;
|
||
if (flag_code == CODE_64BIT)
|
||
{
|
||
cpu_arch_flags.bitfield.cpu64 = 1;
|
||
cpu_arch_flags.bitfield.cpuno64 = 0;
|
||
}
|
||
else
|
||
{
|
||
cpu_arch_flags.bitfield.cpu64 = 0;
|
||
cpu_arch_flags.bitfield.cpuno64 = 1;
|
||
}
|
||
if (value == CODE_64BIT && !cpu_arch_flags.bitfield.cpulm )
|
||
{
|
||
if (check)
|
||
as_error = as_fatal;
|
||
else
|
||
as_error = as_bad;
|
||
(*as_error) (_("64bit mode not supported on `%s'."),
|
||
cpu_arch_name ? cpu_arch_name : default_arch);
|
||
}
|
||
if (value == CODE_32BIT && !cpu_arch_flags.bitfield.cpui386)
|
||
{
|
||
if (check)
|
||
as_error = as_fatal;
|
||
else
|
||
as_error = as_bad;
|
||
(*as_error) (_("32bit mode not supported on `%s'."),
|
||
cpu_arch_name ? cpu_arch_name : default_arch);
|
||
}
|
||
stackop_size = '\0';
|
||
}
|
||
|
||
static void
|
||
set_code_flag (int value)
|
||
{
|
||
update_code_flag (value, 0);
|
||
}
|
||
|
||
static void
|
||
set_16bit_gcc_code_flag (int new_code_flag)
|
||
{
|
||
flag_code = (enum flag_code) new_code_flag;
|
||
if (flag_code != CODE_16BIT)
|
||
abort ();
|
||
cpu_arch_flags.bitfield.cpu64 = 0;
|
||
cpu_arch_flags.bitfield.cpuno64 = 1;
|
||
stackop_size = LONG_MNEM_SUFFIX;
|
||
}
|
||
|
||
static void
|
||
set_intel_syntax (int syntax_flag)
|
||
{
|
||
/* Find out if register prefixing is specified. */
|
||
int ask_naked_reg = 0;
|
||
|
||
SKIP_WHITESPACE ();
|
||
if (!is_end_of_line[(unsigned char) *input_line_pointer])
|
||
{
|
||
char *string = input_line_pointer;
|
||
int e = get_symbol_end ();
|
||
|
||
if (strcmp (string, "prefix") == 0)
|
||
ask_naked_reg = 1;
|
||
else if (strcmp (string, "noprefix") == 0)
|
||
ask_naked_reg = -1;
|
||
else
|
||
as_bad (_("bad argument to syntax directive."));
|
||
*input_line_pointer = e;
|
||
}
|
||
demand_empty_rest_of_line ();
|
||
|
||
intel_syntax = syntax_flag;
|
||
|
||
if (ask_naked_reg == 0)
|
||
allow_naked_reg = (intel_syntax
|
||
&& (bfd_get_symbol_leading_char (stdoutput) != '\0'));
|
||
else
|
||
allow_naked_reg = (ask_naked_reg < 0);
|
||
|
||
expr_set_rank (O_full_ptr, syntax_flag ? 10 : 0);
|
||
|
||
identifier_chars['%'] = intel_syntax && allow_naked_reg ? '%' : 0;
|
||
identifier_chars['$'] = intel_syntax ? '$' : 0;
|
||
register_prefix = allow_naked_reg ? "" : "%";
|
||
}
|
||
|
||
static void
|
||
set_intel_mnemonic (int mnemonic_flag)
|
||
{
|
||
intel_mnemonic = mnemonic_flag;
|
||
}
|
||
|
||
static void
|
||
set_allow_index_reg (int flag)
|
||
{
|
||
allow_index_reg = flag;
|
||
}
|
||
|
||
static void
|
||
set_check (int what)
|
||
{
|
||
enum check_kind *kind;
|
||
const char *str;
|
||
|
||
if (what)
|
||
{
|
||
kind = &operand_check;
|
||
str = "operand";
|
||
}
|
||
else
|
||
{
|
||
kind = &sse_check;
|
||
str = "sse";
|
||
}
|
||
|
||
SKIP_WHITESPACE ();
|
||
|
||
if (!is_end_of_line[(unsigned char) *input_line_pointer])
|
||
{
|
||
char *string = input_line_pointer;
|
||
int e = get_symbol_end ();
|
||
|
||
if (strcmp (string, "none") == 0)
|
||
*kind = check_none;
|
||
else if (strcmp (string, "warning") == 0)
|
||
*kind = check_warning;
|
||
else if (strcmp (string, "error") == 0)
|
||
*kind = check_error;
|
||
else
|
||
as_bad (_("bad argument to %s_check directive."), str);
|
||
*input_line_pointer = e;
|
||
}
|
||
else
|
||
as_bad (_("missing argument for %s_check directive"), str);
|
||
|
||
demand_empty_rest_of_line ();
|
||
}
|
||
|
||
static void
|
||
check_cpu_arch_compatible (const char *name ATTRIBUTE_UNUSED,
|
||
i386_cpu_flags new_flag ATTRIBUTE_UNUSED)
|
||
{
|
||
#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
|
||
static const char *arch;
|
||
|
||
/* Intel LIOM is only supported on ELF. */
|
||
if (!IS_ELF)
|
||
return;
|
||
|
||
if (!arch)
|
||
{
|
||
/* Use cpu_arch_name if it is set in md_parse_option. Otherwise
|
||
use default_arch. */
|
||
arch = cpu_arch_name;
|
||
if (!arch)
|
||
arch = default_arch;
|
||
}
|
||
|
||
/* If we are targeting Intel L1OM, we must enable it. */
|
||
if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_L1OM
|
||
|| new_flag.bitfield.cpul1om)
|
||
return;
|
||
|
||
/* If we are targeting Intel K1OM, we must enable it. */
|
||
if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_K1OM
|
||
|| new_flag.bitfield.cpuk1om)
|
||
return;
|
||
|
||
as_bad (_("`%s' is not supported on `%s'"), name, arch);
|
||
#endif
|
||
}
|
||
|
||
static void
|
||
set_cpu_arch (int dummy ATTRIBUTE_UNUSED)
|
||
{
|
||
SKIP_WHITESPACE ();
|
||
|
||
if (!is_end_of_line[(unsigned char) *input_line_pointer])
|
||
{
|
||
char *string = input_line_pointer;
|
||
int e = get_symbol_end ();
|
||
unsigned int j;
|
||
i386_cpu_flags flags;
|
||
|
||
for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
|
||
{
|
||
if (strcmp (string, cpu_arch[j].name) == 0)
|
||
{
|
||
check_cpu_arch_compatible (string, cpu_arch[j].flags);
|
||
|
||
if (*string != '.')
|
||
{
|
||
cpu_arch_name = cpu_arch[j].name;
|
||
cpu_sub_arch_name = NULL;
|
||
cpu_arch_flags = cpu_arch[j].flags;
|
||
if (flag_code == CODE_64BIT)
|
||
{
|
||
cpu_arch_flags.bitfield.cpu64 = 1;
|
||
cpu_arch_flags.bitfield.cpuno64 = 0;
|
||
}
|
||
else
|
||
{
|
||
cpu_arch_flags.bitfield.cpu64 = 0;
|
||
cpu_arch_flags.bitfield.cpuno64 = 1;
|
||
}
|
||
cpu_arch_isa = cpu_arch[j].type;
|
||
cpu_arch_isa_flags = cpu_arch[j].flags;
|
||
if (!cpu_arch_tune_set)
|
||
{
|
||
cpu_arch_tune = cpu_arch_isa;
|
||
cpu_arch_tune_flags = cpu_arch_isa_flags;
|
||
}
|
||
break;
|
||
}
|
||
|
||
if (!cpu_arch[j].negated)
|
||
flags = cpu_flags_or (cpu_arch_flags,
|
||
cpu_arch[j].flags);
|
||
else
|
||
flags = cpu_flags_and_not (cpu_arch_flags,
|
||
cpu_arch[j].flags);
|
||
if (!cpu_flags_equal (&flags, &cpu_arch_flags))
|
||
{
|
||
if (cpu_sub_arch_name)
|
||
{
|
||
char *name = cpu_sub_arch_name;
|
||
cpu_sub_arch_name = concat (name,
|
||
cpu_arch[j].name,
|
||
(const char *) NULL);
|
||
free (name);
|
||
}
|
||
else
|
||
cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
|
||
cpu_arch_flags = flags;
|
||
cpu_arch_isa_flags = flags;
|
||
}
|
||
*input_line_pointer = e;
|
||
demand_empty_rest_of_line ();
|
||
return;
|
||
}
|
||
}
|
||
if (j >= ARRAY_SIZE (cpu_arch))
|
||
as_bad (_("no such architecture: `%s'"), string);
|
||
|
||
*input_line_pointer = e;
|
||
}
|
||
else
|
||
as_bad (_("missing cpu architecture"));
|
||
|
||
no_cond_jump_promotion = 0;
|
||
if (*input_line_pointer == ','
|
||
&& !is_end_of_line[(unsigned char) input_line_pointer[1]])
|
||
{
|
||
char *string = ++input_line_pointer;
|
||
int e = get_symbol_end ();
|
||
|
||
if (strcmp (string, "nojumps") == 0)
|
||
no_cond_jump_promotion = 1;
|
||
else if (strcmp (string, "jumps") == 0)
|
||
;
|
||
else
|
||
as_bad (_("no such architecture modifier: `%s'"), string);
|
||
|
||
*input_line_pointer = e;
|
||
}
|
||
|
||
demand_empty_rest_of_line ();
|
||
}
|
||
|
||
enum bfd_architecture
|
||
i386_arch (void)
|
||
{
|
||
if (cpu_arch_isa == PROCESSOR_L1OM)
|
||
{
|
||
if (OUTPUT_FLAVOR != bfd_target_elf_flavour
|
||
|| flag_code != CODE_64BIT)
|
||
as_fatal (_("Intel L1OM is 64bit ELF only"));
|
||
return bfd_arch_l1om;
|
||
}
|
||
else if (cpu_arch_isa == PROCESSOR_K1OM)
|
||
{
|
||
if (OUTPUT_FLAVOR != bfd_target_elf_flavour
|
||
|| flag_code != CODE_64BIT)
|
||
as_fatal (_("Intel K1OM is 64bit ELF only"));
|
||
return bfd_arch_k1om;
|
||
}
|
||
else
|
||
return bfd_arch_i386;
|
||
}
|
||
|
||
unsigned long
|
||
i386_mach (void)
|
||
{
|
||
if (!strncmp (default_arch, "x86_64", 6))
|
||
{
|
||
if (cpu_arch_isa == PROCESSOR_L1OM)
|
||
{
|
||
if (OUTPUT_FLAVOR != bfd_target_elf_flavour
|
||
|| default_arch[6] != '\0')
|
||
as_fatal (_("Intel L1OM is 64bit ELF only"));
|
||
return bfd_mach_l1om;
|
||
}
|
||
else if (cpu_arch_isa == PROCESSOR_K1OM)
|
||
{
|
||
if (OUTPUT_FLAVOR != bfd_target_elf_flavour
|
||
|| default_arch[6] != '\0')
|
||
as_fatal (_("Intel K1OM is 64bit ELF only"));
|
||
return bfd_mach_k1om;
|
||
}
|
||
else if (default_arch[6] == '\0')
|
||
return bfd_mach_x86_64;
|
||
else
|
||
return bfd_mach_x64_32;
|
||
}
|
||
else if (!strcmp (default_arch, "i386"))
|
||
return bfd_mach_i386_i386;
|
||
else
|
||
as_fatal (_("unknown architecture"));
|
||
}
|
||
|
||
void
|
||
md_begin (void)
|
||
{
|
||
const char *hash_err;
|
||
|
||
/* Initialize op_hash hash table. */
|
||
op_hash = hash_new ();
|
||
|
||
{
|
||
const insn_template *optab;
|
||
templates *core_optab;
|
||
|
||
/* Setup for loop. */
|
||
optab = i386_optab;
|
||
core_optab = (templates *) xmalloc (sizeof (templates));
|
||
core_optab->start = optab;
|
||
|
||
while (1)
|
||
{
|
||
++optab;
|
||
if (optab->name == NULL
|
||
|| strcmp (optab->name, (optab - 1)->name) != 0)
|
||
{
|
||
/* different name --> ship out current template list;
|
||
add to hash table; & begin anew. */
|
||
core_optab->end = optab;
|
||
hash_err = hash_insert (op_hash,
|
||
(optab - 1)->name,
|
||
(void *) core_optab);
|
||
if (hash_err)
|
||
{
|
||
as_fatal (_("can't hash %s: %s"),
|
||
(optab - 1)->name,
|
||
hash_err);
|
||
}
|
||
if (optab->name == NULL)
|
||
break;
|
||
core_optab = (templates *) xmalloc (sizeof (templates));
|
||
core_optab->start = optab;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Initialize reg_hash hash table. */
|
||
reg_hash = hash_new ();
|
||
{
|
||
const reg_entry *regtab;
|
||
unsigned int regtab_size = i386_regtab_size;
|
||
|
||
for (regtab = i386_regtab; regtab_size--; regtab++)
|
||
{
|
||
hash_err = hash_insert (reg_hash, regtab->reg_name, (void *) regtab);
|
||
if (hash_err)
|
||
as_fatal (_("can't hash %s: %s"),
|
||
regtab->reg_name,
|
||
hash_err);
|
||
}
|
||
}
|
||
|
||
/* Fill in lexical tables: mnemonic_chars, operand_chars. */
|
||
{
|
||
int c;
|
||
char *p;
|
||
|
||
for (c = 0; c < 256; c++)
|
||
{
|
||
if (ISDIGIT (c))
|
||
{
|
||
digit_chars[c] = c;
|
||
mnemonic_chars[c] = c;
|
||
register_chars[c] = c;
|
||
operand_chars[c] = c;
|
||
}
|
||
else if (ISLOWER (c))
|
||
{
|
||
mnemonic_chars[c] = c;
|
||
register_chars[c] = c;
|
||
operand_chars[c] = c;
|
||
}
|
||
else if (ISUPPER (c))
|
||
{
|
||
mnemonic_chars[c] = TOLOWER (c);
|
||
register_chars[c] = mnemonic_chars[c];
|
||
operand_chars[c] = c;
|
||
}
|
||
else if (c == '{' || c == '}')
|
||
operand_chars[c] = c;
|
||
|
||
if (ISALPHA (c) || ISDIGIT (c))
|
||
identifier_chars[c] = c;
|
||
else if (c >= 128)
|
||
{
|
||
identifier_chars[c] = c;
|
||
operand_chars[c] = c;
|
||
}
|
||
}
|
||
|
||
#ifdef LEX_AT
|
||
identifier_chars['@'] = '@';
|
||
#endif
|
||
#ifdef LEX_QM
|
||
identifier_chars['?'] = '?';
|
||
operand_chars['?'] = '?';
|
||
#endif
|
||
digit_chars['-'] = '-';
|
||
mnemonic_chars['_'] = '_';
|
||
mnemonic_chars['-'] = '-';
|
||
mnemonic_chars['.'] = '.';
|
||
identifier_chars['_'] = '_';
|
||
identifier_chars['.'] = '.';
|
||
|
||
for (p = operand_special_chars; *p != '\0'; p++)
|
||
operand_chars[(unsigned char) *p] = *p;
|
||
}
|
||
|
||
if (flag_code == CODE_64BIT)
|
||
{
|
||
#if defined (OBJ_COFF) && defined (TE_PE)
|
||
x86_dwarf2_return_column = (OUTPUT_FLAVOR == bfd_target_coff_flavour
|
||
? 32 : 16);
|
||
#else
|
||
x86_dwarf2_return_column = 16;
|
||
#endif
|
||
x86_cie_data_alignment = -8;
|
||
}
|
||
else
|
||
{
|
||
x86_dwarf2_return_column = 8;
|
||
x86_cie_data_alignment = -4;
|
||
}
|
||
}
|
||
|
||
void
|
||
i386_print_statistics (FILE *file)
|
||
{
|
||
hash_print_statistics (file, "i386 opcode", op_hash);
|
||
hash_print_statistics (file, "i386 register", reg_hash);
|
||
}
|
||
|
||
#ifdef DEBUG386
|
||
|
||
/* Debugging routines for md_assemble. */
|
||
static void pte (insn_template *);
|
||
static void pt (i386_operand_type);
|
||
static void pe (expressionS *);
|
||
static void ps (symbolS *);
|
||
|
||
static void
|
||
pi (char *line, i386_insn *x)
|
||
{
|
||
unsigned int j;
|
||
|
||
fprintf (stdout, "%s: template ", line);
|
||
pte (&x->tm);
|
||
fprintf (stdout, " address: base %s index %s scale %x\n",
|
||
x->base_reg ? x->base_reg->reg_name : "none",
|
||
x->index_reg ? x->index_reg->reg_name : "none",
|
||
x->log2_scale_factor);
|
||
fprintf (stdout, " modrm: mode %x reg %x reg/mem %x\n",
|
||
x->rm.mode, x->rm.reg, x->rm.regmem);
|
||
fprintf (stdout, " sib: base %x index %x scale %x\n",
|
||
x->sib.base, x->sib.index, x->sib.scale);
|
||
fprintf (stdout, " rex: 64bit %x extX %x extY %x extZ %x\n",
|
||
(x->rex & REX_W) != 0,
|
||
(x->rex & REX_R) != 0,
|
||
(x->rex & REX_X) != 0,
|
||
(x->rex & REX_B) != 0);
|
||
for (j = 0; j < x->operands; j++)
|
||
{
|
||
fprintf (stdout, " #%d: ", j + 1);
|
||
pt (x->types[j]);
|
||
fprintf (stdout, "\n");
|
||
if (x->types[j].bitfield.reg8
|
||
|| x->types[j].bitfield.reg16
|
||
|| x->types[j].bitfield.reg32
|
||
|| x->types[j].bitfield.reg64
|
||
|| x->types[j].bitfield.regmmx
|
||
|| x->types[j].bitfield.regxmm
|
||
|| x->types[j].bitfield.regymm
|
||
|| x->types[j].bitfield.regzmm
|
||
|| x->types[j].bitfield.sreg2
|
||
|| x->types[j].bitfield.sreg3
|
||
|| x->types[j].bitfield.control
|
||
|| x->types[j].bitfield.debug
|
||
|| x->types[j].bitfield.test)
|
||
fprintf (stdout, "%s\n", x->op[j].regs->reg_name);
|
||
if (operand_type_check (x->types[j], imm))
|
||
pe (x->op[j].imms);
|
||
if (operand_type_check (x->types[j], disp))
|
||
pe (x->op[j].disps);
|
||
}
|
||
}
|
||
|
||
static void
|
||
pte (insn_template *t)
|
||
{
|
||
unsigned int j;
|
||
fprintf (stdout, " %d operands ", t->operands);
|
||
fprintf (stdout, "opcode %x ", t->base_opcode);
|
||
if (t->extension_opcode != None)
|
||
fprintf (stdout, "ext %x ", t->extension_opcode);
|
||
if (t->opcode_modifier.d)
|
||
fprintf (stdout, "D");
|
||
if (t->opcode_modifier.w)
|
||
fprintf (stdout, "W");
|
||
fprintf (stdout, "\n");
|
||
for (j = 0; j < t->operands; j++)
|
||
{
|
||
fprintf (stdout, " #%d type ", j + 1);
|
||
pt (t->operand_types[j]);
|
||
fprintf (stdout, "\n");
|
||
}
|
||
}
|
||
|
||
static void
|
||
pe (expressionS *e)
|
||
{
|
||
fprintf (stdout, " operation %d\n", e->X_op);
|
||
fprintf (stdout, " add_number %ld (%lx)\n",
|
||
(long) e->X_add_number, (long) e->X_add_number);
|
||
if (e->X_add_symbol)
|
||
{
|
||
fprintf (stdout, " add_symbol ");
|
||
ps (e->X_add_symbol);
|
||
fprintf (stdout, "\n");
|
||
}
|
||
if (e->X_op_symbol)
|
||
{
|
||
fprintf (stdout, " op_symbol ");
|
||
ps (e->X_op_symbol);
|
||
fprintf (stdout, "\n");
|
||
}
|
||
}
|
||
|
||
static void
|
||
ps (symbolS *s)
|
||
{
|
||
fprintf (stdout, "%s type %s%s",
|
||
S_GET_NAME (s),
|
||
S_IS_EXTERNAL (s) ? "EXTERNAL " : "",
|
||
segment_name (S_GET_SEGMENT (s)));
|
||
}
|
||
|
||
static struct type_name
|
||
{
|
||
i386_operand_type mask;
|
||
const char *name;
|
||
}
|
||
const type_names[] =
|
||
{
|
||
{ OPERAND_TYPE_REG8, "r8" },
|
||
{ OPERAND_TYPE_REG16, "r16" },
|
||
{ OPERAND_TYPE_REG32, "r32" },
|
||
{ OPERAND_TYPE_REG64, "r64" },
|
||
{ OPERAND_TYPE_IMM8, "i8" },
|
||
{ OPERAND_TYPE_IMM8, "i8s" },
|
||
{ OPERAND_TYPE_IMM16, "i16" },
|
||
{ OPERAND_TYPE_IMM32, "i32" },
|
||
{ OPERAND_TYPE_IMM32S, "i32s" },
|
||
{ OPERAND_TYPE_IMM64, "i64" },
|
||
{ OPERAND_TYPE_IMM1, "i1" },
|
||
{ OPERAND_TYPE_BASEINDEX, "BaseIndex" },
|
||
{ OPERAND_TYPE_DISP8, "d8" },
|
||
{ OPERAND_TYPE_DISP16, "d16" },
|
||
{ OPERAND_TYPE_DISP32, "d32" },
|
||
{ OPERAND_TYPE_DISP32S, "d32s" },
|
||
{ OPERAND_TYPE_DISP64, "d64" },
|
||
{ OPERAND_TYPE_VEC_DISP8, "Vector d8" },
|
||
{ OPERAND_TYPE_INOUTPORTREG, "InOutPortReg" },
|
||
{ OPERAND_TYPE_SHIFTCOUNT, "ShiftCount" },
|
||
{ OPERAND_TYPE_CONTROL, "control reg" },
|
||
{ OPERAND_TYPE_TEST, "test reg" },
|
||
{ OPERAND_TYPE_DEBUG, "debug reg" },
|
||
{ OPERAND_TYPE_FLOATREG, "FReg" },
|
||
{ OPERAND_TYPE_FLOATACC, "FAcc" },
|
||
{ OPERAND_TYPE_SREG2, "SReg2" },
|
||
{ OPERAND_TYPE_SREG3, "SReg3" },
|
||
{ OPERAND_TYPE_ACC, "Acc" },
|
||
{ OPERAND_TYPE_JUMPABSOLUTE, "Jump Absolute" },
|
||
{ OPERAND_TYPE_REGMMX, "rMMX" },
|
||
{ OPERAND_TYPE_REGXMM, "rXMM" },
|
||
{ OPERAND_TYPE_REGYMM, "rYMM" },
|
||
{ OPERAND_TYPE_REGZMM, "rZMM" },
|
||
{ OPERAND_TYPE_REGMASK, "Mask reg" },
|
||
{ OPERAND_TYPE_ESSEG, "es" },
|
||
};
|
||
|
||
static void
|
||
pt (i386_operand_type t)
|
||
{
|
||
unsigned int j;
|
||
i386_operand_type a;
|
||
|
||
for (j = 0; j < ARRAY_SIZE (type_names); j++)
|
||
{
|
||
a = operand_type_and (t, type_names[j].mask);
|
||
if (!operand_type_all_zero (&a))
|
||
fprintf (stdout, "%s, ", type_names[j].name);
|
||
}
|
||
fflush (stdout);
|
||
}
|
||
|
||
#endif /* DEBUG386 */
|
||
|
||
static bfd_reloc_code_real_type
|
||
reloc (unsigned int size,
|
||
int pcrel,
|
||
int sign,
|
||
int bnd_prefix,
|
||
bfd_reloc_code_real_type other)
|
||
{
|
||
if (other != NO_RELOC)
|
||
{
|
||
reloc_howto_type *rel;
|
||
|
||
if (size == 8)
|
||
switch (other)
|
||
{
|
||
case BFD_RELOC_X86_64_GOT32:
|
||
return BFD_RELOC_X86_64_GOT64;
|
||
break;
|
||
case BFD_RELOC_X86_64_PLTOFF64:
|
||
return BFD_RELOC_X86_64_PLTOFF64;
|
||
break;
|
||
case BFD_RELOC_X86_64_GOTPC32:
|
||
other = BFD_RELOC_X86_64_GOTPC64;
|
||
break;
|
||
case BFD_RELOC_X86_64_GOTPCREL:
|
||
other = BFD_RELOC_X86_64_GOTPCREL64;
|
||
break;
|
||
case BFD_RELOC_X86_64_TPOFF32:
|
||
other = BFD_RELOC_X86_64_TPOFF64;
|
||
break;
|
||
case BFD_RELOC_X86_64_DTPOFF32:
|
||
other = BFD_RELOC_X86_64_DTPOFF64;
|
||
break;
|
||
default:
|
||
break;
|
||
}
|
||
|
||
#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
|
||
if (other == BFD_RELOC_SIZE32)
|
||
{
|
||
if (size == 8)
|
||
other = BFD_RELOC_SIZE64;
|
||
if (pcrel)
|
||
{
|
||
as_bad (_("there are no pc-relative size relocations"));
|
||
return NO_RELOC;
|
||
}
|
||
}
|
||
#endif
|
||
|
||
/* Sign-checking 4-byte relocations in 16-/32-bit code is pointless. */
|
||
if (size == 4 && (flag_code != CODE_64BIT || disallow_64bit_reloc))
|
||
sign = -1;
|
||
|
||
rel = bfd_reloc_type_lookup (stdoutput, other);
|
||
if (!rel)
|
||
as_bad (_("unknown relocation (%u)"), other);
|
||
else if (size != bfd_get_reloc_size (rel))
|
||
as_bad (_("%u-byte relocation cannot be applied to %u-byte field"),
|
||
bfd_get_reloc_size (rel),
|
||
size);
|
||
else if (pcrel && !rel->pc_relative)
|
||
as_bad (_("non-pc-relative relocation for pc-relative field"));
|
||
else if ((rel->complain_on_overflow == complain_overflow_signed
|
||
&& !sign)
|
||
|| (rel->complain_on_overflow == complain_overflow_unsigned
|
||
&& sign > 0))
|
||
as_bad (_("relocated field and relocation type differ in signedness"));
|
||
else
|
||
return other;
|
||
return NO_RELOC;
|
||
}
|
||
|
||
if (pcrel)
|
||
{
|
||
if (!sign)
|
||
as_bad (_("there are no unsigned pc-relative relocations"));
|
||
switch (size)
|
||
{
|
||
case 1: return BFD_RELOC_8_PCREL;
|
||
case 2: return BFD_RELOC_16_PCREL;
|
||
case 4: return (bnd_prefix && object_64bit
|
||
? BFD_RELOC_X86_64_PC32_BND
|
||
: BFD_RELOC_32_PCREL);
|
||
case 8: return BFD_RELOC_64_PCREL;
|
||
}
|
||
as_bad (_("cannot do %u byte pc-relative relocation"), size);
|
||
}
|
||
else
|
||
{
|
||
if (sign > 0)
|
||
switch (size)
|
||
{
|
||
case 4: return BFD_RELOC_X86_64_32S;
|
||
}
|
||
else
|
||
switch (size)
|
||
{
|
||
case 1: return BFD_RELOC_8;
|
||
case 2: return BFD_RELOC_16;
|
||
case 4: return BFD_RELOC_32;
|
||
case 8: return BFD_RELOC_64;
|
||
}
|
||
as_bad (_("cannot do %s %u byte relocation"),
|
||
sign > 0 ? "signed" : "unsigned", size);
|
||
}
|
||
|
||
return NO_RELOC;
|
||
}
|
||
|
||
/* Here we decide which fixups can be adjusted to make them relative to
|
||
the beginning of the section instead of the symbol. Basically we need
|
||
to make sure that the dynamic relocations are done correctly, so in
|
||
some cases we force the original symbol to be used. */
|
||
|
||
int
|
||
tc_i386_fix_adjustable (fixS *fixP ATTRIBUTE_UNUSED)
|
||
{
|
||
#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
|
||
if (!IS_ELF)
|
||
return 1;
|
||
|
||
/* Don't adjust pc-relative references to merge sections in 64-bit
|
||
mode. */
|
||
if (use_rela_relocations
|
||
&& (S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_MERGE) != 0
|
||
&& fixP->fx_pcrel)
|
||
return 0;
|
||
|
||
/* The x86_64 GOTPCREL are represented as 32bit PCrel relocations
|
||
and changed later by validate_fix. */
|
||
if (GOT_symbol && fixP->fx_subsy == GOT_symbol
|
||
&& fixP->fx_r_type == BFD_RELOC_32_PCREL)
|
||
return 0;
|
||
|
||
/* Adjust_reloc_syms doesn't know about the GOT. Need to keep symbol
|
||
for size relocations. */
|
||
if (fixP->fx_r_type == BFD_RELOC_SIZE32
|
||
|| fixP->fx_r_type == BFD_RELOC_SIZE64
|
||
|| fixP->fx_r_type == BFD_RELOC_386_GOTOFF
|
||
|| fixP->fx_r_type == BFD_RELOC_386_PLT32
|
||
|| fixP->fx_r_type == BFD_RELOC_386_GOT32
|
||
|| fixP->fx_r_type == BFD_RELOC_386_TLS_GD
|
||
|| fixP->fx_r_type == BFD_RELOC_386_TLS_LDM
|
||
|| fixP->fx_r_type == BFD_RELOC_386_TLS_LDO_32
|
||
|| fixP->fx_r_type == BFD_RELOC_386_TLS_IE_32
|
||
|| fixP->fx_r_type == BFD_RELOC_386_TLS_IE
|
||
|| fixP->fx_r_type == BFD_RELOC_386_TLS_GOTIE
|
||
|| fixP->fx_r_type == BFD_RELOC_386_TLS_LE_32
|
||
|| fixP->fx_r_type == BFD_RELOC_386_TLS_LE
|
||
|| fixP->fx_r_type == BFD_RELOC_386_TLS_GOTDESC
|
||
|| fixP->fx_r_type == BFD_RELOC_386_TLS_DESC_CALL
|
||
|| fixP->fx_r_type == BFD_RELOC_X86_64_PLT32
|
||
|| fixP->fx_r_type == BFD_RELOC_X86_64_GOT32
|
||
|| fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCREL
|
||
|| fixP->fx_r_type == BFD_RELOC_X86_64_TLSGD
|
||
|| fixP->fx_r_type == BFD_RELOC_X86_64_TLSLD
|
||
|| fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF32
|
||
|| fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF64
|
||
|| fixP->fx_r_type == BFD_RELOC_X86_64_GOTTPOFF
|
||
|| fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF32
|
||
|| fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF64
|
||
|| fixP->fx_r_type == BFD_RELOC_X86_64_GOTOFF64
|
||
|| fixP->fx_r_type == BFD_RELOC_X86_64_GOTPC32_TLSDESC
|
||
|| fixP->fx_r_type == BFD_RELOC_X86_64_TLSDESC_CALL
|
||
|| fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
|
||
|| fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
|
||
return 0;
|
||
#endif
|
||
return 1;
|
||
}
|
||
|
||
static int
|
||
intel_float_operand (const char *mnemonic)
|
||
{
|
||
/* Note that the value returned is meaningful only for opcodes with (memory)
|
||
operands, hence the code here is free to improperly handle opcodes that
|
||
have no operands (for better performance and smaller code). */
|
||
|
||
if (mnemonic[0] != 'f')
|
||
return 0; /* non-math */
|
||
|
||
switch (mnemonic[1])
|
||
{
|
||
/* fclex, fdecstp, fdisi, femms, feni, fincstp, finit, fsetpm, and
|
||
the fs segment override prefix not currently handled because no
|
||
call path can make opcodes without operands get here */
|
||
case 'i':
|
||
return 2 /* integer op */;
|
||
case 'l':
|
||
if (mnemonic[2] == 'd' && (mnemonic[3] == 'c' || mnemonic[3] == 'e'))
|
||
return 3; /* fldcw/fldenv */
|
||
break;
|
||
case 'n':
|
||
if (mnemonic[2] != 'o' /* fnop */)
|
||
return 3; /* non-waiting control op */
|
||
break;
|
||
case 'r':
|
||
if (mnemonic[2] == 's')
|
||
return 3; /* frstor/frstpm */
|
||
break;
|
||
case 's':
|
||
if (mnemonic[2] == 'a')
|
||
return 3; /* fsave */
|
||
if (mnemonic[2] == 't')
|
||
{
|
||
switch (mnemonic[3])
|
||
{
|
||
case 'c': /* fstcw */
|
||
case 'd': /* fstdw */
|
||
case 'e': /* fstenv */
|
||
case 's': /* fsts[gw] */
|
||
return 3;
|
||
}
|
||
}
|
||
break;
|
||
case 'x':
|
||
if (mnemonic[2] == 'r' || mnemonic[2] == 's')
|
||
return 0; /* fxsave/fxrstor are not really math ops */
|
||
break;
|
||
}
|
||
|
||
return 1;
|
||
}
|
||
|
||
/* Build the VEX prefix. */
|
||
|
||
static void
|
||
build_vex_prefix (const insn_template *t)
|
||
{
|
||
unsigned int register_specifier;
|
||
unsigned int implied_prefix;
|
||
unsigned int vector_length;
|
||
|
||
/* Check register specifier. */
|
||
if (i.vex.register_specifier)
|
||
{
|
||
register_specifier =
|
||
~register_number (i.vex.register_specifier) & 0xf;
|
||
gas_assert ((i.vex.register_specifier->reg_flags & RegVRex) == 0);
|
||
}
|
||
else
|
||
register_specifier = 0xf;
|
||
|
||
/* Use 2-byte VEX prefix by swappping destination and source
|
||
operand. */
|
||
if (!i.swap_operand
|
||
&& i.operands == i.reg_operands
|
||
&& i.tm.opcode_modifier.vexopcode == VEX0F
|
||
&& i.tm.opcode_modifier.s
|
||
&& i.rex == REX_B)
|
||
{
|
||
unsigned int xchg = i.operands - 1;
|
||
union i386_op temp_op;
|
||
i386_operand_type temp_type;
|
||
|
||
temp_type = i.types[xchg];
|
||
i.types[xchg] = i.types[0];
|
||
i.types[0] = temp_type;
|
||
temp_op = i.op[xchg];
|
||
i.op[xchg] = i.op[0];
|
||
i.op[0] = temp_op;
|
||
|
||
gas_assert (i.rm.mode == 3);
|
||
|
||
i.rex = REX_R;
|
||
xchg = i.rm.regmem;
|
||
i.rm.regmem = i.rm.reg;
|
||
i.rm.reg = xchg;
|
||
|
||
/* Use the next insn. */
|
||
i.tm = t[1];
|
||
}
|
||
|
||
if (i.tm.opcode_modifier.vex == VEXScalar)
|
||
vector_length = avxscalar;
|
||
else
|
||
vector_length = i.tm.opcode_modifier.vex == VEX256 ? 1 : 0;
|
||
|
||
switch ((i.tm.base_opcode >> 8) & 0xff)
|
||
{
|
||
case 0:
|
||
implied_prefix = 0;
|
||
break;
|
||
case DATA_PREFIX_OPCODE:
|
||
implied_prefix = 1;
|
||
break;
|
||
case REPE_PREFIX_OPCODE:
|
||
implied_prefix = 2;
|
||
break;
|
||
case REPNE_PREFIX_OPCODE:
|
||
implied_prefix = 3;
|
||
break;
|
||
default:
|
||
abort ();
|
||
}
|
||
|
||
/* Use 2-byte VEX prefix if possible. */
|
||
if (i.tm.opcode_modifier.vexopcode == VEX0F
|
||
&& i.tm.opcode_modifier.vexw != VEXW1
|
||
&& (i.rex & (REX_W | REX_X | REX_B)) == 0)
|
||
{
|
||
/* 2-byte VEX prefix. */
|
||
unsigned int r;
|
||
|
||
i.vex.length = 2;
|
||
i.vex.bytes[0] = 0xc5;
|
||
|
||
/* Check the REX.R bit. */
|
||
r = (i.rex & REX_R) ? 0 : 1;
|
||
i.vex.bytes[1] = (r << 7
|
||
| register_specifier << 3
|
||
| vector_length << 2
|
||
| implied_prefix);
|
||
}
|
||
else
|
||
{
|
||
/* 3-byte VEX prefix. */
|
||
unsigned int m, w;
|
||
|
||
i.vex.length = 3;
|
||
|
||
switch (i.tm.opcode_modifier.vexopcode)
|
||
{
|
||
case VEX0F:
|
||
m = 0x1;
|
||
i.vex.bytes[0] = 0xc4;
|
||
break;
|
||
case VEX0F38:
|
||
m = 0x2;
|
||
i.vex.bytes[0] = 0xc4;
|
||
break;
|
||
case VEX0F3A:
|
||
m = 0x3;
|
||
i.vex.bytes[0] = 0xc4;
|
||
break;
|
||
case XOP08:
|
||
m = 0x8;
|
||
i.vex.bytes[0] = 0x8f;
|
||
break;
|
||
case XOP09:
|
||
m = 0x9;
|
||
i.vex.bytes[0] = 0x8f;
|
||
break;
|
||
case XOP0A:
|
||
m = 0xa;
|
||
i.vex.bytes[0] = 0x8f;
|
||
break;
|
||
default:
|
||
abort ();
|
||
}
|
||
|
||
/* The high 3 bits of the second VEX byte are 1's compliment
|
||
of RXB bits from REX. */
|
||
i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
|
||
|
||
/* Check the REX.W bit. */
|
||
w = (i.rex & REX_W) ? 1 : 0;
|
||
if (i.tm.opcode_modifier.vexw == VEXW1)
|
||
w = 1;
|
||
|
||
i.vex.bytes[2] = (w << 7
|
||
| register_specifier << 3
|
||
| vector_length << 2
|
||
| implied_prefix);
|
||
}
|
||
}
|
||
|
||
/* Build the EVEX prefix. */
|
||
|
||
static void
|
||
build_evex_prefix (void)
|
||
{
|
||
unsigned int register_specifier;
|
||
unsigned int implied_prefix;
|
||
unsigned int m, w;
|
||
rex_byte vrex_used = 0;
|
||
|
||
/* Check register specifier. */
|
||
if (i.vex.register_specifier)
|
||
{
|
||
gas_assert ((i.vrex & REX_X) == 0);
|
||
|
||
register_specifier = i.vex.register_specifier->reg_num;
|
||
if ((i.vex.register_specifier->reg_flags & RegRex))
|
||
register_specifier += 8;
|
||
/* The upper 16 registers are encoded in the fourth byte of the
|
||
EVEX prefix. */
|
||
if (!(i.vex.register_specifier->reg_flags & RegVRex))
|
||
i.vex.bytes[3] = 0x8;
|
||
register_specifier = ~register_specifier & 0xf;
|
||
}
|
||
else
|
||
{
|
||
register_specifier = 0xf;
|
||
|
||
/* Encode upper 16 vector index register in the fourth byte of
|
||
the EVEX prefix. */
|
||
if (!(i.vrex & REX_X))
|
||
i.vex.bytes[3] = 0x8;
|
||
else
|
||
vrex_used |= REX_X;
|
||
}
|
||
|
||
switch ((i.tm.base_opcode >> 8) & 0xff)
|
||
{
|
||
case 0:
|
||
implied_prefix = 0;
|
||
break;
|
||
case DATA_PREFIX_OPCODE:
|
||
implied_prefix = 1;
|
||
break;
|
||
case REPE_PREFIX_OPCODE:
|
||
implied_prefix = 2;
|
||
break;
|
||
case REPNE_PREFIX_OPCODE:
|
||
implied_prefix = 3;
|
||
break;
|
||
default:
|
||
abort ();
|
||
}
|
||
|
||
/* 4 byte EVEX prefix. */
|
||
i.vex.length = 4;
|
||
i.vex.bytes[0] = 0x62;
|
||
|
||
/* mmmm bits. */
|
||
switch (i.tm.opcode_modifier.vexopcode)
|
||
{
|
||
case VEX0F:
|
||
m = 1;
|
||
break;
|
||
case VEX0F38:
|
||
m = 2;
|
||
break;
|
||
case VEX0F3A:
|
||
m = 3;
|
||
break;
|
||
default:
|
||
abort ();
|
||
break;
|
||
}
|
||
|
||
/* The high 3 bits of the second EVEX byte are 1's compliment of RXB
|
||
bits from REX. */
|
||
i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
|
||
|
||
/* The fifth bit of the second EVEX byte is 1's compliment of the
|
||
REX_R bit in VREX. */
|
||
if (!(i.vrex & REX_R))
|
||
i.vex.bytes[1] |= 0x10;
|
||
else
|
||
vrex_used |= REX_R;
|
||
|
||
if ((i.reg_operands + i.imm_operands) == i.operands)
|
||
{
|
||
/* When all operands are registers, the REX_X bit in REX is not
|
||
used. We reuse it to encode the upper 16 registers, which is
|
||
indicated by the REX_B bit in VREX. The REX_X bit is encoded
|
||
as 1's compliment. */
|
||
if ((i.vrex & REX_B))
|
||
{
|
||
vrex_used |= REX_B;
|
||
i.vex.bytes[1] &= ~0x40;
|
||
}
|
||
}
|
||
|
||
/* EVEX instructions shouldn't need the REX prefix. */
|
||
i.vrex &= ~vrex_used;
|
||
gas_assert (i.vrex == 0);
|
||
|
||
/* Check the REX.W bit. */
|
||
w = (i.rex & REX_W) ? 1 : 0;
|
||
if (i.tm.opcode_modifier.vexw)
|
||
{
|
||
if (i.tm.opcode_modifier.vexw == VEXW1)
|
||
w = 1;
|
||
}
|
||
/* If w is not set it means we are dealing with WIG instruction. */
|
||
else if (!w)
|
||
{
|
||
if (evexwig == evexw1)
|
||
w = 1;
|
||
}
|
||
|
||
/* Encode the U bit. */
|
||
implied_prefix |= 0x4;
|
||
|
||
/* The third byte of the EVEX prefix. */
|
||
i.vex.bytes[2] = (w << 7 | register_specifier << 3 | implied_prefix);
|
||
|
||
/* The fourth byte of the EVEX prefix. */
|
||
/* The zeroing-masking bit. */
|
||
if (i.mask && i.mask->zeroing)
|
||
i.vex.bytes[3] |= 0x80;
|
||
|
||
/* Don't always set the broadcast bit if there is no RC. */
|
||
if (!i.rounding)
|
||
{
|
||
/* Encode the vector length. */
|
||
unsigned int vec_length;
|
||
|
||
switch (i.tm.opcode_modifier.evex)
|
||
{
|
||
case EVEXLIG: /* LL' is ignored */
|
||
vec_length = evexlig << 5;
|
||
break;
|
||
case EVEX128:
|
||
vec_length = 0 << 5;
|
||
break;
|
||
case EVEX256:
|
||
vec_length = 1 << 5;
|
||
break;
|
||
case EVEX512:
|
||
vec_length = 2 << 5;
|
||
break;
|
||
default:
|
||
abort ();
|
||
break;
|
||
}
|
||
i.vex.bytes[3] |= vec_length;
|
||
/* Encode the broadcast bit. */
|
||
if (i.broadcast)
|
||
i.vex.bytes[3] |= 0x10;
|
||
}
|
||
else
|
||
{
|
||
if (i.rounding->type != saeonly)
|
||
i.vex.bytes[3] |= 0x10 | (i.rounding->type << 5);
|
||
else
|
||
i.vex.bytes[3] |= 0x10;
|
||
}
|
||
|
||
if (i.mask && i.mask->mask)
|
||
i.vex.bytes[3] |= i.mask->mask->reg_num;
|
||
}
|
||
|
||
static void
|
||
process_immext (void)
|
||
{
|
||
expressionS *exp;
|
||
|
||
if ((i.tm.cpu_flags.bitfield.cpusse3 || i.tm.cpu_flags.bitfield.cpusvme)
|
||
&& i.operands > 0)
|
||
{
|
||
/* MONITOR/MWAIT as well as SVME instructions have fixed operands
|
||
with an opcode suffix which is coded in the same place as an
|
||
8-bit immediate field would be.
