old-cross-binutils/bfd/ieee.c
2005-08-18 03:51:51 +00:00

3836 lines
88 KiB
C
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/* BFD back-end for ieee-695 objects.
Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
2000, 2001, 2002, 2003, 2004, 2005
Free Software Foundation, Inc.
Written by Steve Chamberlain of Cygnus Support.
This file is part of BFD, the Binary File Descriptor library.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */
#define KEEPMINUSPCININST 0
/* IEEE 695 format is a stream of records, which we parse using a simple one-
token (which is one byte in this lexicon) lookahead recursive decent
parser. */
#include "bfd.h"
#include "sysdep.h"
#include "libbfd.h"
#include "ieee.h"
#include "libieee.h"
#include "safe-ctype.h"
struct output_buffer_struct
{
unsigned char *ptrp;
int buffer;
};
static unsigned char *output_ptr_start;
static unsigned char *output_ptr;
static unsigned char *output_ptr_end;
static unsigned char *input_ptr_start;
static unsigned char *input_ptr;
static unsigned char *input_ptr_end;
static bfd *input_bfd;
static bfd *output_bfd;
static int output_buffer;
static void block (void);
/* Functions for writing to ieee files in the strange way that the
standard requires. */
static bfd_boolean
ieee_write_byte (bfd *abfd, int barg)
{
bfd_byte byte;
byte = barg;
if (bfd_bwrite ((void *) &byte, (bfd_size_type) 1, abfd) != 1)
return FALSE;
return TRUE;
}
static bfd_boolean
ieee_write_2bytes (bfd *abfd, int bytes)
{
bfd_byte buffer[2];
buffer[0] = bytes >> 8;
buffer[1] = bytes & 0xff;
if (bfd_bwrite ((void *) buffer, (bfd_size_type) 2, abfd) != 2)
return FALSE;
return TRUE;
}
static bfd_boolean
ieee_write_int (bfd *abfd, bfd_vma value)
{
if (value <= 127)
{
if (! ieee_write_byte (abfd, (bfd_byte) value))
return FALSE;
}
else
{
unsigned int length;
/* How many significant bytes ? */
/* FIXME FOR LONGER INTS. */
if (value & 0xff000000)
length = 4;
else if (value & 0x00ff0000)
length = 3;
else if (value & 0x0000ff00)
length = 2;
else
length = 1;
if (! ieee_write_byte (abfd,
(bfd_byte) ((int) ieee_number_repeat_start_enum
+ length)))
return FALSE;
switch (length)
{
case 4:
if (! ieee_write_byte (abfd, (bfd_byte) (value >> 24)))
return FALSE;
/* Fall through. */
case 3:
if (! ieee_write_byte (abfd, (bfd_byte) (value >> 16)))
return FALSE;
/* Fall through. */
case 2:
if (! ieee_write_byte (abfd, (bfd_byte) (value >> 8)))
return FALSE;
/* Fall through. */
case 1:
if (! ieee_write_byte (abfd, (bfd_byte) (value)))
return FALSE;
}
}
return TRUE;
}
static bfd_boolean
ieee_write_id (bfd *abfd, const char *id)
{
size_t length = strlen (id);
if (length <= 127)
{
if (! ieee_write_byte (abfd, (bfd_byte) length))
return FALSE;
}
else if (length < 255)
{
if (! ieee_write_byte (abfd, ieee_extension_length_1_enum)
|| ! ieee_write_byte (abfd, (bfd_byte) length))
return FALSE;
}
else if (length < 65535)
{
if (! ieee_write_byte (abfd, ieee_extension_length_2_enum)
|| ! ieee_write_2bytes (abfd, (int) length))
return FALSE;
}
else
{
(*_bfd_error_handler)
(_("%s: string too long (%d chars, max 65535)"),
bfd_get_filename (abfd), length);
bfd_set_error (bfd_error_invalid_operation);
return FALSE;
}
if (bfd_bwrite ((void *) id, (bfd_size_type) length, abfd) != length)
return FALSE;
return TRUE;
}
/* Functions for reading from ieee files in the strange way that the
standard requires. */
#define this_byte(ieee) *((ieee)->input_p)
#define next_byte(ieee) ((ieee)->input_p++)
#define this_byte_and_next(ieee) (*((ieee)->input_p++))
static unsigned short
read_2bytes (common_header_type *ieee)
{
unsigned char c1 = this_byte_and_next (ieee);
unsigned char c2 = this_byte_and_next (ieee);
return (c1 << 8) | c2;
}
static void
bfd_get_string (common_header_type *ieee, char *string, size_t length)
{
size_t i;
for (i = 0; i < length; i++)
string[i] = this_byte_and_next (ieee);
}
static char *
read_id (common_header_type *ieee)
{
size_t length;
char *string;
length = this_byte_and_next (ieee);
if (length <= 0x7f)
/* Simple string of length 0 to 127. */
;
else if (length == 0xde)
/* Length is next byte, allowing 0..255. */
length = this_byte_and_next (ieee);
else if (length == 0xdf)
{
/* Length is next two bytes, allowing 0..65535. */
length = this_byte_and_next (ieee);
length = (length * 256) + this_byte_and_next (ieee);
}
/* Buy memory and read string. */
string = bfd_alloc (ieee->abfd, (bfd_size_type) length + 1);
if (!string)
return NULL;
bfd_get_string (ieee, string, length);
string[length] = 0;
return string;
}
static bfd_boolean
ieee_write_expression (bfd *abfd,
bfd_vma value,
asymbol *symbol,
bfd_boolean pcrel,
unsigned int index)
{
unsigned int term_count = 0;
if (value != 0)
{
if (! ieee_write_int (abfd, value))
return FALSE;
term_count++;
}
/* Badly formatted binaries can have a missing symbol,
so test here to prevent a seg fault. */
if (symbol != NULL)
{
if (bfd_is_com_section (symbol->section)
|| bfd_is_und_section (symbol->section))
{
/* Def of a common symbol. */
if (! ieee_write_byte (abfd, ieee_variable_X_enum)
|| ! ieee_write_int (abfd, symbol->value))
return FALSE;
term_count ++;
}
else if (! bfd_is_abs_section (symbol->section))
{
/* Ref to defined symbol - */
if (symbol->flags & BSF_GLOBAL)
{
if (! ieee_write_byte (abfd, ieee_variable_I_enum)
|| ! ieee_write_int (abfd, symbol->value))
return FALSE;
term_count++;
}
else if (symbol->flags & (BSF_LOCAL | BSF_SECTION_SYM))
{
/* This is a reference to a defined local symbol. We can
easily do a local as a section+offset. */
if (! ieee_write_byte (abfd, ieee_variable_R_enum)
|| ! ieee_write_byte (abfd,
(bfd_byte) (symbol->section->index
+ IEEE_SECTION_NUMBER_BASE)))
return FALSE;
term_count++;
if (symbol->value != 0)
{
if (! ieee_write_int (abfd, symbol->value))
return FALSE;
term_count++;
}
}
else
{
(*_bfd_error_handler)
(_("%s: unrecognized symbol `%s' flags 0x%x"),
bfd_get_filename (abfd), bfd_asymbol_name (symbol),
symbol->flags);
bfd_set_error (bfd_error_invalid_operation);
return FALSE;
}
}
}
if (pcrel)
{
/* Subtract the pc from here by asking for PC of this section. */
if (! ieee_write_byte (abfd, ieee_variable_P_enum)
|| ! ieee_write_byte (abfd,
(bfd_byte) (index + IEEE_SECTION_NUMBER_BASE))
|| ! ieee_write_byte (abfd, ieee_function_minus_enum))
return FALSE;
}
/* Handle the degenerate case of a 0 address. */
if (term_count == 0)
if (! ieee_write_int (abfd, (bfd_vma) 0))
return FALSE;
while (term_count > 1)
{
if (! ieee_write_byte (abfd, ieee_function_plus_enum))
return FALSE;
term_count--;
}
return TRUE;
}
/* Writes any integer into the buffer supplied and always takes 5 bytes. */