|
||
Here we check those operands and remove them afterwards. */
|
||
unsigned int x;
|
||
|
||
for (x = 0; x < i.operands; x++)
|
||
if (register_number (i.op[x].regs) != x)
|
||
as_bad (_("can't use register '%s%s' as operand %d in '%s'."),
|
||
register_prefix, i.op[x].regs->reg_name, x + 1,
|
||
i.tm.name);
|
||
|
||
i.operands = 0;
|
||
}
|
||
|
||
/* These AMD 3DNow! and SSE2 instructions have an opcode suffix
|
||
which is coded in the same place as an 8-bit immediate field
|
||
would be. Here we fake an 8-bit immediate operand from the
|
||
opcode suffix stored in tm.extension_opcode.
|
||
|
||
AVX instructions also use this encoding, for some of
|
||
3 argument instructions. */
|
||
|
||
gas_assert (i.imm_operands <= 1
|
||
&& (i.operands <= 2
|
||
|| ((i.tm.opcode_modifier.vex
|
||
|| i.tm.opcode_modifier.evex)
|
||
&& i.operands <= 4)));
|
||
|
||
exp = &im_expressions[i.imm_operands++];
|
||
i.op[i.operands].imms = exp;
|
||
i.types[i.operands] = imm8;
|
||
i.operands++;
|
||
exp->X_op = O_constant;
|
||
exp->X_add_number = i.tm.extension_opcode;
|
||
i.tm.extension_opcode = None;
|
||
}
|
||
|
||
|
||
static int
|
||
check_hle (void)
|
||
{
|
||
switch (i.tm.opcode_modifier.hleprefixok)
|
||
{
|
||
default:
|
||
abort ();
|
||
case HLEPrefixNone:
|
||
as_bad (_("invalid instruction `%s' after `%s'"),
|
||
i.tm.name, i.hle_prefix);
|
||
return 0;
|
||
case HLEPrefixLock:
|
||
if (i.prefix[LOCK_PREFIX])
|
||
return 1;
|
||
as_bad (_("missing `lock' with `%s'"), i.hle_prefix);
|
||
return 0;
|
||
case HLEPrefixAny:
|
||
return 1;
|
||
case HLEPrefixRelease:
|
||
if (i.prefix[HLE_PREFIX] != XRELEASE_PREFIX_OPCODE)
|
||
{
|
||
as_bad (_("instruction `%s' after `xacquire' not allowed"),
|
||
i.tm.name);
|
||
return 0;
|
||
}
|
||
if (i.mem_operands == 0
|
||
|| !operand_type_check (i.types[i.operands - 1], anymem))
|
||
{
|
||
as_bad (_("memory destination needed for instruction `%s'"
|
||
" after `xrelease'"), i.tm.name);
|
||
return 0;
|
||
}
|
||
return 1;
|
||
}
|
||
}
|
||
|
||
/* This is the guts of the machine-dependent assembler. LINE points to a
|
||
machine dependent instruction. This function is supposed to emit
|
||
the frags/bytes it assembles to. */
|
||
|
||
void
|
||
md_assemble (char *line)
|
||
{
|
||
unsigned int j;
|
||
char mnemonic[MAX_MNEM_SIZE];
|
||
const insn_template *t;
|
||
|
||
/* Initialize globals. */
|
||
memset (&i, '\0', sizeof (i));
|
||
for (j = 0; j < MAX_OPERANDS; j++)
|
||
i.reloc[j] = NO_RELOC;
|
||
memset (disp_expressions, '\0', sizeof (disp_expressions));
|
||
memset (im_expressions, '\0', sizeof (im_expressions));
|
||
save_stack_p = save_stack;
|
||
|
||
/* First parse an instruction mnemonic & call i386_operand for the operands.
|
||
We assume that the scrubber has arranged it so that line[0] is the valid
|
||
start of a (possibly prefixed) mnemonic. */
|
||
|
||
line = parse_insn (line, mnemonic);
|
||
if (line == NULL)
|
||
return;
|
||
|
||
line = parse_operands (line, mnemonic);
|
||
this_operand = -1;
|
||
if (line == NULL)
|
||
return;
|
||
|
||
/* Now we've parsed the mnemonic into a set of templates, and have the
|
||
operands at hand. */
|
||
|
||
/* All intel opcodes have reversed operands except for "bound" and
|
||
"enter". We also don't reverse intersegment "jmp" and "call"
|
||
instructions with 2 immediate operands so that the immediate segment
|
||
precedes the offset, as it does when in AT&T mode. */
|
||
if (intel_syntax
|
||
&& i.operands > 1
|
||
&& (strcmp (mnemonic, "bound") != 0)
|
||
&& (strcmp (mnemonic, "invlpga") != 0)
|
||
&& !(operand_type_check (i.types[0], imm)
|
||
&& operand_type_check (i.types[1], imm)))
|
||
swap_operands ();
|
||
|
||
/* The order of the immediates should be reversed
|
||
for 2 immediates extrq and insertq instructions */
|
||
if (i.imm_operands == 2
|
||
&& (strcmp (mnemonic, "extrq") == 0
|
||
|| strcmp (mnemonic, "insertq") == 0))
|
||
swap_2_operands (0, 1);
|
||
|
||
if (i.imm_operands)
|
||
optimize_imm ();
|
||
|
||
/* Don't optimize displacement for movabs since it only takes 64bit
|
||
displacement. */
|
||
if (i.disp_operands
|
||
&& i.disp_encoding != disp_encoding_32bit
|
||
&& (flag_code != CODE_64BIT
|
||
|| strcmp (mnemonic, "movabs") != 0))
|
||
optimize_disp ();
|
||
|
||
/* Next, we find a template that matches the given insn,
|
||
making sure the overlap of the given operands types is consistent
|
||
with the template operand types. */
|
||
|
||
if (!(t = match_template ()))
|
||
return;
|
||
|
||
if (sse_check != check_none
|
||
&& !i.tm.opcode_modifier.noavx
|
||
&& (i.tm.cpu_flags.bitfield.cpusse
|
||
|| i.tm.cpu_flags.bitfield.cpusse2
|
||
|| i.tm.cpu_flags.bitfield.cpusse3
|
||
|| i.tm.cpu_flags.bitfield.cpussse3
|
||
|| i.tm.cpu_flags.bitfield.cpusse4_1
|
||
|| i.tm.cpu_flags.bitfield.cpusse4_2))
|
||
{
|
||
(sse_check == check_warning
|
||
? as_warn
|
||
: as_bad) (_("SSE instruction `%s' is used"), i.tm.name);
|
||
}
|
||
|
||
/* Zap movzx and movsx suffix. The suffix has been set from
|
||
"word ptr" or "byte ptr" on the source operand in Intel syntax
|
||
or extracted from mnemonic in AT&T syntax. But we'll use
|
||
the destination register to choose the suffix for encoding. */
|
||
if ((i.tm.base_opcode & ~9) == 0x0fb6)
|
||
{
|
||
/* In Intel syntax, there must be a suffix. In AT&T syntax, if
|
||
there is no suffix, the default will be byte extension. */
|
||
if (i.reg_operands != 2
|
||
&& !i.suffix
|
||
&& intel_syntax)
|
||
as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
|
||
|
||
i.suffix = 0;
|
||
}
|
||
|
||
if (i.tm.opcode_modifier.fwait)
|
||
if (!add_prefix (FWAIT_OPCODE))
|
||
return;
|
||
|
||
/* Check if REP prefix is OK. */
|
||
if (i.rep_prefix && !i.tm.opcode_modifier.repprefixok)
|
||
{
|
||
as_bad (_("invalid instruction `%s' after `%s'"),
|
||
i.tm.name, i.rep_prefix);
|
||
return;
|
||
}
|
||
|
||
/* Check for lock without a lockable instruction. Destination operand
|
||
must be memory unless it is xchg (0x86). */
|
||
if (i.prefix[LOCK_PREFIX]
|
||
&& (!i.tm.opcode_modifier.islockable
|
||
|| i.mem_operands == 0
|
||
|| (i.tm.base_opcode != 0x86
|
||
&& !operand_type_check (i.types[i.operands - 1], anymem))))
|
||
{
|
||
as_bad (_("expecting lockable instruction after `lock'"));
|
||
return;
|
||
}
|
||
|
||
/* Check if HLE prefix is OK. */
|
||
if (i.hle_prefix && !check_hle ())
|
||
return;
|
||
|
||
/* Check BND prefix. */
|
||
if (i.bnd_prefix && !i.tm.opcode_modifier.bndprefixok)
|
||
as_bad (_("expecting valid branch instruction after `bnd'"));
|
||
|
||
if (i.tm.cpu_flags.bitfield.cpumpx
|
||
&& flag_code == CODE_64BIT
|
||
&& i.prefix[ADDR_PREFIX])
|
||
as_bad (_("32-bit address isn't allowed in 64-bit MPX instructions."));
|
||
|
||
/* Insert BND prefix. */
|
||
if (add_bnd_prefix
|
||
&& i.tm.opcode_modifier.bndprefixok
|
||
&& !i.prefix[BND_PREFIX])
|
||
add_prefix (BND_PREFIX_OPCODE);
|
||
|
||
/* Check string instruction segment overrides. */
|
||
if (i.tm.opcode_modifier.isstring && i.mem_operands != 0)
|
||
{
|
||
if (!check_string ())
|
||
return;
|
||
i.disp_operands = 0;
|
||
}
|
||
|
||
if (!process_suffix ())
|
||
return;
|
||
|
||
/* Update operand types. */
|
||
for (j = 0; j < i.operands; j++)
|
||
i.types[j] = operand_type_and (i.types[j], i.tm.operand_types[j]);
|
||
|
||
/* Make still unresolved immediate matches conform to size of immediate
|
||
given in i.suffix. */
|
||
if (!finalize_imm ())
|
||
return;
|
||
|
||
if (i.types[0].bitfield.imm1)
|
||
i.imm_operands = 0; /* kludge for shift insns. */
|
||
|
||
/* We only need to check those implicit registers for instructions
|
||
with 3 operands or less. */
|
||
if (i.operands <= 3)
|
||
for (j = 0; j < i.operands; j++)
|
||
if (i.types[j].bitfield.inoutportreg
|
||
|| i.types[j].bitfield.shiftcount
|
||
|| i.types[j].bitfield.acc
|
||
|| i.types[j].bitfield.floatacc)
|
||
i.reg_operands--;
|
||
|
||
/* ImmExt should be processed after SSE2AVX. */
|
||
if (!i.tm.opcode_modifier.sse2avx
|
||
&& i.tm.opcode_modifier.immext)
|
||
process_immext ();
|
||
|
||
/* For insns with operands there are more diddles to do to the opcode. */
|
||
if (i.operands)
|
||
{
|
||
if (!process_operands ())
|
||
return;
|
||
}
|
||
else if (!quiet_warnings && i.tm.opcode_modifier.ugh)
|
||
{
|
||
/* UnixWare fsub no args is alias for fsubp, fadd -> faddp, etc. */
|
||
as_warn (_("translating to `%sp'"), i.tm.name);
|
||
}
|
||
|
||
if (i.tm.opcode_modifier.vex)
|
||
build_vex_prefix (t);
|
||
|
||
if (i.tm.opcode_modifier.evex)
|
||
build_evex_prefix ();
|
||
|
||
/* Handle conversion of 'int $3' --> special int3 insn. XOP or FMA4
|
||
instructions may define INT_OPCODE as well, so avoid this corner
|
||
case for those instructions that use MODRM. */
|
||
if (i.tm.base_opcode == INT_OPCODE
|
||
&& !i.tm.opcode_modifier.modrm
|
||
&& i.op[0].imms->X_add_number == 3)
|
||
{
|
||
i.tm.base_opcode = INT3_OPCODE;
|
||
i.imm_operands = 0;
|
||
}
|
||
|
||
if ((i.tm.opcode_modifier.jump
|
||
|| i.tm.opcode_modifier.jumpbyte
|
||
|| i.tm.opcode_modifier.jumpdword)
|
||
&& i.op[0].disps->X_op == O_constant)
|
||
{
|
||
/* Convert "jmp constant" (and "call constant") to a jump (call) to
|
||
the absolute address given by the constant. Since ix86 jumps and
|
||
calls are pc relative, we need to generate a reloc. */
|
||
i.op[0].disps->X_add_symbol = &abs_symbol;
|
||
i.op[0].disps->X_op = O_symbol;
|
||
}
|
||
|
||
if (i.tm.opcode_modifier.rex64)
|
||
i.rex |= REX_W;
|
||
|
||
/* For 8 bit registers we need an empty rex prefix. Also if the
|
||
instruction already has a prefix, we need to convert old
|
||
registers to new ones. */
|
||
|
||
if ((i.types[0].bitfield.reg8
|
||
&& (i.op[0].regs->reg_flags & RegRex64) != 0)
|
||
|| (i.types[1].bitfield.reg8
|
||
&& (i.op[1].regs->reg_flags & RegRex64) != 0)
|
||
|| ((i.types[0].bitfield.reg8
|
||
|| i.types[1].bitfield.reg8)
|
||
&& i.rex != 0))
|
||
{
|
||
int x;
|
||
|
||
i.rex |= REX_OPCODE;
|
||
for (x = 0; x < 2; x++)
|
||
{
|
||
/* Look for 8 bit operand that uses old registers. */
|
||
if (i.types[x].bitfield.reg8
|
||
&& (i.op[x].regs->reg_flags & RegRex64) == 0)
|
||
{
|
||
/* In case it is "hi" register, give up. */
|
||
if (i.op[x].regs->reg_num > 3)
|
||
as_bad (_("can't encode register '%s%s' in an "
|
||
"instruction requiring REX prefix."),
|
||
register_prefix, i.op[x].regs->reg_name);
|
||
|
||
/* Otherwise it is equivalent to the extended register.
|
||
Since the encoding doesn't change this is merely
|
||
cosmetic cleanup for debug output. */
|
||
|
||
i.op[x].regs = i.op[x].regs + 8;
|
||
}
|
||
}
|
||
}
|
||
|
||
if (i.rex != 0)
|
||
add_prefix (REX_OPCODE | i.rex);
|
||
|
||
/* We are ready to output the insn. */
|
||
output_insn ();
|
||
}
|
||
|
||
static char *
|
||
parse_insn (char *line, char *mnemonic)
|
||
{
|
||
char *l = line;
|
||
char *token_start = l;
|
||
char *mnem_p;
|
||
int supported;
|
||
const insn_template *t;
|
||
char *dot_p = NULL;
|
||
|
||
while (1)
|
||
{
|
||
mnem_p = mnemonic;
|
||
while ((*mnem_p = mnemonic_chars[(unsigned char) *l]) != 0)
|
||
{
|
||
if (*mnem_p == '.')
|
||
dot_p = mnem_p;
|
||
mnem_p++;
|
||
if (mnem_p >= mnemonic + MAX_MNEM_SIZE)
|
||
{
|
||
as_bad (_("no such instruction: `%s'"), token_start);
|
||
return NULL;
|
||
}
|
||
l++;
|
||
}
|
||
if (!is_space_char (*l)
|
||
&& *l != END_OF_INSN
|
||
&& (intel_syntax
|
||
|| (*l != PREFIX_SEPARATOR
|
||
&& *l != ',')))
|
||
{
|
||
as_bad (_("invalid character %s in mnemonic"),
|
||
output_invalid (*l));
|
||
return NULL;
|
||
}
|
||
if (token_start == l)
|
||
{
|
||
if (!intel_syntax && *l == PREFIX_SEPARATOR)
|
||
as_bad (_("expecting prefix; got nothing"));
|
||
else
|
||
as_bad (_("expecting mnemonic; got nothing"));
|
||
return NULL;
|
||
}
|
||
|
||
/* Look up instruction (or prefix) via hash table. */
|
||
current_templates = (const templates *) hash_find (op_hash, mnemonic);
|
||
|
||
if (*l != END_OF_INSN
|
||
&& (!is_space_char (*l) || l[1] != END_OF_INSN)
|
||
&& current_templates
|
||
&& current_templates->start->opcode_modifier.isprefix)
|
||
{
|
||
if (!cpu_flags_check_cpu64 (current_templates->start->cpu_flags))
|
||
{
|
||
as_bad ((flag_code != CODE_64BIT
|
||
? _("`%s' is only supported in 64-bit mode")
|
||
: _("`%s' is not supported in 64-bit mode")),
|
||
current_templates->start->name);
|
||
return NULL;
|
||
}
|
||
/* If we are in 16-bit mode, do not allow addr16 or data16.
|
||
Similarly, in 32-bit mode, do not allow addr32 or data32. */
|
||
if ((current_templates->start->opcode_modifier.size16
|
||
|| current_templates->start->opcode_modifier.size32)
|
||
&& flag_code != CODE_64BIT
|
||
&& (current_templates->start->opcode_modifier.size32
|
||
^ (flag_code == CODE_16BIT)))
|
||
{
|
||
as_bad (_("redundant %s prefix"),
|
||
current_templates->start->name);
|
||
return NULL;
|
||
}
|
||
/* Add prefix, checking for repeated prefixes. */
|
||
switch (add_prefix (current_templates->start->base_opcode))
|
||
{
|
||
case PREFIX_EXIST:
|
||
return NULL;
|
||
case PREFIX_REP:
|
||
if (current_templates->start->cpu_flags.bitfield.cpuhle)
|
||
i.hle_prefix = current_templates->start->name;
|
||
else if (current_templates->start->cpu_flags.bitfield.cpumpx)
|
||
i.bnd_prefix = current_templates->start->name;
|
||
else
|
||
i.rep_prefix = current_templates->start->name;
|
||
break;
|
||
default:
|
||
break;
|
||
}
|
||
/* Skip past PREFIX_SEPARATOR and reset token_start. */
|
||
token_start = ++l;
|
||
}
|
||
else
|
||
break;
|
||
}
|
||
|
||
if (!current_templates)
|
||
{
|
||
/* Check if we should swap operand or force 32bit displacement in
|
||
encoding. */
|
||
if (mnem_p - 2 == dot_p && dot_p[1] == 's')
|
||
i.swap_operand = 1;
|
||
else if (mnem_p - 3 == dot_p
|
||
&& dot_p[1] == 'd'
|
||
&& dot_p[2] == '8')
|
||
i.disp_encoding = disp_encoding_8bit;
|
||
else if (mnem_p - 4 == dot_p
|
||
&& dot_p[1] == 'd'
|
||
&& dot_p[2] == '3'
|
||
&& dot_p[3] == '2')
|
||
i.disp_encoding = disp_encoding_32bit;
|
||
else
|
||
goto check_suffix;
|
||
mnem_p = dot_p;
|
||
*dot_p = '\0';
|
||
current_templates = (const templates *) hash_find (op_hash, mnemonic);
|
||
}
|
||
|
||
if (!current_templates)
|
||
{
|
||
check_suffix:
|
||
/* See if we can get a match by trimming off a suffix. */
|
||
switch (mnem_p[-1])
|
||
{
|
||
case WORD_MNEM_SUFFIX:
|
||
if (intel_syntax && (intel_float_operand (mnemonic) & 2))
|
||
i.suffix = SHORT_MNEM_SUFFIX;
|
||
else
|
||
case BYTE_MNEM_SUFFIX:
|
||
case QWORD_MNEM_SUFFIX:
|
||
i.suffix = mnem_p[-1];
|
||
mnem_p[-1] = '\0';
|
||
current_templates = (const templates *) hash_find (op_hash,
|
||
mnemonic);
|
||
break;
|
||
case SHORT_MNEM_SUFFIX:
|
||
case LONG_MNEM_SUFFIX:
|
||
if (!intel_syntax)
|
||
{
|
||
i.suffix = mnem_p[-1];
|
||
mnem_p[-1] = '\0';
|
||
current_templates = (const templates *) hash_find (op_hash,
|
||
mnemonic);
|
||
}
|
||
break;
|
||
|
||
/* Intel Syntax. */
|
||
case 'd':
|
||
if (intel_syntax)
|
||
{
|
||
if (intel_float_operand (mnemonic) == 1)
|
||
i.suffix = SHORT_MNEM_SUFFIX;
|
||
else
|
||
i.suffix = LONG_MNEM_SUFFIX;
|
||
mnem_p[-1] = '\0';
|
||
current_templates = (const templates *) hash_find (op_hash,
|
||
mnemonic);
|
||
}
|
||
break;
|
||
}
|
||
if (!current_templates)
|
||
{
|
||
as_bad (_("no such instruction: `%s'"), token_start);
|
||
return NULL;
|
||
}
|
||
}
|
||
|
||
if (current_templates->start->opcode_modifier.jump
|
||
|| current_templates->start->opcode_modifier.jumpbyte)
|
||
{
|
||
/* Check for a branch hint. We allow ",pt" and ",pn" for
|
||
predict taken and predict not taken respectively.
|
||
I'm not sure that branch hints actually do anything on loop
|
||
and jcxz insns (JumpByte) for current Pentium4 chips. They
|
||
may work in the future and it doesn't hurt to accept them
|
||
now. */
|
||
if (l[0] == ',' && l[1] == 'p')
|
||
{
|
||
if (l[2] == 't')
|
||
{
|
||
if (!add_prefix (DS_PREFIX_OPCODE))
|
||
return NULL;
|
||
l += 3;
|
||
}
|
||
else if (l[2] == 'n')
|
||
{
|
||
if (!add_prefix (CS_PREFIX_OPCODE))
|
||
return NULL;
|
||
l += 3;
|
||
}
|
||
}
|
||
}
|
||
/* Any other comma loses. */
|
||
if (*l == ',')
|
||
{
|
||
as_bad (_("invalid character %s in mnemonic"),
|
||
output_invalid (*l));
|
||
return NULL;
|
||
}
|
||
|
||
/* Check if instruction is supported on specified architecture. */
|
||
supported = 0;
|
||
for (t = current_templates->start; t < current_templates->end; ++t)
|
||
{
|
||
supported |= cpu_flags_match (t);
|
||
if (supported == CPU_FLAGS_PERFECT_MATCH)
|
||
goto skip;
|
||
}
|
||
|
||
if (!(supported & CPU_FLAGS_64BIT_MATCH))
|
||
{
|
||
as_bad (flag_code == CODE_64BIT
|
||
? _("`%s' is not supported in 64-bit mode")
|
||
: _("`%s' is only supported in 64-bit mode"),
|
||
current_templates->start->name);
|
||
return NULL;
|
||
}
|
||
if (supported != CPU_FLAGS_PERFECT_MATCH)
|
||
{
|
||
as_bad (_("`%s' is not supported on `%s%s'"),
|
||
current_templates->start->name,
|
||
cpu_arch_name ? cpu_arch_name : default_arch,
|
||
cpu_sub_arch_name ? cpu_sub_arch_name : "");
|
||
return NULL;
|
||
}
|
||
|
||
skip:
|
||
if (!cpu_arch_flags.bitfield.cpui386
|
||
&& (flag_code != CODE_16BIT))
|
||
{
|
||
as_warn (_("use .code16 to ensure correct addressing mode"));
|
||
}
|
||
|
||
return l;
|
||
}
|
||
|
||
static char *
|
||
parse_operands (char *l, const char *mnemonic)
|
||
{
|
||
char *token_start;
|
||
|
||
/* 1 if operand is pending after ','. */
|
||
unsigned int expecting_operand = 0;
|
||
|
||
/* Non-zero if operand parens not balanced. */
|
||
unsigned int paren_not_balanced;
|
||
|
||
while (*l != END_OF_INSN)
|
||
{
|
||
/* Skip optional white space before operand. */
|
||
if (is_space_char (*l))
|
||
++l;
|
||
if (!is_operand_char (*l) && *l != END_OF_INSN)
|
||
{
|
||
as_bad (_("invalid character %s before operand %d"),
|
||
output_invalid (*l),
|
||
i.operands + 1);
|
||
return NULL;
|
||
}
|
||
token_start = l; /* after white space */
|
||
paren_not_balanced = 0;
|
||
while (paren_not_balanced || *l != ',')
|
||
{
|
||
if (*l == END_OF_INSN)
|
||
{
|
||
if (paren_not_balanced)
|
||
{
|
||
if (!intel_syntax)
|
||
as_bad (_("unbalanced parenthesis in operand %d."),
|
||
i.operands + 1);
|
||
else
|
||
as_bad (_("unbalanced brackets in operand %d."),
|
||
i.operands + 1);
|
||
return NULL;
|
||
}
|
||
else
|
||
break; /* we are done */
|
||
}
|
||
else if (!is_operand_char (*l) && !is_space_char (*l))
|
||
{
|
||
as_bad (_("invalid character %s in operand %d"),
|
||
output_invalid (*l),
|
||
i.operands + 1);
|
||
return NULL;
|
||
}
|
||
if (!intel_syntax)
|
||
{
|
||
if (*l == '(')
|
||
++paren_not_balanced;
|
||
if (*l == ')')
|
||
--paren_not_balanced;
|
||
}
|
||
else
|
||
{
|
||
if (*l == '[')
|
||
++paren_not_balanced;
|
||
if (*l == ']')
|
||
--paren_not_balanced;
|
||
}
|
||
l++;
|
||
}
|
||
if (l != token_start)
|
||
{ /* Yes, we've read in another operand. */
|
||
unsigned int operand_ok;
|
||
this_operand = i.operands++;
|
||
i.types[this_operand].bitfield.unspecified = 1;
|
||
if (i.operands > MAX_OPERANDS)
|
||
{
|
||
as_bad (_("spurious operands; (%d operands/instruction max)"),
|
||
MAX_OPERANDS);
|
||
return NULL;
|
||
}
|
||
/* Now parse operand adding info to 'i' as we go along. */
|
||
END_STRING_AND_SAVE (l);
|
||
|
||
if (intel_syntax)
|
||
operand_ok =
|
||
i386_intel_operand (token_start,
|
||
intel_float_operand (mnemonic));
|
||
else
|
||
operand_ok = i386_att_operand (token_start);
|
||
|
||
RESTORE_END_STRING (l);
|
||
if (!operand_ok)
|
||
return NULL;
|
||
}
|
||
else
|
||
{
|
||
if (expecting_operand)
|
||
{
|
||
expecting_operand_after_comma:
|
||
as_bad (_("expecting operand after ','; got nothing"));
|
||
return NULL;
|
||
}
|
||
if (*l == ',')
|
||
{
|
||
as_bad (_("expecting operand before ','; got nothing"));
|
||
return NULL;
|
||
}
|
||
}
|
||
|
||
/* Now *l must be either ',' or END_OF_INSN. */
|
||
if (*l == ',')
|
||
{
|
||
if (*++l == END_OF_INSN)
|
||
{
|
||
/* Just skip it, if it's \n complain. */
|
||
goto expecting_operand_after_comma;
|
||
}
|
||
expecting_operand = 1;
|
||
}
|
||
}
|
||
return l;
|
||
}
|
||
|
||
static void
|
||
swap_2_operands (int xchg1, int xchg2)
|
||
{
|
||
union i386_op temp_op;
|
||
i386_operand_type temp_type;
|
||
enum bfd_reloc_code_real temp_reloc;
|
||
|
||
temp_type = i.types[xchg2];
|
||
i.types[xchg2] = i.types[xchg1];
|
||
i.types[xchg1] = temp_type;
|
||
temp_op = i.op[xchg2];
|
||
i.op[xchg2] = i.op[xchg1];
|
||
i.op[xchg1] = temp_op;
|
||
temp_reloc = i.reloc[xchg2];
|
||
i.reloc[xchg2] = i.reloc[xchg1];
|
||
i.reloc[xchg1] = temp_reloc;
|
||
|
||
if (i.mask)
|
||
{
|
||
if (i.mask->operand == xchg1)
|
||
i.mask->operand = xchg2;
|
||
else if (i.mask->operand == xchg2)
|
||
i.mask->operand = xchg1;
|
||
}
|
||
if (i.broadcast)
|
||
{
|
||
if (i.broadcast->operand == xchg1)
|
||
i.broadcast->operand = xchg2;
|
||
else if (i.broadcast->operand == xchg2)
|
||
i.broadcast->operand = xchg1;
|
||
}
|
||
if (i.rounding)
|
||
{
|
||
if (i.rounding->operand == xchg1)
|
||
i.rounding->operand = xchg2;
|
||
else if (i.rounding->operand == xchg2)
|
||
i.rounding->operand = xchg1;
|
||
}
|
||
}
|
||
|
||
static void
|
||
swap_operands (void)
|
||
{
|
||
switch (i.operands)
|
||
{
|
||
case 5:
|
||
case 4:
|
||
swap_2_operands (1, i.operands - 2);
|
||
case 3:
|
||
case 2:
|
||
swap_2_operands (0, i.operands - 1);
|
||
break;
|
||
default:
|
||
abort ();
|
||
}
|
||
|
||
if (i.mem_operands == 2)
|
||
{
|
||
const seg_entry *temp_seg;
|
||
temp_seg = i.seg[0];
|
||
i.seg[0] = i.seg[1];
|
||
i.seg[1] = temp_seg;
|
||
}
|
||
}
|
||
|
||
/* Try to ensure constant immediates are represented in the smallest
|
||
opcode possible. */
|
||
static void
|
||
optimize_imm (void)
|
||
{
|
||
char guess_suffix = 0;
|
||
int op;
|
||
|
||
if (i.suffix)
|
||
guess_suffix = i.suffix;
|
||
else if (i.reg_operands)
|
||
{
|
||
/* Figure out a suffix from the last register operand specified.
|
||
We can't do this properly yet, ie. excluding InOutPortReg,
|
||
but the following works for instructions with immediates.
|
||
In any case, we can't set i.suffix yet. */
|
||
for (op = i.operands; --op >= 0;)
|
||
if (i.types[op].bitfield.reg8)
|
||
{
|
||
guess_suffix = BYTE_MNEM_SUFFIX;
|
||
break;
|
||
}
|
||
else if (i.types[op].bitfield.reg16)
|
||
{
|
||
guess_suffix = WORD_MNEM_SUFFIX;
|
||
break;
|
||
}
|
||
else if (i.types[op].bitfield.reg32)
|
||
{
|
||
guess_suffix = LONG_MNEM_SUFFIX;
|
||
break;
|
||
}
|
||
else if (i.types[op].bitfield.reg64)
|
||
{
|
||
guess_suffix = QWORD_MNEM_SUFFIX;
|
||
break;
|
||
}
|
||
}
|
||
else if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
|
||
guess_suffix = WORD_MNEM_SUFFIX;
|
||
|
||
for (op = i.operands; --op >= 0;)
|
||
if (operand_type_check (i.types[op], imm))
|
||
{
|
||
switch (i.op[op].imms->X_op)
|
||
{
|
||
case O_constant:
|
||
/* If a suffix is given, this operand may be shortened. */
|
||
switch (guess_suffix)
|
||
{
|
||
case LONG_MNEM_SUFFIX:
|
||
i.types[op].bitfield.imm32 = 1;
|
||
i.types[op].bitfield.imm64 = 1;
|
||
break;
|
||
case WORD_MNEM_SUFFIX:
|
||
i.types[op].bitfield.imm16 = 1;
|
||
i.types[op].bitfield.imm32 = 1;
|
||
i.types[op].bitfield.imm32s = 1;
|
||
i.types[op].bitfield.imm64 = 1;
|
||
break;
|
||
case BYTE_MNEM_SUFFIX:
|
||
i.types[op].bitfield.imm8 = 1;
|
||
i.types[op].bitfield.imm8s = 1;
|
||
i.types[op].bitfield.imm16 = 1;
|
||
i.types[op].bitfield.imm32 = 1;
|
||
i.types[op].bitfield.imm32s = 1;
|
||
i.types[op].bitfield.imm64 = 1;
|
||
break;
|
||
}
|
||
|
||
/* If this operand is at most 16 bits, convert it
|
||
to a signed 16 bit number before trying to see
|
||
whether it will fit in an even smaller size.