static void
ieee_write_int5 (bfd_byte *buffer, bfd_vma value)
{
buffer[0] = (bfd_byte) ieee_number_repeat_4_enum;
buffer[1] = (value >> 24) & 0xff;
buffer[2] = (value >> 16) & 0xff;
buffer[3] = (value >> 8) & 0xff;
buffer[4] = (value >> 0) & 0xff;
}
static bfd_boolean
ieee_write_int5_out (bfd *abfd, bfd_vma value)
{
bfd_byte b[5];
ieee_write_int5 (b, value);
if (bfd_bwrite ((void *) b, (bfd_size_type) 5, abfd) != 5)
return FALSE;
return TRUE;
}
static bfd_boolean
parse_int (common_header_type *ieee, bfd_vma *value_ptr)
{
int value = this_byte (ieee);
int result;
if (value >= 0 && value <= 127)
{
*value_ptr = value;
next_byte (ieee);
return TRUE;
}
else if (value >= 0x80 && value <= 0x88)
{
unsigned int count = value & 0xf;
result = 0;
next_byte (ieee);
while (count)
{
result = (result << 8) | this_byte_and_next (ieee);
count--;
}
*value_ptr = result;
return TRUE;
}
return FALSE;
}
static int
parse_i (common_header_type *ieee, bfd_boolean *ok)
{
bfd_vma x;
*ok = parse_int (ieee, &x);
return x;
}
static bfd_vma
must_parse_int (common_header_type *ieee)
{
bfd_vma result;
BFD_ASSERT (parse_int (ieee, &result));
return result;
}
typedef struct
{
bfd_vma value;
asection *section;
ieee_symbol_index_type symbol;
} ieee_value_type;
#if KEEPMINUSPCININST
#define SRC_MASK(arg) arg
#define PCREL_OFFSET FALSE
#else
#define SRC_MASK(arg) 0
#define PCREL_OFFSET TRUE
#endif
static reloc_howto_type abs32_howto =
HOWTO (1,
0,
2,
32,
FALSE,
0,
complain_overflow_bitfield,
0,
"abs32",
TRUE,
0xffffffff,
0xffffffff,
FALSE);
static reloc_howto_type abs16_howto =
HOWTO (1,
0,
1,
16,
FALSE,
0,
complain_overflow_bitfield,
0,
"abs16",
TRUE,
0x0000ffff,
0x0000ffff,
FALSE);
static reloc_howto_type abs8_howto =
HOWTO (1,
0,
0,
8,
FALSE,
0,
complain_overflow_bitfield,
0,
"abs8",
TRUE,
0x000000ff,
0x000000ff,
FALSE);
static reloc_howto_type rel32_howto =
HOWTO (1,
0,
2,
32,
TRUE,
0,
complain_overflow_signed,
0,
"rel32",
TRUE,
SRC_MASK (0xffffffff),
0xffffffff,
PCREL_OFFSET);
static reloc_howto_type rel16_howto =
HOWTO (1,
0,
1,
16,
TRUE,
0,
complain_overflow_signed,
0,
"rel16",
TRUE,
SRC_MASK (0x0000ffff),
0x0000ffff,
PCREL_OFFSET);
static reloc_howto_type rel8_howto =
HOWTO (1,
0,
0,
8,
TRUE,
0,
complain_overflow_signed,
0,
"rel8",
TRUE,
SRC_MASK (0x000000ff),
0x000000ff,
PCREL_OFFSET);
static ieee_symbol_index_type NOSYMBOL = {0, 0};
static void
parse_expression (ieee_data_type *ieee,
bfd_vma *value,
ieee_symbol_index_type *symbol,
bfd_boolean *pcrel,
unsigned int *extra,
asection **section)
{
bfd_boolean loop = TRUE;
ieee_value_type stack[10];
ieee_value_type *sp = stack;
asection *dummy;
#define POS sp[1]
#define TOS sp[0]
#define NOS sp[-1]
#define INC sp++;
#define DEC sp--;
/* The stack pointer always points to the next unused location. */
#define PUSH(x,y,z) TOS.symbol = x; TOS.section = y; TOS.value = z; INC;
#define POP(x,y,z) DEC; x = TOS.symbol; y = TOS.section; z = TOS.value;
while (loop && ieee->h.input_p < ieee->h.last_byte)
{
switch (this_byte (&(ieee->h)))
{
case ieee_variable_P_enum:
/* P variable, current program counter for section n. */
{
int section_n;
next_byte (&(ieee->h));
*pcrel = TRUE;
section_n = must_parse_int (&(ieee->h));
PUSH (NOSYMBOL, bfd_abs_section_ptr, 0);
break;
}
case ieee_variable_L_enum:
/* L variable address of section N. */
next_byte (&(ieee->h));
PUSH (NOSYMBOL, ieee->section_table[must_parse_int (&(ieee->h))], 0);
break;
case ieee_variable_R_enum:
/* R variable, logical address of section module. */
/* FIXME, this should be different to L. */
next_byte (&(ieee->h));
PUSH (NOSYMBOL, ieee->section_table[must_parse_int (&(ieee->h))], 0);
break;
case ieee_variable_S_enum:
/* S variable, size in MAUS of section module. */
next_byte (&(ieee->h));
PUSH (NOSYMBOL,
0,
ieee->section_table[must_parse_int (&(ieee->h))]->size);
break;
case ieee_variable_I_enum:
/* Push the address of variable n. */
{
ieee_symbol_index_type sy;
next_byte (&(ieee->h));
sy.index = (int) must_parse_int (&(ieee->h));
sy.letter = 'I';
PUSH (sy, bfd_abs_section_ptr, 0);
}
break;
case ieee_variable_X_enum:
/* Push the address of external variable n. */
{
ieee_symbol_index_type sy;
next_byte (&(ieee->h));
sy.index = (int) (must_parse_int (&(ieee->h)));
sy.letter = 'X';
PUSH (sy, bfd_und_section_ptr, 0);
}
break;
case ieee_function_minus_enum:
{
bfd_vma value1, value2;
asection *section1, *section_dummy;
ieee_symbol_index_type sy;
next_byte (&(ieee->h));
POP (sy, section1, value1);
POP (sy, section_dummy, value2);
PUSH (sy, section1 ? section1 : section_dummy, value2 - value1);
}
break;
case ieee_function_plus_enum:
{
bfd_vma value1, value2;
asection *section1;
asection *section2;
ieee_symbol_index_type sy1;
ieee_symbol_index_type sy2;
next_byte (&(ieee->h));
POP (sy1, section1, value1);
POP (sy2, section2, value2);
PUSH (sy1.letter ? sy1 : sy2,
bfd_is_abs_section (section1) ? section2 : section1,
value1 + value2);
}
break;
default:
{
bfd_vma va;
BFD_ASSERT (this_byte (&(ieee->h)) < (int) ieee_variable_A_enum
|| this_byte (&(ieee->h)) > (int) ieee_variable_Z_enum);
if (parse_int (&(ieee->h), &va))
{
PUSH (NOSYMBOL, bfd_abs_section_ptr, va);
}
else
/* Thats all that we can understand. */
loop = FALSE;
}
}
}
/* As far as I can see there is a bug in the Microtec IEEE output
which I'm using to scan, whereby the comma operator is omitted
sometimes in an expression, giving expressions with too many
terms. We can tell if that's the case by ensuring that
sp == stack here. If not, then we've pushed something too far,
so we keep adding. */
while (sp != stack + 1)
{
asection *section1;
ieee_symbol_index_type sy1;
POP (sy1, section1, *extra);
}
POP (*symbol, dummy, *value);
if (section)
*section = dummy;
}
#define ieee_seek(ieee, offset) \
do \
{ \
ieee->h.input_p = ieee->h.first_byte + offset; \
ieee->h.last_byte = (ieee->h.first_byte \
+ ieee_part_after (ieee, offset)); \
} \
while (0)
#define ieee_pos(ieee) \
(ieee->h.input_p - ieee->h.first_byte)
/* Find the first part of the ieee file after HERE. */
static file_ptr
ieee_part_after (ieee_data_type *ieee, file_ptr here)
{
int part;
file_ptr after = ieee->w.r.me_record;
/* File parts can come in any order, except that module end is
guaranteed to be last (and the header first). */
for (part = 0; part < N_W_VARIABLES; part++)
if (ieee->w.offset[part] > here && after > ieee->w.offset[part])
after = ieee->w.offset[part];
return after;
}
static unsigned int last_index;
static char last_type; /* Is the index for an X or a D. */
static ieee_symbol_type *
get_symbol (bfd *abfd ATTRIBUTE_UNUSED,
ieee_data_type *ieee,
ieee_symbol_type *last_symbol,
unsigned int *symbol_count,
ieee_symbol_type ***pptr,
unsigned int *max_index,
int this_type)
{
/* Need a new symbol. */
unsigned int new_index = must_parse_int (&(ieee->h));
if (new_index != last_index || this_type != last_type)
{
ieee_symbol_type *new_symbol;
bfd_size_type amt = sizeof (ieee_symbol_type);
new_symbol = bfd_alloc (ieee->h.abfd, amt);
if (!new_symbol)
return NULL;
new_symbol->index = new_index;
last_index = new_index;
(*symbol_count)++;
**pptr = new_symbol;
*pptr = &new_symbol->next;
if (new_index > *max_index)
*max_index = new_index;
last_type = this_type;
new_symbol->symbol.section = bfd_abs_section_ptr;
return new_symbol;
}
return last_symbol;
}
static bfd_boolean
ieee_slurp_external_symbols (bfd *abfd)
{
ieee_data_type *ieee = IEEE_DATA (abfd);
file_ptr offset = ieee->w.r.external_part;
ieee_symbol_type **prev_symbols_ptr = &ieee->external_symbols;
ieee_symbol_type **prev_reference_ptr = &ieee->external_reference;
ieee_symbol_type *symbol = NULL;
unsigned int symbol_count = 0;
bfd_boolean loop = TRUE;
last_index = 0xffffff;
ieee->symbol_table_full = TRUE;
ieee_seek (ieee, offset);
while (loop)
{
switch (this_byte (&(ieee->h)))
{
case ieee_nn_record:
next_byte (&(ieee->h));
symbol = get_symbol (abfd, ieee, symbol, &symbol_count,
& prev_symbols_ptr,
& ieee->external_symbol_max_index, 'I');
if (symbol == NULL)
return FALSE;
symbol->symbol.the_bfd = abfd;
symbol->symbol.name = read_id (&(ieee->h));
symbol->symbol.udata.p = NULL;
symbol->symbol.flags = BSF_NO_FLAGS;
break;
case ieee_external_symbol_enum:
next_byte (&(ieee->h));
symbol = get_symbol (abfd, ieee, symbol, &symbol_count,
&prev_symbols_ptr,
&ieee->external_symbol_max_index, 'D');
if (symbol == NULL)
return FALSE;
BFD_ASSERT (symbol->index >= ieee->external_symbol_min_index);
symbol->symbol.the_bfd = abfd;
symbol->symbol.name = read_id (&(ieee->h));
symbol->symbol.udata.p = NULL;
symbol->symbol.flags = BSF_NO_FLAGS;
break;
case ieee_attribute_record_enum >> 8:
{
unsigned int symbol_name_index;
unsigned int symbol_type_index;
unsigned int symbol_attribute_def;
bfd_vma value;
switch (read_2bytes (&ieee->h))
{
case ieee_attribute_record_enum:
symbol_name_index = must_parse_int (&(ieee->h));
symbol_type_index = must_parse_int (&(ieee->h));
symbol_attribute_def = must_parse_int (&(ieee->h));
switch (symbol_attribute_def)
{
case 8:
case 19:
parse_int (&ieee->h, &value);
break;
default:
(*_bfd_error_handler)
(_("%B: unimplemented ATI record %u for symbol %u"),
abfd, symbol_attribute_def, symbol_name_index);
bfd_set_error (bfd_error_bad_value);
return FALSE;
break;
}
break;
case ieee_external_reference_info_record_enum:
/* Skip over ATX record. */
parse_int (&(ieee->h), &value);
parse_int (&(ieee->h), &value);
parse_int (&(ieee->h), &value);
parse_int (&(ieee->h), &value);
break;
case ieee_atn_record_enum:
/* We may get call optimization information here,
which we just ignore. The format is
{$F1}${CE}{index}{$00}{$3F}{$3F}{#_of_ASNs}. */
parse_int (&ieee->h, &value);
parse_int (&ieee->h, &value);
parse_int (&ieee->h, &value);
if (value != 0x3f)
{
(*_bfd_error_handler)
(_("%B: unexpected ATN type %d in external part"),
abfd, (int) value);
bfd_set_error (bfd_error_bad_value);
return FALSE;
}
parse_int (&ieee->h, &value);
parse_int (&ieee->h, &value);
while (value > 0)
{
bfd_vma val1;
--value;
switch (read_2bytes (&ieee->h))
{
case ieee_asn_record_enum:
parse_int (&ieee->h, &val1);
parse_int (&ieee->h, &val1);
break;
default:
(*_bfd_error_handler)
(_("%B: unexpected type after ATN"), abfd);
bfd_set_error (bfd_error_bad_value);
return FALSE;
}
}
}
}
break;
case ieee_value_record_enum >> 8:
{
unsigned int symbol_name_index;
ieee_symbol_index_type symbol_ignore;
bfd_boolean pcrel_ignore;
unsigned int extra;
next_byte (&(ieee->h));
next_byte (&(ieee->h));
symbol_name_index = must_parse_int (&(ieee->h));
parse_expression (ieee,
&symbol->symbol.value,
&symbol_ignore,
&pcrel_ignore,
&extra,
&symbol->symbol.section);
/* Fully linked IEEE-695 files tend to give every symbol
an absolute value. Try to convert that back into a
section relative value. FIXME: This won't always to
the right thing. */
if (bfd_is_abs_section (symbol->symbol.section)
&& (abfd->flags & HAS_RELOC) == 0)
{
bfd_vma val;
asection *s;
val = symbol->symbol.value;
for (s = abfd->sections; s != NULL; s = s->next)
{
if (val >= s->vma && val < s->vma + s->size)
{
symbol->symbol.section = s;
symbol->symbol.value -= s->vma;
break;
}
}
}
symbol->symbol.flags = BSF_GLOBAL | BSF_EXPORT;
}
break;
case ieee_weak_external_reference_enum:
{
bfd_vma size;
bfd_vma value;
next_byte (&(ieee->h));
/* Throw away the external reference index. */
(void) must_parse_int (&(ieee->h));
/* Fetch the default size if not resolved. */
size = must_parse_int (&(ieee->h));
/* Fetch the default value if available. */
if (! parse_int (&(ieee->h), &value))
value = 0;
/* This turns into a common. */
symbol->symbol.section = bfd_com_section_ptr;
symbol->symbol.value = size;
}
break;
case ieee_external_reference_enum:
next_byte (&(ieee->h));
symbol = get_symbol (abfd, ieee, symbol, &symbol_count,
&prev_reference_ptr,
&ieee->external_reference_max_index, 'X');
if (symbol == NULL)
return FALSE;
symbol->symbol.the_bfd = abfd;
symbol->symbol.name = read_id (&(ieee->h));
symbol->symbol.udata.p = NULL;
symbol->symbol.section = bfd_und_section_ptr;
symbol->symbol.value = (bfd_vma) 0;
symbol->symbol.flags = 0;
BFD_ASSERT (symbol->index >= ieee->external_reference_min_index);
break;
default:
loop = FALSE;
}
}
if (ieee->external_symbol_max_index != 0)
{
ieee->external_symbol_count =
ieee->external_symbol_max_index -
ieee->external_symbol_min_index + 1;
}
else
ieee->external_symbol_count = 0;
if (ieee->external_reference_max_index != 0)
{
ieee->external_reference_count =
ieee->external_reference_max_index -
ieee->external_reference_min_index + 1;
}
else
ieee->external_reference_count = 0;
abfd->symcount =
ieee->external_reference_count + ieee->external_symbol_count;
if (symbol_count != abfd->symcount)
/* There are gaps in the table -- */
ieee->symbol_table_full = FALSE;
*prev_symbols_ptr = NULL;
*prev_reference_ptr = NULL;
return TRUE;
}
static bfd_boolean
ieee_slurp_symbol_table (bfd *abfd)
{
if (! IEEE_DATA (abfd)->read_symbols)
{
if (! ieee_slurp_external_symbols (abfd))
return FALSE;
IEEE_DATA (abfd)->read_symbols = TRUE;
}
return TRUE;
}
static long
ieee_get_symtab_upper_bound (bfd *abfd)
{
if (! ieee_slurp_symbol_table (abfd))
return -1;
return (abfd->symcount != 0) ?