|
||
This allows a 16-bit operand such as $0xffe0 to
|
||
be recognised as within Imm8S range. */
|
||
if ((i.types[op].bitfield.imm16)
|
||
&& (i.op[op].imms->X_add_number & ~(offsetT) 0xffff) == 0)
|
||
{
|
||
i.op[op].imms->X_add_number =
|
||
(((i.op[op].imms->X_add_number & 0xffff) ^ 0x8000) - 0x8000);
|
||
}
|
||
if ((i.types[op].bitfield.imm32)
|
||
&& ((i.op[op].imms->X_add_number & ~(((offsetT) 2 << 31) - 1))
|
||
== 0))
|
||
{
|
||
i.op[op].imms->X_add_number = ((i.op[op].imms->X_add_number
|
||
^ ((offsetT) 1 << 31))
|
||
- ((offsetT) 1 << 31));
|
||
}
|
||
i.types[op]
|
||
= operand_type_or (i.types[op],
|
||
smallest_imm_type (i.op[op].imms->X_add_number));
|
||
|
||
/* We must avoid matching of Imm32 templates when 64bit
|
||
only immediate is available. */
|
||
if (guess_suffix == QWORD_MNEM_SUFFIX)
|
||
i.types[op].bitfield.imm32 = 0;
|
||
break;
|
||
|
||
case O_absent:
|
||
case O_register:
|
||
abort ();
|
||
|
||
/* Symbols and expressions. */
|
||
default:
|
||
/* Convert symbolic operand to proper sizes for matching, but don't
|
||
prevent matching a set of insns that only supports sizes other
|
||
than those matching the insn suffix. */
|
||
{
|
||
i386_operand_type mask, allowed;
|
||
const insn_template *t;
|
||
|
||
operand_type_set (&mask, 0);
|
||
operand_type_set (&allowed, 0);
|
||
|
||
for (t = current_templates->start;
|
||
t < current_templates->end;
|
||
++t)
|
||
allowed = operand_type_or (allowed,
|
||
t->operand_types[op]);
|
||
switch (guess_suffix)
|
||
{
|
||
case QWORD_MNEM_SUFFIX:
|
||
mask.bitfield.imm64 = 1;
|
||
mask.bitfield.imm32s = 1;
|
||
break;
|
||
case LONG_MNEM_SUFFIX:
|
||
mask.bitfield.imm32 = 1;
|
||
break;
|
||
case WORD_MNEM_SUFFIX:
|
||
mask.bitfield.imm16 = 1;
|
||
break;
|
||
case BYTE_MNEM_SUFFIX:
|
||
mask.bitfield.imm8 = 1;
|
||
break;
|
||
default:
|
||
break;
|
||
}
|
||
allowed = operand_type_and (mask, allowed);
|
||
if (!operand_type_all_zero (&allowed))
|
||
i.types[op] = operand_type_and (i.types[op], mask);
|
||
}
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Try to use the smallest displacement type too. */
|
||
static void
|
||
optimize_disp (void)
|
||
{
|
||
int op;
|
||
|
||
for (op = i.operands; --op >= 0;)
|
||
if (operand_type_check (i.types[op], disp))
|
||
{
|
||
if (i.op[op].disps->X_op == O_constant)
|
||
{
|
||
offsetT op_disp = i.op[op].disps->X_add_number;
|
||
|
||
if (i.types[op].bitfield.disp16
|
||
&& (op_disp & ~(offsetT) 0xffff) == 0)
|
||
{
|
||
/* If this operand is at most 16 bits, convert
|
||
to a signed 16 bit number and don't use 64bit
|
||
displacement. */
|
||
op_disp = (((op_disp & 0xffff) ^ 0x8000) - 0x8000);
|
||
i.types[op].bitfield.disp64 = 0;
|
||
}
|
||
if (i.types[op].bitfield.disp32
|
||
&& (op_disp & ~(((offsetT) 2 << 31) - 1)) == 0)
|
||
{
|
||
/* If this operand is at most 32 bits, convert
|
||
to a signed 32 bit number and don't use 64bit
|
||
displacement. */
|
||
op_disp &= (((offsetT) 2 << 31) - 1);
|
||
op_disp = (op_disp ^ ((offsetT) 1 << 31)) - ((addressT) 1 << 31);
|
||
i.types[op].bitfield.disp64 = 0;
|
||
}
|
||
if (!op_disp && i.types[op].bitfield.baseindex)
|
||
{
|
||
i.types[op].bitfield.disp8 = 0;
|
||
i.types[op].bitfield.disp16 = 0;
|
||
i.types[op].bitfield.disp32 = 0;
|
||
i.types[op].bitfield.disp32s = 0;
|
||
i.types[op].bitfield.disp64 = 0;
|
||
i.op[op].disps = 0;
|
||
i.disp_operands--;
|
||
}
|
||
else if (flag_code == CODE_64BIT)
|
||
{
|
||
if (fits_in_signed_long (op_disp))
|
||
{
|
||
i.types[op].bitfield.disp64 = 0;
|
||
i.types[op].bitfield.disp32s = 1;
|
||
}
|
||
if (i.prefix[ADDR_PREFIX]
|
||
&& fits_in_unsigned_long (op_disp))
|
||
i.types[op].bitfield.disp32 = 1;
|
||
}
|
||
if ((i.types[op].bitfield.disp32
|
||
|| i.types[op].bitfield.disp32s
|
||
|| i.types[op].bitfield.disp16)
|
||
&& fits_in_signed_byte (op_disp))
|
||
i.types[op].bitfield.disp8 = 1;
|
||
}
|
||
else if (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
|
||
|| i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL)
|
||
{
|
||
fix_new_exp (frag_now, frag_more (0) - frag_now->fr_literal, 0,
|
||
i.op[op].disps, 0, i.reloc[op]);
|
||
i.types[op].bitfield.disp8 = 0;
|
||
i.types[op].bitfield.disp16 = 0;
|
||
i.types[op].bitfield.disp32 = 0;
|
||
i.types[op].bitfield.disp32s = 0;
|
||
i.types[op].bitfield.disp64 = 0;
|
||
}
|
||
else
|
||
/* We only support 64bit displacement on constants. */
|
||
i.types[op].bitfield.disp64 = 0;
|
||
}
|
||
}
|
||
|
||
/* Check if operands are valid for the instruction. */
|
||
|
||
static int
|
||
check_VecOperands (const insn_template *t)
|
||
{
|
||
unsigned int op;
|
||
|
||
/* Without VSIB byte, we can't have a vector register for index. */
|
||
if (!t->opcode_modifier.vecsib
|
||
&& i.index_reg
|
||
&& (i.index_reg->reg_type.bitfield.regxmm
|
||
|| i.index_reg->reg_type.bitfield.regymm
|
||
|| i.index_reg->reg_type.bitfield.regzmm))
|
||
{
|
||
i.error = unsupported_vector_index_register;
|
||
return 1;
|
||
}
|
||
|
||
/* Check if default mask is allowed. */
|
||
if (t->opcode_modifier.nodefmask
|
||
&& (!i.mask || i.mask->mask->reg_num == 0))
|
||
{
|
||
i.error = no_default_mask;
|
||
return 1;
|
||
}
|
||
|
||
/* For VSIB byte, we need a vector register for index, and all vector
|
||
registers must be distinct. */
|
||
if (t->opcode_modifier.vecsib)
|
||
{
|
||
if (!i.index_reg
|
||
|| !((t->opcode_modifier.vecsib == VecSIB128
|
||
&& i.index_reg->reg_type.bitfield.regxmm)
|
||
|| (t->opcode_modifier.vecsib == VecSIB256
|
||
&& i.index_reg->reg_type.bitfield.regymm)
|
||
|| (t->opcode_modifier.vecsib == VecSIB512
|
||
&& i.index_reg->reg_type.bitfield.regzmm)))
|
||
{
|
||
i.error = invalid_vsib_address;
|
||
return 1;
|
||
}
|
||
|
||
gas_assert (i.reg_operands == 2 || i.mask);
|
||
if (i.reg_operands == 2 && !i.mask)
|
||
{
|
||
gas_assert (i.types[0].bitfield.regxmm
|
||
|| i.types[0].bitfield.regymm);
|
||
gas_assert (i.types[2].bitfield.regxmm
|
||
|| i.types[2].bitfield.regymm);
|
||
if (operand_check == check_none)
|
||
return 0;
|
||
if (register_number (i.op[0].regs)
|
||
!= register_number (i.index_reg)
|
||
&& register_number (i.op[2].regs)
|
||
!= register_number (i.index_reg)
|
||
&& register_number (i.op[0].regs)
|
||
!= register_number (i.op[2].regs))
|
||
return 0;
|
||
if (operand_check == check_error)
|
||
{
|
||
i.error = invalid_vector_register_set;
|
||
return 1;
|
||
}
|
||
as_warn (_("mask, index, and destination registers should be distinct"));
|
||
}
|
||
else if (i.reg_operands == 1 && i.mask)
|
||
{
|
||
if ((i.types[1].bitfield.regymm
|
||
|| i.types[1].bitfield.regzmm)
|
||
&& (register_number (i.op[1].regs)
|
||
== register_number (i.index_reg)))
|
||
{
|
||
if (operand_check == check_error)
|
||
{
|
||
i.error = invalid_vector_register_set;
|
||
return 1;
|
||
}
|
||
if (operand_check != check_none)
|
||
as_warn (_("index and destination registers should be distinct"));
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Check if broadcast is supported by the instruction and is applied
|
||
to the memory operand. */
|
||
if (i.broadcast)
|
||
{
|
||
int broadcasted_opnd_size;
|
||
|
||
/* Check if specified broadcast is supported in this instruction,
|
||
and it's applied to memory operand of DWORD or QWORD type,
|
||
depending on VecESize. */
|
||
if (i.broadcast->type != t->opcode_modifier.broadcast
|
||
|| !i.types[i.broadcast->operand].bitfield.mem
|
||
|| (t->opcode_modifier.vecesize == 0
|
||
&& !i.types[i.broadcast->operand].bitfield.dword
|
||
&& !i.types[i.broadcast->operand].bitfield.unspecified)
|
||
|| (t->opcode_modifier.vecesize == 1
|
||
&& !i.types[i.broadcast->operand].bitfield.qword
|
||
&& !i.types[i.broadcast->operand].bitfield.unspecified))
|
||
goto bad_broadcast;
|
||
|
||
broadcasted_opnd_size = t->opcode_modifier.vecesize ? 64 : 32;
|
||
if (i.broadcast->type == BROADCAST_1TO16)
|
||
broadcasted_opnd_size <<= 4; /* Broadcast 1to16. */
|
||
else if (i.broadcast->type == BROADCAST_1TO8)
|
||
broadcasted_opnd_size <<= 3; /* Broadcast 1to8. */
|
||
else if (i.broadcast->type == BROADCAST_1TO4)
|
||
broadcasted_opnd_size <<= 2; /* Broadcast 1to4. */
|
||
else if (i.broadcast->type == BROADCAST_1TO2)
|
||
broadcasted_opnd_size <<= 1; /* Broadcast 1to2. */
|
||
else
|
||
goto bad_broadcast;
|
||
|
||
if ((broadcasted_opnd_size == 256
|
||
&& !t->operand_types[i.broadcast->operand].bitfield.ymmword)
|
||
|| (broadcasted_opnd_size == 512
|
||
&& !t->operand_types[i.broadcast->operand].bitfield.zmmword))
|
||
{
|
||
bad_broadcast:
|
||
i.error = unsupported_broadcast;
|
||
return 1;
|
||
}
|
||
}
|
||
/* If broadcast is supported in this instruction, we need to check if
|
||
operand of one-element size isn't specified without broadcast. */
|
||
else if (t->opcode_modifier.broadcast && i.mem_operands)
|
||
{
|
||
/* Find memory operand. */
|
||
for (op = 0; op < i.operands; op++)
|
||
if (operand_type_check (i.types[op], anymem))
|
||
break;
|
||
gas_assert (op < i.operands);
|
||
/* Check size of the memory operand. */
|
||
if ((t->opcode_modifier.vecesize == 0
|
||
&& i.types[op].bitfield.dword)
|
||
|| (t->opcode_modifier.vecesize == 1
|
||
&& i.types[op].bitfield.qword))
|
||
{
|
||
i.error = broadcast_needed;
|
||
return 1;
|
||
}
|
||
}
|
||
|
||
/* Check if requested masking is supported. */
|
||
if (i.mask
|
||
&& (!t->opcode_modifier.masking
|
||
|| (i.mask->zeroing
|
||
&& t->opcode_modifier.masking == MERGING_MASKING)))
|
||
{
|
||
i.error = unsupported_masking;
|
||
return 1;
|
||
}
|
||
|
||
/* Check if masking is applied to dest operand. */
|
||
if (i.mask && (i.mask->operand != (int) (i.operands - 1)))
|
||
{
|
||
i.error = mask_not_on_destination;
|
||
return 1;
|
||
}
|
||
|
||
/* Check RC/SAE. */
|
||
if (i.rounding)
|
||
{
|
||
if ((i.rounding->type != saeonly
|
||
&& !t->opcode_modifier.staticrounding)
|
||
|| (i.rounding->type == saeonly
|
||
&& (t->opcode_modifier.staticrounding
|
||
|| !t->opcode_modifier.sae)))
|
||
{
|
||
i.error = unsupported_rc_sae;
|
||
return 1;
|
||
}
|
||
/* If the instruction has several immediate operands and one of
|
||
them is rounding, the rounding operand should be the last
|
||
immediate operand. */
|
||
if (i.imm_operands > 1
|
||
&& i.rounding->operand != (int) (i.imm_operands - 1))
|
||
{
|
||
i.error = rc_sae_operand_not_last_imm;
|
||
return 1;
|
||
}
|
||
}
|
||
|
||
/* Check vector Disp8 operand. */
|
||
if (t->opcode_modifier.disp8memshift)
|
||
{
|
||
if (i.broadcast)
|
||
i.memshift = t->opcode_modifier.vecesize ? 3 : 2;
|
||
else
|
||
i.memshift = t->opcode_modifier.disp8memshift;
|
||
|
||
for (op = 0; op < i.operands; op++)
|
||
if (operand_type_check (i.types[op], disp)
|
||
&& i.op[op].disps->X_op == O_constant)
|
||
{
|
||
offsetT value = i.op[op].disps->X_add_number;
|
||
int vec_disp8_ok = fits_in_vec_disp8 (value);
|
||
if (t->operand_types [op].bitfield.vec_disp8)
|
||
{
|
||
if (vec_disp8_ok)
|
||
i.types[op].bitfield.vec_disp8 = 1;
|
||
else
|
||
{
|
||
/* Vector insn can only have Vec_Disp8/Disp32 in
|
||
32/64bit modes, and Vec_Disp8/Disp16 in 16bit
|
||
mode. */
|
||
i.types[op].bitfield.disp8 = 0;
|
||
if (flag_code != CODE_16BIT)
|
||
i.types[op].bitfield.disp16 = 0;
|
||
}
|
||
}
|
||
else if (flag_code != CODE_16BIT)
|
||
{
|
||
/* One form of this instruction supports vector Disp8.
|
||
Try vector Disp8 if we need to use Disp32. */
|
||
if (vec_disp8_ok && !fits_in_signed_byte (value))
|
||
{
|
||
i.error = try_vector_disp8;
|
||
return 1;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
else
|
||
i.memshift = -1;
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Check if operands are valid for the instruction. Update VEX
|
||
operand types. */
|
||
|
||
static int
|
||
VEX_check_operands (const insn_template *t)
|
||
{
|
||
/* VREX is only valid with EVEX prefix. */
|
||
if (i.need_vrex && !t->opcode_modifier.evex)
|
||
{
|
||
i.error = invalid_register_operand;
|
||
return 1;
|
||
}
|
||
|
||
if (!t->opcode_modifier.vex)
|
||
return 0;
|
||
|
||
/* Only check VEX_Imm4, which must be the first operand. */
|
||
if (t->operand_types[0].bitfield.vec_imm4)
|
||
{
|
||
if (i.op[0].imms->X_op != O_constant
|
||
|| !fits_in_imm4 (i.op[0].imms->X_add_number))
|
||
{
|
||
i.error = bad_imm4;
|
||
return 1;
|
||
}
|
||
|
||
/* Turn off Imm8 so that update_imm won't complain. */
|
||
i.types[0] = vec_imm4;
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
static const insn_template *
|
||
match_template (void)
|
||
{
|
||
/* Points to template once we've found it. */
|
||
const insn_template *t;
|
||
i386_operand_type overlap0, overlap1, overlap2, overlap3;
|
||
i386_operand_type overlap4;
|
||
unsigned int found_reverse_match;
|
||
i386_opcode_modifier suffix_check;
|
||
i386_operand_type operand_types [MAX_OPERANDS];
|
||
int addr_prefix_disp;
|
||
unsigned int j;
|
||
unsigned int found_cpu_match;
|
||
unsigned int check_register;
|
||
enum i386_error specific_error = 0;
|
||
|
||
#if MAX_OPERANDS != 5
|
||
# error "MAX_OPERANDS must be 5."
|
||
#endif
|
||
|
||
found_reverse_match = 0;
|
||
addr_prefix_disp = -1;
|
||
|
||
memset (&suffix_check, 0, sizeof (suffix_check));
|
||
if (i.suffix == BYTE_MNEM_SUFFIX)
|
||
suffix_check.no_bsuf = 1;
|
||
else if (i.suffix == WORD_MNEM_SUFFIX)
|
||
suffix_check.no_wsuf = 1;
|
||
else if (i.suffix == SHORT_MNEM_SUFFIX)
|
||
suffix_check.no_ssuf = 1;
|
||
else if (i.suffix == LONG_MNEM_SUFFIX)
|
||
suffix_check.no_lsuf = 1;
|
||
else if (i.suffix == QWORD_MNEM_SUFFIX)
|
||
suffix_check.no_qsuf = 1;
|
||
else if (i.suffix == LONG_DOUBLE_MNEM_SUFFIX)
|
||
suffix_check.no_ldsuf = 1;
|
||
|
||
/* Must have right number of operands. */
|
||
i.error = number_of_operands_mismatch;
|
||
|
||
for (t = current_templates->start; t < current_templates->end; t++)
|
||
{
|
||
addr_prefix_disp = -1;
|
||
|
||
if (i.operands != t->operands)
|
||
continue;
|
||
|
||
/* Check processor support. */
|
||
i.error = unsupported;
|
||
found_cpu_match = (cpu_flags_match (t)
|
||
== CPU_FLAGS_PERFECT_MATCH);
|
||
if (!found_cpu_match)
|
||
continue;
|
||
|
||
/* Check old gcc support. */
|
||
i.error = old_gcc_only;
|
||
if (!old_gcc && t->opcode_modifier.oldgcc)
|
||
continue;
|
||
|
||
/* Check AT&T mnemonic. */
|
||
i.error = unsupported_with_intel_mnemonic;
|
||
if (intel_mnemonic && t->opcode_modifier.attmnemonic)
|
||
continue;
|
||
|
||
/* Check AT&T/Intel syntax. */
|
||
i.error = unsupported_syntax;
|
||
if ((intel_syntax && t->opcode_modifier.attsyntax)
|
||
|| (!intel_syntax && t->opcode_modifier.intelsyntax))
|
||
continue;
|
||
|
||
/* Check the suffix, except for some instructions in intel mode. */
|
||
i.error = invalid_instruction_suffix;
|
||
if ((!intel_syntax || !t->opcode_modifier.ignoresize)
|
||
&& ((t->opcode_modifier.no_bsuf && suffix_check.no_bsuf)
|
||
|| (t->opcode_modifier.no_wsuf && suffix_check.no_wsuf)
|
||
|| (t->opcode_modifier.no_lsuf && suffix_check.no_lsuf)
|
||
|| (t->opcode_modifier.no_ssuf && suffix_check.no_ssuf)
|
||
|| (t->opcode_modifier.no_qsuf && suffix_check.no_qsuf)
|
||
|| (t->opcode_modifier.no_ldsuf && suffix_check.no_ldsuf)))
|
||
continue;
|
||
|
||
if (!operand_size_match (t))
|
||
continue;
|
||
|
||
for (j = 0; j < MAX_OPERANDS; j++)
|
||
operand_types[j] = t->operand_types[j];
|
||
|
||
/* In general, don't allow 64-bit operands in 32-bit mode. */
|
||
if (i.suffix == QWORD_MNEM_SUFFIX
|
||
&& flag_code != CODE_64BIT
|
||
&& (intel_syntax
|
||
? (!t->opcode_modifier.ignoresize
|
||
&& !intel_float_operand (t->name))
|
||
: intel_float_operand (t->name) != 2)
|
||
&& ((!operand_types[0].bitfield.regmmx
|
||
&& !operand_types[0].bitfield.regxmm
|
||
&& !operand_types[0].bitfield.regymm
|
||
&& !operand_types[0].bitfield.regzmm)
|
||
|| (!operand_types[t->operands > 1].bitfield.regmmx
|
||
&& !!operand_types[t->operands > 1].bitfield.regxmm
|
||
&& !!operand_types[t->operands > 1].bitfield.regymm
|
||
&& !!operand_types[t->operands > 1].bitfield.regzmm))
|
||
&& (t->base_opcode != 0x0fc7
|
||
|| t->extension_opcode != 1 /* cmpxchg8b */))
|
||
continue;
|
||
|
||
/* In general, don't allow 32-bit operands on pre-386. */
|
||
else if (i.suffix == LONG_MNEM_SUFFIX
|
||
&& !cpu_arch_flags.bitfield.cpui386
|
||
&& (intel_syntax
|
||
? (!t->opcode_modifier.ignoresize
|
||
&& !intel_float_operand (t->name))
|
||
: intel_float_operand (t->name) != 2)
|
||
&& ((!operand_types[0].bitfield.regmmx
|
||
&& !operand_types[0].bitfield.regxmm)
|
||
|| (!operand_types[t->operands > 1].bitfield.regmmx
|
||
&& !!operand_types[t->operands > 1].bitfield.regxmm)))
|
||
continue;
|
||
|
||
/* Do not verify operands when there are none. */
|
||
else
|
||
{
|
||
if (!t->operands)
|
||
/* We've found a match; break out of loop. */
|
||
break;
|
||
}
|
||
|
||
/* Address size prefix will turn Disp64/Disp32/Disp16 operand
|
||
into Disp32/Disp16/Disp32 operand. */
|
||
if (i.prefix[ADDR_PREFIX] != 0)
|
||
{
|
||
/* There should be only one Disp operand. */
|
||
switch (flag_code)
|
||
{
|
||
case CODE_16BIT:
|
||
for (j = 0; j < MAX_OPERANDS; j++)
|
||
{
|
||
if (operand_types[j].bitfield.disp16)
|
||
{
|
||
addr_prefix_disp = j;
|
||
operand_types[j].bitfield.disp32 = 1;
|
||
operand_types[j].bitfield.disp16 = 0;
|
||
break;
|
||
}
|
||
}
|
||
break;
|
||
case CODE_32BIT:
|
||
for (j = 0; j < MAX_OPERANDS; j++)
|
||
{
|
||
if (operand_types[j].bitfield.disp32)
|
||
{
|
||
addr_prefix_disp = j;
|
||
operand_types[j].bitfield.disp32 = 0;
|
||
operand_types[j].bitfield.disp16 = 1;
|
||
break;
|
||
}
|
||
}
|
||
break;
|
||
case CODE_64BIT:
|
||
for (j = 0; j < MAX_OPERANDS; j++)
|
||
{
|
||
if (operand_types[j].bitfield.disp64)
|
||
{
|
||
addr_prefix_disp = j;
|
||
operand_types[j].bitfield.disp64 = 0;
|
||
operand_types[j].bitfield.disp32 = 1;
|
||
break;
|
||
}
|
||
}
|
||
break;
|
||
}
|
||
}
|
||
|
||
/* We check register size if needed. */
|
||
check_register = t->opcode_modifier.checkregsize;
|
||
overlap0 = operand_type_and (i.types[0], operand_types[0]);
|
||
switch (t->operands)
|
||
{
|
||
case 1:
|
||
if (!operand_type_match (overlap0, i.types[0]))
|
||
continue;
|
||
break;
|
||
case 2:
|
||
/* xchg %eax, %eax is a special case. It is an aliase for nop
|
||
only in 32bit mode and we can use opcode 0x90. In 64bit
|
||
mode, we can't use 0x90 for xchg %eax, %eax since it should
|
||
zero-extend %eax to %rax. */
|
||
if (flag_code == CODE_64BIT
|
||
&& t->base_opcode == 0x90
|
||
&& operand_type_equal (&i.types [0], &acc32)
|
||
&& operand_type_equal (&i.types [1], &acc32))
|
||
continue;
|
||
if (i.swap_operand)
|
||
{
|
||
/* If we swap operand in encoding, we either match
|
||
the next one or reverse direction of operands. */
|
||
if (t->opcode_modifier.s)
|
||
continue;
|
||
else if (t->opcode_modifier.d)
|
||
goto check_reverse;
|
||
}
|
||
|
||
case 3:
|
||
/* If we swap operand in encoding, we match the next one. */
|
||
if (i.swap_operand && t->opcode_modifier.s)
|
||
continue;
|
||
case 4:
|
||
case 5:
|
||
overlap1 = operand_type_and (i.types[1], operand_types[1]);
|
||
if (!operand_type_match (overlap0, i.types[0])
|
||
|| !operand_type_match (overlap1, i.types[1])
|
||
|| (check_register
|
||
&& !operand_type_register_match (overlap0, i.types[0],
|
||
operand_types[0],
|
||
overlap1, i.types[1],
|
||
operand_types[1])))
|
||
{
|
||
/* Check if other direction is valid ... */
|
||
if (!t->opcode_modifier.d && !t->opcode_modifier.floatd)
|
||
continue;
|
||
|
||
check_reverse:
|
||
/* Try reversing direction of operands. */
|
||
overlap0 = operand_type_and (i.types[0], operand_types[1]);
|
||
overlap1 = operand_type_and (i.types[1], operand_types[0]);
|
||
if (!operand_type_match (overlap0, i.types[0])
|
||
|| !operand_type_match (overlap1, i.types[1])
|
||
|| (check_register
|
||
&& !operand_type_register_match (overlap0,
|
||
i.types[0],
|
||
operand_types[1],
|
||
overlap1,
|
||
i.types[1],
|
||
operand_types[0])))
|
||
{
|
||
/* Does not match either direction. */
|
||
continue;
|
||
}
|
||
/* found_reverse_match holds which of D or FloatDR
|
||
we've found. */
|
||
if (t->opcode_modifier.d)
|
||
found_reverse_match = Opcode_D;
|
||
else if (t->opcode_modifier.floatd)
|
||
found_reverse_match = Opcode_FloatD;
|
||
else
|
||
found_reverse_match = 0;
|
||
if (t->opcode_modifier.floatr)
|
||
found_reverse_match |= Opcode_FloatR;
|
||
}
|
||
else
|
||
{
|
||
/* Found a forward 2 operand match here. */
|
||
switch (t->operands)
|
||
{
|
||
case 5:
|
||
overlap4 = operand_type_and (i.types[4],
|
||
operand_types[4]);
|
||
case 4:
|
||
overlap3 = operand_type_and (i.types[3],
|
||
operand_types[3]);
|
||
case 3:
|
||
overlap2 = operand_type_and (i.types[2],
|
||
operand_types[2]);
|
||
break;
|
||
}
|
||
|
||
switch (t->operands)
|
||
{
|
||
case 5:
|
||
if (!operand_type_match (overlap4, i.types[4])
|
||
|| !operand_type_register_match (overlap3,
|
||
i.types[3],
|
||
operand_types[3],
|
||
overlap4,
|
||
i.types[4],
|
||
operand_types[4]))
|
||
continue;
|
||
case 4:
|
||
if (!operand_type_match (overlap3, i.types[3])
|
||
|| (check_register
|
||
&& !operand_type_register_match (overlap2,
|
||
i.types[2],
|
||
operand_types[2],
|
||
overlap3,
|
||
i.types[3],
|
||
operand_types[3])))
|
||
continue;
|
||
case 3:
|
||
/* Here we make use of the fact that there are no
|
||
reverse match 3 operand instructions, and all 3
|
||
operand instructions only need to be checked for
|
||
register consistency between operands 2 and 3. */
|
||
if (!operand_type_match (overlap2, i.types[2])
|
||
|| (check_register
|
||
&& !operand_type_register_match (overlap1,
|
||
i.types[1],
|
||
operand_types[1],
|
||
overlap2,
|
||
i.types[2],
|
||
operand_types[2])))
|
||
continue;
|
||
break;
|
||
}
|
||
}
|
||
/* Found either forward/reverse 2, 3 or 4 operand match here:
|
||
slip through to break. */
|
||
}
|
||
if (!found_cpu_match)
|
||
{
|
||
found_reverse_match = 0;
|
||
continue;
|
||
}
|
||
|
||
/* Check if vector and VEX operands are valid. */
|
||
if (check_VecOperands (t) || VEX_check_operands (t))
|
||
{
|
||
specific_error = i.error;
|
||
continue;
|
||
}
|
||
|
||
/* We've found a match; break out of loop. */
|
||
break;
|
||
}
|
||
|
||
if (t == current_templates->end)
|
||
{
|
||
/* We found no match. */
|
||
const char *err_msg;
|
||
switch (specific_error ? specific_error : i.error)
|
||
{
|
||
default:
|
||
abort ();
|
||
case operand_size_mismatch:
|
||
err_msg = _("operand size mismatch");
|
||
break;
|
||
case operand_type_mismatch:
|
||
err_msg = _("operand type mismatch");
|
||
break;
|
||
case register_type_mismatch:
|
||
err_msg = _("register type mismatch");
|
||
break;
|
||
case number_of_operands_mismatch:
|
||
err_msg = _("number of operands mismatch");
|
||
break;
|
||
case invalid_instruction_suffix:
|
||
err_msg = _("invalid instruction suffix");
|
||
break;
|
||
case bad_imm4:
|
||
err_msg = _("constant doesn't fit in 4 bits");
|
||
break;
|
||
case old_gcc_only:
|
||
err_msg = _("only supported with old gcc");
|
||
break;
|
||
case unsupported_with_intel_mnemonic:
|
||
err_msg = _("unsupported with Intel mnemonic");
|
||
break;
|
||
case unsupported_syntax:
|
||
err_msg = _("unsupported syntax");
|
||
break;
|
||
case unsupported:
|
||
as_bad (_("unsupported instruction `%s'"),
|
||
current_templates->start->name);
|
||
return NULL;
|
||
case invalid_vsib_address:
|
||
err_msg = _("invalid VSIB address");
|
||
break;
|
||
case invalid_vector_register_set:
|
||
err_msg = _("mask, index, and destination registers must be distinct");
|
||
break;
|
||
case unsupported_vector_index_register:
|
||
err_msg = _("unsupported vector index register");
|
||
break;
|
||
case unsupported_broadcast:
|
||
err_msg = _("unsupported broadcast");
|
||
break;
|
||
case broadcast_not_on_src_operand:
|
||
err_msg = _("broadcast not on source memory operand");
|
||
break;
|
||
case broadcast_needed:
|
||
err_msg = _("broadcast is needed for operand of such type");
|
||
break;
|
||
case unsupported_masking:
|
||
err_msg = _("unsupported masking");
|
||
break;
|
||
case mask_not_on_destination:
|
||
err_msg = _("mask not on destination operand");
|
||
break;
|
||
case no_default_mask:
|
||
err_msg = _("default mask isn't allowed");
|
||
break;
|
||
case unsupported_rc_sae:
|
||
err_msg = _("unsupported static rounding/sae");
|
||
break;
|
||
case rc_sae_operand_not_last_imm:
|
||
if (intel_syntax)
|
||
err_msg = _("RC/SAE operand must precede immediate operands");
|
||
else
|
||
err_msg = _("RC/SAE operand must follow immediate operands");
|
||
break;
|
||
case invalid_register_operand:
|
||
err_msg = _("invalid register operand");
|
||
break;
|
||
}
|
||
as_bad (_("%s for `%s'"), err_msg,
|
||
current_templates->start->name);
|
||
return NULL;
|
||
}
|
||
|
||
if (!quiet_warnings)
|
||
{
|
||
if (!intel_syntax
|
||
&& (i.types[0].bitfield.jumpabsolute
|
||
!= operand_types[0].bitfield.jumpabsolute))
|
||
{
|
||
as_warn (_("indirect %s without `*'"), t->name);
|
||
}
|
||
|
||
if (t->opcode_modifier.isprefix
|
||
&& t->opcode_modifier.ignoresize)
|
||
{
|
||
/* Warn them that a data or address size prefix doesn't
|
||
affect assembly of the next line of code. */
|
||
as_warn (_("stand-alone `%s' prefix"), t->name);
|
||
}
|
||
}
|
||
|
||
/* Copy the template we found. */
|
||
i.tm = *t;
|
||
|
||
if (addr_prefix_disp != -1)
|
||
i.tm.operand_types[addr_prefix_disp]
|
||
= operand_types[addr_prefix_disp];
|
||
|
||
if (found_reverse_match)
|
||
{
|
||
/* If we found a reverse match we must alter the opcode
|
||
direction bit. found_reverse_match holds bits to change
|
||
(different for int & float insns). */
|
||
|
||
i.tm.base_opcode ^= found_reverse_match;
|
||
|
||
i.tm.operand_types[0] = operand_types[1];
|
||
i.tm.operand_types[1] = operand_types[0];
|
||
}
|
||
|
||
return t;
|
||
}
|
||
|
||
static int
|
||
check_string (void)
|
||
{
|
||
int mem_op = operand_type_check (i.types[0], anymem) ? 0 : 1;
|
||
if (i.tm.operand_types[mem_op].bitfield.esseg)
|
||
{
|
||
if (i.seg[0] != NULL && i.seg[0] != &es)
|
||
{
|
||
as_bad (_("`%s' operand %d must use `%ses' segment"),
|
||
i.tm.name,
|
||
mem_op + 1,
|
||
register_prefix);
|
||
return 0;
|
||
}
|
||
/* There's only ever one segment override allowed per instruction.