(abfd->symcount + 1) * (sizeof (ieee_symbol_type *)) : 0;
}
/* Move from our internal lists to the canon table, and insert in
symbol index order. */
extern const bfd_target ieee_vec;
static long
ieee_canonicalize_symtab (bfd *abfd, asymbol **location)
{
ieee_symbol_type *symp;
static bfd dummy_bfd;
static asymbol empty_symbol =
{
&dummy_bfd,
" ieee empty",
(symvalue) 0,
BSF_DEBUGGING,
bfd_abs_section_ptr
#ifdef __STDC__
/* K&R compilers can't initialise unions. */
, { 0 }
#endif
};
if (abfd->symcount)
{
ieee_data_type *ieee = IEEE_DATA (abfd);
dummy_bfd.xvec = &ieee_vec;
if (! ieee_slurp_symbol_table (abfd))
return -1;
if (! ieee->symbol_table_full)
{
/* Arrgh - there are gaps in the table, run through and fill them
up with pointers to a null place. */
unsigned int i;
for (i = 0; i < abfd->symcount; i++)
location[i] = &empty_symbol;
}
ieee->external_symbol_base_offset = -ieee->external_symbol_min_index;
for (symp = IEEE_DATA (abfd)->external_symbols;
symp != (ieee_symbol_type *) NULL;
symp = symp->next)
/* Place into table at correct index locations. */
location[symp->index + ieee->external_symbol_base_offset] = &symp->symbol;
/* The external refs are indexed in a bit. */
ieee->external_reference_base_offset =
-ieee->external_reference_min_index + ieee->external_symbol_count;
for (symp = IEEE_DATA (abfd)->external_reference;
symp != (ieee_symbol_type *) NULL;
symp = symp->next)
location[symp->index + ieee->external_reference_base_offset] =
&symp->symbol;
}
if (abfd->symcount)
location[abfd->symcount] = (asymbol *) NULL;
return abfd->symcount;
}
static asection *
get_section_entry (bfd *abfd, ieee_data_type *ieee, unsigned int index)
{
if (index >= ieee->section_table_size)
{
unsigned int c, i;
asection **n;
bfd_size_type amt;
c = ieee->section_table_size;
if (c == 0)
c = 20;
while (c <= index)
c *= 2;
amt = c;
amt *= sizeof (asection *);
n = bfd_realloc (ieee->section_table, amt);
if (n == NULL)
return NULL;
for (i = ieee->section_table_size; i < c; i++)
n[i] = NULL;
ieee->section_table = n;
ieee->section_table_size = c;
}
if (ieee->section_table[index] == (asection *) NULL)
{
char *tmp = bfd_alloc (abfd, (bfd_size_type) 11);
asection *section;
if (!tmp)
return NULL;
sprintf (tmp, " fsec%4d", index);
section = bfd_make_section (abfd, tmp);
ieee->section_table[index] = section;
section->flags = SEC_NO_FLAGS;
section->target_index = index;
ieee->section_table[index] = section;
}
return ieee->section_table[index];
}
static void
ieee_slurp_sections (bfd *abfd)
{
ieee_data_type *ieee = IEEE_DATA (abfd);
file_ptr offset = ieee->w.r.section_part;
char *name;
if (offset != 0)
{
bfd_byte section_type[3];
ieee_seek (ieee, offset);
while (TRUE)
{
switch (this_byte (&(ieee->h)))
{
case ieee_section_type_enum:
{
asection *section;
unsigned int section_index;
next_byte (&(ieee->h));
section_index = must_parse_int (&(ieee->h));
section = get_section_entry (abfd, ieee, section_index);
section_type[0] = this_byte_and_next (&(ieee->h));
/* Set minimal section attributes. Attributes are
extended later, based on section contents. */
switch (section_type[0])
{
case 0xC1:
/* Normal attributes for absolute sections. */
section_type[1] = this_byte (&(ieee->h));
section->flags = SEC_ALLOC;
switch (section_type[1])
{
/* AS Absolute section attributes. */
case 0xD3:
next_byte (&(ieee->h));
section_type[2] = this_byte (&(ieee->h));
switch (section_type[2])
{
case 0xD0:
/* Normal code. */
next_byte (&(ieee->h));
section->flags |= SEC_CODE;
break;
case 0xC4:
/* Normal data. */
next_byte (&(ieee->h));
section->flags |= SEC_DATA;
break;
case 0xD2:
next_byte (&(ieee->h));
/* Normal rom data. */
section->flags |= SEC_ROM | SEC_DATA;
break;
default:
break;
}
}
break;
/* Named relocatable sections (type C). */
case 0xC3:
section_type[1] = this_byte (&(ieee->h));
section->flags = SEC_ALLOC;
switch (section_type[1])
{
case 0xD0: /* Normal code (CP). */
next_byte (&(ieee->h));
section->flags |= SEC_CODE;
break;
case 0xC4: /* Normal data (CD). */
next_byte (&(ieee->h));
section->flags |= SEC_DATA;
break;
case 0xD2: /* Normal rom data (CR). */
next_byte (&(ieee->h));
section->flags |= SEC_ROM | SEC_DATA;
break;
default:
break;
}
}
/* Read section name, use it if non empty. */
name = read_id (&ieee->h);
if (name[0])
section->name = name;
/* Skip these fields, which we don't care about. */
{
bfd_vma parent, brother, context;
parse_int (&(ieee->h), &parent);
parse_int (&(ieee->h), &brother);
parse_int (&(ieee->h), &context);
}
}
break;
case ieee_section_alignment_enum:
{
unsigned int section_index;
bfd_vma value;
asection *section;
next_byte (&(ieee->h));
section_index = must_parse_int (&ieee->h);
section = get_section_entry (abfd, ieee, section_index);
if (section_index > ieee->section_count)
ieee->section_count = section_index;
section->alignment_power =
bfd_log2 (must_parse_int (&ieee->h));
(void) parse_int (&(ieee->h), &value);
}
break;
case ieee_e2_first_byte_enum:
{
asection *section;
ieee_record_enum_type t;
t = (ieee_record_enum_type) (read_2bytes (&(ieee->h)));
switch (t)
{
case ieee_section_size_enum:
section = ieee->section_table[must_parse_int (&(ieee->h))];
section->size = must_parse_int (&(ieee->h));
break;
case ieee_physical_region_size_enum:
section = ieee->section_table[must_parse_int (&(ieee->h))];
section->size = must_parse_int (&(ieee->h));
break;
case ieee_region_base_address_enum:
section = ieee->section_table[must_parse_int (&(ieee->h))];
section->vma = must_parse_int (&(ieee->h));
section->lma = section->vma;
break;
case ieee_mau_size_enum:
must_parse_int (&(ieee->h));
must_parse_int (&(ieee->h));
break;
case ieee_m_value_enum:
must_parse_int (&(ieee->h));
must_parse_int (&(ieee->h));
break;
case ieee_section_base_address_enum:
section = ieee->section_table[must_parse_int (&(ieee->h))];
section->vma = must_parse_int (&(ieee->h));
section->lma = section->vma;
break;
case ieee_section_offset_enum:
(void) must_parse_int (&(ieee->h));
(void) must_parse_int (&(ieee->h));
break;
default:
return;
}
}
break;
default:
return;
}
}
}
}
/* Make a section for the debugging information, if any. We don't try
to interpret the debugging information; we just point the section
at the area in the file so that program which understand can dig it
out. */
static bfd_boolean
ieee_slurp_debug (bfd *abfd)
{
ieee_data_type *ieee = IEEE_DATA (abfd);
asection *sec;
file_ptr debug_end;
if (ieee->w.r.debug_information_part == 0)
return TRUE;
sec = bfd_make_section (abfd, ".debug");
if (sec == NULL)
return FALSE;
sec->flags |= SEC_DEBUGGING | SEC_HAS_CONTENTS;
sec->filepos = ieee->w.r.debug_information_part;
debug_end = ieee_part_after (ieee, ieee->w.r.debug_information_part);
sec->size = debug_end - ieee->w.r.debug_information_part;
return TRUE;
}
/* Archive stuff. */
static const bfd_target *
ieee_archive_p (bfd *abfd)
{
char *library;
unsigned int i;
unsigned char buffer[512];
file_ptr buffer_offset = 0;
ieee_ar_data_type *save = abfd->tdata.ieee_ar_data;
ieee_ar_data_type *ieee;
bfd_size_type alc_elts;
ieee_ar_obstack_type *elts = NULL;
bfd_size_type amt = sizeof (ieee_ar_data_type);
abfd->tdata.ieee_ar_data = bfd_alloc (abfd, amt);
if (!abfd->tdata.ieee_ar_data)
goto error_ret_restore;
ieee = IEEE_AR_DATA (abfd);
/* Ignore the return value here. It doesn't matter if we don't read
the entire buffer. We might have a very small ieee file. */
bfd_bread ((void *) buffer, (bfd_size_type) sizeof (buffer), abfd);
ieee->h.first_byte = buffer;
ieee->h.input_p = buffer;
ieee->h.abfd = abfd;
if (this_byte (&(ieee->h)) != Module_Beginning)
goto got_wrong_format_error;
next_byte (&(ieee->h));
library = read_id (&(ieee->h));
if (strcmp (library, "LIBRARY") != 0)
goto got_wrong_format_error;
/* Throw away the filename. */
read_id (&(ieee->h));
ieee->element_count = 0;
ieee->element_index = 0;
next_byte (&(ieee->h)); /* Drop the ad part. */
must_parse_int (&(ieee->h)); /* And the two dummy numbers. */
must_parse_int (&(ieee->h));
alc_elts = 10;
elts = bfd_malloc (alc_elts * sizeof *elts);
if (elts == NULL)
goto error_return;
/* Read the index of the BB table. */
while (1)
{
int rec;
ieee_ar_obstack_type *t;
rec = read_2bytes (&(ieee->h));
if (rec != (int) ieee_assign_value_to_variable_enum)
break;
if (ieee->element_count >= alc_elts)
{
ieee_ar_obstack_type *n;
alc_elts *= 2;
n = bfd_realloc (elts, alc_elts * sizeof (* elts));
if (n == NULL)
goto error_return;
elts = n;
}
t = &elts[ieee->element_count];
ieee->element_count++;
must_parse_int (&(ieee->h));
t->file_offset = must_parse_int (&(ieee->h));
t->abfd = (bfd *) NULL;
/* Make sure that we don't go over the end of the buffer. */
if ((size_t) ieee_pos (IEEE_DATA (abfd)) > sizeof (buffer) / 2)
{
/* Past half way, reseek and reprime. */
buffer_offset += ieee_pos (IEEE_DATA (abfd));
if (bfd_seek (abfd, buffer_offset, SEEK_SET) != 0)
goto error_return;
/* Again ignore return value of bfd_bread. */
bfd_bread ((void *) buffer, (bfd_size_type) sizeof (buffer), abfd);
ieee->h.first_byte = buffer;
ieee->h.input_p = buffer;
}
}
amt = ieee->element_count;
amt *= sizeof *ieee->elements;
ieee->elements = bfd_alloc (abfd, amt);
if (ieee->elements == NULL)
goto error_return;
memcpy (ieee->elements, elts, (size_t) amt);
free (elts);
elts = NULL;
/* Now scan the area again, and replace BB offsets with file offsets. */
for (i = 2; i < ieee->element_count; i++)
{
if (bfd_seek (abfd, ieee->elements[i].file_offset, SEEK_SET) != 0)
goto error_return;
/* Again ignore return value of bfd_bread. */
bfd_bread ((void *) buffer, (bfd_size_type) sizeof (buffer), abfd);
ieee->h.first_byte = buffer;
ieee->h.input_p = buffer;
next_byte (&(ieee->h)); /* Drop F8. */
next_byte (&(ieee->h)); /* Drop 14. */
must_parse_int (&(ieee->h)); /* Drop size of block. */
if (must_parse_int (&(ieee->h)) != 0)
/* This object has been deleted. */
ieee->elements[i].file_offset = 0;
else
ieee->elements[i].file_offset = must_parse_int (&(ieee->h));
}
/* abfd->has_armap = ;*/
return abfd->xvec;
got_wrong_format_error:
bfd_set_error (bfd_error_wrong_format);
error_return:
if (elts != NULL)
free (elts);
bfd_release (abfd, ieee);
error_ret_restore:
abfd->tdata.ieee_ar_data = save;
return NULL;
}
static bfd_boolean
ieee_mkobject (bfd *abfd)
{
bfd_size_type amt;
output_ptr_start = NULL;
output_ptr = NULL;
output_ptr_end = NULL;
input_ptr_start = NULL;
input_ptr = NULL;
input_ptr_end = NULL;
input_bfd = NULL;
output_bfd = NULL;
output_buffer = 0;
amt = sizeof (ieee_data_type);
abfd->tdata.ieee_data = bfd_zalloc (abfd, amt);
return abfd->tdata.ieee_data != NULL;
}
static bfd_boolean
do_one (ieee_data_type *ieee,
ieee_per_section_type *current_map,
unsigned char *location_ptr,
asection *s,
int iterations)
{
switch (this_byte (&(ieee->h)))
{
case ieee_load_constant_bytes_enum:
{
unsigned int number_of_maus;
unsigned int i;
next_byte (&(ieee->h));
number_of_maus = must_parse_int (&(ieee->h));
for (i = 0; i < number_of_maus; i++)
{
location_ptr[current_map->pc++] = this_byte (&(ieee->h));
next_byte (&(ieee->h));
}
}
break;
case ieee_load_with_relocation_enum:
{
bfd_boolean loop = TRUE;
next_byte (&(ieee->h));
while (loop)
{
switch (this_byte (&(ieee->h)))
{
case ieee_variable_R_enum:
case ieee_function_signed_open_b_enum:
case ieee_function_unsigned_open_b_enum:
case ieee_function_either_open_b_enum:
{
unsigned int extra = 4;
bfd_boolean pcrel = FALSE;
asection *section;
ieee_reloc_type *r;
r = bfd_alloc (ieee->h.abfd, sizeof (* r));
if (!r)
return FALSE;
*(current_map->reloc_tail_ptr) = r;
current_map->reloc_tail_ptr = &r->next;
r->next = (ieee_reloc_type *) NULL;
next_byte (&(ieee->h));
/* abort();*/
r->relent.sym_ptr_ptr = 0;
parse_expression (ieee,
&r->relent.addend,
&r->symbol,
&pcrel, &extra, &section);
r->relent.address = current_map->pc;
s->flags |= SEC_RELOC;
s->owner->flags |= HAS_RELOC;
s->reloc_count++;
if (r->relent.sym_ptr_ptr == NULL && section != NULL)
r->relent.sym_ptr_ptr = section->symbol_ptr_ptr;
if (this_byte (&(ieee->h)) == (int) ieee_comma)
{
next_byte (&(ieee->h));
/* Fetch number of bytes to pad. */
extra = must_parse_int (&(ieee->h));
};
switch (this_byte (&(ieee->h)))
{
case ieee_function_signed_close_b_enum:
next_byte (&(ieee->h));
break;
case ieee_function_unsigned_close_b_enum:
next_byte (&(ieee->h));
break;
case ieee_function_either_close_b_enum:
next_byte (&(ieee->h));
break;
default:
break;
}
/* Build a relocation entry for this type. */
/* If pc rel then stick -ve pc into instruction
and take out of reloc ..