|
||
This instruction possibly has a legal segment override on the
|
||
second operand, so copy the segment to where non-string
|
||
instructions store it, allowing common code. */
|
||
i.seg[0] = i.seg[1];
|
||
}
|
||
else if (i.tm.operand_types[mem_op + 1].bitfield.esseg)
|
||
{
|
||
if (i.seg[1] != NULL && i.seg[1] != &es)
|
||
{
|
||
as_bad (_("`%s' operand %d must use `%ses' segment"),
|
||
i.tm.name,
|
||
mem_op + 2,
|
||
register_prefix);
|
||
return 0;
|
||
}
|
||
}
|
||
return 1;
|
||
}
|
||
|
||
static int
|
||
process_suffix (void)
|
||
{
|
||
/* If matched instruction specifies an explicit instruction mnemonic
|
||
suffix, use it. */
|
||
if (i.tm.opcode_modifier.size16)
|
||
i.suffix = WORD_MNEM_SUFFIX;
|
||
else if (i.tm.opcode_modifier.size32)
|
||
i.suffix = LONG_MNEM_SUFFIX;
|
||
else if (i.tm.opcode_modifier.size64)
|
||
i.suffix = QWORD_MNEM_SUFFIX;
|
||
else if (i.reg_operands)
|
||
{
|
||
/* If there's no instruction mnemonic suffix we try to invent one
|
||
based on register operands. */
|
||
if (!i.suffix)
|
||
{
|
||
/* We take i.suffix from the last register operand specified,
|
||
Destination register type is more significant than source
|
||
register type. crc32 in SSE4.2 prefers source register
|
||
type. */
|
||
if (i.tm.base_opcode == 0xf20f38f1)
|
||
{
|
||
if (i.types[0].bitfield.reg16)
|
||
i.suffix = WORD_MNEM_SUFFIX;
|
||
else if (i.types[0].bitfield.reg32)
|
||
i.suffix = LONG_MNEM_SUFFIX;
|
||
else if (i.types[0].bitfield.reg64)
|
||
i.suffix = QWORD_MNEM_SUFFIX;
|
||
}
|
||
else if (i.tm.base_opcode == 0xf20f38f0)
|
||
{
|
||
if (i.types[0].bitfield.reg8)
|
||
i.suffix = BYTE_MNEM_SUFFIX;
|
||
}
|
||
|
||
if (!i.suffix)
|
||
{
|
||
int op;
|
||
|
||
if (i.tm.base_opcode == 0xf20f38f1
|
||
|| i.tm.base_opcode == 0xf20f38f0)
|
||
{
|
||
/* We have to know the operand size for crc32. */
|
||
as_bad (_("ambiguous memory operand size for `%s`"),
|
||
i.tm.name);
|
||
return 0;
|
||
}
|
||
|
||
for (op = i.operands; --op >= 0;)
|
||
if (!i.tm.operand_types[op].bitfield.inoutportreg)
|
||
{
|
||
if (i.types[op].bitfield.reg8)
|
||
{
|
||
i.suffix = BYTE_MNEM_SUFFIX;
|
||
break;
|
||
}
|
||
else if (i.types[op].bitfield.reg16)
|
||
{
|
||
i.suffix = WORD_MNEM_SUFFIX;
|
||
break;
|
||
}
|
||
else if (i.types[op].bitfield.reg32)
|
||
{
|
||
i.suffix = LONG_MNEM_SUFFIX;
|
||
break;
|
||
}
|
||
else if (i.types[op].bitfield.reg64)
|
||
{
|
||
i.suffix = QWORD_MNEM_SUFFIX;
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
else if (i.suffix == BYTE_MNEM_SUFFIX)
|
||
{
|
||
if (intel_syntax
|
||
&& i.tm.opcode_modifier.ignoresize
|
||
&& i.tm.opcode_modifier.no_bsuf)
|
||
i.suffix = 0;
|
||
else if (!check_byte_reg ())
|
||
return 0;
|
||
}
|
||
else if (i.suffix == LONG_MNEM_SUFFIX)
|
||
{
|
||
if (intel_syntax
|
||
&& i.tm.opcode_modifier.ignoresize
|
||
&& i.tm.opcode_modifier.no_lsuf)
|
||
i.suffix = 0;
|
||
else if (!check_long_reg ())
|
||
return 0;
|
||
}
|
||
else if (i.suffix == QWORD_MNEM_SUFFIX)
|
||
{
|
||
if (intel_syntax
|
||
&& i.tm.opcode_modifier.ignoresize
|
||
&& i.tm.opcode_modifier.no_qsuf)
|
||
i.suffix = 0;
|
||
else if (!check_qword_reg ())
|
||
return 0;
|
||
}
|
||
else if (i.suffix == WORD_MNEM_SUFFIX)
|
||
{
|
||
if (intel_syntax
|
||
&& i.tm.opcode_modifier.ignoresize
|
||
&& i.tm.opcode_modifier.no_wsuf)
|
||
i.suffix = 0;
|
||
else if (!check_word_reg ())
|
||
return 0;
|
||
}
|
||
else if (i.suffix == XMMWORD_MNEM_SUFFIX
|
||
|| i.suffix == YMMWORD_MNEM_SUFFIX
|
||
|| i.suffix == ZMMWORD_MNEM_SUFFIX)
|
||
{
|
||
/* Skip if the instruction has x/y/z suffix. match_template
|
||
should check if it is a valid suffix. */
|
||
}
|
||
else if (intel_syntax && i.tm.opcode_modifier.ignoresize)
|
||
/* Do nothing if the instruction is going to ignore the prefix. */
|
||
;
|
||
else
|
||
abort ();
|
||
}
|
||
else if (i.tm.opcode_modifier.defaultsize
|
||
&& !i.suffix
|
||
/* exclude fldenv/frstor/fsave/fstenv */
|
||
&& i.tm.opcode_modifier.no_ssuf)
|
||
{
|
||
i.suffix = stackop_size;
|
||
}
|
||
else if (intel_syntax
|
||
&& !i.suffix
|
||
&& (i.tm.operand_types[0].bitfield.jumpabsolute
|
||
|| i.tm.opcode_modifier.jumpbyte
|
||
|| i.tm.opcode_modifier.jumpintersegment
|
||
|| (i.tm.base_opcode == 0x0f01 /* [ls][gi]dt */
|
||
&& i.tm.extension_opcode <= 3)))
|
||
{
|
||
switch (flag_code)
|
||
{
|
||
case CODE_64BIT:
|
||
if (!i.tm.opcode_modifier.no_qsuf)
|
||
{
|
||
i.suffix = QWORD_MNEM_SUFFIX;
|
||
break;
|
||
}
|
||
case CODE_32BIT:
|
||
if (!i.tm.opcode_modifier.no_lsuf)
|
||
i.suffix = LONG_MNEM_SUFFIX;
|
||
break;
|
||
case CODE_16BIT:
|
||
if (!i.tm.opcode_modifier.no_wsuf)
|
||
i.suffix = WORD_MNEM_SUFFIX;
|
||
break;
|
||
}
|
||
}
|
||
|
||
if (!i.suffix)
|
||
{
|
||
if (!intel_syntax)
|
||
{
|
||
if (i.tm.opcode_modifier.w)
|
||
{
|
||
as_bad (_("no instruction mnemonic suffix given and "
|
||
"no register operands; can't size instruction"));
|
||
return 0;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
unsigned int suffixes;
|
||
|
||
suffixes = !i.tm.opcode_modifier.no_bsuf;
|
||
if (!i.tm.opcode_modifier.no_wsuf)
|
||
suffixes |= 1 << 1;
|
||
if (!i.tm.opcode_modifier.no_lsuf)
|
||
suffixes |= 1 << 2;
|
||
if (!i.tm.opcode_modifier.no_ldsuf)
|
||
suffixes |= 1 << 3;
|
||
if (!i.tm.opcode_modifier.no_ssuf)
|
||
suffixes |= 1 << 4;
|
||
if (!i.tm.opcode_modifier.no_qsuf)
|
||
suffixes |= 1 << 5;
|
||
|
||
/* There are more than suffix matches. */
|
||
if (i.tm.opcode_modifier.w
|
||
|| ((suffixes & (suffixes - 1))
|
||
&& !i.tm.opcode_modifier.defaultsize
|
||
&& !i.tm.opcode_modifier.ignoresize))
|
||
{
|
||
as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
|
||
return 0;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Change the opcode based on the operand size given by i.suffix;
|
||
We don't need to change things for byte insns. */
|
||
|
||
if (i.suffix
|
||
&& i.suffix != BYTE_MNEM_SUFFIX
|
||
&& i.suffix != XMMWORD_MNEM_SUFFIX
|
||
&& i.suffix != YMMWORD_MNEM_SUFFIX
|
||
&& i.suffix != ZMMWORD_MNEM_SUFFIX)
|
||
{
|
||
/* It's not a byte, select word/dword operation. */
|
||
if (i.tm.opcode_modifier.w)
|
||
{
|
||
if (i.tm.opcode_modifier.shortform)
|
||
i.tm.base_opcode |= 8;
|
||
else
|
||
i.tm.base_opcode |= 1;
|
||
}
|
||
|
||
/* Now select between word & dword operations via the operand
|
||
size prefix, except for instructions that will ignore this
|
||
prefix anyway. */
|
||
if (i.tm.opcode_modifier.addrprefixop0)
|
||
{
|
||
/* The address size override prefix changes the size of the
|
||
first operand. */
|
||
if ((flag_code == CODE_32BIT
|
||
&& i.op->regs[0].reg_type.bitfield.reg16)
|
||
|| (flag_code != CODE_32BIT
|
||
&& i.op->regs[0].reg_type.bitfield.reg32))
|
||
if (!add_prefix (ADDR_PREFIX_OPCODE))
|
||
return 0;
|
||
}
|
||
else if (i.suffix != QWORD_MNEM_SUFFIX
|
||
&& i.suffix != LONG_DOUBLE_MNEM_SUFFIX
|
||
&& !i.tm.opcode_modifier.ignoresize
|
||
&& !i.tm.opcode_modifier.floatmf
|
||
&& ((i.suffix == LONG_MNEM_SUFFIX) == (flag_code == CODE_16BIT)
|
||
|| (flag_code == CODE_64BIT
|
||
&& i.tm.opcode_modifier.jumpbyte)))
|
||
{
|
||
unsigned int prefix = DATA_PREFIX_OPCODE;
|
||
|
||
if (i.tm.opcode_modifier.jumpbyte) /* jcxz, loop */
|
||
prefix = ADDR_PREFIX_OPCODE;
|
||
|
||
if (!add_prefix (prefix))
|
||
return 0;
|
||
}
|
||
|
||
/* Set mode64 for an operand. */
|
||
if (i.suffix == QWORD_MNEM_SUFFIX
|
||
&& flag_code == CODE_64BIT
|
||
&& !i.tm.opcode_modifier.norex64)
|
||
{
|
||
/* Special case for xchg %rax,%rax. It is NOP and doesn't
|
||
need rex64. cmpxchg8b is also a special case. */
|
||
if (! (i.operands == 2
|
||
&& i.tm.base_opcode == 0x90
|
||
&& i.tm.extension_opcode == None
|
||
&& operand_type_equal (&i.types [0], &acc64)
|
||
&& operand_type_equal (&i.types [1], &acc64))
|
||
&& ! (i.operands == 1
|
||
&& i.tm.base_opcode == 0xfc7
|
||
&& i.tm.extension_opcode == 1
|
||
&& !operand_type_check (i.types [0], reg)
|
||
&& operand_type_check (i.types [0], anymem)))
|
||
i.rex |= REX_W;
|
||
}
|
||
|
||
/* Size floating point instruction. */
|
||
if (i.suffix == LONG_MNEM_SUFFIX)
|
||
if (i.tm.opcode_modifier.floatmf)
|
||
i.tm.base_opcode ^= 4;
|
||
}
|
||
|
||
return 1;
|
||
}
|
||
|
||
static int
|
||
check_byte_reg (void)
|
||
{
|
||
int op;
|
||
|
||
for (op = i.operands; --op >= 0;)
|
||
{
|
||
/* If this is an eight bit register, it's OK. If it's the 16 or
|
||
32 bit version of an eight bit register, we will just use the
|
||
low portion, and that's OK too. */
|
||
if (i.types[op].bitfield.reg8)
|
||
continue;
|
||
|
||
/* I/O port address operands are OK too. */
|
||
if (i.tm.operand_types[op].bitfield.inoutportreg)
|
||
continue;
|
||
|
||
/* crc32 doesn't generate this warning. */
|
||
if (i.tm.base_opcode == 0xf20f38f0)
|
||
continue;
|
||
|
||
if ((i.types[op].bitfield.reg16
|
||
|| i.types[op].bitfield.reg32
|
||
|| i.types[op].bitfield.reg64)
|
||
&& i.op[op].regs->reg_num < 4
|
||
/* Prohibit these changes in 64bit mode, since the lowering
|
||
would be more complicated. */
|
||
&& flag_code != CODE_64BIT)
|
||
{
|
||
#if REGISTER_WARNINGS
|
||
if (!quiet_warnings)
|
||
as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
|
||
register_prefix,
|
||
(i.op[op].regs + (i.types[op].bitfield.reg16
|
||
? REGNAM_AL - REGNAM_AX
|
||
: REGNAM_AL - REGNAM_EAX))->reg_name,
|
||
register_prefix,
|
||
i.op[op].regs->reg_name,
|
||
i.suffix);
|
||
#endif
|
||
continue;
|
||
}
|
||
/* Any other register is bad. */
|
||
if (i.types[op].bitfield.reg16
|
||
|| i.types[op].bitfield.reg32
|
||
|| i.types[op].bitfield.reg64
|
||
|| i.types[op].bitfield.regmmx
|
||
|| i.types[op].bitfield.regxmm
|
||
|| i.types[op].bitfield.regymm
|
||
|| i.types[op].bitfield.regzmm
|
||
|| i.types[op].bitfield.sreg2
|
||
|| i.types[op].bitfield.sreg3
|
||
|| i.types[op].bitfield.control
|
||
|| i.types[op].bitfield.debug
|
||
|| i.types[op].bitfield.test
|
||
|| i.types[op].bitfield.floatreg
|
||
|| i.types[op].bitfield.floatacc)
|
||
{
|
||
as_bad (_("`%s%s' not allowed with `%s%c'"),
|
||
register_prefix,
|
||
i.op[op].regs->reg_name,
|
||
i.tm.name,
|
||
i.suffix);
|
||
return 0;
|
||
}
|
||
}
|
||
return 1;
|
||
}
|
||
|
||
static int
|
||
check_long_reg (void)
|
||
{
|
||
int op;
|
||
|
||
for (op = i.operands; --op >= 0;)
|
||
/* Reject eight bit registers, except where the template requires
|
||
them. (eg. movzb) */
|
||
if (i.types[op].bitfield.reg8
|
||
&& (i.tm.operand_types[op].bitfield.reg16
|
||
|| i.tm.operand_types[op].bitfield.reg32
|
||
|| i.tm.operand_types[op].bitfield.acc))
|
||
{
|
||
as_bad (_("`%s%s' not allowed with `%s%c'"),
|
||
register_prefix,
|
||
i.op[op].regs->reg_name,
|
||
i.tm.name,
|
||
i.suffix);
|
||
return 0;
|
||
}
|
||
/* Warn if the e prefix on a general reg is missing. */
|
||
else if ((!quiet_warnings || flag_code == CODE_64BIT)
|
||
&& i.types[op].bitfield.reg16
|
||
&& (i.tm.operand_types[op].bitfield.reg32
|
||
|| i.tm.operand_types[op].bitfield.acc))
|
||
{
|
||
/* Prohibit these changes in the 64bit mode, since the
|
||
lowering is more complicated. */
|
||
if (flag_code == CODE_64BIT)
|
||
{
|
||
as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
|
||
register_prefix, i.op[op].regs->reg_name,
|
||
i.suffix);
|
||
return 0;
|
||
}
|
||
#if REGISTER_WARNINGS
|
||
as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
|
||
register_prefix,
|
||
(i.op[op].regs + REGNAM_EAX - REGNAM_AX)->reg_name,
|
||
register_prefix, i.op[op].regs->reg_name, i.suffix);
|
||
#endif
|
||
}
|
||
/* Warn if the r prefix on a general reg is present. */
|
||
else if (i.types[op].bitfield.reg64
|
||
&& (i.tm.operand_types[op].bitfield.reg32
|
||
|| i.tm.operand_types[op].bitfield.acc))
|
||
{
|
||
if (intel_syntax
|
||
&& i.tm.opcode_modifier.toqword
|
||
&& !i.types[0].bitfield.regxmm)
|
||
{
|
||
/* Convert to QWORD. We want REX byte. */
|
||
i.suffix = QWORD_MNEM_SUFFIX;
|
||
}
|
||
else
|
||
{
|
||
as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
|
||
register_prefix, i.op[op].regs->reg_name,
|
||
i.suffix);
|
||
return 0;
|
||
}
|
||
}
|
||
return 1;
|
||
}
|
||
|
||
static int
|
||
check_qword_reg (void)
|
||
{
|
||
int op;
|
||
|
||
for (op = i.operands; --op >= 0; )
|
||
/* Reject eight bit registers, except where the template requires
|
||
them. (eg. movzb) */
|
||
if (i.types[op].bitfield.reg8
|
||
&& (i.tm.operand_types[op].bitfield.reg16
|
||
|| i.tm.operand_types[op].bitfield.reg32
|
||
|| i.tm.operand_types[op].bitfield.acc))
|
||
{
|
||
as_bad (_("`%s%s' not allowed with `%s%c'"),
|
||
register_prefix,
|
||
i.op[op].regs->reg_name,
|
||
i.tm.name,
|
||
i.suffix);
|
||
return 0;
|
||
}
|
||
/* Warn if the r prefix on a general reg is missing. */
|
||
else if ((i.types[op].bitfield.reg16
|
||
|| i.types[op].bitfield.reg32)
|
||
&& (i.tm.operand_types[op].bitfield.reg32
|
||
|| i.tm.operand_types[op].bitfield.acc))
|
||
{
|
||
/* Prohibit these changes in the 64bit mode, since the
|
||
lowering is more complicated. */
|
||
if (intel_syntax
|
||
&& i.tm.opcode_modifier.todword
|
||
&& !i.types[0].bitfield.regxmm)
|
||
{
|
||
/* Convert to DWORD. We don't want REX byte. */
|
||
i.suffix = LONG_MNEM_SUFFIX;
|
||
}
|
||
else
|
||
{
|
||
as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
|
||
register_prefix, i.op[op].regs->reg_name,
|
||
i.suffix);
|
||
return 0;
|
||
}
|
||
}
|
||
return 1;
|
||
}
|
||
|
||
static int
|
||
check_word_reg (void)
|
||
{
|
||
int op;
|
||
for (op = i.operands; --op >= 0;)
|
||
/* Reject eight bit registers, except where the template requires
|
||
them. (eg. movzb) */
|
||
if (i.types[op].bitfield.reg8
|
||
&& (i.tm.operand_types[op].bitfield.reg16
|
||
|| i.tm.operand_types[op].bitfield.reg32
|
||
|| i.tm.operand_types[op].bitfield.acc))
|
||
{
|
||
as_bad (_("`%s%s' not allowed with `%s%c'"),
|
||
register_prefix,
|
||
i.op[op].regs->reg_name,
|
||
i.tm.name,
|
||
i.suffix);
|
||
return 0;
|
||
}
|
||
/* Warn if the e or r prefix on a general reg is present. */
|
||
else if ((!quiet_warnings || flag_code == CODE_64BIT)
|
||
&& (i.types[op].bitfield.reg32
|
||
|| i.types[op].bitfield.reg64)
|
||
&& (i.tm.operand_types[op].bitfield.reg16
|
||
|| i.tm.operand_types[op].bitfield.acc))
|
||
{
|
||
/* Prohibit these changes in the 64bit mode, since the
|
||
lowering is more complicated. */
|
||
if (flag_code == CODE_64BIT)
|
||
{
|
||
as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
|
||
register_prefix, i.op[op].regs->reg_name,
|
||
i.suffix);
|
||
return 0;
|
||
}
|
||
#if REGISTER_WARNINGS
|
||
as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
|
||
register_prefix,
|
||
(i.op[op].regs + REGNAM_AX - REGNAM_EAX)->reg_name,
|
||
register_prefix, i.op[op].regs->reg_name, i.suffix);
|
||
#endif
|
||
}
|
||
return 1;
|
||
}
|
||
|
||
static int
|
||
update_imm (unsigned int j)
|
||
{
|
||
i386_operand_type overlap = i.types[j];
|
||
if ((overlap.bitfield.imm8
|
||
|| overlap.bitfield.imm8s
|
||
|| overlap.bitfield.imm16
|
||
|| overlap.bitfield.imm32
|
||
|| overlap.bitfield.imm32s
|
||
|| overlap.bitfield.imm64)
|
||
&& !operand_type_equal (&overlap, &imm8)
|
||
&& !operand_type_equal (&overlap, &imm8s)
|
||
&& !operand_type_equal (&overlap, &imm16)
|
||
&& !operand_type_equal (&overlap, &imm32)
|
||
&& !operand_type_equal (&overlap, &imm32s)
|
||
&& !operand_type_equal (&overlap, &imm64))
|
||
{
|
||
if (i.suffix)
|
||
{
|
||
i386_operand_type temp;
|
||
|
||
operand_type_set (&temp, 0);
|
||
if (i.suffix == BYTE_MNEM_SUFFIX)
|
||
{
|
||
temp.bitfield.imm8 = overlap.bitfield.imm8;
|
||
temp.bitfield.imm8s = overlap.bitfield.imm8s;
|
||
}
|
||
else if (i.suffix == WORD_MNEM_SUFFIX)
|
||
temp.bitfield.imm16 = overlap.bitfield.imm16;
|
||
else if (i.suffix == QWORD_MNEM_SUFFIX)
|
||
{
|
||
temp.bitfield.imm64 = overlap.bitfield.imm64;
|
||
temp.bitfield.imm32s = overlap.bitfield.imm32s;
|
||
}
|
||
else
|
||
temp.bitfield.imm32 = overlap.bitfield.imm32;
|
||
overlap = temp;
|
||
}
|
||
else if (operand_type_equal (&overlap, &imm16_32_32s)
|
||
|| operand_type_equal (&overlap, &imm16_32)
|
||
|| operand_type_equal (&overlap, &imm16_32s))
|
||
{
|
||
if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
|
||
overlap = imm16;
|
||
else
|
||
overlap = imm32s;
|
||
}
|
||
if (!operand_type_equal (&overlap, &imm8)
|
||
&& !operand_type_equal (&overlap, &imm8s)
|
||
&& !operand_type_equal (&overlap, &imm16)
|
||
&& !operand_type_equal (&overlap, &imm32)
|
||
&& !operand_type_equal (&overlap, &imm32s)
|
||
&& !operand_type_equal (&overlap, &imm64))
|
||
{
|
||
as_bad (_("no instruction mnemonic suffix given; "
|
||
"can't determine immediate size"));
|
||
return 0;
|
||
}
|
||
}
|
||
i.types[j] = overlap;
|
||
|
||
return 1;
|
||
}
|
||
|
||
static int
|
||
finalize_imm (void)
|
||
{
|
||
unsigned int j, n;
|
||
|
||
/* Update the first 2 immediate operands. */
|
||
n = i.operands > 2 ? 2 : i.operands;
|
||
if (n)
|
||
{
|
||
for (j = 0; j < n; j++)
|
||
if (update_imm (j) == 0)
|
||
return 0;
|
||
|
||
/* The 3rd operand can't be immediate operand. */
|
||
gas_assert (operand_type_check (i.types[2], imm) == 0);
|
||
}
|
||
|
||
return 1;
|
||
}
|
||
|
||
static int
|
||
bad_implicit_operand (int xmm)
|
||
{
|
||
const char *ireg = xmm ? "xmm0" : "ymm0";
|
||
|
||
if (intel_syntax)
|
||
as_bad (_("the last operand of `%s' must be `%s%s'"),
|
||
i.tm.name, register_prefix, ireg);
|
||
else
|
||
as_bad (_("the first operand of `%s' must be `%s%s'"),
|
||
i.tm.name, register_prefix, ireg);
|
||
return 0;
|
||
}
|
||
|
||
static int
|
||
process_operands (void)
|
||
{
|
||
/* Default segment register this instruction will use for memory
|
||
accesses. 0 means unknown. This is only for optimizing out
|
||
unnecessary segment overrides. */
|
||
const seg_entry *default_seg = 0;
|
||
|
||
if (i.tm.opcode_modifier.sse2avx && i.tm.opcode_modifier.vexvvvv)
|
||
{
|
||
unsigned int dupl = i.operands;
|
||
unsigned int dest = dupl - 1;
|
||
unsigned int j;
|
||
|
||
/* The destination must be an xmm register. */
|
||
gas_assert (i.reg_operands
|
||
&& MAX_OPERANDS > dupl
|
||
&& operand_type_equal (&i.types[dest], ®xmm));
|
||
|
||
if (i.tm.opcode_modifier.firstxmm0)
|
||
{
|
||
/* The first operand is implicit and must be xmm0. */
|
||
gas_assert (operand_type_equal (&i.types[0], ®xmm));
|
||
if (register_number (i.op[0].regs) != 0)
|
||
return bad_implicit_operand (1);
|
||
|
||
if (i.tm.opcode_modifier.vexsources == VEX3SOURCES)
|
||
{
|
||
/* Keep xmm0 for instructions with VEX prefix and 3
|
||
sources. */
|
||
goto duplicate;
|
||
}
|
||
else
|
||
{
|
||
/* We remove the first xmm0 and keep the number of
|
||
operands unchanged, which in fact duplicates the
|
||
destination. */
|
||
for (j = 1; j < i.operands; j++)
|
||
{
|
||
i.op[j - 1] = i.op[j];
|
||
i.types[j - 1] = i.types[j];
|
||
i.tm.operand_types[j - 1] = i.tm.operand_types[j];
|
||
}
|
||
}
|
||
}
|
||
else if (i.tm.opcode_modifier.implicit1stxmm0)
|
||
{
|
||
gas_assert ((MAX_OPERANDS - 1) > dupl
|
||
&& (i.tm.opcode_modifier.vexsources
|
||
== VEX3SOURCES));
|
||
|
||
/* Add the implicit xmm0 for instructions with VEX prefix
|
||
and 3 sources. */
|
||
for (j = i.operands; j > 0; j--)
|
||
{
|
||
i.op[j] = i.op[j - 1];
|
||
i.types[j] = i.types[j - 1];
|
||
i.tm.operand_types[j] = i.tm.operand_types[j - 1];
|
||
}
|
||
i.op[0].regs
|
||
= (const reg_entry *) hash_find (reg_hash, "xmm0");
|
||
i.types[0] = regxmm;
|
||
i.tm.operand_types[0] = regxmm;
|
||
|
||
i.operands += 2;
|
||
i.reg_operands += 2;
|
||
i.tm.operands += 2;
|
||
|
||
dupl++;
|
||
dest++;
|
||
i.op[dupl] = i.op[dest];
|
||
i.types[dupl] = i.types[dest];
|
||
i.tm.operand_types[dupl] = i.tm.operand_types[dest];
|
||
}
|
||
else
|
||
{
|
||
duplicate:
|
||
i.operands++;
|
||
i.reg_operands++;
|
||
i.tm.operands++;
|
||
|
||
i.op[dupl] = i.op[dest];
|
||
i.types[dupl] = i.types[dest];
|
||
i.tm.operand_types[dupl] = i.tm.operand_types[dest];
|
||
}
|
||
|
||
if (i.tm.opcode_modifier.immext)
|
||
process_immext ();
|
||
}
|
||
else if (i.tm.opcode_modifier.firstxmm0)
|
||
{
|
||
unsigned int j;
|
||
|
||
/* The first operand is implicit and must be xmm0/ymm0/zmm0. */
|
||
gas_assert (i.reg_operands
|
||
&& (operand_type_equal (&i.types[0], ®xmm)
|
||
|| operand_type_equal (&i.types[0], ®ymm)
|
||
|| operand_type_equal (&i.types[0], ®zmm)));
|
||
if (register_number (i.op[0].regs) != 0)
|
||
return bad_implicit_operand (i.types[0].bitfield.regxmm);
|
||
|
||
for (j = 1; j < i.operands; j++)
|
||
{
|
||
i.op[j - 1] = i.op[j];
|
||
i.types[j - 1] = i.types[j];
|
||
|
||
/* We need to adjust fields in i.tm since they are used by
|
||
build_modrm_byte. */
|
||
i.tm.operand_types [j - 1] = i.tm.operand_types [j];
|
||
}
|
||
|
||
i.operands--;
|
||
i.reg_operands--;
|
||
i.tm.operands--;
|
||
}
|
||
else if (i.tm.opcode_modifier.regkludge)
|
||
{
|
||
/* The imul $imm, %reg instruction is converted into
|
||
imul $imm, %reg, %reg, and the clr %reg instruction
|
||
is converted into xor %reg, %reg. */
|
||
|
||
unsigned int first_reg_op;
|
||
|
||
if (operand_type_check (i.types[0], reg))
|
||
first_reg_op = 0;
|
||
else
|
||
first_reg_op = 1;
|
||
/* Pretend we saw the extra register operand. */
|
||
gas_assert (i.reg_operands == 1
|
||
&& i.op[first_reg_op + 1].regs == 0);
|
||
i.op[first_reg_op + 1].regs = i.op[first_reg_op].regs;
|
||
i.types[first_reg_op + 1] = i.types[first_reg_op];
|
||
i.operands++;
|
||
i.reg_operands++;
|
||
}
|
||
|
||
if (i.tm.opcode_modifier.shortform)
|
||
{
|
||
if (i.types[0].bitfield.sreg2
|
||
|| i.types[0].bitfield.sreg3)
|
||
{
|
||
if (i.tm.base_opcode == POP_SEG_SHORT
|
||
&& i.op[0].regs->reg_num == 1)
|
||
{
|
||
as_bad (_("you can't `pop %scs'"), register_prefix);
|
||
return 0;
|
||
}
|
||
i.tm.base_opcode |= (i.op[0].regs->reg_num << 3);
|
||
if ((i.op[0].regs->reg_flags & RegRex) != 0)
|
||
i.rex |= REX_B;
|
||
}
|
||
else
|
||
{
|
||
/* The register or float register operand is in operand
|
||
0 or 1. */
|
||
unsigned int op;
|
||
|
||
if (i.types[0].bitfield.floatreg
|
||
|| operand_type_check (i.types[0], reg))
|
||
op = 0;
|
||
else
|
||
op = 1;
|
||
/* Register goes in low 3 bits of opcode. */
|
||
i.tm.base_opcode |= i.op[op].regs->reg_num;
|
||
if ((i.op[op].regs->reg_flags & RegRex) != 0)
|
||
i.rex |= REX_B;
|
||
if (!quiet_warnings && i.tm.opcode_modifier.ugh)
|
||
{
|
||
/* Warn about some common errors, but press on regardless.
|
||
The first case can be generated by gcc (<= 2.8.1). */
|
||
if (i.operands == 2)
|
||
{
|
||
/* Reversed arguments on faddp, fsubp, etc. */
|
||
as_warn (_("translating to `%s %s%s,%s%s'"), i.tm.name,
|
||
register_prefix, i.op[!intel_syntax].regs->reg_name,
|
||
register_prefix, i.op[intel_syntax].regs->reg_name);
|
||
}
|
||
else
|
||
{
|
||
/* Extraneous `l' suffix on fp insn. */
|
||
as_warn (_("translating to `%s %s%s'"), i.tm.name,
|
||
register_prefix, i.op[0].regs->reg_name);
|
||
}
|
||
}
|
||
}
|
||
}
|
||
else if (i.tm.opcode_modifier.modrm)
|
||
{
|
||
/* The opcode is completed (modulo i.tm.extension_opcode which
|
||
must be put into the modrm byte). Now, we make the modrm and
|
||
index base bytes based on all the info we've collected. */
|
||
|
||
default_seg = build_modrm_byte ();
|
||
}
|
||
else if ((i.tm.base_opcode & ~0x3) == MOV_AX_DISP32)
|
||
{
|
||
default_seg = &ds;
|
||
}
|
||
else if (i.tm.opcode_modifier.isstring)
|
||
{
|
||
/* For the string instructions that allow a segment override
|
||
on one of their operands, the default segment is ds. */
|
||
default_seg = &ds;
|
||
}
|
||
|
||
if (i.tm.base_opcode == 0x8d /* lea */
|
||
&& i.seg[0]
|
||
&& !quiet_warnings)
|
||
as_warn (_("segment override on `%s' is ineffectual"), i.tm.name);
|
||
|
||
/* If a segment was explicitly specified, and the specified segment
|
||
is not the default, use an opcode prefix to select it. If we
|
||
never figured out what the default segment is, then default_seg
|
||
will be zero at this point, and the specified segment prefix will
|
||
always be used. */
|
||
if ((i.seg[0]) && (i.seg[0] != default_seg))
|
||
{
|
||
if (!add_prefix (i.seg[0]->seg_prefix))
|
||
return 0;
|
||
}
|
||
return 1;
|
||
}
|
||
|
||
static const seg_entry *
|
||
build_modrm_byte (void)
|
||
{
|
||
const seg_entry *default_seg = 0;
|
||
unsigned int source, dest;
|
||
int vex_3_sources;
|
||
|
||
/* The first operand of instructions with VEX prefix and 3 sources
|
||
must be VEX_Imm4. */
|
||
vex_3_sources = i.tm.opcode_modifier.vexsources == VEX3SOURCES;
|
||
if (vex_3_sources)
|
||
{
|
||
unsigned int nds, reg_slot;
|
||
expressionS *exp;
|
||
|
||
if (i.tm.opcode_modifier.veximmext
|
||
&& i.tm.opcode_modifier.immext)
|
||
{
|
||
dest = i.operands - 2;
|
||
gas_assert (dest == 3);
|
||
}
|
||
else
|
||
dest = i.operands - 1;
|
||
nds = dest - 1;
|
||
|
||
/* There are 2 kinds of instructions:
|
||
1. 5 operands: 4 register operands or 3 register operands
|
||
plus 1 memory operand plus one Vec_Imm4 operand, VexXDS, and
|
||
VexW0 or VexW1. The destination must be either XMM, YMM or
|
||
ZMM register.
|
||
2. 4 operands: 4 register operands or 3 register operands
|
||
plus 1 memory operand, VexXDS, and VexImmExt */
|
||
gas_assert ((i.reg_operands == 4
|
||
|| (i.reg_operands == 3 && i.mem_operands == 1))
|
||
&& i.tm.opcode_modifier.vexvvvv == VEXXDS
|
||
&& (i.tm.opcode_modifier.veximmext
|
||
|| (i.imm_operands == 1
|
||
&& i.types[0].bitfield.vec_imm4
|
||
&& (i.tm.opcode_modifier.vexw == VEXW0
|
||
|| i.tm.opcode_modifier.vexw == VEXW1)
|
||
&& (operand_type_equal (&i.tm.operand_types[dest], ®xmm)
|
||
|| operand_type_equal (&i.tm.operand_types[dest], ®ymm)
|
||
|| operand_type_equal (&i.tm.operand_types[dest], ®zmm)))));
|
||
|
||
if (i.imm_operands == 0)
|
||
{
|
||
/* When there is no immediate operand, generate an 8bit
|
||
immediate operand to encode the first operand. */
|
||
exp = &im_expressions[i.imm_operands++];
|
||
i.op[i.operands].imms = exp;
|
||
i.types[i.operands] = imm8;
|
||
i.operands++;
|
||
/* If VexW1 is set, the first operand is the source and
|
||
the second operand is encoded in the immediate operand. */
|
||
if (i.tm.opcode_modifier.vexw == VEXW1)
|
||
{
|
||
source = 0;
|
||
reg_slot = 1;
|
||
}
|
||
else
|
||
{
|
||
source = 1;
|
||
reg_slot = 0;
|
||
}
|
||
|
||
/* FMA swaps REG and NDS. */
|
||
if (i.tm.cpu_flags.bitfield.cpufma)
|
||
{
|
||
unsigned int tmp;
|
||
tmp = reg_slot;
|
||
reg_slot = nds;
|
||
nds = tmp;
|
||
}
|
||
|
||
gas_assert (operand_type_equal (&i.tm.operand_types[reg_slot],
|
||
®xmm)
|
||
|| operand_type_equal (&i.tm.operand_types[reg_slot],
|
||
®ymm)
|
||
|| operand_type_equal (&i.tm.operand_types[reg_slot],
|
||
®zmm));
|
||
exp->X_op = O_constant;
|
||
exp->X_add_number = register_number (i.op[reg_slot].regs) << 4;
|
||
gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
|
||
}
|
||
else
|
||
{
|
||
unsigned int imm_slot;
|
||
|
||
if (i.tm.opcode_modifier.vexw == VEXW0)
|
||
{
|
||
/* If VexW0 is set, the third operand is the source and
|
||
the second operand is encoded in the immediate
|
||
operand. */
|
||
source = 2;
|
||
reg_slot = 1;
|
||
}
|
||
else
|
||
{
|
||
/* VexW1 is set, the second operand is the source and
|
||
the third operand is encoded in the immediate
|
||
operand. */
|
||
source = 1;
|
||
reg_slot = 2;
|
||
}
|
||
|
||
if (i.tm.opcode_modifier.immext)
|
||
{
|
||
/* When ImmExt is set, the immdiate byte is the last
|
||
operand. */
|
||
imm_slot = i.operands - 1;
|
||
source--;
|
||
reg_slot--;
|
||
}
|
||
else
|
||
{
|
||
imm_slot = 0;
|
||
|
||
/* Turn on Imm8 so that output_imm will generate it. */
|
||
i.types[imm_slot].bitfield.imm8 = 1;
|
||
}
|
||
|
||
gas_assert (operand_type_equal (&i.tm.operand_types[reg_slot],
|
||
®xmm)
|
||
|| operand_type_equal (&i.tm.operand_types[reg_slot],
|
||
®ymm)
|
||
|| operand_type_equal (&i.tm.operand_types[reg_slot],
|
||
®zmm));
|
||
i.op[imm_slot].imms->X_add_number
|
||
|= register_number (i.op[reg_slot].regs) << 4;
|
||
gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
|
||
}
|
||
|
||
gas_assert (operand_type_equal (&i.tm.operand_types[nds], ®xmm)
|
||
|| operand_type_equal (&i.tm.operand_types[nds],
|
||
®ymm)
|
||
|| operand_type_equal (&i.tm.operand_types[nds],
|
||
®zmm));
|
||
i.vex.register_specifier = i.op[nds].regs;
|
||
}
|
||
else
|
||
source = dest = 0;
|
||
|
||
/* i.reg_operands MUST be the number of real register operands;
|
||
implicit registers do not count. If there are 3 register
|
||
operands, it must be a instruction with VexNDS. For a
|
||
instruction with VexNDD, the destination register is encoded
|
||
in VEX prefix. If there are 4 register operands, it must be
|
||
a instruction with VEX prefix and 3 sources. */
|
||
if (i.mem_operands == 0
|
||
&& ((i.reg_operands == 2
|
||
&& i.tm.opcode_modifier.vexvvvv <= VEXXDS)
|
||
|| (i.reg_operands == 3
|
||
&& i.tm.opcode_modifier.vexvvvv == VEXXDS)
|
||
|| (i.reg_operands == 4 && vex_3_sources)))
|
||
{
|
||
switch (i.operands)
|
||
{
|
||
case 2:
|
||
source = 0;
|
||
break;
|
||
case 3:
|
||
/* When there are 3 operands, one of them may be immediate,
|
||
which may be the first or the last operand. Otherwise,
|
||
the first operand must be shift count register (cl) or it
|
||
is an instruction with VexNDS. */
|
||
gas_assert (i.imm_operands == 1
|
||
|| (i.imm_operands == 0
|
||
&& (i.tm.opcode_modifier.vexvvvv == VEXXDS
|
||
|| i.types[0].bitfield.shiftcount)));
|
||
if (operand_type_check (i.types[0], imm)
|
||
|| i.types[0].bitfield.shiftcount)
|
||
source = 1;
|
||
else
|
||
source = 0;
|
||
break;
|
||
case 4:
|
||
/* When there are 4 operands, the first two must be 8bit
|
||
immediate operands. The source operand will be the 3rd
|
||
one.
|
||
|
||
For instructions with VexNDS, if the first operand
|
||
an imm8, the source operand is the 2nd one. If the last
|
||
operand is imm8, the source operand is the first one. */
|
||
gas_assert ((i.imm_operands == 2
|
||
&& i.types[0].bitfield.imm8
|
||
&& i.types[1].bitfield.imm8)
|
||
|| (i.tm.opcode_modifier.vexvvvv == VEXXDS
|
||
&& i.imm_operands == 1
|
||
&& (i.types[0].bitfield.imm8
|
||
|| i.types[i.operands - 1].bitfield.imm8
|
||
|| i.rounding)));
|
||
if (i.imm_operands == 2)
|
||
source = 2;
|
||
else
|
||
{
|
||
if (i.types[0].bitfield.imm8)
|
||
source = 1;
|
||
else
|
||
source = 0;
|
||
}
|
||
break;
|
||
case 5:
|
||
if (i.tm.opcode_modifier.evex)
|
||
{
|
||
/* For EVEX instructions, when there are 5 operands, the
|
||
first one must be immediate operand. If the second one
|
||
is immediate operand, the source operand is the 3th
|
||
one. If the last one is immediate operand, the source
|
||
operand is the 2nd one. */
|
||
gas_assert (i.imm_operands == 2
|
||
&& i.tm.opcode_modifier.sae
|
||
&& operand_type_check (i.types[0], imm));
|
||
if (operand_type_check (i.types[1], imm))
|
||
source = 2;
|
||
else if (operand_type_check (i.types[4], imm))
|
||
source = 1;
|
||
else
|
||
abort ();
|
||
}
|
||
break;
|
||
default:
|
||
abort ();
|
||
}
|
||
|
||
if (!vex_3_sources)
|
||
{
|
||
dest = source + 1;
|
||
|
||
/* RC/SAE operand could be between DEST and SRC. That happens
|
||
when one operand is GPR and the other one is XMM/YMM/ZMM
|
||
register. */
|
||
if (i.rounding && i.rounding->operand == (int) dest)
|
||
dest++;
|
||
|
||
if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
|
||
{
|
||
/* For instructions with VexNDS, the register-only source
|
||
operand must be 32/64bit integer, XMM, YMM or ZMM
|
||
register. It is encoded in VEX prefix. We need to
|
||
clear RegMem bit before calling operand_type_equal. */
|
||
|
||
i386_operand_type op;
|
||
unsigned int vvvv;
|
||
|
||
/* Check register-only source operand when two source
|
||
operands are swapped. */
|
||
if (!i.tm.operand_types[source].bitfield.baseindex
|
||
&& i.tm.operand_types[dest].bitfield.baseindex)
|
||
{
|
||
vvvv = source;
|
||
source = dest;
|
||
}
|
||
else
|
||
vvvv = dest;
|
||
|
||
op = i.tm.operand_types[vvvv];
|
||
op.bitfield.regmem = 0;
|
||
if ((dest + 1) >= i.operands
|
||
|| (op.bitfield.reg32 != 1
|
||
&& !op.bitfield.reg64 != 1
|
||
&& !operand_type_equal (&op, ®xmm)
|
||
&& !operand_type_equal (&op, ®ymm)
|
||
&& !operand_type_equal (&op, ®zmm)
|
||
&& !operand_type_equal (&op, ®mask)))
|
||
abort ();
|
||
i.vex.register_specifier = i.op[vvvv].regs;
|
||
dest++;
|
||
}
|
||
}
|
||
|
||
i.rm.mode = 3;
|
||
/* One of the register operands will be encoded in the i.tm.reg
|
||
field, the other in the combined i.tm.mode and i.tm.regmem
|
||
fields. If no form of this instruction supports a memory
|
||
destination operand, then we assume the source operand may
|
||
sometimes be a memory operand and so we need to store the
|
||
destination in the i.rm.reg field. */
|
||
if (!i.tm.operand_types[dest].bitfield.regmem
|
||
&& operand_type_check (i.tm.operand_types[dest], anymem) == 0)
|
||
{
|
||
i.rm.reg = i.op[dest].regs->reg_num;
|
||
i.rm.regmem = i.op[source].regs->reg_num;
|
||
if ((i.op[dest].regs->reg_flags & RegRex) != 0)
|
||
i.rex |= REX_R;
|
||
if ((i.op[dest].regs->reg_flags & RegVRex) != 0)
|
||
i.vrex |= REX_R;
|
||
if ((i.op[source].regs->reg_flags & RegRex) != 0)
|
||
i.rex |= REX_B;
|
||
if ((i.op[source].regs->reg_flags & RegVRex) != 0)
|
||
i.vrex |= REX_B;
|
||
}
|
||
else
|
||
{
|
||
i.rm.reg = i.op[source].regs->reg_num;
|
||
i.rm.regmem = i.op[dest].regs->reg_num;
|
||
if ((i.op[dest].regs->reg_flags & RegRex) != 0)
|
||
i.rex |= REX_B;
|
||
if ((i.op[dest].regs->reg_flags & RegVRex) != 0)
|
||
i.vrex |= REX_B;
|
||
if ((i.op[source].regs->reg_flags & RegRex) != 0)
|
||
i.rex |= REX_R;
|
||
if ((i.op[source].regs->reg_flags & RegVRex) != 0)
|
||
i.vrex |= REX_R;
|
||
}
|
||
if (flag_code != CODE_64BIT && (i.rex & (REX_R | REX_B)))
|
||
{
|
||
if (!i.types[0].bitfield.control
|
||
&& !i.types[1].bitfield.control)
|
||
abort ();
|
||
i.rex &= ~(REX_R | REX_B);
|
||
add_prefix (LOCK_PREFIX_OPCODE);
|
||
}
|
||
}
|
||
else
|
||
{ /* If it's not 2 reg operands... */
|
||
unsigned int mem;
|
||
|
||
if (i.mem_operands)
|
||
{
|
||
unsigned int fake_zero_displacement = 0;
|
||
unsigned int op;
|
||
|
||
for (op = 0; op < i.operands; op++)
|
||
if (operand_type_check (i.types[op], anymem))
|
||
break;
|
||
gas_assert (op < i.operands);
|
||
|
||
if (i.tm.opcode_modifier.vecsib)
|
||
{
|
||
if (i.index_reg->reg_num == RegEiz
|
||
|| i.index_reg->reg_num == RegRiz)
|
||
abort ();
|
||
|
||
i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
|
||
if (!i.base_reg)
|
||
{
|
||
i.sib.base = NO_BASE_REGISTER;
|
||
i.sib.scale = i.log2_scale_factor;
|
||
/* No Vec_Disp8 if there is no base. */
|
||
i.types[op].bitfield.vec_disp8 = 0;
|
||
i.types[op].bitfield.disp8 = 0;
|
||
i.types[op].bitfield.disp16 = 0;
|
||
i.types[op].bitfield.disp64 = 0;
|
||
if (flag_code != CODE_64BIT)
|
||
{
|
||
/* Must be 32 bit */
|
||
i.types[op].bitfield.disp32 = 1;
|
||
i.types[op].bitfield.disp32s = 0;
|
||
}
|
||
else
|
||
{
|
||
i.types[op].bitfield.disp32 = 0;
|
||
i.types[op].bitfield.disp32s = 1;
|
||
}
|
||
}
|
||
i.sib.index = i.index_reg->reg_num;
|
||
if ((i.index_reg->reg_flags & RegRex) != 0)
|
||
i.rex |= REX_X;
|
||
if ((i.index_reg->reg_flags & RegVRex) != 0)
|
||
i.vrex |= REX_X;
|
||
}
|
||
|
||
default_seg = &ds;
|
||
|
||
if (i.base_reg == 0)
|
||
{
|
||
i.rm.mode = 0;
|
||
if (!i.disp_operands)
|
||
{
|
||
fake_zero_displacement = 1;
|
||
/* Instructions with VSIB byte need 32bit displacement
|
||
if there is no base register. */
|
||
if (i.tm.opcode_modifier.vecsib)
|
||
i.types[op].bitfield.disp32 = 1;
|
||
}
|
||
if (i.index_reg == 0)
|
||
{
|
||
gas_assert (!i.tm.opcode_modifier.vecsib);
|
||
/* Operand is just <disp> */
|
||
if (flag_code == CODE_64BIT)
|
||
{
|
||
/* 64bit mode overwrites the 32bit absolute
|
||
addressing by RIP relative addressing and
|
||
absolute addressing is encoded by one of the
|
||
redundant SIB forms. */
|
||
i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
|
||
i.sib.base = NO_BASE_REGISTER;
|
||
i.sib.index = NO_INDEX_REGISTER;
|
||
i.types[op] = ((i.prefix[ADDR_PREFIX] == 0)
|
||
? disp32s : disp32);
|
||
}
|
||
else if ((flag_code == CODE_16BIT)
|
||
^ (i.prefix[ADDR_PREFIX] != 0))
|
||
{
|
||
i.rm.regmem = NO_BASE_REGISTER_16;
|
||
i.types[op] = disp16;
|
||
}
|
||
else
|
||
{
|
||
i.rm.regmem = NO_BASE_REGISTER;
|
||
i.types[op] = disp32;
|
||
}
|
||
}
|
||
else if (!i.tm.opcode_modifier.vecsib)
|
||
{
|
||
/* !i.base_reg && i.index_reg */
|
||
if (i.index_reg->reg_num == RegEiz
|
||
|| i.index_reg->reg_num == RegRiz)
|
||
i.sib.index = NO_INDEX_REGISTER;
|
||
else
|
||
i.sib.index = i.index_reg->reg_num;
|
||
i.sib.base = NO_BASE_REGISTER;
|
||
i.sib.scale = i.log2_scale_factor;
|
||
i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
|
||
/* No Vec_Disp8 if there is no base. */
|
||
i.types[op].bitfield.vec_disp8 = 0;
|
||
i.types[op].bitfield.disp8 = 0;
|
||
i.types[op].bitfield.disp16 = 0;
|
||
i.types[op].bitfield.disp64 = 0;
|
||
if (flag_code != CODE_64BIT)
|
||
{
|
||
/* Must be 32 bit */
|
||
i.types[op].bitfield.disp32 = 1;
|
||
i.types[op].bitfield.disp32s = 0;
|
||
}
|
||
else
|
||
{
|
||
i.types[op].bitfield.disp32 = 0;
|
||
i.types[op].bitfield.disp32s = 1;
|
||
}
|
||
if ((i.index_reg->reg_flags & RegRex) != 0)
|
||
i.rex |= REX_X;
|
||
}
|
||
}
|
||
/* RIP addressing for 64bit mode. */
|
||
else if (i.base_reg->reg_num == RegRip ||
|
||
i.base_reg->reg_num == RegEip)
|
||
{
|
||
gas_assert (!i.tm.opcode_modifier.vecsib);
|
||
i.rm.regmem = NO_BASE_REGISTER;
|
||
i.types[op].bitfield.disp8 = 0;
|
||
i.types[op].bitfield.disp16 = 0;
|
||
i.types[op].bitfield.disp32 = 0;
|
||
i.types[op].bitfield.disp32s = 1;
|
||
i.types[op].bitfield.disp64 = 0;
|
||
i.types[op].bitfield.vec_disp8 = 0;
|
||
i.flags[op] |= Operand_PCrel;
|
||
if (! i.disp_operands)
|
||
fake_zero_displacement = 1;
|
||
}
|
||
else if (i.base_reg->reg_type.bitfield.reg16)
|
||
{
|
||
gas_assert (!i.tm.opcode_modifier.vecsib);
|
||
switch (i.base_reg->reg_num)
|
||
{
|
||
case 3: /* (%bx) */
|
||
if (i.index_reg == 0)
|
||
i.rm.regmem = 7;
|
||
else /* (%bx,%si) -> 0, or (%bx,%di) -> 1 */
|
||
i.rm.regmem = i.index_reg->reg_num - 6;
|
||
break;
|
||
case 5: /* (%bp) */
|
||
default_seg = &ss;
|
||
if (i.index_reg == 0)
|
||
{
|
||
i.rm.regmem = 6;
|
||
if (operand_type_check (i.types[op], disp) == 0)
|
||
{
|
||
/* fake (%bp) into 0(%bp) */
|
||
if (i.tm.operand_types[op].bitfield.vec_disp8)
|
||
i.types[op].bitfield.vec_disp8 = 1;
|
||
else
|
||
i.types[op].bitfield.disp8 = 1;
|
||
fake_zero_displacement = 1;
|
||
}
|
||
}
|
||
else /* (%bp,%si) -> 2, or (%bp,%di) -> 3 */
|
||
i.rm.regmem = i.index_reg->reg_num - 6 + 2;
|
||
break;
|
||
default: /* (%si) -> 4 or (%di) -> 5 */
|
||
i.rm.regmem = i.base_reg->reg_num - 6 + 4;
|
||
}
|
||
i.rm.mode = mode_from_disp_size (i.types[op]);
|
||
}
|
||
else /* i.base_reg and 32/64 bit mode */
|
||
{
|
||
if (flag_code == CODE_64BIT
|
||
&& operand_type_check (i.types[op], disp))
|
||
{
|
||
i386_operand_type temp;
|
||
operand_type_set (&temp, 0);
|
||
temp.bitfield.disp8 = i.types[op].bitfield.disp8;
|
||
temp.bitfield.vec_disp8
|
||
= i.types[op].bitfield.vec_disp8;
|
||
i.types[op] = temp;
|
||
if (i.prefix[ADDR_PREFIX] == 0)
|
||
i.types[op].bitfield.disp32s = 1;
|
||
else
|
||
i.types[op].bitfield.disp32 = 1;
|
||
}
|
||
|
||
if (!i.tm.opcode_modifier.vecsib)
|
||
i.rm.regmem = i.base_reg->reg_num;
|
||
if ((i.base_reg->reg_flags & RegRex) != 0)
|
||
i.rex |= REX_B;
|
||
i.sib.base = i.base_reg->reg_num;
|
||
/* x86-64 ignores REX prefix bit here to avoid decoder
|
||
complications. */
|
||
if (!(i.base_reg->reg_flags & RegRex)
|
||
&& (i.base_reg->reg_num == EBP_REG_NUM
|
||
|| i.base_reg->reg_num == ESP_REG_NUM))
|
||
default_seg = &ss;
|
||
if (i.base_reg->reg_num == 5 && i.disp_operands == 0)
|
||
{
|
||
fake_zero_displacement = 1;
|
||
if (i.tm.operand_types [op].bitfield.vec_disp8)
|
||
i.types[op].bitfield.vec_disp8 = 1;
|
||
else
|
||
i.types[op].bitfield.disp8 = 1;
|
||
}
|
||
i.sib.scale = i.log2_scale_factor;
|
||
if (i.index_reg == 0)
|
||
{
|
||
gas_assert (!i.tm.opcode_modifier.vecsib);
|
||
/* <disp>(%esp) becomes two byte modrm with no index
|
||
register. We've already stored the code for esp
|
||
in i.rm.regmem ie. ESCAPE_TO_TWO_BYTE_ADDRESSING.