I've changed this. It's all too complicated. I
keep 0 in the instruction now. */
switch (extra)
{
case 0:
case 4:
if (pcrel)
{
#if KEEPMINUSPCININST
bfd_put_32 (ieee->h.abfd, -current_map->pc,
location_ptr + current_map->pc);
r->relent.howto = &rel32_howto;
r->relent.addend -= current_map->pc;
#else
bfd_put_32 (ieee->h.abfd, (bfd_vma) 0, location_ptr +
current_map->pc);
r->relent.howto = &rel32_howto;
#endif
}
else
{
bfd_put_32 (ieee->h.abfd, (bfd_vma) 0,
location_ptr + current_map->pc);
r->relent.howto = &abs32_howto;
}
current_map->pc += 4;
break;
case 2:
if (pcrel)
{
#if KEEPMINUSPCININST
bfd_put_16 (ieee->h.abfd, (bfd_vma) -current_map->pc,
location_ptr + current_map->pc);
r->relent.addend -= current_map->pc;
r->relent.howto = &rel16_howto;
#else
bfd_put_16 (ieee->h.abfd, (bfd_vma) 0,
location_ptr + current_map->pc);
r->relent.howto = &rel16_howto;
#endif
}
else
{
bfd_put_16 (ieee->h.abfd, (bfd_vma) 0,
location_ptr + current_map->pc);
r->relent.howto = &abs16_howto;
}
current_map->pc += 2;
break;
case 1:
if (pcrel)
{
#if KEEPMINUSPCININST
bfd_put_8 (ieee->h.abfd, (int) (-current_map->pc), location_ptr + current_map->pc);
r->relent.addend -= current_map->pc;
r->relent.howto = &rel8_howto;
#else
bfd_put_8 (ieee->h.abfd, 0, location_ptr + current_map->pc);
r->relent.howto = &rel8_howto;
#endif
}
else
{
bfd_put_8 (ieee->h.abfd, 0, location_ptr + current_map->pc);
r->relent.howto = &abs8_howto;
}
current_map->pc += 1;
break;
default:
BFD_FAIL ();
return FALSE;
}
}
break;
default:
{
bfd_vma this_size;
if (parse_int (&(ieee->h), &this_size))
{
unsigned int i;
for (i = 0; i < this_size; i++)
{
location_ptr[current_map->pc++] = this_byte (&(ieee->h));
next_byte (&(ieee->h));
}
}
else
loop = FALSE;
}
}
/* Prevent more than the first load-item of an LR record
from being repeated (MRI convention). */
if (iterations != 1)
loop = FALSE;
}
}
}
return TRUE;
}
/* Read in all the section data and relocation stuff too. */
static bfd_boolean
ieee_slurp_section_data (bfd *abfd)
{
bfd_byte *location_ptr = (bfd_byte *) NULL;
ieee_data_type *ieee = IEEE_DATA (abfd);
unsigned int section_number;
ieee_per_section_type *current_map = NULL;
asection *s;
/* Seek to the start of the data area. */
if (ieee->read_data)
return TRUE;
ieee->read_data = TRUE;
ieee_seek (ieee, ieee->w.r.data_part);
/* Allocate enough space for all the section contents. */
for (s = abfd->sections; s != (asection *) NULL; s = s->next)
{
ieee_per_section_type *per = ieee_per_section (s);
if ((s->flags & SEC_DEBUGGING) != 0)
continue;
per->data = bfd_alloc (ieee->h.abfd, s->size);
if (!per->data)
return FALSE;
per->reloc_tail_ptr =
(ieee_reloc_type **) & (s->relocation);
}
while (TRUE)
{
switch (this_byte (&(ieee->h)))
{
/* IF we see anything strange then quit. */
default:
return TRUE;
case ieee_set_current_section_enum:
next_byte (&(ieee->h));
section_number = must_parse_int (&(ieee->h));
s = ieee->section_table[section_number];
s->flags |= SEC_LOAD | SEC_HAS_CONTENTS;
current_map = ieee_per_section (s);
location_ptr = current_map->data - s->vma;
/* The document I have says that Microtec's compilers reset
this after a sec section, even though the standard says not
to, SO... */
current_map->pc = s->vma;
break;
case ieee_e2_first_byte_enum:
next_byte (&(ieee->h));
switch (this_byte (&(ieee->h)))
{
case ieee_set_current_pc_enum & 0xff:
{
bfd_vma value;
ieee_symbol_index_type symbol;
unsigned int extra;
bfd_boolean pcrel;
next_byte (&(ieee->h));
must_parse_int (&(ieee->h)); /* Throw away section #. */
parse_expression (ieee, &value,
&symbol,
&pcrel, &extra,
0);
current_map->pc = value;
BFD_ASSERT ((unsigned) (value - s->vma) <= s->size);
}
break;
case ieee_value_starting_address_enum & 0xff:
next_byte (&(ieee->h));
if (this_byte (&(ieee->h)) == ieee_function_either_open_b_enum)
next_byte (&(ieee->h));
abfd->start_address = must_parse_int (&(ieee->h));
/* We've got to the end of the data now - */
return TRUE;
default:
BFD_FAIL ();
return FALSE;
}
break;
case ieee_repeat_data_enum:
{
/* Repeat the following LD or LR n times - we do this by
remembering the stream pointer before running it and
resetting it and running it n times. We special case
the repetition of a repeat_data/load_constant. */
unsigned int iterations;
unsigned char *start;
next_byte (&(ieee->h));
iterations = must_parse_int (&(ieee->h));
start = ieee->h.input_p;
if (start[0] == (int) ieee_load_constant_bytes_enum
&& start[1] == 1)
{
while (iterations != 0)
{
location_ptr[current_map->pc++] = start[2];
iterations--;
}
next_byte (&(ieee->h));
next_byte (&(ieee->h));
next_byte (&(ieee->h));
}
else
{
while (iterations != 0)
{
ieee->h.input_p = start;
if (!do_one (ieee, current_map, location_ptr, s,
(int) iterations))
return FALSE;
iterations--;
}
}
}
break;
case ieee_load_constant_bytes_enum:
case ieee_load_with_relocation_enum:
if (!do_one (ieee, current_map, location_ptr, s, 1))
return FALSE;
}
}
}
static const bfd_target *
ieee_object_p (bfd *abfd)
{
char *processor;
unsigned int part;
ieee_data_type *ieee;
unsigned char buffer[300];
ieee_data_type *save = IEEE_DATA (abfd);
bfd_size_type amt;
abfd->tdata.ieee_data = 0;
ieee_mkobject (abfd);
ieee = IEEE_DATA (abfd);
if (bfd_seek (abfd, (file_ptr) 0, SEEK_SET) != 0)
goto fail;
/* Read the first few bytes in to see if it makes sense. Ignore
bfd_bread return value; The file might be very small. */
bfd_bread ((void *) buffer, (bfd_size_type) sizeof (buffer), abfd);
ieee->h.input_p = buffer;
if (this_byte_and_next (&(ieee->h)) != Module_Beginning)
goto got_wrong_format;
ieee->read_symbols = FALSE;
ieee->read_data = FALSE;
ieee->section_count = 0;
ieee->external_symbol_max_index = 0;
ieee->external_symbol_min_index = IEEE_PUBLIC_BASE;
ieee->external_reference_min_index = IEEE_REFERENCE_BASE;
ieee->external_reference_max_index = 0;
ieee->h.abfd = abfd;
ieee->section_table = NULL;
ieee->section_table_size = 0;
processor = ieee->mb.processor = read_id (&(ieee->h));
if (strcmp (processor, "LIBRARY") == 0)
goto got_wrong_format;
ieee->mb.module_name = read_id (&(ieee->h));
if (abfd->filename == (const char *) NULL)
abfd->filename = ieee->mb.module_name;
/* Determine the architecture and machine type of the object file. */
{
const bfd_arch_info_type *arch;
char family[10];
/* IEEE does not specify the format of the processor identification
string, so the compiler is free to put in it whatever it wants.