|
||
Any base register besides %esp will not use the
|
||
extra modrm byte. */
|
||
i.sib.index = NO_INDEX_REGISTER;
|
||
}
|
||
else if (!i.tm.opcode_modifier.vecsib)
|
||
{
|
||
if (i.index_reg->reg_num == RegEiz
|
||
|| i.index_reg->reg_num == RegRiz)
|
||
i.sib.index = NO_INDEX_REGISTER;
|
||
else
|
||
i.sib.index = i.index_reg->reg_num;
|
||
i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
|
||
if ((i.index_reg->reg_flags & RegRex) != 0)
|
||
i.rex |= REX_X;
|
||
}
|
||
|
||
if (i.disp_operands
|
||
&& (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
|
||
|| i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL))
|
||
i.rm.mode = 0;
|
||
else
|
||
{
|
||
if (!fake_zero_displacement
|
||
&& !i.disp_operands
|
||
&& i.disp_encoding)
|
||
{
|
||
fake_zero_displacement = 1;
|
||
if (i.disp_encoding == disp_encoding_8bit)
|
||
i.types[op].bitfield.disp8 = 1;
|
||
else
|
||
i.types[op].bitfield.disp32 = 1;
|
||
}
|
||
i.rm.mode = mode_from_disp_size (i.types[op]);
|
||
}
|
||
}
|
||
|
||
if (fake_zero_displacement)
|
||
{
|
||
/* Fakes a zero displacement assuming that i.types[op]
|
||
holds the correct displacement size. */
|
||
expressionS *exp;
|
||
|
||
gas_assert (i.op[op].disps == 0);
|
||
exp = &disp_expressions[i.disp_operands++];
|
||
i.op[op].disps = exp;
|
||
exp->X_op = O_constant;
|
||
exp->X_add_number = 0;
|
||
exp->X_add_symbol = (symbolS *) 0;
|
||
exp->X_op_symbol = (symbolS *) 0;
|
||
}
|
||
|
||
mem = op;
|
||
}
|
||
else
|
||
mem = ~0;
|
||
|
||
if (i.tm.opcode_modifier.vexsources == XOP2SOURCES)
|
||
{
|
||
if (operand_type_check (i.types[0], imm))
|
||
i.vex.register_specifier = NULL;
|
||
else
|
||
{
|
||
/* VEX.vvvv encodes one of the sources when the first
|
||
operand is not an immediate. */
|
||
if (i.tm.opcode_modifier.vexw == VEXW0)
|
||
i.vex.register_specifier = i.op[0].regs;
|
||
else
|
||
i.vex.register_specifier = i.op[1].regs;
|
||
}
|
||
|
||
/* Destination is a XMM register encoded in the ModRM.reg
|
||
and VEX.R bit. */
|
||
i.rm.reg = i.op[2].regs->reg_num;
|
||
if ((i.op[2].regs->reg_flags & RegRex) != 0)
|
||
i.rex |= REX_R;
|
||
|
||
/* ModRM.rm and VEX.B encodes the other source. */
|
||
if (!i.mem_operands)
|
||
{
|
||
i.rm.mode = 3;
|
||
|
||
if (i.tm.opcode_modifier.vexw == VEXW0)
|
||
i.rm.regmem = i.op[1].regs->reg_num;
|
||
else
|
||
i.rm.regmem = i.op[0].regs->reg_num;
|
||
|
||
if ((i.op[1].regs->reg_flags & RegRex) != 0)
|
||
i.rex |= REX_B;
|
||
}
|
||
}
|
||
else if (i.tm.opcode_modifier.vexvvvv == VEXLWP)
|
||
{
|
||
i.vex.register_specifier = i.op[2].regs;
|
||
if (!i.mem_operands)
|
||
{
|
||
i.rm.mode = 3;
|
||
i.rm.regmem = i.op[1].regs->reg_num;
|
||
if ((i.op[1].regs->reg_flags & RegRex) != 0)
|
||
i.rex |= REX_B;
|
||
}
|
||
}
|
||
/* Fill in i.rm.reg or i.rm.regmem field with register operand
|
||
(if any) based on i.tm.extension_opcode. Again, we must be
|
||
careful to make sure that segment/control/debug/test/MMX
|
||
registers are coded into the i.rm.reg field. */
|
||
else if (i.reg_operands)
|
||
{
|
||
unsigned int op;
|
||
unsigned int vex_reg = ~0;
|
||
|
||
for (op = 0; op < i.operands; op++)
|
||
if (i.types[op].bitfield.reg8
|
||
|| i.types[op].bitfield.reg16
|
||
|| i.types[op].bitfield.reg32
|
||
|| i.types[op].bitfield.reg64
|
||
|| i.types[op].bitfield.regmmx
|
||
|| i.types[op].bitfield.regxmm
|
||
|| i.types[op].bitfield.regymm
|
||
|| i.types[op].bitfield.regbnd
|
||
|| i.types[op].bitfield.regzmm
|
||
|| i.types[op].bitfield.regmask
|
||
|| i.types[op].bitfield.sreg2
|
||
|| i.types[op].bitfield.sreg3
|
||
|| i.types[op].bitfield.control
|
||
|| i.types[op].bitfield.debug
|
||
|| i.types[op].bitfield.test)
|
||
break;
|
||
|
||
if (vex_3_sources)
|
||
op = dest;
|
||
else if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
|
||
{
|
||
/* For instructions with VexNDS, the register-only
|
||
source operand is encoded in VEX prefix. */
|
||
gas_assert (mem != (unsigned int) ~0);
|
||
|
||
if (op > mem)
|
||
{
|
||
vex_reg = op++;
|
||
gas_assert (op < i.operands);
|
||
}
|
||
else
|
||
{
|
||
/* Check register-only source operand when two source
|
||
operands are swapped. */
|
||
if (!i.tm.operand_types[op].bitfield.baseindex
|
||
&& i.tm.operand_types[op + 1].bitfield.baseindex)
|
||
{
|
||
vex_reg = op;
|
||
op += 2;
|
||
gas_assert (mem == (vex_reg + 1)
|
||
&& op < i.operands);
|
||
}
|
||
else
|
||
{
|
||
vex_reg = op + 1;
|
||
gas_assert (vex_reg < i.operands);
|
||
}
|
||
}
|
||
}
|
||
else if (i.tm.opcode_modifier.vexvvvv == VEXNDD)
|
||
{
|
||
/* For instructions with VexNDD, the register destination
|
||
is encoded in VEX prefix. */
|
||
if (i.mem_operands == 0)
|
||
{
|
||
/* There is no memory operand. */
|
||
gas_assert ((op + 2) == i.operands);
|
||
vex_reg = op + 1;
|
||
}
|
||
else
|
||
{
|
||
/* There are only 2 operands. */
|
||
gas_assert (op < 2 && i.operands == 2);
|
||
vex_reg = 1;
|
||
}
|
||
}
|
||
else
|
||
gas_assert (op < i.operands);
|
||
|
||
if (vex_reg != (unsigned int) ~0)
|
||
{
|
||
i386_operand_type *type = &i.tm.operand_types[vex_reg];
|
||
|
||
if (type->bitfield.reg32 != 1
|
||
&& type->bitfield.reg64 != 1
|
||
&& !operand_type_equal (type, ®xmm)
|
||
&& !operand_type_equal (type, ®ymm)
|
||
&& !operand_type_equal (type, ®zmm)
|
||
&& !operand_type_equal (type, ®mask))
|
||
abort ();
|
||
|
||
i.vex.register_specifier = i.op[vex_reg].regs;
|
||
}
|
||
|
||
/* Don't set OP operand twice. */
|
||
if (vex_reg != op)
|
||
{
|
||
/* If there is an extension opcode to put here, the
|
||
register number must be put into the regmem field. */
|
||
if (i.tm.extension_opcode != None)
|
||
{
|
||
i.rm.regmem = i.op[op].regs->reg_num;
|
||
if ((i.op[op].regs->reg_flags & RegRex) != 0)
|
||
i.rex |= REX_B;
|
||
if ((i.op[op].regs->reg_flags & RegVRex) != 0)
|
||
i.vrex |= REX_B;
|
||
}
|
||
else
|
||
{
|
||
i.rm.reg = i.op[op].regs->reg_num;
|
||
if ((i.op[op].regs->reg_flags & RegRex) != 0)
|
||
i.rex |= REX_R;
|
||
if ((i.op[op].regs->reg_flags & RegVRex) != 0)
|
||
i.vrex |= REX_R;
|
||
}
|
||
}
|
||
|
||
/* Now, if no memory operand has set i.rm.mode = 0, 1, 2 we
|
||
must set it to 3 to indicate this is a register operand
|
||
in the regmem field. */
|
||
if (!i.mem_operands)
|
||
i.rm.mode = 3;
|
||
}
|
||
|
||
/* Fill in i.rm.reg field with extension opcode (if any). */
|
||
if (i.tm.extension_opcode != None)
|
||
i.rm.reg = i.tm.extension_opcode;
|
||
}
|
||
return default_seg;
|
||
}
|
||
|
||
static void
|
||
output_branch (void)
|
||
{
|
||
char *p;
|
||
int size;
|
||
int code16;
|
||
int prefix;
|
||
relax_substateT subtype;
|
||
symbolS *sym;
|
||
offsetT off;
|
||
|
||
code16 = flag_code == CODE_16BIT ? CODE16 : 0;
|
||
size = i.disp_encoding == disp_encoding_32bit ? BIG : SMALL;
|
||
|
||
prefix = 0;
|
||
if (i.prefix[DATA_PREFIX] != 0)
|
||
{
|
||
prefix = 1;
|
||
i.prefixes -= 1;
|
||
code16 ^= CODE16;
|
||
}
|
||
/* Pentium4 branch hints. */
|
||
if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
|
||
|| i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
|
||
{
|
||
prefix++;
|
||
i.prefixes--;
|
||
}
|
||
if (i.prefix[REX_PREFIX] != 0)
|
||
{
|
||
prefix++;
|
||
i.prefixes--;
|
||
}
|
||
|
||
/* BND prefixed jump. */
|
||
if (i.prefix[BND_PREFIX] != 0)
|
||
{
|
||
FRAG_APPEND_1_CHAR (i.prefix[BND_PREFIX]);
|
||
i.prefixes -= 1;
|
||
}
|
||
|
||
if (i.prefixes != 0 && !intel_syntax)
|
||
as_warn (_("skipping prefixes on this instruction"));
|
||
|
||
/* It's always a symbol; End frag & setup for relax.
|
||
Make sure there is enough room in this frag for the largest
|
||
instruction we may generate in md_convert_frag. This is 2
|
||
bytes for the opcode and room for the prefix and largest
|
||
displacement. */
|
||
frag_grow (prefix + 2 + 4);
|
||
/* Prefix and 1 opcode byte go in fr_fix. */
|
||
p = frag_more (prefix + 1);
|
||
if (i.prefix[DATA_PREFIX] != 0)
|
||
*p++ = DATA_PREFIX_OPCODE;
|
||
if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE
|
||
|| i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE)
|
||
*p++ = i.prefix[SEG_PREFIX];
|
||
if (i.prefix[REX_PREFIX] != 0)
|
||
*p++ = i.prefix[REX_PREFIX];
|
||
*p = i.tm.base_opcode;
|
||
|
||
if ((unsigned char) *p == JUMP_PC_RELATIVE)
|
||
subtype = ENCODE_RELAX_STATE (UNCOND_JUMP, size);
|
||
else if (cpu_arch_flags.bitfield.cpui386)
|
||
subtype = ENCODE_RELAX_STATE (COND_JUMP, size);
|
||
else
|
||
subtype = ENCODE_RELAX_STATE (COND_JUMP86, size);
|
||
subtype |= code16;
|
||
|
||
sym = i.op[0].disps->X_add_symbol;
|
||
off = i.op[0].disps->X_add_number;
|
||
|
||
if (i.op[0].disps->X_op != O_constant
|
||
&& i.op[0].disps->X_op != O_symbol)
|
||
{
|
||
/* Handle complex expressions. */
|
||
sym = make_expr_symbol (i.op[0].disps);
|
||
off = 0;
|
||
}
|
||
|
||
/* 1 possible extra opcode + 4 byte displacement go in var part.
|
||
Pass reloc in fr_var. */
|
||
frag_var (rs_machine_dependent, 5,
|
||
((!object_64bit
|
||
|| i.reloc[0] != NO_RELOC
|
||
|| (i.bnd_prefix == NULL && !add_bnd_prefix))
|
||
? i.reloc[0]
|
||
: BFD_RELOC_X86_64_PC32_BND),
|
||
subtype, sym, off, p);
|
||
}
|
||
|
||
static void
|
||
output_jump (void)
|
||
{
|
||
char *p;
|
||
int size;
|
||
fixS *fixP;
|
||
|
||
if (i.tm.opcode_modifier.jumpbyte)
|
||
{
|
||
/* This is a loop or jecxz type instruction. */
|
||
size = 1;
|
||
if (i.prefix[ADDR_PREFIX] != 0)
|
||
{
|
||
FRAG_APPEND_1_CHAR (ADDR_PREFIX_OPCODE);
|
||
i.prefixes -= 1;
|
||
}
|
||
/* Pentium4 branch hints. */
|
||
if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
|
||
|| i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
|
||
{
|
||
FRAG_APPEND_1_CHAR (i.prefix[SEG_PREFIX]);
|
||
i.prefixes--;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
int code16;
|
||
|
||
code16 = 0;
|
||
if (flag_code == CODE_16BIT)
|
||
code16 = CODE16;
|
||
|
||
if (i.prefix[DATA_PREFIX] != 0)
|
||
{
|
||
FRAG_APPEND_1_CHAR (DATA_PREFIX_OPCODE);
|
||
i.prefixes -= 1;
|
||
code16 ^= CODE16;
|
||
}
|
||
|
||
size = 4;
|
||
if (code16)
|
||
size = 2;
|
||
}
|
||
|
||
if (i.prefix[REX_PREFIX] != 0)
|
||
{
|
||
FRAG_APPEND_1_CHAR (i.prefix[REX_PREFIX]);
|
||
i.prefixes -= 1;
|
||
}
|
||
|
||
/* BND prefixed jump. */
|
||
if (i.prefix[BND_PREFIX] != 0)
|
||
{
|
||
FRAG_APPEND_1_CHAR (i.prefix[BND_PREFIX]);
|
||
i.prefixes -= 1;
|
||
}
|
||
|
||
if (i.prefixes != 0 && !intel_syntax)
|
||
as_warn (_("skipping prefixes on this instruction"));
|
||
|
||
p = frag_more (i.tm.opcode_length + size);
|
||
switch (i.tm.opcode_length)
|
||
{
|
||
case 2:
|
||
*p++ = i.tm.base_opcode >> 8;
|
||
case 1:
|
||
*p++ = i.tm.base_opcode;
|
||
break;
|
||
default:
|
||
abort ();
|
||
}
|
||
|
||
fixP = fix_new_exp (frag_now, p - frag_now->fr_literal, size,
|
||
i.op[0].disps, 1, reloc (size, 1, 1,
|
||
(i.bnd_prefix != NULL
|
||
|| add_bnd_prefix),
|
||
i.reloc[0]));
|
||
|
||
/* All jumps handled here are signed, but don't use a signed limit
|
||
check for 32 and 16 bit jumps as we want to allow wrap around at
|
||
4G and 64k respectively. */
|
||
if (size == 1)
|
||
fixP->fx_signed = 1;
|
||
}
|
||
|
||
static void
|
||
output_interseg_jump (void)
|
||
{
|
||
char *p;
|
||
int size;
|
||
int prefix;
|
||
int code16;
|
||
|
||
code16 = 0;
|
||
if (flag_code == CODE_16BIT)
|
||
code16 = CODE16;
|
||
|
||
prefix = 0;
|
||
if (i.prefix[DATA_PREFIX] != 0)
|
||
{
|
||
prefix = 1;
|
||
i.prefixes -= 1;
|
||
code16 ^= CODE16;
|
||
}
|
||
if (i.prefix[REX_PREFIX] != 0)
|
||
{
|
||
prefix++;
|
||
i.prefixes -= 1;
|
||
}
|
||
|
||
size = 4;
|
||
if (code16)
|
||
size = 2;
|
||
|
||
if (i.prefixes != 0 && !intel_syntax)
|
||
as_warn (_("skipping prefixes on this instruction"));
|
||
|
||
/* 1 opcode; 2 segment; offset */
|
||
p = frag_more (prefix + 1 + 2 + size);
|
||
|
||
if (i.prefix[DATA_PREFIX] != 0)
|
||
*p++ = DATA_PREFIX_OPCODE;
|
||
|
||
if (i.prefix[REX_PREFIX] != 0)
|
||
*p++ = i.prefix[REX_PREFIX];
|
||
|
||
*p++ = i.tm.base_opcode;
|
||
if (i.op[1].imms->X_op == O_constant)
|
||
{
|
||
offsetT n = i.op[1].imms->X_add_number;
|
||
|
||
if (size == 2
|
||
&& !fits_in_unsigned_word (n)
|
||
&& !fits_in_signed_word (n))
|
||
{
|
||
as_bad (_("16-bit jump out of range"));
|
||
return;
|
||
}
|
||
md_number_to_chars (p, n, size);
|
||
}
|
||
else
|
||
fix_new_exp (frag_now, p - frag_now->fr_literal, size,
|
||
i.op[1].imms, 0, reloc (size, 0, 0, 0, i.reloc[1]));
|
||
if (i.op[0].imms->X_op != O_constant)
|
||
as_bad (_("can't handle non absolute segment in `%s'"),
|
||
i.tm.name);
|
||
md_number_to_chars (p + size, (valueT) i.op[0].imms->X_add_number, 2);
|
||
}
|
||
|
||
static void
|
||
output_insn (void)
|
||
{
|
||
fragS *insn_start_frag;
|
||
offsetT insn_start_off;
|
||
|
||
/* Tie dwarf2 debug info to the address at the start of the insn.
|
||
We can't do this after the insn has been output as the current
|
||
frag may have been closed off. eg. by frag_var. */
|
||
dwarf2_emit_insn (0);
|
||
|
||
insn_start_frag = frag_now;
|
||
insn_start_off = frag_now_fix ();
|
||
|
||
/* Output jumps. */
|
||
if (i.tm.opcode_modifier.jump)
|
||
output_branch ();
|
||
else if (i.tm.opcode_modifier.jumpbyte
|
||
|| i.tm.opcode_modifier.jumpdword)
|
||
output_jump ();
|
||
else if (i.tm.opcode_modifier.jumpintersegment)
|
||
output_interseg_jump ();
|
||
else
|
||
{
|
||
/* Output normal instructions here. */
|
||
char *p;
|
||
unsigned char *q;
|
||
unsigned int j;
|
||
unsigned int prefix;
|
||
|
||
/* Some processors fail on LOCK prefix. This options makes
|
||
assembler ignore LOCK prefix and serves as a workaround. */
|
||
if (omit_lock_prefix)
|
||
{
|
||
if (i.tm.base_opcode == LOCK_PREFIX_OPCODE)
|
||
return;
|
||
i.prefix[LOCK_PREFIX] = 0;
|
||
}
|
||
|
||
/* Since the VEX/EVEX prefix contains the implicit prefix, we
|
||
don't need the explicit prefix. */
|
||
if (!i.tm.opcode_modifier.vex && !i.tm.opcode_modifier.evex)
|
||
{
|
||
switch (i.tm.opcode_length)
|
||
{
|
||
case 3:
|
||
if (i.tm.base_opcode & 0xff000000)
|
||
{
|
||
prefix = (i.tm.base_opcode >> 24) & 0xff;
|
||
goto check_prefix;
|
||
}
|
||
break;
|
||
case 2:
|
||
if ((i.tm.base_opcode & 0xff0000) != 0)
|
||
{
|
||
prefix = (i.tm.base_opcode >> 16) & 0xff;
|
||
if (i.tm.cpu_flags.bitfield.cpupadlock)
|
||
{
|
||
check_prefix:
|
||
if (prefix != REPE_PREFIX_OPCODE
|
||
|| (i.prefix[REP_PREFIX]
|
||
!= REPE_PREFIX_OPCODE))
|
||
add_prefix (prefix);
|
||
}
|
||
else
|
||
add_prefix (prefix);
|
||
}
|
||
break;
|
||
case 1:
|
||
break;
|
||
default:
|
||
abort ();
|
||
}
|
||
|
||
/* The prefix bytes. */
|
||
for (j = ARRAY_SIZE (i.prefix), q = i.prefix; j > 0; j--, q++)
|
||
if (*q)
|
||
FRAG_APPEND_1_CHAR (*q);
|
||
}
|
||
else
|
||
{
|
||
for (j = 0, q = i.prefix; j < ARRAY_SIZE (i.prefix); j++, q++)
|
||
if (*q)
|
||
switch (j)
|
||
{
|
||
case REX_PREFIX:
|
||
/* REX byte is encoded in VEX prefix. */
|
||
break;
|
||
case SEG_PREFIX:
|
||
case ADDR_PREFIX:
|
||
FRAG_APPEND_1_CHAR (*q);
|
||
break;
|
||
default:
|
||
/* There should be no other prefixes for instructions
|
||
with VEX prefix. */
|
||
abort ();
|
||
}
|
||
|
||
/* For EVEX instructions i.vrex should become 0 after
|
||
build_evex_prefix. For VEX instructions upper 16 registers
|
||
aren't available, so VREX should be 0. */
|
||
if (i.vrex)
|
||
abort ();
|
||
/* Now the VEX prefix. */
|
||
p = frag_more (i.vex.length);
|
||
for (j = 0; j < i.vex.length; j++)
|
||
p[j] = i.vex.bytes[j];
|
||
}
|
||
|
||
/* Now the opcode; be careful about word order here! */
|
||
if (i.tm.opcode_length == 1)
|
||
{
|
||
FRAG_APPEND_1_CHAR (i.tm.base_opcode);
|
||
}
|
||
else
|
||
{
|
||
switch (i.tm.opcode_length)
|
||
{
|
||
case 4:
|
||
p = frag_more (4);
|
||
*p++ = (i.tm.base_opcode >> 24) & 0xff;
|
||
*p++ = (i.tm.base_opcode >> 16) & 0xff;
|
||
break;
|
||
case 3:
|
||
p = frag_more (3);
|
||
*p++ = (i.tm.base_opcode >> 16) & 0xff;
|
||
break;
|
||
case 2:
|
||
p = frag_more (2);
|
||
break;
|
||
default:
|
||
abort ();
|
||
break;
|
||
}
|
||
|
||
/* Put out high byte first: can't use md_number_to_chars! */
|
||
*p++ = (i.tm.base_opcode >> 8) & 0xff;
|
||
*p = i.tm.base_opcode & 0xff;
|
||
}
|
||
|
||
/* Now the modrm byte and sib byte (if present). */
|
||
if (i.tm.opcode_modifier.modrm)
|
||
{
|
||
FRAG_APPEND_1_CHAR ((i.rm.regmem << 0
|
||
| i.rm.reg << 3
|
||
| i.rm.mode << 6));
|
||
/* If i.rm.regmem == ESP (4)
|
||
&& i.rm.mode != (Register mode)
|
||
&& not 16 bit
|
||
==> need second modrm byte. */
|
||
if (i.rm.regmem == ESCAPE_TO_TWO_BYTE_ADDRESSING
|
||
&& i.rm.mode != 3
|
||
&& !(i.base_reg && i.base_reg->reg_type.bitfield.reg16))
|
||
FRAG_APPEND_1_CHAR ((i.sib.base << 0
|
||
| i.sib.index << 3
|
||
| i.sib.scale << 6));
|
||
}
|
||
|
||
if (i.disp_operands)
|
||
output_disp (insn_start_frag, insn_start_off);
|
||
|
||
if (i.imm_operands)
|
||
output_imm (insn_start_frag, insn_start_off);
|
||
}
|
||
|
||
#ifdef DEBUG386
|
||
if (flag_debug)
|
||
{
|
||
pi ("" /*line*/, &i);
|
||
}
|
||
#endif /* DEBUG386 */
|
||
}
|
||
|
||
/* Return the size of the displacement operand N. */
|
||
|
||
static int
|
||
disp_size (unsigned int n)
|
||
{
|
||
int size = 4;
|
||
|
||
/* Vec_Disp8 has to be 8bit. */
|
||
if (i.types[n].bitfield.vec_disp8)
|
||
size = 1;
|
||
else if (i.types[n].bitfield.disp64)
|
||
size = 8;
|
||
else if (i.types[n].bitfield.disp8)
|
||
size = 1;
|
||
else if (i.types[n].bitfield.disp16)
|
||
size = 2;
|
||
return size;
|
||
}
|
||
|
||
/* Return the size of the immediate operand N. */
|
||
|
||
static int
|
||
imm_size (unsigned int n)
|
||
{
|
||
int size = 4;
|
||
if (i.types[n].bitfield.imm64)
|
||
size = 8;
|
||
else if (i.types[n].bitfield.imm8 || i.types[n].bitfield.imm8s)
|
||
size = 1;
|
||
else if (i.types[n].bitfield.imm16)
|
||
size = 2;
|
||
return size;
|
||
}
|
||
|
||
static void
|
||
output_disp (fragS *insn_start_frag, offsetT insn_start_off)
|
||
{
|
||
char *p;
|
||
unsigned int n;
|
||
|
||
for (n = 0; n < i.operands; n++)
|
||
{
|
||
if (i.types[n].bitfield.vec_disp8
|
||
|| operand_type_check (i.types[n], disp))
|
||
{
|
||
if (i.op[n].disps->X_op == O_constant)
|
||
{
|
||
int size = disp_size (n);
|
||
offsetT val = i.op[n].disps->X_add_number;
|
||
|
||
if (i.types[n].bitfield.vec_disp8)
|
||
val >>= i.memshift;
|
||
val = offset_in_range (val, size);
|
||
p = frag_more (size);
|
||
md_number_to_chars (p, val, size);
|
||
}
|
||
else
|
||
{
|
||
enum bfd_reloc_code_real reloc_type;
|
||
int size = disp_size (n);
|
||
int sign = i.types[n].bitfield.disp32s;
|
||
int pcrel = (i.flags[n] & Operand_PCrel) != 0;
|
||
|
||
/* We can't have 8 bit displacement here. */
|
||
gas_assert (!i.types[n].bitfield.disp8);
|
||
|
||
/* The PC relative address is computed relative
|
||
to the instruction boundary, so in case immediate
|
||
fields follows, we need to adjust the value. */
|
||
if (pcrel && i.imm_operands)
|
||
{
|
||
unsigned int n1;
|
||
int sz = 0;
|
||
|
||
for (n1 = 0; n1 < i.operands; n1++)
|
||
if (operand_type_check (i.types[n1], imm))
|
||
{
|
||
/* Only one immediate is allowed for PC
|
||
relative address. */
|
||
gas_assert (sz == 0);
|
||
sz = imm_size (n1);
|
||
i.op[n].disps->X_add_number -= sz;
|
||
}
|
||
/* We should find the immediate. */
|
||
gas_assert (sz != 0);
|
||
}
|
||
|
||
p = frag_more (size);
|
||
reloc_type = reloc (size, pcrel, sign,
|
||
(i.bnd_prefix != NULL
|
||
|| add_bnd_prefix),
|
||
i.reloc[n]);
|
||
if (GOT_symbol
|
||
&& GOT_symbol == i.op[n].disps->X_add_symbol
|
||
&& (((reloc_type == BFD_RELOC_32
|
||
|| reloc_type == BFD_RELOC_X86_64_32S
|
||
|| (reloc_type == BFD_RELOC_64
|
||
&& object_64bit))
|
||
&& (i.op[n].disps->X_op == O_symbol
|
||
|| (i.op[n].disps->X_op == O_add
|
||
&& ((symbol_get_value_expression
|
||
(i.op[n].disps->X_op_symbol)->X_op)
|
||
== O_subtract))))
|
||
|| reloc_type == BFD_RELOC_32_PCREL))
|
||
{
|
||
offsetT add;
|
||
|
||
if (insn_start_frag == frag_now)
|
||
add = (p - frag_now->fr_literal) - insn_start_off;
|
||
else
|
||
{
|
||
fragS *fr;
|
||
|
||
add = insn_start_frag->fr_fix - insn_start_off;
|
||
for (fr = insn_start_frag->fr_next;
|
||
fr && fr != frag_now; fr = fr->fr_next)
|
||
add += fr->fr_fix;
|
||
add += p - frag_now->fr_literal;
|
||
}
|
||
|
||
if (!object_64bit)
|
||
{
|
||
reloc_type = BFD_RELOC_386_GOTPC;
|
||
i.op[n].imms->X_add_number += add;
|
||
}
|
||
else if (reloc_type == BFD_RELOC_64)
|
||
reloc_type = BFD_RELOC_X86_64_GOTPC64;
|
||
else
|
||
/* Don't do the adjustment for x86-64, as there
|
||
the pcrel addressing is relative to the _next_
|
||
insn, and that is taken care of in other code. */
|
||
reloc_type = BFD_RELOC_X86_64_GOTPC32;
|
||
}
|
||
fix_new_exp (frag_now, p - frag_now->fr_literal, size,
|
||
i.op[n].disps, pcrel, reloc_type);
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
static void
|
||
output_imm (fragS *insn_start_frag, offsetT insn_start_off)
|
||
{
|
||
char *p;
|
||
unsigned int n;
|
||
|
||
for (n = 0; n < i.operands; n++)
|
||
{
|
||
/* Skip SAE/RC Imm operand in EVEX. They are already handled. */
|
||
if (i.rounding && (int) n == i.rounding->operand)
|
||
continue;
|
||
|
||
if (operand_type_check (i.types[n], imm))
|
||
{
|
||
if (i.op[n].imms->X_op == O_constant)
|
||
{
|
||
int size = imm_size (n);
|
||
offsetT val;
|
||
|
||
val = offset_in_range (i.op[n].imms->X_add_number,
|
||
size);
|
||
p = frag_more (size);
|
||
md_number_to_chars (p, val, size);
|
||
}
|
||
else
|
||
{
|
||
/* Not absolute_section.
|
||
Need a 32-bit fixup (don't support 8bit
|
||
non-absolute imms). Try to support other
|
||
sizes ... */
|
||
enum bfd_reloc_code_real reloc_type;
|
||
int size = imm_size (n);
|
||
int sign;
|
||
|
||
if (i.types[n].bitfield.imm32s
|
||
&& (i.suffix == QWORD_MNEM_SUFFIX
|
||
|| (!i.suffix && i.tm.opcode_modifier.no_lsuf)))
|
||
sign = 1;
|
||
else
|
||
sign = 0;
|
||
|
||
p = frag_more (size);
|
||
reloc_type = reloc (size, 0, sign, 0, i.reloc[n]);
|
||
|
||
/* This is tough to explain. We end up with this one if we
|
||
* have operands that look like
|
||
* "_GLOBAL_OFFSET_TABLE_+[.-.L284]". The goal here is to
|
||
* obtain the absolute address of the GOT, and it is strongly
|
||
* preferable from a performance point of view to avoid using
|
||
* a runtime relocation for this. The actual sequence of
|
||
* instructions often look something like:
|
||
*
|
||
* call .L66
|
||
* .L66:
|
||
* popl %ebx
|
||
* addl $_GLOBAL_OFFSET_TABLE_+[.-.L66],%ebx
|
||
*
|
||
* The call and pop essentially return the absolute address
|
||
* of the label .L66 and store it in %ebx. The linker itself
|
||
* will ultimately change the first operand of the addl so
|
||
* that %ebx points to the GOT, but to keep things simple, the
|
||
* .o file must have this operand set so that it generates not
|
||
* the absolute address of .L66, but the absolute address of
|
||
* itself. This allows the linker itself simply treat a GOTPC
|
||
* relocation as asking for a pcrel offset to the GOT to be
|
||
* added in, and the addend of the relocation is stored in the
|
||
* operand field for the instruction itself.
|
||
*
|
||
* Our job here is to fix the operand so that it would add
|
||
* the correct offset so that %ebx would point to itself. The
|
||
* thing that is tricky is that .-.L66 will point to the
|
||
* beginning of the instruction, so we need to further modify
|
||
* the operand so that it will point to itself. There are
|
||
* other cases where you have something like:
|
||
*
|
||
* .long $_GLOBAL_OFFSET_TABLE_+[.-.L66]
|
||
*
|
||
* and here no correction would be required. Internally in
|
||
* the assembler we treat operands of this form as not being
|
||
* pcrel since the '.' is explicitly mentioned, and I wonder
|
||
* whether it would simplify matters to do it this way. Who
|
||
* knows. In earlier versions of the PIC patches, the
|
||
* pcrel_adjust field was used to store the correction, but
|
||
* since the expression is not pcrel, I felt it would be
|
||
* confusing to do it this way. */
|
||
|
||
if ((reloc_type == BFD_RELOC_32
|
||
|| reloc_type == BFD_RELOC_X86_64_32S
|
||
|| reloc_type == BFD_RELOC_64)
|
||
&& GOT_symbol
|
||
&& GOT_symbol == i.op[n].imms->X_add_symbol
|
||
&& (i.op[n].imms->X_op == O_symbol
|
||
|| (i.op[n].imms->X_op == O_add
|
||
&& ((symbol_get_value_expression
|
||
(i.op[n].imms->X_op_symbol)->X_op)
|
||
== O_subtract))))
|
||
{
|
||
offsetT add;
|
||
|
||
if (insn_start_frag == frag_now)
|
||
add = (p - frag_now->fr_literal) - insn_start_off;
|
||
else
|
||
{
|
||
fragS *fr;
|
||
|
||
add = insn_start_frag->fr_fix - insn_start_off;
|
||
for (fr = insn_start_frag->fr_next;
|
||
fr && fr != frag_now; fr = fr->fr_next)
|
||
add += fr->fr_fix;
|
||
add += p - frag_now->fr_literal;
|
||
}
|
||
|
||
if (!object_64bit)
|
||
reloc_type = BFD_RELOC_386_GOTPC;
|
||
else if (size == 4)
|
||
reloc_type = BFD_RELOC_X86_64_GOTPC32;
|
||
else if (size == 8)
|
||
reloc_type = BFD_RELOC_X86_64_GOTPC64;
|
||
i.op[n].imms->X_add_number += add;
|
||
}
|
||
fix_new_exp (frag_now, p - frag_now->fr_literal, size,
|
||
i.op[n].imms, 0, reloc_type);
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
/* x86_cons_fix_new is called via the expression parsing code when a
|
||
reloc is needed. We use this hook to get the correct .got reloc. */
|
||
static int cons_sign = -1;
|
||
|
||
void
|
||
x86_cons_fix_new (fragS *frag, unsigned int off, unsigned int len,
|
||
expressionS *exp, bfd_reloc_code_real_type r)
|
||
{
|
||
r = reloc (len, 0, cons_sign, 0, r);
|
||
|
||
#ifdef TE_PE
|
||
if (exp->X_op == O_secrel)
|
||
{
|
||
exp->X_op = O_symbol;
|
||
r = BFD_RELOC_32_SECREL;
|
||
}
|
||
#endif
|
||
|
||
fix_new_exp (frag, off, len, exp, 0, r);
|
||
}
|
||
|
||
/* Export the ABI address size for use by TC_ADDRESS_BYTES for the
|
||
purpose of the `.dc.a' internal pseudo-op. */
|
||
|
||
int
|
||
x86_address_bytes (void)
|
||
{
|
||
if ((stdoutput->arch_info->mach & bfd_mach_x64_32))
|
||
return 4;
|
||
return stdoutput->arch_info->bits_per_address / 8;
|
||
}
|
||
|
||
#if !(defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) || defined (OBJ_MACH_O)) \
|
||
|| defined (LEX_AT)
|
||
# define lex_got(reloc, adjust, types, bnd_prefix) NULL
|
||
#else
|
||
/* Parse operands of the form
|
||
<symbol>@GOTOFF+<nnn>
|
||
and similar .plt or .got references.
|
||
|
||
If we find one, set up the correct relocation in RELOC and copy the
|
||
input string, minus the `@GOTOFF' into a malloc'd buffer for
|
||
parsing by the calling routine. Return this buffer, and if ADJUST
|
||
is non-null set it to the length of the string we removed from the
|
||
input line. Otherwise return NULL. */
|
||
static char *
|
||
lex_got (enum bfd_reloc_code_real *rel,
|
||
int *adjust,
|
||
i386_operand_type *types,
|
||
int bnd_prefix)
|
||
{
|
||
/* Some of the relocations depend on the size of what field is to
|
||
be relocated. But in our callers i386_immediate and i386_displacement
|
||
we don't yet know the operand size (this will be set by insn
|
||
matching). Hence we record the word32 relocation here,
|
||
and adjust the reloc according to the real size in reloc(). */
|
||
static const struct {
|
||
const char *str;
|
||
int len;
|
||
const enum bfd_reloc_code_real rel[2];
|
||
const i386_operand_type types64;
|
||
} gotrel[] = {
|
||
#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
|
||
{ STRING_COMMA_LEN ("SIZE"), { BFD_RELOC_SIZE32,
|
||
BFD_RELOC_SIZE32 },
|
||
OPERAND_TYPE_IMM32_64 },
|
||
#endif
|
||
{ STRING_COMMA_LEN ("PLTOFF"), { _dummy_first_bfd_reloc_code_real,
|
||
BFD_RELOC_X86_64_PLTOFF64 },
|
||
OPERAND_TYPE_IMM64 },
|
||
{ STRING_COMMA_LEN ("PLT"), { BFD_RELOC_386_PLT32,
|
||
BFD_RELOC_X86_64_PLT32 },
|
||
OPERAND_TYPE_IMM32_32S_DISP32 },
|
||
{ STRING_COMMA_LEN ("GOTPLT"), { _dummy_first_bfd_reloc_code_real,
|
||
BFD_RELOC_X86_64_GOTPLT64 },
|
||
OPERAND_TYPE_IMM64_DISP64 },
|
||
{ STRING_COMMA_LEN ("GOTOFF"), { BFD_RELOC_386_GOTOFF,
|
||
BFD_RELOC_X86_64_GOTOFF64 },
|
||
OPERAND_TYPE_IMM64_DISP64 },
|
||
{ STRING_COMMA_LEN ("GOTPCREL"), { _dummy_first_bfd_reloc_code_real,
|
||
BFD_RELOC_X86_64_GOTPCREL },
|
||
OPERAND_TYPE_IMM32_32S_DISP32 },
|
||
{ STRING_COMMA_LEN ("TLSGD"), { BFD_RELOC_386_TLS_GD,
|
||
BFD_RELOC_X86_64_TLSGD },
|
||
OPERAND_TYPE_IMM32_32S_DISP32 },
|
||
{ STRING_COMMA_LEN ("TLSLDM"), { BFD_RELOC_386_TLS_LDM,
|
||
_dummy_first_bfd_reloc_code_real },
|
||
OPERAND_TYPE_NONE },
|
||
{ STRING_COMMA_LEN ("TLSLD"), { _dummy_first_bfd_reloc_code_real,
|
||
BFD_RELOC_X86_64_TLSLD },
|
||
OPERAND_TYPE_IMM32_32S_DISP32 },
|
||
{ STRING_COMMA_LEN ("GOTTPOFF"), { BFD_RELOC_386_TLS_IE_32,
|
||
BFD_RELOC_X86_64_GOTTPOFF },
|
||
OPERAND_TYPE_IMM32_32S_DISP32 },
|
||
{ STRING_COMMA_LEN ("TPOFF"), { BFD_RELOC_386_TLS_LE_32,
|
||
BFD_RELOC_X86_64_TPOFF32 },
|
||
OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
|
||
{ STRING_COMMA_LEN ("NTPOFF"), { BFD_RELOC_386_TLS_LE,
|
||
_dummy_first_bfd_reloc_code_real },
|
||
OPERAND_TYPE_NONE },
|
||
{ STRING_COMMA_LEN ("DTPOFF"), { BFD_RELOC_386_TLS_LDO_32,
|
||
BFD_RELOC_X86_64_DTPOFF32 },
|
||
OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
|
||
{ STRING_COMMA_LEN ("GOTNTPOFF"),{ BFD_RELOC_386_TLS_GOTIE,
|
||
_dummy_first_bfd_reloc_code_real },
|
||
OPERAND_TYPE_NONE },
|
||
{ STRING_COMMA_LEN ("INDNTPOFF"),{ BFD_RELOC_386_TLS_IE,
|
||
_dummy_first_bfd_reloc_code_real },
|
||
OPERAND_TYPE_NONE },
|
||
{ STRING_COMMA_LEN ("GOT"), { BFD_RELOC_386_GOT32,
|
||
BFD_RELOC_X86_64_GOT32 },
|
||
OPERAND_TYPE_IMM32_32S_64_DISP32 },
|
||
{ STRING_COMMA_LEN ("TLSDESC"), { BFD_RELOC_386_TLS_GOTDESC,
|
||
BFD_RELOC_X86_64_GOTPC32_TLSDESC },
|
||
OPERAND_TYPE_IMM32_32S_DISP32 },
|
||
{ STRING_COMMA_LEN ("TLSCALL"), { BFD_RELOC_386_TLS_DESC_CALL,
|
||
BFD_RELOC_X86_64_TLSDESC_CALL },
|
||
OPERAND_TYPE_IMM32_32S_DISP32 },
|
||
};
|
||
char *cp;
|
||
unsigned int j;
|
||
|
||
#if defined (OBJ_MAYBE_ELF)
|
||
if (!IS_ELF)
|
||
return NULL;
|
||
#endif
|
||
|
||
for (cp = input_line_pointer; *cp != '@'; cp++)
|
||
if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
|
||
return NULL;
|
||
|
||
for (j = 0; j < ARRAY_SIZE (gotrel); j++)
|
||
{
|
||
int len = gotrel[j].len;
|
||
if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
|
||
{
|
||
if (gotrel[j].rel[object_64bit] != 0)
|
||
{
|
||
int first, second;
|
||
char *tmpbuf, *past_reloc;
|
||
|
||
*rel = gotrel[j].rel[object_64bit];
|
||
|
||
if (types)
|
||
{
|
||
if (flag_code != CODE_64BIT)
|
||
{
|
||
types->bitfield.imm32 = 1;
|
||
types->bitfield.disp32 = 1;
|
||
}
|
||
else
|
||
*types = gotrel[j].types64;
|
||
}
|
||
|
||
if (j != 0 && GOT_symbol == NULL)
|
||
GOT_symbol = symbol_find_or_make (GLOBAL_OFFSET_TABLE_NAME);
|
||
|
||
/* The length of the first part of our input line. */
|
||
first = cp - input_line_pointer;
|
||
|
||
/* The second part goes from after the reloc token until
|
||
(and including) an end_of_line char or comma. */
|
||
past_reloc = cp + 1 + len;
|
||
cp = past_reloc;
|
||
while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
|
||
++cp;
|
||
second = cp + 1 - past_reloc;
|
||
|
||
/* Allocate and copy string. The trailing NUL shouldn't
|
||
be necessary, but be safe. */
|
||
tmpbuf = (char *) xmalloc (first + second + 2);
|
||
memcpy (tmpbuf, input_line_pointer, first);
|
||
if (second != 0 && *past_reloc != ' ')
|
||
/* Replace the relocation token with ' ', so that
|
||
errors like foo@GOTOFF1 will be detected. */
|
||
tmpbuf[first++] = ' ';
|
||
else
|
||
/* Increment length by 1 if the relocation token is
|
||
removed. */
|
||
len++;
|
||
if (adjust)
|
||
*adjust = len;
|
||
memcpy (tmpbuf + first, past_reloc, second);
|
||
tmpbuf[first + second] = '\0';
|
||
if (bnd_prefix && *rel == BFD_RELOC_X86_64_PLT32)
|
||
*rel = BFD_RELOC_X86_64_PLT32_BND;
|
||
return tmpbuf;
|
||
}
|
||
|
||
as_bad (_("@%s reloc is not supported with %d-bit output format"),
|
||
gotrel[j].str, 1 << (5 + object_64bit));
|
||
return NULL;
|
||
}
|
||
}
|
||
|
||
/* Might be a symbol version string. Don't as_bad here. */
|
||
return NULL;
|
||
}
|
||
#endif
|
||
|
||
#ifdef TE_PE
|
||
#ifdef lex_got
|
||
#undef lex_got
|
||
#endif
|
||
/* Parse operands of the form
|
||
<symbol>@SECREL32+<nnn>
|
||
|
||
If we find one, set up the correct relocation in RELOC and copy the
|
||
input string, minus the `@SECREL32' into a malloc'd buffer for
|
||
parsing by the calling routine. Return this buffer, and if ADJUST
|
||
is non-null set it to the length of the string we removed from the
|
||
input line. Otherwise return NULL.
|
||
|
||
This function is copied from the ELF version above adjusted for PE targets. */
|
||
|
||
static char *
|
||
lex_got (enum bfd_reloc_code_real *rel ATTRIBUTE_UNUSED,
|
||
int *adjust ATTRIBUTE_UNUSED,
|
||
i386_operand_type *types,
|
||
int bnd_prefix ATTRIBUTE_UNUSED)
|
||
{
|
||
static const struct
|
||
{
|
||
const char *str;
|
||
int len;
|
||
const enum bfd_reloc_code_real rel[2];
|
||
const i386_operand_type types64;
|
||
}
|
||
gotrel[] =
|
||
{
|
||
{ STRING_COMMA_LEN ("SECREL32"), { BFD_RELOC_32_SECREL,
|
||
BFD_RELOC_32_SECREL },
|
||
OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
|
||
};
|
||
|
||
char *cp;
|
||
unsigned j;
|
||
|
||
for (cp = input_line_pointer; *cp != '@'; cp++)
|
||
if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
|
||
return NULL;
|
||
|
||
for (j = 0; j < ARRAY_SIZE (gotrel); j++)
|
||
{
|
||
int len = gotrel[j].len;
|
||
|
||
if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
|
||
{
|
||
if (gotrel[j].rel[object_64bit] != 0)
|
||
{
|
||
int first, second;
|
||
char *tmpbuf, *past_reloc;
|
||
|
||
*rel = gotrel[j].rel[object_64bit];
|
||
if (adjust)
|
||
*adjust = len;
|
||
|
||
if (types)
|
||
{
|
||
if (flag_code != CODE_64BIT)
|
||
{
|
||
types->bitfield.imm32 = 1;
|
||
types->bitfield.disp32 = 1;
|
||
}
|
||
else
|
||
*types = gotrel[j].types64;
|
||
}
|
||
|
||
/* The length of the first part of our input line. */
|
||
first = cp - input_line_pointer;
|
||
|
||
/* The second part goes from after the reloc token until
|
||
(and including) an end_of_line char or comma. */
|
||
past_reloc = cp + 1 + len;
|
||
cp = past_reloc;
|
||
while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
|
||
++cp;
|
||
second = cp + 1 - past_reloc;
|
||
|
||
/* Allocate and copy string. The trailing NUL shouldn't
|
||
be necessary, but be safe. */
|
||
tmpbuf = (char *) xmalloc (first + second + 2);
|
||
memcpy (tmpbuf, input_line_pointer, first);
|
||
if (second != 0 && *past_reloc != ' ')
|
||
/* Replace the relocation token with ' ', so that
|
||
errors like foo@SECLREL321 will be detected. */
|
||
tmpbuf[first++] = ' ';
|
||
memcpy (tmpbuf + first, past_reloc, second);
|
||
tmpbuf[first + second] = '\0';
|
||
return tmpbuf;
|
||
}
|
||
|
||
as_bad (_("@%s reloc is not supported with %d-bit output format"),
|
||
gotrel[j].str, 1 << (5 + object_64bit));
|
||
return NULL;
|
||
}
|
||
}
|
||
|
||
/* Might be a symbol version string. Don't as_bad here. */
|
||
return NULL;
|
||
}
|
||
|
||
#endif /* TE_PE */
|
||
|
||
bfd_reloc_code_real_type
|
||
x86_cons (expressionS *exp, int size)
|
||
{
|
||
bfd_reloc_code_real_type got_reloc = NO_RELOC;
|
||
|
||
intel_syntax = -intel_syntax;
|
||
|
||
exp->X_md = 0;
|
||
if (size == 4 || (object_64bit && size == 8))
|
||
{
|
||
/* Handle @GOTOFF and the like in an expression. */
|
||
char *save;
|
||
char *gotfree_input_line;
|
||
int adjust = 0;
|
||
|
||
save = input_line_pointer;
|
||
gotfree_input_line = lex_got (&got_reloc, &adjust, NULL, 0);
|
||
if (gotfree_input_line)
|
||
input_line_pointer = gotfree_input_line;
|
||
|
||
expression (exp);
|
||
|
||
if (gotfree_input_line)
|
||
{
|
||
/* expression () has merrily parsed up to the end of line,
|
||
or a comma - in the wrong buffer. Transfer how far
|
||
input_line_pointer has moved to the right buffer. */
|
||
input_line_pointer = (save
|
||
+ (input_line_pointer - gotfree_input_line)
|
||
+ adjust);
|
||
free (gotfree_input_line);
|
||
if (exp->X_op == O_constant
|
||
|| exp->X_op == O_absent
|
||
|| exp->X_op == O_illegal
|
||
|| exp->X_op == O_register
|
||
|| exp->X_op == O_big)
|
||
{
|
||
char c = *input_line_pointer;
|
||
*input_line_pointer = 0;
|
||
as_bad (_("missing or invalid expression `%s'"), save);
|
||
*input_line_pointer = c;
|
||
}
|
||
}
|
||
}
|
||
else
|
||
expression (exp);
|
||
|
||
intel_syntax = -intel_syntax;
|
||
|
||
if (intel_syntax)
|
||
i386_intel_simplify (exp);
|
||
|
||
return got_reloc;
|
||
}
|
||
|
||
static void
|
||
signed_cons (int size)
|
||
{
|
||
if (flag_code == CODE_64BIT)
|
||
cons_sign = 1;
|
||
cons (size);
|
||
cons_sign = -1;
|
||
}
|
||
|
||
#ifdef TE_PE
|
||
static void
|
||
pe_directive_secrel (int dummy ATTRIBUTE_UNUSED)
|
||
{
|
||
expressionS exp;
|
||
|
||
do
|
||
{
|
||
expression (&exp);
|
||
if (exp.X_op == O_symbol)
|
||
exp.X_op = O_secrel;
|
||
|
||
emit_expr (&exp, 4);
|
||
}
|
||
while (*input_line_pointer++ == ',');
|
||
|
||
input_line_pointer--;
|
||
demand_empty_rest_of_line ();
|
||
}
|
||
#endif
|
||
|
||
/* Handle Vector operations. */
|
||
|
||
static char *
|
||
check_VecOperations (char *op_string, char *op_end)
|
||
{
|
||
const reg_entry *mask;
|
||
const char *saved;
|
||
char *end_op;
|
||
|
||
while (*op_string
|
||
&& (op_end == NULL || op_string < op_end))
|
||
{
|
||
saved = op_string;
|
||
if (*op_string == '{')
|
||
{
|
||
op_string++;
|
||
|
||
/* Check broadcasts. */
|
||
if (strncmp (op_string, "1to", 3) == 0)
|
||
{
|
||
int bcst_type;
|
||
|
||
if (i.broadcast)
|
||
goto duplicated_vec_op;
|
||
|
||
op_string += 3;
|
||
if (*op_string == '8')
|
||
bcst_type = BROADCAST_1TO8;
|
||
else if (*op_string == '4')
|
||
bcst_type = BROADCAST_1TO4;
|
||
else if (*op_string == '2')
|
||
bcst_type = BROADCAST_1TO2;
|
||
else if (*op_string == '1'
|
||
&& *(op_string+1) == '6')
|
||
{
|
||
bcst_type = BROADCAST_1TO16;
|
||
op_string++;
|
||
}
|
||
else
|
||
{
|
||
as_bad (_("Unsupported broadcast: `%s'"), saved);
|
||
return NULL;
|
||
}
|
||
op_string++;
|
||
|
||
broadcast_op.type = bcst_type;
|
||
broadcast_op.operand = this_operand;
|
||
i.broadcast = &broadcast_op;
|
||
}
|
||
/* Check masking operation. */
|
||
else if ((mask = parse_register (op_string, &end_op)) != NULL)
|
||
{
|
||
/* k0 can't be used for write mask. */
|
||
if (mask->reg_num == 0)
|
||
{
|
||
as_bad (_("`%s' can't be used for write mask"),
|
||
op_string);
|
||
return NULL;
|
||
}
|
||
|
||
if (!i.mask)
|
||
{
|
||
mask_op.mask = mask;
|
||
mask_op.zeroing = 0;
|
||
mask_op.operand = this_operand;
|
||
i.mask = &mask_op;
|
||
}
|
||
else
|
||
{
|
||
if (i.mask->mask)
|
||
goto duplicated_vec_op;
|
||
|
||
i.mask->mask = mask;
|
||
|
||
/* Only "{z}" is allowed here. No need to check
|
||
zeroing mask explicitly. */
|
||
if (i.mask->operand != this_operand)
|
||
{
|
||
as_bad (_("invalid write mask `%s'"), saved);
|
||
return NULL;
|
||
}
|
||
}
|
||
|
||
op_string = end_op;
|
||
}
|
||
/* Check zeroing-flag for masking operation. */
|
||
else if (*op_string == 'z')
|
||
{
|
||
if (!i.mask)
|
||
{
|
||
mask_op.mask = NULL;
|
||
mask_op.zeroing = 1;
|
||
mask_op.operand = this_operand;
|
||
i.mask = &mask_op;
|
||
}
|
||
else
|
||
{
|
||
if (i.mask->zeroing)
|
||
{
|
||
duplicated_vec_op:
|
||
as_bad (_("duplicated `%s'"), saved);
|
||
return NULL;
|
||
}
|
||
|
||
i.mask->zeroing = 1;
|
||
|
||
/* Only "{%k}" is allowed here. No need to check mask
|
||
register explicitly. */
|
||
if (i.mask->operand != this_operand)
|
||
{
|
||
as_bad (_("invalid zeroing-masking `%s'"),
|
||
saved);
|
||
return NULL;
|
||
}
|
||
}
|
||
|
||
op_string++;
|
||
}
|
||
else
|
||
goto unknown_vec_op;
|
||
|
||
if (*op_string != '}')
|
||
{
|
||
as_bad (_("missing `}' in `%s'"), saved);
|
||
return NULL;
|
||
}
|
||
op_string++;
|
||
continue;
|
||
}
|
||
unknown_vec_op:
|
||
/* We don't know this one. */
|
||
as_bad (_("unknown vector operation: `%s'"), saved);
|
||
return NULL;
|
||
}
|
||
|
||
return op_string;
|
||
}
|
||
|
||
static int
|
||
i386_immediate (char *imm_start)
|
||
{
|
||
char *save_input_line_pointer;
|
||
char *gotfree_input_line;
|
||
segT exp_seg = 0;
|
||
expressionS *exp;
|
||
i386_operand_type types;
|
||
|
||
operand_type_set (&types, ~0);
|
||
|
||
if (i.imm_operands == MAX_IMMEDIATE_OPERANDS)
|
||
{
|
||
as_bad (_("at most %d immediate operands are allowed"),
|
||
MAX_IMMEDIATE_OPERANDS);
|
||
return 0;
|
||
}
|
||
|
||
exp = &im_expressions[i.imm_operands++];
|
||
i.op[this_operand].imms = exp;
|
||
|
||
if (is_space_char (*imm_start))
|
||
++imm_start;
|
||
|
||
save_input_line_pointer = input_line_pointer;
|
||
input_line_pointer = imm_start;
|
||
|
||
gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types,
|
||
(i.bnd_prefix != NULL
|
||
|| add_bnd_prefix));
|
||
if (gotfree_input_line)
|
||
input_line_pointer = gotfree_input_line;
|
||
|
||
exp_seg = expression (exp);
|
||
|
||
SKIP_WHITESPACE ();
|
||
|
||
/* Handle vector operations. */
|
||
if (*input_line_pointer == '{')
|
||
{
|
||
input_line_pointer = check_VecOperations (input_line_pointer,
|
||
NULL);
|
||
if (input_line_pointer == NULL)
|
||
return 0;
|
||
}
|
||
|
||
if (*input_line_pointer)
|
||
as_bad (_("junk `%s' after expression"), input_line_pointer);
|
||
|
||
input_line_pointer = save_input_line_pointer;
|
||
if (gotfree_input_line)
|
||
{
|
||
free (gotfree_input_line);
|
||
|
||
if (exp->X_op == O_constant || exp->X_op == O_register)
|
||
exp->X_op = O_illegal;
|
||
}
|
||
|
||
return i386_finalize_immediate (exp_seg, exp, types, imm_start);
|
||
}
|
||
|
||
static int
|
||
i386_finalize_immediate (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
|
||
i386_operand_type types, const char *imm_start)
|
||
{
|
||
if (exp->X_op == O_absent || exp->X_op == O_illegal || exp->X_op == O_big)
|
||
{
|
||
if (imm_start)
|
||
as_bad (_("missing or invalid immediate expression `%s'"),
|
||
imm_start);
|
||
return 0;
|
||
}
|
||
else if (exp->X_op == O_constant)
|
||
{
|
||
/* Size it properly later. */
|
||
i.types[this_operand].bitfield.imm64 = 1;
|
||
/* If not 64bit, sign extend val. */
|
||
if (flag_code != CODE_64BIT
|
||
&& (exp->X_add_number & ~(((addressT) 2 << 31) - 1)) == 0)
|
||
exp->X_add_number
|
||
= (exp->X_add_number ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
|
||
}
|
||
#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
|
||
else if (OUTPUT_FLAVOR == bfd_target_aout_flavour
|
||
&& exp_seg != absolute_section
|
||
&& exp_seg != text_section
|
||
&& exp_seg != data_section
|
||
&& exp_seg != bss_section
|
||
&& exp_seg != undefined_section
|
||
&& !bfd_is_com_section (exp_seg))
|
||
{
|
||
as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
|
||
return 0;
|
||
}
|
||
#endif
|
||
else if (!intel_syntax && exp->X_op == O_register)
|
||
{
|
||
if (imm_start)
|
||
as_bad (_("illegal immediate register operand %s"), imm_start);
|
||
return 0;
|
||
}
|
||
else
|
||
{
|
||
/* This is an address. The size of the address will be
|
||
determined later, depending on destination register,
|
||
suffix, or the default for the section. */
|
||
i.types[this_operand].bitfield.imm8 = 1;
|
||
i.types[this_operand].bitfield.imm16 = 1;
|
||
i.types[this_operand].bitfield.imm32 = 1;
|
||
i.types[this_operand].bitfield.imm32s = 1;
|
||
i.types[this_operand].bitfield.imm64 = 1;
|
||
i.types[this_operand] = operand_type_and (i.types[this_operand],
|
||
types);
|
||
}
|
||
|
||
return 1;
|
||
}
|
||
|
||
static char *
|
||
i386_scale (char *scale)
|
||
{
|
||
offsetT val;
|
||
char *save = input_line_pointer;
|
||
|
||
input_line_pointer = scale;
|
||
val = get_absolute_expression ();
|
||
|
||
switch (val)
|
||
{
|
||
case 1:
|
||
i.log2_scale_factor = 0;
|
||
break;
|
||
case 2:
|
||
i.log2_scale_factor = 1;
|
||
break;
|
||
case 4:
|
||
i.log2_scale_factor = 2;
|
||
break;
|
||
case 8:
|
||
i.log2_scale_factor = 3;
|
||
break;
|
||
default:
|
||
{
|
||
char sep = *input_line_pointer;
|
||
|
||
*input_line_pointer = '\0';
|
||
as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
|
||
scale);
|
||
*input_line_pointer = sep;
|
||
input_line_pointer = save;
|
||
return NULL;
|
||
}
|
||
}
|
||
if (i.log2_scale_factor != 0 && i.index_reg == 0)
|
||
{
|
||
as_warn (_("scale factor of %d without an index register"),
|
||
1 << i.log2_scale_factor);
|
||
i.log2_scale_factor = 0;
|
||
}
|
||
scale = input_line_pointer;
|
||
input_line_pointer = save;
|
||
return scale;
|
||
}
|
||
|
||
static int
|
||
i386_displacement (char *disp_start, char *disp_end)
|
||
{
|
||
expressionS *exp;
|
||
segT exp_seg = 0;
|
||
char *save_input_line_pointer;
|
||
char *gotfree_input_line;
|
||
int override;
|
||
i386_operand_type bigdisp, types = anydisp;
|
||
int ret;
|
||
|
||
if (i.disp_operands == MAX_MEMORY_OPERANDS)
|
||
{
|
||
as_bad (_("at most %d displacement operands are allowed"),
|
||
MAX_MEMORY_OPERANDS);
|
||
return 0;
|
||
}
|
||
|
||
operand_type_set (&bigdisp, 0);
|
||
if ((i.types[this_operand].bitfield.jumpabsolute)
|
||
|| (!current_templates->start->opcode_modifier.jump
|
||
&& !current_templates->start->opcode_modifier.jumpdword))
|
||
{
|
||
bigdisp.bitfield.disp32 = 1;
|
||
override = (i.prefix[ADDR_PREFIX] != 0);
|
||
if (flag_code == CODE_64BIT)
|
||
{
|
||
if (!override)
|
||
{
|
||
bigdisp.bitfield.disp32s = 1;
|
||
bigdisp.bitfield.disp64 = 1;
|
||
}
|
||
}
|
||
else if ((flag_code == CODE_16BIT) ^ override)
|
||
{
|
||
bigdisp.bitfield.disp32 = 0;
|
||
bigdisp.bitfield.disp16 = 1;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
/* For PC-relative branches, the width of the displacement
|
||
is dependent upon data size, not address size. */
|
||
override = (i.prefix[DATA_PREFIX] != 0);
|
||
if (flag_code == CODE_64BIT)
|
||
{
|
||
if (override || i.suffix == WORD_MNEM_SUFFIX)
|
||
bigdisp.bitfield.disp16 = 1;
|
||
else
|
||
{
|
||
bigdisp.bitfield.disp32 = 1;
|
||
bigdisp.bitfield.disp32s = 1;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
if (!override)
|
||
override = (i.suffix == (flag_code != CODE_16BIT
|
||
? WORD_MNEM_SUFFIX
|
||
: LONG_MNEM_SUFFIX));
|
||
bigdisp.bitfield.disp32 = 1;
|
||
if ((flag_code == CODE_16BIT) ^ override)
|
||
{
|
||
bigdisp.bitfield.disp32 = 0;
|
||
bigdisp.bitfield.disp16 = 1;
|
||
}
|
||
}
|
||
}
|
||
i.types[this_operand] = operand_type_or (i.types[this_operand],
|
||
bigdisp);
|
||
|
||
exp = &disp_expressions[i.disp_operands];
|
||
i.op[this_operand].disps = exp;
|
||
i.disp_operands++;
|
||
save_input_line_pointer = input_line_pointer;
|
||
input_line_pointer = disp_start;
|
||
END_STRING_AND_SAVE (disp_end);
|
||
|
||
#ifndef GCC_ASM_O_HACK
|
||
#define GCC_ASM_O_HACK 0
|
||
#endif
|
||
#if GCC_ASM_O_HACK
|
||
END_STRING_AND_SAVE (disp_end + 1);
|
||
if (i.types[this_operand].bitfield.baseIndex
|
||
&& displacement_string_end[-1] == '+')
|
||
{
|
||
/* This hack is to avoid a warning when using the "o"
|
||
constraint within gcc asm statements.
|
||
For instance:
|
||
|
||
#define _set_tssldt_desc(n,addr,limit,type) \
|
||
__asm__ __volatile__ ( \
|
||
"movw %w2,%0\n\t" \
|
||
"movw %w1,2+%0\n\t" \
|
||
"rorl $16,%1\n\t" \
|
||
"movb %b1,4+%0\n\t" \
|
||
"movb %4,5+%0\n\t" \
|
||
"movb $0,6+%0\n\t" \
|
||
"movb %h1,7+%0\n\t" \
|
||
"rorl $16,%1" \
|
||
: "=o"(*(n)) : "q" (addr), "ri"(limit), "i"(type))
|
||
|
||
This works great except that the output assembler ends
|
||
up looking a bit weird if it turns out that there is
|
||
no offset. You end up producing code that looks like:
|
||
|
||
#APP
|
||
movw $235,(%eax)
|
||
movw %dx,2+(%eax)
|
||
rorl $16,%edx
|
||
movb %dl,4+(%eax)
|
||
movb $137,5+(%eax)
|
||
movb $0,6+(%eax)
|
||
movb %dh,7+(%eax)
|
||
rorl $16,%edx
|
||
#NO_APP
|
||
|
||
So here we provide the missing zero. */
|
||
|
||
*displacement_string_end = '0';
|
||
}
|
||
#endif
|
||
gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types,
|
||
(i.bnd_prefix != NULL
|
||
|| add_bnd_prefix));
|
||
if (gotfree_input_line)
|
||
input_line_pointer = gotfree_input_line;
|
||
|
||
exp_seg = expression (exp);
|
||
|
||
SKIP_WHITESPACE ();
|
||
if (*input_line_pointer)
|
||
as_bad (_("junk `%s' after expression"), input_line_pointer);
|
||
#if GCC_ASM_O_HACK
|
||
RESTORE_END_STRING (disp_end + 1);
|
||
#endif
|
||
input_line_pointer = save_input_line_pointer;
|
||
if (gotfree_input_line)
|
||
{
|
||
free (gotfree_input_line);
|
||
|
||
if (exp->X_op == O_constant || exp->X_op == O_register)
|
||
exp->X_op = O_illegal;
|
||
}
|
||
|
||
ret = i386_finalize_displacement (exp_seg, exp, types, disp_start);
|
||
|
||
RESTORE_END_STRING (disp_end);
|
||
|
||
return ret;
|
||
}
|
||
|
||
static int
|
||
i386_finalize_displacement (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
|
||
i386_operand_type types, const char *disp_start)
|
||
{
|
||
i386_operand_type bigdisp;
|
||
int ret = 1;
|
||
|
||
/* We do this to make sure that the section symbol is in
|
||
the symbol table. We will ultimately change the relocation
|
||
to be relative to the beginning of the section. */
|
||
if (i.reloc[this_operand] == BFD_RELOC_386_GOTOFF
|
||
|| i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL
|
||
|| i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
|
||
{
|
||
if (exp->X_op != O_symbol)
|
||
goto inv_disp;
|
||
|
||
if (S_IS_LOCAL (exp->X_add_symbol)
|
||
&& S_GET_SEGMENT (exp->X_add_symbol) != undefined_section
|
||
&& S_GET_SEGMENT (exp->X_add_symbol) != expr_section)
|
||
section_symbol (S_GET_SEGMENT (exp->X_add_symbol));
|
||
exp->X_op = O_subtract;
|
||
exp->X_op_symbol = GOT_symbol;
|
||
if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL)
|
||
i.reloc[this_operand] = BFD_RELOC_32_PCREL;
|
||
else if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
|
||
i.reloc[this_operand] = BFD_RELOC_64;
|
||
else
|
||
i.reloc[this_operand] = BFD_RELOC_32;
|
||
}
|
||
|
||
else if (exp->X_op == O_absent
|
||
|| exp->X_op == O_illegal
|
||
|| exp->X_op == O_big)
|
||
{
|
||
inv_disp:
|
||
as_bad (_("missing or invalid displacement expression `%s'"),
|
||
disp_start);
|
||
ret = 0;
|
||
}
|
||
|
||
else if (flag_code == CODE_64BIT
|
||
&& !i.prefix[ADDR_PREFIX]
|
||
&& exp->X_op == O_constant)
|
||
{
|
||
/* Since displacement is signed extended to 64bit, don't allow
|
||
disp32 and turn off disp32s if they are out of range. */
|
||
i.types[this_operand].bitfield.disp32 = 0;
|
||
if (!fits_in_signed_long (exp->X_add_number))
|
||
{
|
||
i.types[this_operand].bitfield.disp32s = 0;
|
||
if (i.types[this_operand].bitfield.baseindex)
|
||
{
|
||
as_bad (_("0x%lx out range of signed 32bit displacement"),
|
||
(long) exp->X_add_number);
|
||
ret = 0;
|
||
}
|
||
}
|
||
}
|
||
|
||
#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
|
||
else if (exp->X_op != O_constant
|
||
&& OUTPUT_FLAVOR == bfd_target_aout_flavour
|
||
&& exp_seg != absolute_section
|
||
&& exp_seg != text_section
|
||
&& exp_seg != data_section
|
||
&& exp_seg != bss_section
|
||
&& exp_seg != undefined_section
|
||
&& !bfd_is_com_section (exp_seg))
|
||
{
|
||
as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
|
||
ret = 0;
|
||
}
|
||
#endif
|
||
|
||
/* Check if this is a displacement only operand. */
|
||
bigdisp = i.types[this_operand];
|
||
bigdisp.bitfield.disp8 = 0;
|
||
bigdisp.bitfield.disp16 = 0;
|
||
bigdisp.bitfield.disp32 = 0;
|
||
bigdisp.bitfield.disp32s = 0;
|
||
bigdisp.bitfield.disp64 = 0;
|
||
if (operand_type_all_zero (&bigdisp))
|
||
i.types[this_operand] = operand_type_and (i.types[this_operand],
|
||
types);
|
||
|
||
return ret;
|
||
}
|
||
|
||
/* Make sure the memory operand we've been dealt is valid.
|
||
Return 1 on success, 0 on a failure. */
|
||
|
||
static int
|
||
i386_index_check (const char *operand_string)
|
||
{
|
||
const char *kind = "base/index";
|
||
enum flag_code addr_mode;
|
||
|
||
if (i.prefix[ADDR_PREFIX])
|
||
addr_mode = flag_code == CODE_32BIT ? CODE_16BIT : CODE_32BIT;
|
||
else
|
||
{
|
||
addr_mode = flag_code;
|
||
|
||
#if INFER_ADDR_PREFIX
|
||
if (i.mem_operands == 0)
|
||
{
|
||
/* Infer address prefix from the first memory operand. */
|
||
const reg_entry *addr_reg = i.base_reg;
|
||
|
||
if (addr_reg == NULL)
|
||
addr_reg = i.index_reg;
|
||
|
||
if (addr_reg)
|
||
{
|
||
if (addr_reg->reg_num == RegEip
|
||
|| addr_reg->reg_num == RegEiz
|
||
|| addr_reg->reg_type.bitfield.reg32)
|
||
addr_mode = CODE_32BIT;
|
||
else if (flag_code != CODE_64BIT
|
||
&& addr_reg->reg_type.bitfield.reg16)
|
||
addr_mode = CODE_16BIT;
|
||
|
||
if (addr_mode != flag_code)
|
||
{
|
||
i.prefix[ADDR_PREFIX] = ADDR_PREFIX_OPCODE;
|
||
i.prefixes += 1;
|
||
/* Change the size of any displacement too. At most one
|
||
of Disp16 or Disp32 is set.