We try here to recognize different processors belonging to the
m68k family. Code for other processors can be added here. */
if ((processor[0] == '6') && (processor[1] == '8'))
{
if (processor[2] == '3') /* 683xx integrated processors. */
{
switch (processor[3])
{
case '0': /* 68302, 68306, 68307 */
case '2': /* 68322, 68328 */
case '5': /* 68356 */
strcpy (family, "68000"); /* MC68000-based controllers. */
break;
case '3': /* 68330, 68331, 68332, 68333,
68334, 68335, 68336, 68338 */
case '6': /* 68360 */
case '7': /* 68376 */
strcpy (family, "68332"); /* CPU32 and CPU32+ */
break;
case '4':
if (processor[4] == '9') /* 68349 */
strcpy (family, "68030"); /* CPU030 */
else /* 68340, 68341 */
strcpy (family, "68332"); /* CPU32 and CPU32+ */
break;
default: /* Does not exist yet. */
strcpy (family, "68332"); /* Guess it will be CPU32 */
}
}
else if (TOUPPER (processor[3]) == 'F') /* 68F333 */
strcpy (family, "68332"); /* CPU32 */
else if ((TOUPPER (processor[3]) == 'C') /* Embedded controllers. */
&& ((TOUPPER (processor[2]) == 'E')
|| (TOUPPER (processor[2]) == 'H')
|| (TOUPPER (processor[2]) == 'L')))
{
strcpy (family, "68");
strncat (family, processor + 4, 7);
family[9] = '\0';
}
else /* "Regular" processors. */
{
strncpy (family, processor, 9);
family[9] = '\0';
}
}
else if ((strncmp (processor, "cpu32", 5) == 0) /* CPU32 and CPU32+ */
|| (strncmp (processor, "CPU32", 5) == 0))
strcpy (family, "68332");
else
{
strncpy (family, processor, 9);
family[9] = '\0';
}
arch = bfd_scan_arch (family);
if (arch == 0)
goto got_wrong_format;
abfd->arch_info = arch;
}
if (this_byte (&(ieee->h)) != (int) ieee_address_descriptor_enum)
goto fail;
next_byte (&(ieee->h));
if (! parse_int (&(ieee->h), &ieee->ad.number_of_bits_mau))
goto fail;
if (! parse_int (&(ieee->h), &ieee->ad.number_of_maus_in_address))
goto fail;
/* If there is a byte order info, take it. */
if (this_byte (&(ieee->h)) == (int) ieee_variable_L_enum
|| this_byte (&(ieee->h)) == (int) ieee_variable_M_enum)
next_byte (&(ieee->h));
for (part = 0; part < N_W_VARIABLES; part++)
{
bfd_boolean ok;
if (read_2bytes (&(ieee->h)) != (int) ieee_assign_value_to_variable_enum)
goto fail;
if (this_byte_and_next (&(ieee->h)) != part)
goto fail;
ieee->w.offset[part] = parse_i (&(ieee->h), &ok);
if (! ok)
goto fail;
}
if (ieee->w.r.external_part != 0)
abfd->flags = HAS_SYMS;
/* By now we know that this is a real IEEE file, we're going to read
the whole thing into memory so that we can run up and down it
quickly. We can work out how big the file is from the trailer
record. */
amt = ieee->w.r.me_record + 1;
IEEE_DATA (abfd)->h.first_byte = bfd_alloc (ieee->h.abfd, amt);
if (!IEEE_DATA (abfd)->h.first_byte)
goto fail;
if (bfd_seek (abfd, (file_ptr) 0, SEEK_SET) != 0)
goto fail;
/* FIXME: Check return value. I'm not sure whether it needs to read
the entire buffer or not. */
bfd_bread ((void *) (IEEE_DATA (abfd)->h.first_byte),
(bfd_size_type) ieee->w.r.me_record + 1, abfd);
ieee_slurp_sections (abfd);
if (! ieee_slurp_debug (abfd))
goto fail;
/* Parse section data to activate file and section flags implied by
section contents. */
if (! ieee_slurp_section_data (abfd))
goto fail;
return abfd->xvec;
got_wrong_format:
bfd_set_error (bfd_error_wrong_format);
fail:
bfd_release (abfd, ieee);
abfd->tdata.ieee_data = save;
return (const bfd_target *) NULL;
}
static void
ieee_get_symbol_info (bfd *ignore_abfd ATTRIBUTE_UNUSED,
asymbol *symbol,
symbol_info *ret)
{
bfd_symbol_info (symbol, ret);
if (symbol->name[0] == ' ')
ret->name = "* empty table entry ";
if (!symbol->section)
ret->type = (symbol->flags & BSF_LOCAL) ? 'a' : 'A';
}
static void
ieee_print_symbol (bfd *abfd,
void * afile,
asymbol *symbol,
bfd_print_symbol_type how)
{
FILE *file = (FILE *) afile;
switch (how)
{
case bfd_print_symbol_name:
fprintf (file, "%s", symbol->name);
break;
case bfd_print_symbol_more:
BFD_FAIL ();
break;
case bfd_print_symbol_all:
{
const char *section_name =
(symbol->section == (asection *) NULL
? "*abs"
: symbol->section->name);
if (symbol->name[0] == ' ')
fprintf (file, "* empty table entry ");
else
{
bfd_print_symbol_vandf (abfd, (void *) file, symbol);
fprintf (file, " %-5s %04x %02x %s",
section_name,
(unsigned) ieee_symbol (symbol)->index,
(unsigned) 0,
symbol->name);
}
}
break;
}
}
static bfd_boolean
ieee_new_section_hook (bfd *abfd, asection *newsect)
{
newsect->used_by_bfd = bfd_alloc (abfd, (bfd_size_type) sizeof (ieee_per_section_type));
if (!newsect->used_by_bfd)
return FALSE;
ieee_per_section (newsect)->data = NULL;
ieee_per_section (newsect)->section = newsect;
return TRUE;
}
static long
ieee_get_reloc_upper_bound (bfd *abfd, sec_ptr asect)
{
if ((asect->flags & SEC_DEBUGGING) != 0)
return 0;
if (! ieee_slurp_section_data (abfd))
return -1;
return (asect->reloc_count + 1) * sizeof (arelent *);
}
static bfd_boolean
ieee_get_section_contents (bfd *abfd,
sec_ptr section,
void * location,
file_ptr offset,
bfd_size_type count)
{
ieee_per_section_type *p = ieee_per_section (section);
if ((section->flags & SEC_DEBUGGING) != 0)
return _bfd_generic_get_section_contents (abfd, section, location,
offset, count);
ieee_slurp_section_data (abfd);
(void) memcpy ((void *) location, (void *) (p->data + offset), (unsigned) count);
return TRUE;
}
static long
ieee_canonicalize_reloc (bfd *abfd,
sec_ptr section,
arelent **relptr,
asymbol **symbols)
{
ieee_reloc_type *src = (ieee_reloc_type *) (section->relocation);
ieee_data_type *ieee = IEEE_DATA (abfd);
if ((section->flags & SEC_DEBUGGING) != 0)
return 0;
while (src != (ieee_reloc_type *) NULL)
{
/* Work out which symbol to attach it this reloc to. */
switch (src->symbol.letter)
{
case 'I':
src->relent.sym_ptr_ptr =
symbols + src->symbol.index + ieee->external_symbol_base_offset;
break;
case 'X':
src->relent.sym_ptr_ptr =
symbols + src->symbol.index + ieee->external_reference_base_offset;
break;
case 0:
if (src->relent.sym_ptr_ptr != NULL)
src->relent.sym_ptr_ptr =
src->relent.sym_ptr_ptr[0]->section->symbol_ptr_ptr;
break;
default:
BFD_FAIL ();
}
*relptr++ = &src->relent;
src = src->next;
}
*relptr = NULL;
return section->reloc_count;
}
static int
comp (const void * ap, const void * bp)
{
arelent *a = *((arelent **) ap);
arelent *b = *((arelent **) bp);
return a->address - b->address;
}
/* Write the section headers. */
static bfd_boolean
ieee_write_section_part (bfd *abfd)
{
ieee_data_type *ieee = IEEE_DATA (abfd);
asection *s;
ieee->w.r.section_part = bfd_tell (abfd);
for (s = abfd->sections; s != (asection *) NULL; s = s->next)
{
if (! bfd_is_abs_section (s)
&& (s->flags & SEC_DEBUGGING) == 0)
{
if (! ieee_write_byte (abfd, ieee_section_type_enum)
|| ! ieee_write_byte (abfd,
(bfd_byte) (s->index
+ IEEE_SECTION_NUMBER_BASE)))
return FALSE;
if (abfd->flags & EXEC_P)
{
/* This image is executable, so output absolute sections. */
if (! ieee_write_byte (abfd, ieee_variable_A_enum)
|| ! ieee_write_byte (abfd, ieee_variable_S_enum))
return FALSE;