|
||
FIXME. There doesn't seem to be any real need for
|
||
separate Disp16 and Disp32 flags. The same goes for
|
||
Imm16 and Imm32. Removing them would probably clean
|
||
up the code quite a lot. */
|
||
if (flag_code != CODE_64BIT
|
||
&& (i.types[this_operand].bitfield.disp16
|
||
|| i.types[this_operand].bitfield.disp32))
|
||
i.types[this_operand]
|
||
= operand_type_xor (i.types[this_operand], disp16_32);
|
||
}
|
||
}
|
||
}
|
||
#endif
|
||
}
|
||
|
||
if (current_templates->start->opcode_modifier.isstring
|
||
&& !current_templates->start->opcode_modifier.immext
|
||
&& (current_templates->end[-1].opcode_modifier.isstring
|
||
|| i.mem_operands))
|
||
{
|
||
/* Memory operands of string insns are special in that they only allow
|
||
a single register (rDI, rSI, or rBX) as their memory address. */
|
||
const reg_entry *expected_reg;
|
||
static const char *di_si[][2] =
|
||
{
|
||
{ "esi", "edi" },
|
||
{ "si", "di" },
|
||
{ "rsi", "rdi" }
|
||
};
|
||
static const char *bx[] = { "ebx", "bx", "rbx" };
|
||
|
||
kind = "string address";
|
||
|
||
if (current_templates->start->opcode_modifier.w)
|
||
{
|
||
i386_operand_type type = current_templates->end[-1].operand_types[0];
|
||
|
||
if (!type.bitfield.baseindex
|
||
|| ((!i.mem_operands != !intel_syntax)
|
||
&& current_templates->end[-1].operand_types[1]
|
||
.bitfield.baseindex))
|
||
type = current_templates->end[-1].operand_types[1];
|
||
expected_reg = hash_find (reg_hash,
|
||
di_si[addr_mode][type.bitfield.esseg]);
|
||
|
||
}
|
||
else
|
||
expected_reg = hash_find (reg_hash, bx[addr_mode]);
|
||
|
||
if (i.base_reg != expected_reg
|
||
|| i.index_reg
|
||
|| operand_type_check (i.types[this_operand], disp))
|
||
{
|
||
/* The second memory operand must have the same size as
|
||
the first one. */
|
||
if (i.mem_operands
|
||
&& i.base_reg
|
||
&& !((addr_mode == CODE_64BIT
|
||
&& i.base_reg->reg_type.bitfield.reg64)
|
||
|| (addr_mode == CODE_32BIT
|
||
? i.base_reg->reg_type.bitfield.reg32
|
||
: i.base_reg->reg_type.bitfield.reg16)))
|
||
goto bad_address;
|
||
|
||
as_warn (_("`%s' is not valid here (expected `%c%s%s%c')"),
|
||
operand_string,
|
||
intel_syntax ? '[' : '(',
|
||
register_prefix,
|
||
expected_reg->reg_name,
|
||
intel_syntax ? ']' : ')');
|
||
return 1;
|
||
}
|
||
else
|
||
return 1;
|
||
|
||
bad_address:
|
||
as_bad (_("`%s' is not a valid %s expression"),
|
||
operand_string, kind);
|
||
return 0;
|
||
}
|
||
else
|
||
{
|
||
if (addr_mode != CODE_16BIT)
|
||
{
|
||
/* 32-bit/64-bit checks. */
|
||
if ((i.base_reg
|
||
&& (addr_mode == CODE_64BIT
|
||
? !i.base_reg->reg_type.bitfield.reg64
|
||
: !i.base_reg->reg_type.bitfield.reg32)
|
||
&& (i.index_reg
|
||
|| (i.base_reg->reg_num
|
||
!= (addr_mode == CODE_64BIT ? RegRip : RegEip))))
|
||
|| (i.index_reg
|
||
&& !i.index_reg->reg_type.bitfield.regxmm
|
||
&& !i.index_reg->reg_type.bitfield.regymm
|
||
&& !i.index_reg->reg_type.bitfield.regzmm
|
||
&& ((addr_mode == CODE_64BIT
|
||
? !(i.index_reg->reg_type.bitfield.reg64
|
||
|| i.index_reg->reg_num == RegRiz)
|
||
: !(i.index_reg->reg_type.bitfield.reg32
|
||
|| i.index_reg->reg_num == RegEiz))
|
||
|| !i.index_reg->reg_type.bitfield.baseindex)))
|
||
goto bad_address;
|
||
}
|
||
else
|
||
{
|
||
/* 16-bit checks. */
|
||
if ((i.base_reg
|
||
&& (!i.base_reg->reg_type.bitfield.reg16
|
||
|| !i.base_reg->reg_type.bitfield.baseindex))
|
||
|| (i.index_reg
|
||
&& (!i.index_reg->reg_type.bitfield.reg16
|
||
|| !i.index_reg->reg_type.bitfield.baseindex
|
||
|| !(i.base_reg
|
||
&& i.base_reg->reg_num < 6
|
||
&& i.index_reg->reg_num >= 6
|
||
&& i.log2_scale_factor == 0))))
|
||
goto bad_address;
|
||
}
|
||
}
|
||
return 1;
|
||
}
|
||
|
||
/* Handle vector immediates. */
|
||
|
||
static int
|
||
RC_SAE_immediate (const char *imm_start)
|
||
{
|
||
unsigned int match_found, j;
|
||
const char *pstr = imm_start;
|
||
expressionS *exp;
|
||
|
||
if (*pstr != '{')
|
||
return 0;
|
||
|
||
pstr++;
|
||
match_found = 0;
|
||
for (j = 0; j < ARRAY_SIZE (RC_NamesTable); j++)
|
||
{
|
||
if (!strncmp (pstr, RC_NamesTable[j].name, RC_NamesTable[j].len))
|
||
{
|
||
if (!i.rounding)
|
||
{
|
||
rc_op.type = RC_NamesTable[j].type;
|
||
rc_op.operand = this_operand;
|
||
i.rounding = &rc_op;
|
||
}
|
||
else
|
||
{
|
||
as_bad (_("duplicated `%s'"), imm_start);
|
||
return 0;
|
||
}
|
||
pstr += RC_NamesTable[j].len;
|
||
match_found = 1;
|
||
break;
|
||
}
|
||
}
|
||
if (!match_found)
|
||
return 0;
|
||
|
||
if (*pstr++ != '}')
|
||
{
|
||
as_bad (_("Missing '}': '%s'"), imm_start);
|
||
return 0;
|
||
}
|
||
/* RC/SAE immediate string should contain nothing more. */;
|
||
if (*pstr != 0)
|
||
{
|
||
as_bad (_("Junk after '}': '%s'"), imm_start);
|
||
return 0;
|
||
}
|
||
|
||
exp = &im_expressions[i.imm_operands++];
|
||
i.op[this_operand].imms = exp;
|
||
|
||
exp->X_op = O_constant;
|
||
exp->X_add_number = 0;
|
||
exp->X_add_symbol = (symbolS *) 0;
|
||
exp->X_op_symbol = (symbolS *) 0;
|
||
|
||
i.types[this_operand].bitfield.imm8 = 1;
|
||
return 1;
|
||
}
|
||
|
||
/* Parse OPERAND_STRING into the i386_insn structure I. Returns zero
|
||
on error. */
|
||
|
||
static int
|
||
i386_att_operand (char *operand_string)
|
||
{
|
||
const reg_entry *r;
|
||
char *end_op;
|
||
char *op_string = operand_string;
|
||
|
||
if (is_space_char (*op_string))
|
||
++op_string;
|
||
|
||
/* We check for an absolute prefix (differentiating,
|
||
for example, 'jmp pc_relative_label' from 'jmp *absolute_label'. */
|
||
if (*op_string == ABSOLUTE_PREFIX)
|
||
{
|
||
++op_string;
|
||
if (is_space_char (*op_string))
|
||
++op_string;
|
||
i.types[this_operand].bitfield.jumpabsolute = 1;
|
||
}
|
||
|
||
/* Check if operand is a register. */
|
||
if ((r = parse_register (op_string, &end_op)) != NULL)
|
||
{
|
||
i386_operand_type temp;
|
||
|
||
/* Check for a segment override by searching for ':' after a
|
||
segment register. */
|
||
op_string = end_op;
|
||
if (is_space_char (*op_string))
|
||
++op_string;
|
||
if (*op_string == ':'
|
||
&& (r->reg_type.bitfield.sreg2
|
||
|| r->reg_type.bitfield.sreg3))
|
||
{
|
||
switch (r->reg_num)
|
||
{
|
||
case 0:
|
||
i.seg[i.mem_operands] = &es;
|
||
break;
|
||
case 1:
|
||
i.seg[i.mem_operands] = &cs;
|
||
break;
|
||
case 2:
|
||
i.seg[i.mem_operands] = &ss;
|
||
break;
|
||
case 3:
|
||
i.seg[i.mem_operands] = &ds;
|
||
break;
|
||
case 4:
|
||
i.seg[i.mem_operands] = &fs;
|
||
break;
|
||
case 5:
|
||
i.seg[i.mem_operands] = &gs;
|
||
break;
|
||
}
|
||
|
||
/* Skip the ':' and whitespace. */
|
||
++op_string;
|
||
if (is_space_char (*op_string))
|
||
++op_string;
|
||
|
||
if (!is_digit_char (*op_string)
|
||
&& !is_identifier_char (*op_string)
|
||
&& *op_string != '('
|
||
&& *op_string != ABSOLUTE_PREFIX)
|
||
{
|
||
as_bad (_("bad memory operand `%s'"), op_string);
|
||
return 0;
|
||
}
|
||
/* Handle case of %es:*foo. */
|
||
if (*op_string == ABSOLUTE_PREFIX)
|
||
{
|
||
++op_string;
|
||
if (is_space_char (*op_string))
|
||
++op_string;
|
||
i.types[this_operand].bitfield.jumpabsolute = 1;
|
||
}
|
||
goto do_memory_reference;
|
||
}
|
||
|
||
/* Handle vector operations. */
|
||
if (*op_string == '{')
|
||
{
|
||
op_string = check_VecOperations (op_string, NULL);
|
||
if (op_string == NULL)
|
||
return 0;
|
||
}
|
||
|
||
if (*op_string)
|
||
{
|
||
as_bad (_("junk `%s' after register"), op_string);
|
||
return 0;
|
||
}
|
||
temp = r->reg_type;
|
||
temp.bitfield.baseindex = 0;
|
||
i.types[this_operand] = operand_type_or (i.types[this_operand],
|
||
temp);
|
||
i.types[this_operand].bitfield.unspecified = 0;
|
||
i.op[this_operand].regs = r;
|
||
i.reg_operands++;
|
||
}
|
||
else if (*op_string == REGISTER_PREFIX)
|
||
{
|
||
as_bad (_("bad register name `%s'"), op_string);
|
||
return 0;
|
||
}
|
||
else if (*op_string == IMMEDIATE_PREFIX)
|
||
{
|
||
++op_string;
|
||
if (i.types[this_operand].bitfield.jumpabsolute)
|
||
{
|
||
as_bad (_("immediate operand illegal with absolute jump"));
|
||
return 0;
|
||
}
|
||
if (!i386_immediate (op_string))
|
||
return 0;
|
||
}
|
||
else if (RC_SAE_immediate (operand_string))
|
||
{
|
||
/* If it is a RC or SAE immediate, do nothing. */
|
||
;
|
||
}
|
||
else if (is_digit_char (*op_string)
|
||
|| is_identifier_char (*op_string)
|
||
|| *op_string == '(')
|
||
{
|
||
/* This is a memory reference of some sort. */
|
||
char *base_string;
|
||
|
||
/* Start and end of displacement string expression (if found). */
|
||
char *displacement_string_start;
|
||
char *displacement_string_end;
|
||
char *vop_start;
|
||
|
||
do_memory_reference:
|
||
if ((i.mem_operands == 1
|
||
&& !current_templates->start->opcode_modifier.isstring)
|
||
|| i.mem_operands == 2)
|
||
{
|
||
as_bad (_("too many memory references for `%s'"),
|
||
current_templates->start->name);
|
||
return 0;
|
||
}
|
||
|
||
/* Check for base index form. We detect the base index form by
|
||
looking for an ')' at the end of the operand, searching
|
||
for the '(' matching it, and finding a REGISTER_PREFIX or ','
|
||
after the '('. */
|
||
base_string = op_string + strlen (op_string);
|
||
|
||
/* Handle vector operations. */
|
||
vop_start = strchr (op_string, '{');
|
||
if (vop_start && vop_start < base_string)
|
||
{
|
||
if (check_VecOperations (vop_start, base_string) == NULL)
|
||
return 0;
|
||
base_string = vop_start;
|
||
}
|
||
|
||
--base_string;
|
||
if (is_space_char (*base_string))
|
||
--base_string;
|
||
|
||
/* If we only have a displacement, set-up for it to be parsed later. */
|
||
displacement_string_start = op_string;
|
||
displacement_string_end = base_string + 1;
|
||
|
||
if (*base_string == ')')
|
||
{
|
||
char *temp_string;
|
||
unsigned int parens_balanced = 1;
|
||
/* We've already checked that the number of left & right ()'s are
|
||
equal, so this loop will not be infinite. */
|
||
do
|
||
{
|
||
base_string--;
|
||
if (*base_string == ')')
|
||
parens_balanced++;
|
||
if (*base_string == '(')
|
||
parens_balanced--;
|
||
}
|
||
while (parens_balanced);
|
||
|
||
temp_string = base_string;
|
||
|
||
/* Skip past '(' and whitespace. */
|
||
++base_string;
|
||
if (is_space_char (*base_string))
|
||
++base_string;
|
||
|
||
if (*base_string == ','
|
||
|| ((i.base_reg = parse_register (base_string, &end_op))
|
||
!= NULL))
|
||
{
|
||
displacement_string_end = temp_string;
|
||
|
||
i.types[this_operand].bitfield.baseindex = 1;
|
||
|
||
if (i.base_reg)
|
||
{
|
||
base_string = end_op;
|
||
if (is_space_char (*base_string))
|
||
++base_string;
|
||
}
|
||
|
||
/* There may be an index reg or scale factor here. */
|
||
if (*base_string == ',')
|
||
{
|
||
++base_string;
|
||
if (is_space_char (*base_string))
|
||
++base_string;
|
||
|
||
if ((i.index_reg = parse_register (base_string, &end_op))
|
||
!= NULL)
|
||
{
|
||
base_string = end_op;
|
||
if (is_space_char (*base_string))
|
||
++base_string;
|
||
if (*base_string == ',')
|
||
{
|
||
++base_string;
|
||
if (is_space_char (*base_string))
|
||
++base_string;
|
||
}
|
||
else if (*base_string != ')')
|
||
{
|
||
as_bad (_("expecting `,' or `)' "
|
||
"after index register in `%s'"),
|
||
operand_string);
|
||
return 0;
|
||
}
|
||
}
|
||
else if (*base_string == REGISTER_PREFIX)
|
||
{
|
||
end_op = strchr (base_string, ',');
|
||
if (end_op)
|
||
*end_op = '\0';
|
||
as_bad (_("bad register name `%s'"), base_string);
|
||
return 0;
|
||
}
|
||
|
||
/* Check for scale factor. */
|
||
if (*base_string != ')')
|
||
{
|
||
char *end_scale = i386_scale (base_string);
|
||
|
||
if (!end_scale)
|
||
return 0;
|
||
|
||
base_string = end_scale;
|
||
if (is_space_char (*base_string))
|
||
++base_string;
|
||
if (*base_string != ')')
|
||
{
|
||
as_bad (_("expecting `)' "
|
||
"after scale factor in `%s'"),
|
||
operand_string);
|
||
return 0;
|
||
}
|
||
}
|
||
else if (!i.index_reg)
|
||
{
|
||
as_bad (_("expecting index register or scale factor "
|
||
"after `,'; got '%c'"),
|
||
*base_string);
|
||
return 0;
|
||
}
|
||
}
|
||
else if (*base_string != ')')
|
||
{
|
||
as_bad (_("expecting `,' or `)' "
|
||
"after base register in `%s'"),
|
||
operand_string);
|
||
return 0;
|
||
}
|
||
}
|
||
else if (*base_string == REGISTER_PREFIX)
|
||
{
|
||
end_op = strchr (base_string, ',');
|
||
if (end_op)
|
||
*end_op = '\0';
|
||
as_bad (_("bad register name `%s'"), base_string);
|
||
return 0;
|
||
}
|
||
}
|
||
|
||
/* If there's an expression beginning the operand, parse it,
|
||
assuming displacement_string_start and
|
||
displacement_string_end are meaningful. */
|
||
if (displacement_string_start != displacement_string_end)
|
||
{
|
||
if (!i386_displacement (displacement_string_start,
|
||
displacement_string_end))
|
||
return 0;
|
||
}
|
||
|
||
/* Special case for (%dx) while doing input/output op. */
|
||
if (i.base_reg
|
||
&& operand_type_equal (&i.base_reg->reg_type,
|
||
®16_inoutportreg)
|
||
&& i.index_reg == 0
|
||
&& i.log2_scale_factor == 0
|
||
&& i.seg[i.mem_operands] == 0
|
||
&& !operand_type_check (i.types[this_operand], disp))
|
||
{
|
||
i.types[this_operand] = inoutportreg;
|
||
return 1;
|
||
}
|
||
|
||
if (i386_index_check (operand_string) == 0)
|
||
return 0;
|
||
i.types[this_operand].bitfield.mem = 1;
|
||
i.mem_operands++;
|
||
}
|
||
else
|
||
{
|
||
/* It's not a memory operand; argh! */
|
||
as_bad (_("invalid char %s beginning operand %d `%s'"),
|
||
output_invalid (*op_string),
|
||
this_operand + 1,
|
||
op_string);
|
||
return 0;
|
||
}
|
||
return 1; /* Normal return. */
|
||
}
|
||
|
||
/* Calculate the maximum variable size (i.e., excluding fr_fix)
|
||
that an rs_machine_dependent frag may reach. */
|
||
|
||
unsigned int
|
||
i386_frag_max_var (fragS *frag)
|
||
{
|
||
/* The only relaxable frags are for jumps.
|
||
Unconditional jumps can grow by 4 bytes and others by 5 bytes. */
|
||
gas_assert (frag->fr_type == rs_machine_dependent);
|
||
return TYPE_FROM_RELAX_STATE (frag->fr_subtype) == UNCOND_JUMP ? 4 : 5;
|
||
}
|
||
|
||
/* md_estimate_size_before_relax()
|
||
|
||
Called just before relax() for rs_machine_dependent frags. The x86
|
||
assembler uses these frags to handle variable size jump
|
||
instructions.
|
||
|
||
Any symbol that is now undefined will not become defined.
|
||
Return the correct fr_subtype in the frag.
|
||
Return the initial "guess for variable size of frag" to caller.
|
||
The guess is actually the growth beyond the fixed part. Whatever
|
||
we do to grow the fixed or variable part contributes to our
|
||
returned value. */
|
||
|
||
int
|
||
md_estimate_size_before_relax (fragS *fragP, segT segment)
|
||
{
|
||
/* We've already got fragP->fr_subtype right; all we have to do is
|
||
check for un-relaxable symbols. On an ELF system, we can't relax
|
||
an externally visible symbol, because it may be overridden by a
|
||
shared library. */
|
||
if (S_GET_SEGMENT (fragP->fr_symbol) != segment
|
||
#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
|
||
|| (IS_ELF
|
||
&& (S_IS_EXTERNAL (fragP->fr_symbol)
|
||
|| S_IS_WEAK (fragP->fr_symbol)
|
||
|| ((symbol_get_bfdsym (fragP->fr_symbol)->flags
|
||
& BSF_GNU_INDIRECT_FUNCTION))))
|
||
#endif
|
||
#if defined (OBJ_COFF) && defined (TE_PE)
|
||
|| (OUTPUT_FLAVOR == bfd_target_coff_flavour
|
||
&& S_IS_WEAK (fragP->fr_symbol))
|
||
#endif
|
||
)
|
||
{
|
||
/* Symbol is undefined in this segment, or we need to keep a
|
||
reloc so that weak symbols can be overridden. */
|
||
int size = (fragP->fr_subtype & CODE16) ? 2 : 4;
|
||
enum bfd_reloc_code_real reloc_type;
|
||
unsigned char *opcode;
|
||
int old_fr_fix;
|
||
|
||
if (fragP->fr_var != NO_RELOC)
|
||
reloc_type = (enum bfd_reloc_code_real) fragP->fr_var;
|
||
else if (size == 2)
|
||
reloc_type = BFD_RELOC_16_PCREL;
|
||
else
|
||
reloc_type = BFD_RELOC_32_PCREL;
|
||
|
||
old_fr_fix = fragP->fr_fix;
|
||
opcode = (unsigned char *) fragP->fr_opcode;
|
||
|
||
switch (TYPE_FROM_RELAX_STATE (fragP->fr_subtype))
|
||
{
|
||
case UNCOND_JUMP:
|
||
/* Make jmp (0xeb) a (d)word displacement jump. */
|
||
opcode[0] = 0xe9;
|
||
fragP->fr_fix += size;
|
||
fix_new (fragP, old_fr_fix, size,
|
||
fragP->fr_symbol,
|
||
fragP->fr_offset, 1,
|
||
reloc_type);
|
||
break;
|
||
|
||
case COND_JUMP86:
|
||
if (size == 2
|
||
&& (!no_cond_jump_promotion || fragP->fr_var != NO_RELOC))
|
||
{
|
||
/* Negate the condition, and branch past an
|
||
unconditional jump. */
|
||
opcode[0] ^= 1;
|
||
opcode[1] = 3;
|
||
/* Insert an unconditional jump. */
|
||
opcode[2] = 0xe9;
|
||
/* We added two extra opcode bytes, and have a two byte
|
||
offset. */
|
||
fragP->fr_fix += 2 + 2;
|
||
fix_new (fragP, old_fr_fix + 2, 2,
|
||
fragP->fr_symbol,
|
||
fragP->fr_offset, 1,
|
||
reloc_type);
|
||
break;
|
||
}
|
||
/* Fall through. */
|
||
|
||
case COND_JUMP:
|
||
if (no_cond_jump_promotion && fragP->fr_var == NO_RELOC)
|
||
{
|
||
fixS *fixP;
|
||
|
||
fragP->fr_fix += 1;
|
||
fixP = fix_new (fragP, old_fr_fix, 1,
|
||
fragP->fr_symbol,
|
||
fragP->fr_offset, 1,
|
||
BFD_RELOC_8_PCREL);
|
||
fixP->fx_signed = 1;
|
||
break;
|
||
}
|
||
|
||
/* This changes the byte-displacement jump 0x7N
|
||
to the (d)word-displacement jump 0x0f,0x8N. */
|
||
opcode[1] = opcode[0] + 0x10;
|
||
opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
|
||
/* We've added an opcode byte. */
|
||
fragP->fr_fix += 1 + size;
|
||
fix_new (fragP, old_fr_fix + 1, size,
|
||
fragP->fr_symbol,
|
||
fragP->fr_offset, 1,
|
||
reloc_type);
|
||
break;
|
||
|
||
default:
|
||
BAD_CASE (fragP->fr_subtype);
|
||
break;
|
||
}
|
||
frag_wane (fragP);
|
||
return fragP->fr_fix - old_fr_fix;
|
||
}
|
||
|
||
/* Guess size depending on current relax state. Initially the relax
|
||
state will correspond to a short jump and we return 1, because
|
||
the variable part of the frag (the branch offset) is one byte
|
||
long. However, we can relax a section more than once and in that
|
||
case we must either set fr_subtype back to the unrelaxed state,
|
||
or return the value for the appropriate branch. */
|
||
return md_relax_table[fragP->fr_subtype].rlx_length;
|
||
}
|
||
|
||
/* Called after relax() is finished.
|
||
|
||
In: Address of frag.
|
||
fr_type == rs_machine_dependent.
|
||
fr_subtype is what the address relaxed to.
|
||
|
||
Out: Any fixSs and constants are set up.
|
||
Caller will turn frag into a ".space 0". */
|
||
|
||
void
|
||
md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED, segT sec ATTRIBUTE_UNUSED,
|
||
fragS *fragP)
|
||
{
|
||
unsigned char *opcode;
|
||
unsigned char *where_to_put_displacement = NULL;
|
||
offsetT target_address;
|
||
offsetT opcode_address;
|
||
unsigned int extension = 0;
|
||
offsetT displacement_from_opcode_start;
|
||
|
||
opcode = (unsigned char *) fragP->fr_opcode;
|
||
|
||
/* Address we want to reach in file space. */
|
||
target_address = S_GET_VALUE (fragP->fr_symbol) + fragP->fr_offset;
|
||
|
||
/* Address opcode resides at in file space. */
|
||
opcode_address = fragP->fr_address + fragP->fr_fix;
|
||
|
||
/* Displacement from opcode start to fill into instruction. */
|
||
displacement_from_opcode_start = target_address - opcode_address;
|
||
|
||
if ((fragP->fr_subtype & BIG) == 0)
|
||
{
|
||
/* Don't have to change opcode. */
|
||
extension = 1; /* 1 opcode + 1 displacement */
|
||
where_to_put_displacement = &opcode[1];
|
||
}
|
||
else
|
||
{
|
||
if (no_cond_jump_promotion
|
||
&& TYPE_FROM_RELAX_STATE (fragP->fr_subtype) != UNCOND_JUMP)
|
||
as_warn_where (fragP->fr_file, fragP->fr_line,
|
||
_("long jump required"));
|
||
|
||
switch (fragP->fr_subtype)
|
||
{
|
||
case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG):
|
||
extension = 4; /* 1 opcode + 4 displacement */
|
||
opcode[0] = 0xe9;
|
||
where_to_put_displacement = &opcode[1];
|
||
break;
|
||
|
||
case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16):
|
||
extension = 2; /* 1 opcode + 2 displacement */
|
||
opcode[0] = 0xe9;
|
||
where_to_put_displacement = &opcode[1];
|
||
break;
|
||
|
||
case ENCODE_RELAX_STATE (COND_JUMP, BIG):
|
||
case ENCODE_RELAX_STATE (COND_JUMP86, BIG):
|
||
extension = 5; /* 2 opcode + 4 displacement */
|
||
opcode[1] = opcode[0] + 0x10;
|
||
opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
|
||
where_to_put_displacement = &opcode[2];
|
||
break;
|
||
|
||
case ENCODE_RELAX_STATE (COND_JUMP, BIG16):
|
||
extension = 3; /* 2 opcode + 2 displacement */
|
||
opcode[1] = opcode[0] + 0x10;
|
||
opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
|
||
where_to_put_displacement = &opcode[2];
|
||
break;
|
||
|
||
case ENCODE_RELAX_STATE (COND_JUMP86, BIG16):
|
||
extension = 4;
|
||
opcode[0] ^= 1;
|
||
opcode[1] = 3;
|
||
opcode[2] = 0xe9;
|
||
where_to_put_displacement = &opcode[3];
|
||
break;
|
||
|
||
default:
|
||
BAD_CASE (fragP->fr_subtype);
|
||
break;
|
||
}
|
||
}
|
||
|
||
/* If size if less then four we are sure that the operand fits,
|
||
but if it's 4, then it could be that the displacement is larger
|
||
then -/+ 2GB. */
|
||
if (DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype) == 4
|
||
&& object_64bit
|
||
&& ((addressT) (displacement_from_opcode_start - extension
|
||
+ ((addressT) 1 << 31))
|
||
> (((addressT) 2 << 31) - 1)))
|
||
{
|
||
as_bad_where (fragP->fr_file, fragP->fr_line,
|
||
_("jump target out of range"));
|
||
/* Make us emit 0. */
|
||
displacement_from_opcode_start = extension;
|
||
}
|
||
/* Now put displacement after opcode. */
|
||
md_number_to_chars ((char *) where_to_put_displacement,
|
||
(valueT) (displacement_from_opcode_start - extension),
|
||
DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype));
|
||
fragP->fr_fix += extension;
|
||
}
|
||
|
||
/* Apply a fixup (fixP) to segment data, once it has been determined
|
||
by our caller that we have all the info we need to fix it up.
|
||
|
||
Parameter valP is the pointer to the value of the bits.
|
||
|
||
On the 386, immediates, displacements, and data pointers are all in
|
||
the same (little-endian) format, so we don't need to care about which
|
||
we are handling. */
|
||
|
||
void
|
||
md_apply_fix (fixS *fixP, valueT *valP, segT seg ATTRIBUTE_UNUSED)
|
||
{
|
||
char *p = fixP->fx_where + fixP->fx_frag->fr_literal;
|
||
valueT value = *valP;
|
||
|
||
#if !defined (TE_Mach)
|
||
if (fixP->fx_pcrel)
|
||
{
|
||
switch (fixP->fx_r_type)
|
||
{
|
||
default:
|
||
break;
|
||
|
||
case BFD_RELOC_64:
|
||
fixP->fx_r_type = BFD_RELOC_64_PCREL;
|
||
break;
|
||
case BFD_RELOC_32:
|
||
case BFD_RELOC_X86_64_32S:
|
||
fixP->fx_r_type = BFD_RELOC_32_PCREL;
|
||
break;
|
||
case BFD_RELOC_16:
|
||
fixP->fx_r_type = BFD_RELOC_16_PCREL;
|
||
break;
|
||
case BFD_RELOC_8:
|
||
fixP->fx_r_type = BFD_RELOC_8_PCREL;
|
||
break;
|
||
}
|
||
}
|
||
|
||
if (fixP->fx_addsy != NULL
|
||
&& (fixP->fx_r_type == BFD_RELOC_32_PCREL
|
||
|| fixP->fx_r_type == BFD_RELOC_64_PCREL
|
||
|| fixP->fx_r_type == BFD_RELOC_16_PCREL
|
||
|| fixP->fx_r_type == BFD_RELOC_8_PCREL
|
||
|| fixP->fx_r_type == BFD_RELOC_X86_64_PC32_BND)
|
||
&& !use_rela_relocations)
|
||
{
|
||
/* This is a hack. There should be a better way to handle this.
|
||
This covers for the fact that bfd_install_relocation will
|
||
subtract the current location (for partial_inplace, PC relative
|
||
relocations); see more below. */
|
||
#ifndef OBJ_AOUT
|
||
if (IS_ELF
|
||
#ifdef TE_PE
|
||
|| OUTPUT_FLAVOR == bfd_target_coff_flavour
|
||
#endif
|
||
)
|
||
value += fixP->fx_where + fixP->fx_frag->fr_address;
|
||
#endif
|
||
#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
|
||
if (IS_ELF)
|
||
{
|
||
segT sym_seg = S_GET_SEGMENT (fixP->fx_addsy);
|
||
|
||
if ((sym_seg == seg
|
||
|| (symbol_section_p (fixP->fx_addsy)
|
||
&& sym_seg != absolute_section))
|
||
&& !generic_force_reloc (fixP))
|
||
{
|
||
/* Yes, we add the values in twice. This is because
|
||
bfd_install_relocation subtracts them out again. I think
|
||
bfd_install_relocation is broken, but I don't dare change
|
||
it. FIXME. */
|
||
value += fixP->fx_where + fixP->fx_frag->fr_address;
|
||
}
|
||
}
|
||
#endif
|
||
#if defined (OBJ_COFF) && defined (TE_PE)
|
||
/* For some reason, the PE format does not store a
|
||
section address offset for a PC relative symbol. */
|
||
if (S_GET_SEGMENT (fixP->fx_addsy) != seg
|
||
|| S_IS_WEAK (fixP->fx_addsy))
|
||
value += md_pcrel_from (fixP);
|
||
#endif
|
||
}
|
||
#if defined (OBJ_COFF) && defined (TE_PE)
|
||
if (fixP->fx_addsy != NULL
|
||
&& S_IS_WEAK (fixP->fx_addsy)
|
||
/* PR 16858: Do not modify weak function references. */
|
||
&& ! fixP->fx_pcrel)
|
||
{
|
||
#if !defined (TE_PEP)
|
||
/* For x86 PE weak function symbols are neither PC-relative
|
||
nor do they set S_IS_FUNCTION. So the only reliable way
|
||
to detect them is to check the flags of their containing
|
||
section. */
|
||
if (S_GET_SEGMENT (fixP->fx_addsy) != NULL
|
||
&& S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_CODE)
|
||
;
|
||
else
|
||
#endif
|
||
value -= S_GET_VALUE (fixP->fx_addsy);
|
||
}
|
||
#endif
|
||
|
||
/* Fix a few things - the dynamic linker expects certain values here,
|
||
and we must not disappoint it. */
|
||
#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
|
||
if (IS_ELF && fixP->fx_addsy)
|
||
switch (fixP->fx_r_type)
|
||
{
|
||
case BFD_RELOC_386_PLT32:
|
||
case BFD_RELOC_X86_64_PLT32:
|
||
case BFD_RELOC_X86_64_PLT32_BND:
|
||
/* Make the jump instruction point to the address of the operand. At
|
||
runtime we merely add the offset to the actual PLT entry. */
|
||
value = -4;
|
||
break;
|
||
|
||
case BFD_RELOC_386_TLS_GD:
|
||
case BFD_RELOC_386_TLS_LDM:
|
||
case BFD_RELOC_386_TLS_IE_32:
|
||
case BFD_RELOC_386_TLS_IE:
|
||
case BFD_RELOC_386_TLS_GOTIE:
|
||
case BFD_RELOC_386_TLS_GOTDESC:
|
||
case BFD_RELOC_X86_64_TLSGD:
|
||
case BFD_RELOC_X86_64_TLSLD:
|
||
case BFD_RELOC_X86_64_GOTTPOFF:
|
||
case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
|
||
value = 0; /* Fully resolved at runtime. No addend. */
|
||
/* Fallthrough */
|
||
case BFD_RELOC_386_TLS_LE:
|
||
case BFD_RELOC_386_TLS_LDO_32:
|
||
case BFD_RELOC_386_TLS_LE_32:
|
||
case BFD_RELOC_X86_64_DTPOFF32:
|
||
case BFD_RELOC_X86_64_DTPOFF64:
|
||
case BFD_RELOC_X86_64_TPOFF32:
|
||
case BFD_RELOC_X86_64_TPOFF64:
|
||
S_SET_THREAD_LOCAL (fixP->fx_addsy);
|
||
break;
|
||
|
||
case BFD_RELOC_386_TLS_DESC_CALL:
|
||
case BFD_RELOC_X86_64_TLSDESC_CALL:
|
||
value = 0; /* Fully resolved at runtime. No addend. */
|
||
S_SET_THREAD_LOCAL (fixP->fx_addsy);
|
||
fixP->fx_done = 0;
|
||
return;
|
||
|
||
case BFD_RELOC_386_GOT32:
|
||
case BFD_RELOC_X86_64_GOT32:
|
||
value = 0; /* Fully resolved at runtime. No addend. */
|
||
break;
|
||
|
||
case BFD_RELOC_VTABLE_INHERIT:
|
||
case BFD_RELOC_VTABLE_ENTRY:
|
||
fixP->fx_done = 0;
|
||
return;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
#endif /* defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) */
|
||
*valP = value;
|
||
#endif /* !defined (TE_Mach) */
|
||
|
||
/* Are we finished with this relocation now? */
|
||
if (fixP->fx_addsy == NULL)
|
||
fixP->fx_done = 1;
|
||
#if defined (OBJ_COFF) && defined (TE_PE)
|
||
else if (fixP->fx_addsy != NULL && S_IS_WEAK (fixP->fx_addsy))
|
||
{
|
||
fixP->fx_done = 0;
|
||
/* Remember value for tc_gen_reloc. */
|
||
fixP->fx_addnumber = value;
|
||
/* Clear out the frag for now. */
|
||
value = 0;
|
||
}
|
||
#endif
|
||
else if (use_rela_relocations)
|
||
{
|
||
fixP->fx_no_overflow = 1;
|
||
/* Remember value for tc_gen_reloc. */
|
||
fixP->fx_addnumber = value;
|
||
value = 0;
|
||
}
|
||
|
||
md_number_to_chars (p, value, fixP->fx_size);
|
||
}
|
||
|
||
char *
|
||
md_atof (int type, char *litP, int *sizeP)
|
||
{
|
||
/* This outputs the LITTLENUMs in REVERSE order;
|
||
in accord with the bigendian 386. */
|
||
return ieee_md_atof (type, litP, sizeP, FALSE);
|
||
}
|
||
|
||
static char output_invalid_buf[sizeof (unsigned char) * 2 + 6];
|
||
|
||
static char *
|
||
output_invalid (int c)
|
||
{
|
||
if (ISPRINT (c))
|
||
snprintf (output_invalid_buf, sizeof (output_invalid_buf),
|
||
"'%c'", c);
|
||
else
|
||
snprintf (output_invalid_buf, sizeof (output_invalid_buf),
|
||
"(0x%x)", (unsigned char) c);
|
||
return output_invalid_buf;
|
||
}
|
||
|
||
/* REG_STRING starts *before* REGISTER_PREFIX. */
|
||
|
||
static const reg_entry *
|
||
parse_real_register (char *reg_string, char **end_op)
|
||
{
|
||
char *s = reg_string;
|
||
char *p;
|
||
char reg_name_given[MAX_REG_NAME_SIZE + 1];
|
||
const reg_entry *r;
|
||
|
||
/* Skip possible REGISTER_PREFIX and possible whitespace. */
|
||
if (*s == REGISTER_PREFIX)
|
||
++s;
|
||
|
||
if (is_space_char (*s))
|
||
++s;
|
||
|
||
p = reg_name_given;
|
||
while ((*p++ = register_chars[(unsigned char) *s]) != '\0')
|
||
{
|
||
if (p >= reg_name_given + MAX_REG_NAME_SIZE)
|
||
return (const reg_entry *) NULL;
|
||
s++;
|
||
}
|
||
|
||
/* For naked regs, make sure that we are not dealing with an identifier.
|
||
This prevents confusing an identifier like `eax_var' with register
|
||
`eax'. */
|
||
if (allow_naked_reg && identifier_chars[(unsigned char) *s])
|
||
return (const reg_entry *) NULL;
|
||
|
||
*end_op = s;
|
||
|
||
r = (const reg_entry *) hash_find (reg_hash, reg_name_given);
|
||
|
||
/* Handle floating point regs, allowing spaces in the (i) part. */
|
||
if (r == i386_regtab /* %st is first entry of table */)
|
||
{
|
||
if (is_space_char (*s))
|
||
++s;
|
||
if (*s == '(')
|
||
{
|
||
++s;
|
||
if (is_space_char (*s))
|
||
++s;
|
||
if (*s >= '0' && *s <= '7')
|
||
{
|
||
int fpr = *s - '0';
|
||
++s;
|
||
if (is_space_char (*s))
|
||
++s;
|
||
if (*s == ')')
|
||
{
|
||
*end_op = s + 1;
|
||
r = (const reg_entry *) hash_find (reg_hash, "st(0)");
|
||
know (r);
|
||
return r + fpr;
|
||
}
|
||
}
|
||
/* We have "%st(" then garbage. */
|
||
return (const reg_entry *) NULL;
|
||
}
|
||
}
|
||
|
||
if (r == NULL || allow_pseudo_reg)
|
||
return r;
|
||
|
||
if (operand_type_all_zero (&r->reg_type))
|
||
return (const reg_entry *) NULL;
|
||
|
||
if ((r->reg_type.bitfield.reg32
|
||
|| r->reg_type.bitfield.sreg3
|
||
|| r->reg_type.bitfield.control
|
||
|| r->reg_type.bitfield.debug
|
||
|| r->reg_type.bitfield.test)
|
||
&& !cpu_arch_flags.bitfield.cpui386)
|
||
return (const reg_entry *) NULL;
|
||
|
||
if (r->reg_type.bitfield.floatreg
|
||
&& !cpu_arch_flags.bitfield.cpu8087
|
||
&& !cpu_arch_flags.bitfield.cpu287
|
||
&& !cpu_arch_flags.bitfield.cpu387)
|
||
return (const reg_entry *) NULL;
|
||
|
||
if (r->reg_type.bitfield.regmmx && !cpu_arch_flags.bitfield.cpummx)
|
||
return (const reg_entry *) NULL;
|
||
|
||
if (r->reg_type.bitfield.regxmm && !cpu_arch_flags.bitfield.cpusse)
|
||
return (const reg_entry *) NULL;
|
||
|
||
if (r->reg_type.bitfield.regymm && !cpu_arch_flags.bitfield.cpuavx)
|
||
return (const reg_entry *) NULL;
|
||
|
||
if ((r->reg_type.bitfield.regzmm || r->reg_type.bitfield.regmask)
|
||
&& !cpu_arch_flags.bitfield.cpuavx512f)
|
||
return (const reg_entry *) NULL;
|
||
|
||
/* Don't allow fake index register unless allow_index_reg isn't 0. */
|
||
if (!allow_index_reg
|
||
&& (r->reg_num == RegEiz || r->reg_num == RegRiz))
|
||
return (const reg_entry *) NULL;
|
||
|
||
/* Upper 16 vector register is only available with VREX in 64bit
|
||
mode. */
|
||
if ((r->reg_flags & RegVRex))
|
||
{
|
||
if (!cpu_arch_flags.bitfield.cpuvrex
|
||
|| flag_code != CODE_64BIT)
|
||
return (const reg_entry *) NULL;
|
||
|
||
i.need_vrex = 1;
|
||
}
|
||
|
||
if (((r->reg_flags & (RegRex64 | RegRex))
|
||
|| r->reg_type.bitfield.reg64)
|
||
&& (!cpu_arch_flags.bitfield.cpulm
|
||
|| !operand_type_equal (&r->reg_type, &control))
|
||
&& flag_code != CODE_64BIT)
|
||
return (const reg_entry *) NULL;
|
||
|
||
if (r->reg_type.bitfield.sreg3 && r->reg_num == RegFlat && !intel_syntax)
|
||
return (const reg_entry *) NULL;
|
||
|
||
return r;
|
||
}
|
||
|
||
/* REG_STRING starts *before* REGISTER_PREFIX. */
|
||
|
||
static const reg_entry *
|
||
parse_register (char *reg_string, char **end_op)
|
||
{
|
||
const reg_entry *r;
|
||
|
||
if (*reg_string == REGISTER_PREFIX || allow_naked_reg)
|
||
r = parse_real_register (reg_string, end_op);
|
||
else
|
||
r = NULL;
|
||
if (!r)
|
||
{
|
||
char *save = input_line_pointer;
|
||
char c;
|
||
symbolS *symbolP;
|
||
|
||
input_line_pointer = reg_string;
|
||
c = get_symbol_end ();
|
||
symbolP = symbol_find (reg_string);
|
||
if (symbolP && S_GET_SEGMENT (symbolP) == reg_section)
|
||
{
|
||
const expressionS *e = symbol_get_value_expression (symbolP);
|
||
|
||
know (e->X_op == O_register);
|
||
know (e->X_add_number >= 0
|
||
&& (valueT) e->X_add_number < i386_regtab_size);
|
||
r = i386_regtab + e->X_add_number;
|
||
if ((r->reg_flags & RegVRex))
|
||
i.need_vrex = 1;
|
||
*end_op = input_line_pointer;
|
||
}
|
||
*input_line_pointer = c;
|
||
input_line_pointer = save;
|
||
}
|
||
return r;
|
||
}
|
||
|
||
int
|
||
i386_parse_name (char *name, expressionS *e, char *nextcharP)
|
||
{
|
||
const reg_entry *r;
|
||
char *end = input_line_pointer;
|
||
|
||
*end = *nextcharP;
|
||
r = parse_register (name, &input_line_pointer);
|
||
if (r && end <= input_line_pointer)
|
||
{
|
||
*nextcharP = *input_line_pointer;
|
||
*input_line_pointer = 0;
|
||
e->X_op = O_register;
|
||
e->X_add_number = r - i386_regtab;
|
||
return 1;
|
||
}
|
||
input_line_pointer = end;
|
||
*end = 0;
|
||
return intel_syntax ? i386_intel_parse_name (name, e) : 0;
|
||
}
|
||
|
||
void
|
||
md_operand (expressionS *e)
|
||
{
|
||
char *end;
|
||
const reg_entry *r;
|
||
|
||
switch (*input_line_pointer)
|
||
{
|
||
case REGISTER_PREFIX:
|
||
r = parse_real_register (input_line_pointer, &end);
|
||
if (r)
|
||
{
|
||
e->X_op = O_register;
|
||
e->X_add_number = r - i386_regtab;
|
||
input_line_pointer = end;
|
||
}
|
||
break;
|
||
|
||
case '[':
|
||
gas_assert (intel_syntax);
|
||
end = input_line_pointer++;
|
||
expression (e);
|
||
if (*input_line_pointer == ']')
|
||
{
|
||
++input_line_pointer;
|
||
e->X_op_symbol = make_expr_symbol (e);
|
||
e->X_add_symbol = NULL;
|
||
e->X_add_number = 0;
|
||
e->X_op = O_index;
|
||
}
|
||
else
|
||
{
|
||
e->X_op = O_absent;
|
||
input_line_pointer = end;
|
||
}
|
||
break;
|
||
}
|
||
}
|
||
|
||
|
||
#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
|
||
const char *md_shortopts = "kVQ:sqn";
|
||
#else
|
||
const char *md_shortopts = "qn";
|
||
#endif
|
||
|
||
#define OPTION_32 (OPTION_MD_BASE + 0)
|
||
#define OPTION_64 (OPTION_MD_BASE + 1)
|
||
#define OPTION_DIVIDE (OPTION_MD_BASE + 2)
|
||
#define OPTION_MARCH (OPTION_MD_BASE + 3)
|
||
#define OPTION_MTUNE (OPTION_MD_BASE + 4)
|
||
#define OPTION_MMNEMONIC (OPTION_MD_BASE + 5)
|
||
#define OPTION_MSYNTAX (OPTION_MD_BASE + 6)
|
||
#define OPTION_MINDEX_REG (OPTION_MD_BASE + 7)
|
||
#define OPTION_MNAKED_REG (OPTION_MD_BASE + 8)
|
||
#define OPTION_MOLD_GCC (OPTION_MD_BASE + 9)
|
||
#define OPTION_MSSE2AVX (OPTION_MD_BASE + 10)
|
||
#define OPTION_MSSE_CHECK (OPTION_MD_BASE + 11)
|
||
#define OPTION_MOPERAND_CHECK (OPTION_MD_BASE + 12)
|
||
#define OPTION_MAVXSCALAR (OPTION_MD_BASE + 13)
|
||
#define OPTION_X32 (OPTION_MD_BASE + 14)
|
||
#define OPTION_MADD_BND_PREFIX (OPTION_MD_BASE + 15)
|
||
#define OPTION_MEVEXLIG (OPTION_MD_BASE + 16)
|
||
#define OPTION_MEVEXWIG (OPTION_MD_BASE + 17)
|
||
#define OPTION_MBIG_OBJ (OPTION_MD_BASE + 18)
|
||
#define OPTION_omit_lock_prefix (OPTION_MD_BASE + 19)
|
||
|
||
struct option md_longopts[] =
|
||
{
|
||
{"32", no_argument, NULL, OPTION_32},
|
||
#if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
|
||
|| defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
|
||
{"64", no_argument, NULL, OPTION_64},
|
||
#endif
|
||
#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
|
||
{"x32", no_argument, NULL, OPTION_X32},
|
||
#endif
|
||
{"divide", no_argument, NULL, OPTION_DIVIDE},
|
||
{"march", required_argument, NULL, OPTION_MARCH},
|
||
{"mtune", required_argument, NULL, OPTION_MTUNE},
|
||
{"mmnemonic", required_argument, NULL, OPTION_MMNEMONIC},
|
||
{"msyntax", required_argument, NULL, OPTION_MSYNTAX},
|
||
{"mindex-reg", no_argument, NULL, OPTION_MINDEX_REG},
|
||
{"mnaked-reg", no_argument, NULL, OPTION_MNAKED_REG},
|
||
{"mold-gcc", no_argument, NULL, OPTION_MOLD_GCC},
|
||
{"msse2avx", no_argument, NULL, OPTION_MSSE2AVX},
|
||
{"msse-check", required_argument, NULL, OPTION_MSSE_CHECK},
|
||
{"moperand-check", required_argument, NULL, OPTION_MOPERAND_CHECK},
|
||
{"mavxscalar", required_argument, NULL, OPTION_MAVXSCALAR},
|
||
{"madd-bnd-prefix", no_argument, NULL, OPTION_MADD_BND_PREFIX},
|
||
{"mevexlig", required_argument, NULL, OPTION_MEVEXLIG},
|
||
{"mevexwig", required_argument, NULL, OPTION_MEVEXWIG},
|
||
# if defined (TE_PE) || defined (TE_PEP)
|
||
{"mbig-obj", no_argument, NULL, OPTION_MBIG_OBJ},
|
||
#endif
|
||
{"momit-lock-prefix", required_argument, NULL, OPTION_omit_lock_prefix},
|
||
{NULL, no_argument, NULL, 0}
|
||
};
|
||
size_t md_longopts_size = sizeof (md_longopts);
|
||
|
||
int
|
||
md_parse_option (int c, char *arg)
|
||
{
|
||
unsigned int j;
|
||
char *arch, *next;
|
||
|
||
switch (c)
|
||
{
|
||
case 'n':
|
||
optimize_align_code = 0;
|
||
break;
|
||
|
||
case 'q':
|
||
quiet_warnings = 1;
|
||
break;
|
||
|
||
#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
|
||
/* -Qy, -Qn: SVR4 arguments controlling whether a .comment section
|
||
should be emitted or not. FIXME: Not implemented. */
|
||
case 'Q':
|
||
break;
|
||
|
||
/* -V: SVR4 argument to print version ID. */
|
||
case 'V':
|
||
print_version_id ();
|
||
break;
|
||
|
||
/* -k: Ignore for FreeBSD compatibility. */
|
||
case 'k':
|
||
break;
|
||
|
||
case 's':
|
||
/* -s: On i386 Solaris, this tells the native assembler to use
|
||
.stab instead of .stab.excl. We always use .stab anyhow. */
|
||
break;
|
||
#endif
|
||
#if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
|
||
|| defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
|
||
case OPTION_64:
|
||
{
|
||
const char **list, **l;
|
||
|
||
list = bfd_target_list ();
|
||
for (l = list; *l != NULL; l++)
|
||
if (CONST_STRNEQ (*l, "elf64-x86-64")
|
||
|| strcmp (*l, "coff-x86-64") == 0
|
||
|| strcmp (*l, "pe-x86-64") == 0
|
||
|| strcmp (*l, "pei-x86-64") == 0
|
||
|| strcmp (*l, "mach-o-x86-64") == 0)
|
||
{
|
||
default_arch = "x86_64";
|
||
break;
|
||
}
|
||
if (*l == NULL)
|
||
as_fatal (_("no compiled in support for x86_64"));
|
||
free (list);
|
||
}
|
||
break;
|
||
#endif
|
||
|
||
#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
|
||
case OPTION_X32:
|
||
if (IS_ELF)
|
||
{
|
||
const char **list, **l;
|
||
|
||
list = bfd_target_list ();
|
||
for (l = list; *l != NULL; l++)
|
||
if (CONST_STRNEQ (*l, "elf32-x86-64"))
|
||
{
|
||
default_arch = "x86_64:32";
|
||
break;
|
||
}
|
||
if (*l == NULL)
|
||
as_fatal (_("no compiled in support for 32bit x86_64"));
|
||
free (list);
|
||
}
|
||
else
|
||
as_fatal (_("32bit x86_64 is only supported for ELF"));
|
||
break;
|
||
#endif
|
||
|
||
case OPTION_32:
|
||
default_arch = "i386";
|
||
break;
|
||
|
||
case OPTION_DIVIDE:
|
||
#ifdef SVR4_COMMENT_CHARS
|
||
{
|
||
char *n, *t;
|
||
const char *s;
|
||
|
||
n = (char *) xmalloc (strlen (i386_comment_chars) + 1);
|
||
t = n;
|
||
for (s = i386_comment_chars; *s != '\0'; s++)
|
||
if (*s != '/')
|
||
*t++ = *s;
|
||
*t = '\0';
|
||
i386_comment_chars = n;
|
||
}
|
||
#endif
|
||
break;
|
||
|
||
case OPTION_MARCH:
|
||
arch = xstrdup (arg);
|
||
do
|
||
{
|
||
if (*arch == '.')
|
||
as_fatal (_("invalid -march= option: `%s'"), arg);
|
||
next = strchr (arch, '+');
|
||
if (next)
|
||
*next++ = '\0';
|
||
for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
|
||
{
|
||
if (strcmp (arch, cpu_arch [j].name) == 0)
|
||
{
|
||
/* Processor. */
|
||
if (! cpu_arch[j].flags.bitfield.cpui386)
|
||
continue;
|
||
|
||
cpu_arch_name = cpu_arch[j].name;
|
||
cpu_sub_arch_name = NULL;
|
||
cpu_arch_flags = cpu_arch[j].flags;
|
||
cpu_arch_isa = cpu_arch[j].type;
|
||
cpu_arch_isa_flags = cpu_arch[j].flags;
|
||
if (!cpu_arch_tune_set)
|
||
{
|
||
cpu_arch_tune = cpu_arch_isa;
|
||
cpu_arch_tune_flags = cpu_arch_isa_flags;
|
||
}
|
||
break;
|
||
}
|
||
else if (*cpu_arch [j].name == '.'
|
||
&& strcmp (arch, cpu_arch [j].name + 1) == 0)
|
||
{
|
||
/* ISA entension. */
|
||
i386_cpu_flags flags;
|
||
|
||
if (!cpu_arch[j].negated)
|
||
flags = cpu_flags_or (cpu_arch_flags,
|
||
cpu_arch[j].flags);
|
||
else
|
||
flags = cpu_flags_and_not (cpu_arch_flags,
|
||
cpu_arch[j].flags);
|
||
if (!cpu_flags_equal (&flags, &cpu_arch_flags))
|
||
{
|
||
if (cpu_sub_arch_name)
|
||
{
|
||
char *name = cpu_sub_arch_name;
|
||
cpu_sub_arch_name = concat (name,
|
||
cpu_arch[j].name,
|
||
(const char *) NULL);
|
||
free (name);
|
||
}
|
||
else
|
||
cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
|
||
cpu_arch_flags = flags;
|
||
cpu_arch_isa_flags = flags;
|
||
}
|
||
break;
|
||
}
|
||
}
|
||
|
||
if (j >= ARRAY_SIZE (cpu_arch))
|
||
as_fatal (_("invalid -march= option: `%s'"), arg);
|
||
|
||
arch = next;
|
||
}
|
||
while (next != NULL );
|
||
break;
|
||
|
||
case OPTION_MTUNE:
|
||
if (*arg == '.')
|
||
as_fatal (_("invalid -mtune= option: `%s'"), arg);
|
||
for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
|
||
{
|
||
if (strcmp (arg, cpu_arch [j].name) == 0)
|
||
{
|
||
cpu_arch_tune_set = 1;
|
||
cpu_arch_tune = cpu_arch [j].type;
|
||
cpu_arch_tune_flags = cpu_arch[j].flags;
|
||
break;
|
||
}
|
||
}
|
||
if (j >= ARRAY_SIZE (cpu_arch))
|
||
as_fatal (_("invalid -mtune= option: `%s'"), arg);
|
||
break;
|
||
|
||
case OPTION_MMNEMONIC:
|
||
if (strcasecmp (arg, "att") == 0)
|
||
intel_mnemonic = 0;
|
||
else if (strcasecmp (arg, "intel") == 0)
|
||
intel_mnemonic = 1;
|
||
else
|
||
as_fatal (_("invalid -mmnemonic= option: `%s'"), arg);
|
||
break;
|
||
|
||
case OPTION_MSYNTAX:
|
||
if (strcasecmp (arg, "att") == 0)
|
||
intel_syntax = 0;
|
||
else if (strcasecmp (arg, "intel") == 0)
|
||
intel_syntax = 1;
|
||
else
|
||
as_fatal (_("invalid -msyntax= option: `%s'"), arg);
|
||
break;
|
||
|
||
case OPTION_MINDEX_REG:
|
||
allow_index_reg = 1;
|
||
break;
|
||
|
||
case OPTION_MNAKED_REG:
|
||
allow_naked_reg = 1;
|
||
break;
|
||
|
||
case OPTION_MOLD_GCC:
|
||
old_gcc = 1;
|
||
break;
|
||
|
||
case OPTION_MSSE2AVX:
|
||
sse2avx = 1;
|
||
break;
|
||
|
||
case OPTION_MSSE_CHECK:
|
||
if (strcasecmp (arg, "error") == 0)
|
||
sse_check = check_error;
|
||
else if (strcasecmp (arg, "warning") == 0)
|
||
sse_check = check_warning;
|
||
else if (strcasecmp (arg, "none") == 0)
|
||
sse_check = check_none;
|
||
else
|
||
as_fatal (_("invalid -msse-check= option: `%s'"), arg);
|
||
break;
|
||
|
||
case OPTION_MOPERAND_CHECK:
|
||
if (strcasecmp (arg, "error") == 0)
|
||
operand_check = check_error;
|
||
else if (strcasecmp (arg, "warning") == 0)
|
||
operand_check = check_warning;
|
||
else if (strcasecmp (arg, "none") == 0)
|
||
operand_check = check_none;
|
||
else
|
||
as_fatal (_("invalid -moperand-check= option: `%s'"), arg);
|
||
break;
|
||
|
||
case OPTION_MAVXSCALAR:
|
||
if (strcasecmp (arg, "128") == 0)
|
||
avxscalar = vex128;
|
||
else if (strcasecmp (arg, "256") == 0)
|
||
avxscalar = vex256;
|
||
else
|
||
as_fatal (_("invalid -mavxscalar= option: `%s'"), arg);
|
||
break;
|
||
|
||
case OPTION_MADD_BND_PREFIX:
|
||
add_bnd_prefix = 1;
|
||
break;
|
||
|
||
case OPTION_MEVEXLIG:
|
||
if (strcmp (arg, "128") == 0)
|
||
evexlig = evexl128;
|
||
else if (strcmp (arg, "256") == 0)
|
||
evexlig = evexl256;
|
||
else if (strcmp (arg, "512") == 0)
|
||
evexlig = evexl512;
|
||
else
|
||
as_fatal (_("invalid -mevexlig= option: `%s'"), arg);
|
||
break;
|
||
|
||
case OPTION_MEVEXWIG:
|
||
if (strcmp (arg, "0") == 0)
|
||
evexwig = evexw0;
|
||
else if (strcmp (arg, "1") == 0)
|
||
evexwig = evexw1;
|
||
else
|
||
as_fatal (_("invalid -mevexwig= option: `%s'"), arg);
|
||
break;
|
||
|
||
# if defined (TE_PE) || defined (TE_PEP)
|
||
case OPTION_MBIG_OBJ:
|
||
use_big_obj = 1;
|
||
break;
|
||
#endif
|
||
|
||
case OPTION_omit_lock_prefix:
|
||
if (strcasecmp (arg, "yes") == 0)
|
||
omit_lock_prefix = 1;
|
||
else if (strcasecmp (arg, "no") == 0)
|
||
omit_lock_prefix = 0;
|
||
else
|
||
as_fatal (_("invalid -momit-lock-prefix= option: `%s'"), arg);
|
||
break;
|
||
|
||
default:
|
||
return 0;
|
||
}
|
||
return 1;
|
||
}
|
||
|
||
#define MESSAGE_TEMPLATE \
|
||
" "
|
||
|
||
static void
|
||
show_arch (FILE *stream, int ext, int check)
|
||
{
|
||
static char message[] = MESSAGE_TEMPLATE;
|
||
char *start = message + 27;
|
||
char *p;
|
||
int size = sizeof (MESSAGE_TEMPLATE);
|
||
int left;
|
||
const char *name;
|
||
int len;
|
||
unsigned int j;
|
||
|
||
p = start;
|
||
left = size - (start - message);
|
||
for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
|
||
{
|
||
/* Should it be skipped? */
|
||
if (cpu_arch [j].skip)
|
||
continue;
|
||
|
||
name = cpu_arch [j].name;
|
||
len = cpu_arch [j].len;
|
||
if (*name == '.')
|
||
{
|
||
/* It is an extension. Skip if we aren't asked to show it. */
|
||
if (ext)
|
||
{
|
||
name++;
|
||
len--;
|
||
}
|
||
else
|
||
continue;
|
||
}
|
||
else if (ext)
|
||
{
|
||
/* It is an processor. Skip if we show only extension. */
|
||
continue;
|
||
}
|
||
else if (check && ! cpu_arch[j].flags.bitfield.cpui386)
|
||
{
|
||
/* It is an impossible processor - skip. */
|
||
continue;
|
||
}
|
||
|
||
/* Reserve 2 spaces for ", " or ",\0" */
|
||
left -= len + 2;
|
||
|
||
/* Check if there is any room. */
|
||
if (left >= 0)
|
||
{
|
||
if (p != start)
|
||
{
|
||
*p++ = ',';
|
||
*p++ = ' ';
|
||
}
|
||
p = mempcpy (p, name, len);
|
||
}
|
||
else
|
||
{
|
||
/* Output the current message now and start a new one. */
|
||
*p++ = ',';
|
||
*p = '\0';
|
||
fprintf (stream, "%s\n", message);
|
||
p = start;
|
||
left = size - (start - message) - len - 2;
|
||
|
||
gas_assert (left >= 0);
|
||
|
||
p = mempcpy (p, name, len);
|
||
}
|
||
}
|
||
|
||
*p = '\0';
|
||
fprintf (stream, "%s\n", message);
|
||
}
|
||
|
||
void
|
||
md_show_usage (FILE *stream)
|
||
{
|
||
#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
|
||
fprintf (stream, _("\
|
||
-Q ignored\n\
|
||
-V print assembler version number\n\
|
||
-k ignored\n"));
|
||
#endif
|
||
fprintf (stream, _("\
|
||
-n Do not optimize code alignment\n\
|
||
-q quieten some warnings\n"));
|
||
#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
|
||
fprintf (stream, _("\
|
||
-s ignored\n"));
|
||
#endif
|
||
#if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
|
||
|| defined (TE_PE) || defined (TE_PEP))
|
||
fprintf (stream, _("\
|
||
--32/--64/--x32 generate 32bit/64bit/x32 code\n"));
|
||
#endif
|
||
#ifdef SVR4_COMMENT_CHARS
|
||
fprintf (stream, _("\
|
||
--divide do not treat `/' as a comment character\n"));
|
||
#else
|
||
fprintf (stream, _("\
|
||
--divide ignored\n"));
|
||
#endif
|
||
fprintf (stream, _("\
|
||
-march=CPU[,+EXTENSION...]\n\
|
||
generate code for CPU and EXTENSION, CPU is one of:\n"));
|
||
show_arch (stream, 0, 1);
|
||
fprintf (stream, _("\
|
||
EXTENSION is combination of:\n"));
|
||
show_arch (stream, 1, 0);
|
||
fprintf (stream, _("\
|
||
-mtune=CPU optimize for CPU, CPU is one of:\n"));
|
||
show_arch (stream, 0, 0);
|
||
fprintf (stream, _("\
|
||
-msse2avx encode SSE instructions with VEX prefix\n"));
|
||
fprintf (stream, _("\
|
||
-msse-check=[none|error|warning]\n\
|
||
check SSE instructions\n"));
|
||
fprintf (stream, _("\
|
||
-moperand-check=[none|error|warning]\n\
|
||
check operand combinations for validity\n"));
|
||
fprintf (stream, _("\
|
||
-mavxscalar=[128|256] encode scalar AVX instructions with specific vector\n\
|
||
length\n"));
|
||
fprintf (stream, _("\
|
||
-mevexlig=[128|256|512] encode scalar EVEX instructions with specific vector\n\
|
||
length\n"));
|
||
fprintf (stream, _("\
|
||
-mevexwig=[0|1] encode EVEX instructions with specific EVEX.W value\n\
|
||
for EVEX.W bit ignored instructions\n"));
|
||
fprintf (stream, _("\
|
||
-mmnemonic=[att|intel] use AT&T/Intel mnemonic\n"));
|
||
fprintf (stream, _("\
|
||
-msyntax=[att|intel] use AT&T/Intel syntax\n"));
|
||
fprintf (stream, _("\
|
||
-mindex-reg support pseudo index registers\n"));
|
||
fprintf (stream, _("\
|
||
-mnaked-reg don't require `%%' prefix for registers\n"));
|
||
fprintf (stream, _("\
|
||
-mold-gcc support old (<= 2.8.1) versions of gcc\n"));
|
||
fprintf (stream, _("\
|
||
-madd-bnd-prefix add BND prefix for all valid branches\n"));
|
||
# if defined (TE_PE) || defined (TE_PEP)
|
||
fprintf (stream, _("\
|
||
-mbig-obj generate big object files\n"));
|
||
#endif
|
||
fprintf (stream, _("\
|
||
-momit-lock-prefix=[no|yes]\n\
|
||
strip all lock prefixes\n"));
|
||
}
|
||
|
||
#if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
|
||
|| defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
|
||
|| defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
|
||
|
||
/* Pick the target format to use. */
|
||
|
||
const char *
|
||
i386_target_format (void)
|
||
{
|
||
if (!strncmp (default_arch, "x86_64", 6))
|
||
{
|
||
update_code_flag (CODE_64BIT, 1);
|
||
if (default_arch[6] == '\0')
|
||
x86_elf_abi = X86_64_ABI;
|
||
else
|
||
x86_elf_abi = X86_64_X32_ABI;
|
||
}
|
||
else if (!strcmp (default_arch, "i386"))
|
||
update_code_flag (CODE_32BIT, 1);
|
||
else
|
||
as_fatal (_("unknown architecture"));
|
||
|
||
if (cpu_flags_all_zero (&cpu_arch_isa_flags))
|
||
cpu_arch_isa_flags = cpu_arch[flag_code == CODE_64BIT].flags;
|
||
if (cpu_flags_all_zero (&cpu_arch_tune_flags))
|
||
cpu_arch_tune_flags = cpu_arch[flag_code == CODE_64BIT].flags;
|
||
|
||
switch (OUTPUT_FLAVOR)
|
||
{
|
||
#if defined (OBJ_MAYBE_AOUT) || defined (OBJ_AOUT)
|
||
case bfd_target_aout_flavour:
|
||
return AOUT_TARGET_FORMAT;
|
||
#endif
|
||
#if defined (OBJ_MAYBE_COFF) || defined (OBJ_COFF)
|
||
# if defined (TE_PE) || defined (TE_PEP)
|
||
case bfd_target_coff_flavour:
|
||
if (flag_code == CODE_64BIT)
|
||
return use_big_obj ? "pe-bigobj-x86-64" : "pe-x86-64";
|
||
else
|
||
return "pe-i386";
|
||
# elif defined (TE_GO32)
|
||
case bfd_target_coff_flavour:
|
||
return "coff-go32";
|
||
# else
|
||
case bfd_target_coff_flavour:
|
||
return "coff-i386";
|
||
# endif
|
||
#endif
|
||
#if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
|
||
case bfd_target_elf_flavour:
|
||
{
|
||
const char *format;
|
||
|
||
switch (x86_elf_abi)
|
||
{
|
||
default:
|
||
format = ELF_TARGET_FORMAT;
|
||
break;
|
||
case X86_64_ABI:
|
||
use_rela_relocations = 1;
|
||
object_64bit = 1;
|
||
format = ELF_TARGET_FORMAT64;
|
||
break;
|
||
case X86_64_X32_ABI:
|
||
use_rela_relocations = 1;
|
||
object_64bit = 1;
|
||
disallow_64bit_reloc = 1;
|
||
format = ELF_TARGET_FORMAT32;
|
||
break;
|
||
}
|
||
if (cpu_arch_isa == PROCESSOR_L1OM)
|
||
{
|
||
if (x86_elf_abi != X86_64_ABI)
|
||
as_fatal (_("Intel L1OM is 64bit only"));
|
||
return ELF_TARGET_L1OM_FORMAT;
|
||
}
|
||
if (cpu_arch_isa == PROCESSOR_K1OM)
|
||
{
|
||
if (x86_elf_abi != X86_64_ABI)
|
||
as_fatal (_("Intel K1OM is 64bit only"));
|
||
return ELF_TARGET_K1OM_FORMAT;
|
||
}
|
||
else
|
||
return format;
|
||
}
|
||
#endif
|
||
#if defined (OBJ_MACH_O)
|
||
case bfd_target_mach_o_flavour:
|
||
if (flag_code == CODE_64BIT)
|
||
{
|
||
use_rela_relocations = 1;
|
||
object_64bit = 1;
|
||
return "mach-o-x86-64";
|
||
}
|
||
else
|
||
return "mach-o-i386";
|
||
#endif
|
||
default:
|
||
abort ();
|
||
return NULL;
|
||
}
|
||
}
|
||
|
||
#endif /* OBJ_MAYBE_ more than one */
|
||
|
||
#if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF))
|
||
void
|
||
i386_elf_emit_arch_note (void)
|
||
{
|
||
if (IS_ELF && cpu_arch_name != NULL)
|
||
{
|
||
char *p;
|
||
asection *seg = now_seg;
|
||
subsegT subseg = now_subseg;
|
||
Elf_Internal_Note i_note;
|
||
Elf_External_Note e_note;
|
||
asection *note_secp;
|
||
int len;
|
||
|
||
/* Create the .note section. */
|
||
note_secp = subseg_new (".note", 0);
|
||
bfd_set_section_flags (stdoutput,
|
||
note_secp,
|
||
SEC_HAS_CONTENTS | SEC_READONLY);
|
||
|
||
/* Process the arch string. */
|
||
len = strlen (cpu_arch_name);
|
||
|
||
i_note.namesz = len + 1;
|
||
i_note.descsz = 0;
|
||
i_note.type = NT_ARCH;
|
||
p = frag_more (sizeof (e_note.namesz));
|
||
md_number_to_chars (p, (valueT) i_note.namesz, sizeof (e_note.namesz));
|
||
p = frag_more (sizeof (e_note.descsz));
|
||
md_number_to_chars (p, (valueT) i_note.descsz, sizeof (e_note.descsz));
|
||
p = frag_more (sizeof (e_note.type));
|
||
md_number_to_chars (p, (valueT) i_note.type, sizeof (e_note.type));
|
||
p = frag_more (len + 1);
|
||
strcpy (p, cpu_arch_name);
|
||
|
||
frag_align (2, 0, 0);
|
||
|
||
subseg_set (seg, subseg);
|
||
}
|
||
}
|
||
#endif
|
||
|
||
symbolS *
|
||
md_undefined_symbol (char *name)
|
||
{
|
||
if (name[0] == GLOBAL_OFFSET_TABLE_NAME[0]
|
||
&& name[1] == GLOBAL_OFFSET_TABLE_NAME[1]
|
||
&& name[2] == GLOBAL_OFFSET_TABLE_NAME[2]
|
||
&& strcmp (name, GLOBAL_OFFSET_TABLE_NAME) == 0)
|
||
{
|
||
if (!GOT_symbol)
|
||
{
|
||
if (symbol_find (name))
|
||
as_bad (_("GOT already in symbol table"));
|
||
GOT_symbol = symbol_new (name, undefined_section,
|
||
(valueT) 0, &zero_address_frag);
|
||
};
|
||
return GOT_symbol;
|
||
}
|
||
return 0;
|
||
}
|
||
|
||
/* Round up a section size to the appropriate boundary. */
|
||
|
||
valueT
|
||
md_section_align (segT segment ATTRIBUTE_UNUSED, valueT size)
|
||
{
|
||
#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
|
||
if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
|
||
{
|
||
/* For a.out, force the section size to be aligned. If we don't do
|
||
this, BFD will align it for us, but it will not write out the
|
||
final bytes of the section. This may be a bug in BFD, but it is
|
||
easier to fix it here since that is how the other a.out targets
|
||
work. */
|
||
int align;
|
||
|
||
align = bfd_get_section_alignment (stdoutput, segment);
|
||
size = ((size + (1 << align) - 1) & ((valueT) -1 << align));
|
||
}
|
||
#endif
|
||
|
||
return size;
|
||
}
|
||
|
||
/* On the i386, PC-relative offsets are relative to the start of the
|
||
next instruction. That is, the address of the offset, plus its
|
||
size, since the offset is always the last part of the insn. */
|
||
|
||
long
|
||
md_pcrel_from (fixS *fixP)
|
||
{
|
||
return fixP->fx_size + fixP->fx_where + fixP->fx_frag->fr_address;
|
||
}
|
||
|
||
#ifndef I386COFF
|
||
|
||
static void
|
||
s_bss (int ignore ATTRIBUTE_UNUSED)
|
||
{
|
||
int temp;
|
||
|
||
#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
|
||
if (IS_ELF)
|
||
obj_elf_section_change_hook ();
|
||
#endif
|
||
temp = get_absolute_expression ();
|
||
subseg_set (bss_section, (subsegT) temp);
|
||
demand_empty_rest_of_line ();
|
||
}
|
||
|
||
#endif
|
||
|
||
void
|
||
i386_validate_fix (fixS *fixp)
|
||
{
|
||
if (fixp->fx_subsy && fixp->fx_subsy == GOT_symbol)
|
||
{
|
||
if (fixp->fx_r_type == BFD_RELOC_32_PCREL)
|
||
{
|
||
if (!object_64bit)
|
||
abort ();
|
||
fixp->fx_r_type = BFD_RELOC_X86_64_GOTPCREL;
|
||
}
|
||
else
|
||
{
|
||
if (!object_64bit)
|
||
fixp->fx_r_type = BFD_RELOC_386_GOTOFF;
|
||
else
|
||
fixp->fx_r_type = BFD_RELOC_X86_64_GOTOFF64;
|
||
}
|
||
fixp->fx_subsy = 0;
|
||
}
|
||
}
|
||
|
||
arelent *
|
||
tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp)
|
||
{
|
||
arelent *rel;
|
||
bfd_reloc_code_real_type code;
|
||
|
||
switch (fixp->fx_r_type)
|
||
{
|
||
#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
|
||
case BFD_RELOC_SIZE32:
|
||
case BFD_RELOC_SIZE64:
|
||
if (S_IS_DEFINED (fixp->fx_addsy)
|
||
&& !S_IS_EXTERNAL (fixp->fx_addsy))
|
||
{
|
||
/* Resolve size relocation against local symbol to size of
|
||
the symbol plus addend. */
|
||
valueT value = S_GET_SIZE (fixp->fx_addsy) + fixp->fx_offset;
|
||
if (fixp->fx_r_type == BFD_RELOC_SIZE32
|
||
&& !fits_in_unsigned_long (value))
|
||
as_bad_where (fixp->fx_file, fixp->fx_line,
|
||
_("symbol size computation overflow"));
|
||
fixp->fx_addsy = NULL;
|
||
fixp->fx_subsy = NULL;
|
||
md_apply_fix (fixp, (valueT *) &value, NULL);
|
||
return NULL;
|
||
}
|
||
#endif
|
||
|
||
case BFD_RELOC_X86_64_PLT32:
|
||
case BFD_RELOC_X86_64_PLT32_BND:
|
||
case BFD_RELOC_X86_64_GOT32:
|
||
case BFD_RELOC_X86_64_GOTPCREL:
|
||
case BFD_RELOC_386_PLT32:
|
||
case BFD_RELOC_386_GOT32:
|
||
case BFD_RELOC_386_GOTOFF:
|
||
case BFD_RELOC_386_GOTPC:
|
||
case BFD_RELOC_386_TLS_GD:
|
||
case BFD_RELOC_386_TLS_LDM:
|
||
case BFD_RELOC_386_TLS_LDO_32:
|
||
case BFD_RELOC_386_TLS_IE_32:
|
||
case BFD_RELOC_386_TLS_IE:
|
||
case BFD_RELOC_386_TLS_GOTIE:
|
||
case BFD_RELOC_386_TLS_LE_32:
|
||
case BFD_RELOC_386_TLS_LE:
|
||
case BFD_RELOC_386_TLS_GOTDESC:
|
||
case BFD_RELOC_386_TLS_DESC_CALL:
|
||
case BFD_RELOC_X86_64_TLSGD:
|
||
case BFD_RELOC_X86_64_TLSLD:
|
||
case BFD_RELOC_X86_64_DTPOFF32:
|
||
case BFD_RELOC_X86_64_DTPOFF64:
|
||
case BFD_RELOC_X86_64_GOTTPOFF:
|
||
case BFD_RELOC_X86_64_TPOFF32:
|
||
case BFD_RELOC_X86_64_TPOFF64:
|
||
case BFD_RELOC_X86_64_GOTOFF64:
|
||
case BFD_RELOC_X86_64_GOTPC32:
|
||
case BFD_RELOC_X86_64_GOT64:
|
||
case BFD_RELOC_X86_64_GOTPCREL64:
|
||
case BFD_RELOC_X86_64_GOTPC64:
|
||
case BFD_RELOC_X86_64_GOTPLT64:
|
||
case BFD_RELOC_X86_64_PLTOFF64:
|
||
case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
|
||
case BFD_RELOC_X86_64_TLSDESC_CALL:
|
||
case BFD_RELOC_RVA:
|
||
case BFD_RELOC_VTABLE_ENTRY:
|
||
case BFD_RELOC_VTABLE_INHERIT:
|
||
#ifdef TE_PE
|
||
case BFD_RELOC_32_SECREL:
|
||
#endif
|
||
code = fixp->fx_r_type;
|
||
break;
|
||
case BFD_RELOC_X86_64_32S:
|
||
if (!fixp->fx_pcrel)
|
||
{
|
||
/* Don't turn BFD_RELOC_X86_64_32S into BFD_RELOC_32. */
|
||
code = fixp->fx_r_type;
|
||
break;
|
||
}
|
||
default:
|
||
if (fixp->fx_pcrel)
|
||
{
|
||
switch (fixp->fx_size)
|
||
{
|
||
default:
|
||
as_bad_where (fixp->fx_file, fixp->fx_line,
|
||
_("can not do %d byte pc-relative relocation"),
|
||
fixp->fx_size);
|
||
code = BFD_RELOC_32_PCREL;
|
||
break;
|
||
case 1: code = BFD_RELOC_8_PCREL; break;
|
||
case 2: code = BFD_RELOC_16_PCREL; break;
|
||
case 4:
|
||
code = (fixp->fx_r_type == BFD_RELOC_X86_64_PC32_BND
|
||
? fixp-> fx_r_type : BFD_RELOC_32_PCREL);
|
||
break;
|
||
#ifdef BFD64
|
||
case 8: code = BFD_RELOC_64_PCREL; break;
|
||
#endif
|
||
}
|
||
}
|
||
else
|
||
{
|
||
switch (fixp->fx_size)
|
||
{
|
||
default:
|
||
as_bad_where (fixp->fx_file, fixp->fx_line,
|
||
_("can not do %d byte relocation"),
|
||
fixp->fx_size);
|
||
code = BFD_RELOC_32;
|
||
break;
|
||
case 1: code = BFD_RELOC_8; break;
|
||
case 2: code = BFD_RELOC_16; break;
|
||
case 4: code = BFD_RELOC_32; break;
|
||
#ifdef BFD64
|
||
case 8: code = BFD_RELOC_64; break;
|
||
#endif
|
||
}
|
||
}
|
||
break;
|
||
}
|
||
|
||
if ((code == BFD_RELOC_32
|
||
|| code == BFD_RELOC_32_PCREL
|
||
|| code == BFD_RELOC_X86_64_32S)
|
||
&& GOT_symbol
|
||
&& fixp->fx_addsy == GOT_symbol)
|
||
{
|
||
if (!object_64bit)
|
||
code = BFD_RELOC_386_GOTPC;
|
||
else
|
||
code = BFD_RELOC_X86_64_GOTPC32;
|
||
}
|
||
if ((code == BFD_RELOC_64 || code == BFD_RELOC_64_PCREL)
|
||
&& GOT_symbol
|
||
&& fixp->fx_addsy == GOT_symbol)
|
||
{
|
||
code = BFD_RELOC_X86_64_GOTPC64;
|
||
}
|
||
|
||
rel = (arelent *) xmalloc (sizeof (arelent));
|
||
rel->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *));
|
||
*rel->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
|
||
|
||
rel->address = fixp->fx_frag->fr_address + fixp->fx_where;
|
||
|
||
if (!use_rela_relocations)
|
||
{
|
||
/* HACK: Since i386 ELF uses Rel instead of Rela, encode the
|
||
vtable entry to be used in the relocation's section offset. */
|
||
if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
|
||
rel->address = fixp->fx_offset;
|
||
#if defined (OBJ_COFF) && defined (TE_PE)
|
||
else if (fixp->fx_addsy && S_IS_WEAK (fixp->fx_addsy))
|
||
rel->addend = fixp->fx_addnumber - (S_GET_VALUE (fixp->fx_addsy) * 2);
|
||
else
|
||
#endif
|
||
rel->addend = 0;
|
||
}
|
||
/* Use the rela in 64bit mode. */
|
||
else
|
||
{
|
||
if (disallow_64bit_reloc)
|
||
switch (code)
|
||
{
|
||
case BFD_RELOC_X86_64_DTPOFF64:
|
||
case BFD_RELOC_X86_64_TPOFF64:
|
||
case BFD_RELOC_64_PCREL:
|
||
case BFD_RELOC_X86_64_GOTOFF64:
|
||
case BFD_RELOC_X86_64_GOT64:
|
||
case BFD_RELOC_X86_64_GOTPCREL64:
|
||
case BFD_RELOC_X86_64_GOTPC64:
|
||
case BFD_RELOC_X86_64_GOTPLT64:
|
||
case BFD_RELOC_X86_64_PLTOFF64:
|
||
as_bad_where (fixp->fx_file, fixp->fx_line,
|
||
_("cannot represent relocation type %s in x32 mode"),
|
||
bfd_get_reloc_code_name (code));
|
||
break;
|
||
default:
|
||
break;
|
||
}
|
||
|
||
if (!fixp->fx_pcrel)
|
||
rel->addend = fixp->fx_offset;
|
||
else
|
||
switch (code)
|
||
{
|
||
case BFD_RELOC_X86_64_PLT32:
|
||
case BFD_RELOC_X86_64_PLT32_BND:
|
||
case BFD_RELOC_X86_64_GOT32:
|
||
case BFD_RELOC_X86_64_GOTPCREL:
|
||
case BFD_RELOC_X86_64_TLSGD:
|
||
case BFD_RELOC_X86_64_TLSLD:
|
||
case BFD_RELOC_X86_64_GOTTPOFF:
|
||
case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
|
||
case BFD_RELOC_X86_64_TLSDESC_CALL:
|
||
rel->addend = fixp->fx_offset - fixp->fx_size;
|
||
break;
|
||
default:
|
||
rel->addend = (section->vma
|
||
- fixp->fx_size
|
||
+ fixp->fx_addnumber
|
||
+ md_pcrel_from (fixp));
|
||
break;
|
||
}
|
||
}
|
||
|
||
rel->howto = bfd_reloc_type_lookup (stdoutput, code);
|
||
if (rel->howto == NULL)
|
||
{
|
||
as_bad_where (fixp->fx_file, fixp->fx_line,
|
||
_("cannot represent relocation type %s"),
|
||
bfd_get_reloc_code_name (code));
|
||
/* Set howto to a garbage value so that we can keep going. */
|
||
rel->howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_32);
|
||
gas_assert (rel->howto != NULL);
|
||
}
|
||
|
||
return rel;
|
||
}
|
||
|
||
#include "tc-i386-intel.c"
|
||
|
||
void
|
||
tc_x86_parse_to_dw2regnum (expressionS *exp)
|
||
{
|
||
int saved_naked_reg;
|
||
char saved_register_dot;
|
||
|
||
saved_naked_reg = allow_naked_reg;
|
||
allow_naked_reg = 1;
|
||
saved_register_dot = register_chars['.'];
|
||
register_chars['.'] = '.';
|
||
allow_pseudo_reg = 1;
|
||
expression_and_evaluate (exp);
|
||
allow_pseudo_reg = 0;
|
||
register_chars['.'] = saved_register_dot;
|
||
allow_naked_reg = saved_naked_reg;
|
||
|
||
if (exp->X_op == O_register && exp->X_add_number >= 0)
|
||
{
|
||
if ((addressT) exp->X_add_number < i386_regtab_size)
|
||
{
|
||
exp->X_op = O_constant;
|
||
exp->X_add_number = i386_regtab[exp->X_add_number]
|
||
.dw2_regnum[flag_code >> 1];
|
||
}
|
||
else
|
||
exp->X_op = O_illegal;
|
||
}
|
||
}
|
||
|
||
void
|
||
tc_x86_frame_initial_instructions (void)
|
||
{
|
||
static unsigned int sp_regno[2];
|
||
|
||
if (!sp_regno[flag_code >> 1])
|
||
{
|
||
char *saved_input = input_line_pointer;
|
||
char sp[][4] = {"esp", "rsp"};
|
||
expressionS exp;
|
||
|
||
input_line_pointer = sp[flag_code >> 1];
|
||
tc_x86_parse_to_dw2regnum (&exp);
|
||
gas_assert (exp.X_op == O_constant);
|
||
sp_regno[flag_code >> 1] = exp.X_add_number;
|
||
input_line_pointer = saved_input;
|
||
}
|
||
|
||
cfi_add_CFA_def_cfa (sp_regno[flag_code >> 1], -x86_cie_data_alignment);
|
||
cfi_add_CFA_offset (x86_dwarf2_return_column, x86_cie_data_alignment);
|
||
}
|
||
|
||
int
|
||
x86_dwarf2_addr_size (void)
|
||
{
|
||
#if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
|
||
if (x86_elf_abi == X86_64_X32_ABI)
|
||
return 4;
|
||
#endif
|
||
return bfd_arch_bits_per_address (stdoutput) / 8;
|
||
}
|
||
|
||
int
|
||
i386_elf_section_type (const char *str, size_t len)
|
||
{
|
||
if (flag_code == CODE_64BIT
|
||
&& len == sizeof ("unwind") - 1
|
||
&& strncmp (str, "unwind", 6) == 0)
|
||
return SHT_X86_64_UNWIND;
|
||
|
||
return -1;
|
||
}
|
||
|
||
#ifdef TE_SOLARIS
|
||
void
|
||
i386_solaris_fix_up_eh_frame (segT sec)
|
||
{
|
||
if (flag_code == CODE_64BIT)
|
||
elf_section_type (sec) = SHT_X86_64_UNWIND;
|
||
}
|
||
#endif
|
||
|
||
#ifdef TE_PE
|
||
void
|
||
tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
|
||
{
|
||
expressionS exp;
|
||
|
||
exp.X_op = O_secrel;
|
||
exp.X_add_symbol = symbol;
|
||
exp.X_add_number = 0;
|
||
emit_expr (&exp, size);
|
||
}
|
||
#endif
|
||
|
||
#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
|
||
/* For ELF on x86-64, add support for SHF_X86_64_LARGE. */
|
||
|
||
bfd_vma
|
||
x86_64_section_letter (int letter, char **ptr_msg)
|
||
{
|
||
if (flag_code == CODE_64BIT)
|
||
{
|
||
if (letter == 'l')
|
||
return SHF_X86_64_LARGE;
|
||
|
||
*ptr_msg = _("bad .section directive: want a,l,w,x,M,S,G,T in string");
|
||
}
|
||
else
|
||
*ptr_msg = _("bad .section directive: want a,w,x,M,S,G,T in string");
|
||
return -1;
|
||
}
|
||
|
||
bfd_vma
|
||
x86_64_section_word (char *str, size_t len)
|
||
{
|
||
if (len == 5 && flag_code == CODE_64BIT && CONST_STRNEQ (str, "large"))
|
||
return SHF_X86_64_LARGE;
|
||
|
||
return -1;
|
||
}
|
||
|
||
static void
|
||
handle_large_common (int small ATTRIBUTE_UNUSED)
|
||
{
|
||
if (flag_code != CODE_64BIT)
|
||
{
|
||
s_comm_internal (0, elf_common_parse);
|
||
as_warn (_(".largecomm supported only in 64bit mode, producing .comm"));
|
||
}
|
||
else
|
||
{
|
||
static segT lbss_section;
|
||
asection *saved_com_section_ptr = elf_com_section_ptr;
|
||
asection *saved_bss_section = bss_section;
|
||
|
||
if (lbss_section == NULL)
|
||
{
|
||
flagword applicable;
|
||
segT seg = now_seg;
|
||
subsegT subseg = now_subseg;
|
||
|
||
/* The .lbss section is for local .largecomm symbols. */
|
||
lbss_section = subseg_new (".lbss", 0);
|
||
applicable = bfd_applicable_section_flags (stdoutput);
|
||
bfd_set_section_flags (stdoutput, lbss_section,
|
||
applicable & SEC_ALLOC);
|
||
seg_info (lbss_section)->bss = 1;
|
||
|
||
subseg_set (seg, subseg);
|
||
}
|
||
|
||
elf_com_section_ptr = &_bfd_elf_large_com_section;
|
||
bss_section = lbss_section;
|
||
|
||
s_comm_internal (0, elf_common_parse);
|
||
|
||
elf_com_section_ptr = saved_com_section_ptr;
|
||
bss_section = saved_bss_section;
|
||
}
|
||
}
|
||
#endif /* OBJ_ELF || OBJ_MAYBE_ELF */
|