}
else
{
if (! ieee_write_byte (abfd, ieee_variable_C_enum))
return FALSE;
}
switch (s->flags & (SEC_CODE | SEC_DATA | SEC_ROM))
{
case SEC_CODE | SEC_LOAD:
case SEC_CODE:
if (! ieee_write_byte (abfd, ieee_variable_P_enum))
return FALSE;
break;
case SEC_DATA:
default:
if (! ieee_write_byte (abfd, ieee_variable_D_enum))
return FALSE;
break;
case SEC_ROM:
case SEC_ROM | SEC_DATA:
case SEC_ROM | SEC_LOAD:
case SEC_ROM | SEC_DATA | SEC_LOAD:
if (! ieee_write_byte (abfd, ieee_variable_R_enum))
return FALSE;
}
if (! ieee_write_id (abfd, s->name))
return FALSE;
/* Alignment. */
if (! ieee_write_byte (abfd, ieee_section_alignment_enum)
|| ! ieee_write_byte (abfd,
(bfd_byte) (s->index
+ IEEE_SECTION_NUMBER_BASE))
|| ! ieee_write_int (abfd, (bfd_vma) 1 << s->alignment_power))
return FALSE;
/* Size. */
if (! ieee_write_2bytes (abfd, ieee_section_size_enum)
|| ! ieee_write_byte (abfd,
(bfd_byte) (s->index
+ IEEE_SECTION_NUMBER_BASE))
|| ! ieee_write_int (abfd, s->size))
return FALSE;
if (abfd->flags & EXEC_P)
{
/* Relocateable sections don't have asl records. */
/* Vma. */
if (! ieee_write_2bytes (abfd, ieee_section_base_address_enum)
|| ! ieee_write_byte (abfd,
((bfd_byte)
(s->index
+ IEEE_SECTION_NUMBER_BASE)))
|| ! ieee_write_int (abfd, s->lma))
return FALSE;
}
}
}
return TRUE;
}
static bfd_boolean
do_with_relocs (bfd *abfd, asection *s)
{
unsigned int number_of_maus_in_address =
bfd_arch_bits_per_address (abfd) / bfd_arch_bits_per_byte (abfd);
unsigned int relocs_to_go = s->reloc_count;
bfd_byte *stream = ieee_per_section (s)->data;
arelent **p = s->orelocation;
bfd_size_type current_byte_index = 0;
qsort (s->orelocation,
relocs_to_go,
sizeof (arelent **),
comp);
/* Output the section preheader. */
if (! ieee_write_byte (abfd, ieee_set_current_section_enum)
|| ! ieee_write_byte (abfd,
(bfd_byte) (s->index + IEEE_SECTION_NUMBER_BASE))
|| ! ieee_write_2bytes (abfd, ieee_set_current_pc_enum)
|| ! ieee_write_byte (abfd,
(bfd_byte) (s->index + IEEE_SECTION_NUMBER_BASE)))
return FALSE;
if ((abfd->flags & EXEC_P) != 0 && relocs_to_go == 0)
{
if (! ieee_write_int (abfd, s->lma))
return FALSE;
}
else
{
if (! ieee_write_expression (abfd, (bfd_vma) 0, s->symbol, 0, 0))
return FALSE;
}
if (relocs_to_go == 0)
{
/* If there aren't any relocations then output the load constant
byte opcode rather than the load with relocation opcode. */
while (current_byte_index < s->size)
{
bfd_size_type run;
unsigned int MAXRUN = 127;
run = MAXRUN;
if (run > s->size - current_byte_index)
run = s->size - current_byte_index;
if (run != 0)
{
if (! ieee_write_byte (abfd, ieee_load_constant_bytes_enum))
return FALSE;
/* Output a stream of bytes. */
if (! ieee_write_int (abfd, run))
return FALSE;
if (bfd_bwrite ((void *) (stream + current_byte_index), run, abfd)
!= run)
return FALSE;
current_byte_index += run;
}
}
}
else
{
if (! ieee_write_byte (abfd, ieee_load_with_relocation_enum))
return FALSE;
/* Output the data stream as the longest sequence of bytes
possible, allowing for the a reasonable packet size and
relocation stuffs. */
if (stream == NULL)
{
/* Outputting a section without data, fill it up. */
stream = bfd_zalloc (abfd, s->size);
if (!stream)
return FALSE;
}
while (current_byte_index < s->size)
{
bfd_size_type run;
unsigned int MAXRUN = 127;
if (relocs_to_go)
{
run = (*p)->address - current_byte_index;
if (run > MAXRUN)
run = MAXRUN;
}
else
run = MAXRUN;
if (run > s->size - current_byte_index)
run = s->size - current_byte_index;
if (run != 0)
{
/* Output a stream of bytes. */
if (! ieee_write_int (abfd, run))
return FALSE;
if (bfd_bwrite ((void *) (stream + current_byte_index), run, abfd)
!= run)
return FALSE;
current_byte_index += run;
}
/* Output any relocations here. */
if (relocs_to_go && (*p) && (*p)->address == current_byte_index)
{
while (relocs_to_go
&& (*p) && (*p)->address == current_byte_index)
{
arelent *r = *p;
bfd_signed_vma ov;
switch (r->howto->size)
{
case 2:
ov = bfd_get_signed_32 (abfd,
stream + current_byte_index);
current_byte_index += 4;
break;
case 1:
ov = bfd_get_signed_16 (abfd,
stream + current_byte_index);
current_byte_index += 2;
break;
case 0:
ov = bfd_get_signed_8 (abfd,
stream + current_byte_index);
current_byte_index++;
break;
default:
ov = 0;
BFD_FAIL ();
return FALSE;
}
ov &= r->howto->src_mask;
if (r->howto->pc_relative
&& ! r->howto->pcrel_offset)
ov += r->address;
if (! ieee_write_byte (abfd,
ieee_function_either_open_b_enum))
return FALSE;
if (r->sym_ptr_ptr != (asymbol **) NULL)
{
if (! ieee_write_expression (abfd, r->addend + ov,
*(r->sym_ptr_ptr),
r->howto->pc_relative,
(unsigned) s->index))
return FALSE;
}
else
{
if (! ieee_write_expression (abfd, r->addend + ov,
(asymbol *) NULL,
r->howto->pc_relative,
(unsigned) s->index))
return FALSE;
}
if (number_of_maus_in_address
!= bfd_get_reloc_size (r->howto))
{
bfd_vma rsize = bfd_get_reloc_size (r->howto);
if (! ieee_write_int (abfd, rsize))
return FALSE;
}
if (! ieee_write_byte (abfd,
ieee_function_either_close_b_enum))
return FALSE;
relocs_to_go--;
p++;
}
}
}
}
return TRUE;
}
/* If there are no relocations in the output section then we can be
clever about how we write. We block items up into a max of 127
bytes. */
static bfd_boolean
do_as_repeat (bfd *abfd, asection *s)
{
if (s->size)
{
if (! ieee_write_byte (abfd, ieee_set_current_section_enum)
|| ! ieee_write_byte (abfd,
(bfd_byte) (s->index
+ IEEE_SECTION_NUMBER_BASE))
|| ! ieee_write_byte (abfd, ieee_set_current_pc_enum >> 8)
|| ! ieee_write_byte (abfd, ieee_set_current_pc_enum & 0xff)
|| ! ieee_write_byte (abfd,
(bfd_byte) (s->index
+ IEEE_SECTION_NUMBER_BASE)))
return FALSE;
if ((abfd->flags & EXEC_P) != 0)
{
if (! ieee_write_int (abfd, s->lma))
return FALSE;
}
else
{
if (! ieee_write_expression (abfd, (bfd_vma) 0, s->symbol, 0, 0))
return FALSE;
}
if (! ieee_write_byte (abfd, ieee_repeat_data_enum)
|| ! ieee_write_int (abfd, s->size)
|| ! ieee_write_byte (abfd, ieee_load_constant_bytes_enum)
|| ! ieee_write_byte (abfd, 1)
|| ! ieee_write_byte (abfd, 0))
return FALSE;
}
return TRUE;
}
static bfd_boolean
do_without_relocs (bfd *abfd, asection *s)
{
bfd_byte *stream = ieee_per_section (s)->data;
if (stream == 0 || ((s->flags & SEC_LOAD) == 0))
{
if (! do_as_repeat (abfd, s))
return FALSE;
}
else
{
unsigned int i;
for (i = 0; i < s->size; i++)
{
if (stream[i] != 0)
{
if (! do_with_relocs (abfd, s))
return FALSE;
return TRUE;
}
}
if (! do_as_repeat (abfd, s))
return FALSE;
}
return TRUE;
}
static void
fill (void)
{
bfd_size_type amt = input_ptr_end - input_ptr_start;
/* FIXME: Check return value. I'm not sure whether it needs to read
the entire buffer or not. */
bfd_bread ((void *) input_ptr_start, amt, input_bfd);
input_ptr = input_ptr_start;
}
static void
flush (void)
{
bfd_size_type amt = output_ptr - output_ptr_start;
if (bfd_bwrite ((void *) (output_ptr_start), amt, output_bfd) != amt)
abort ();
output_ptr = output_ptr_start;
output_buffer++;
}
#define THIS() ( *input_ptr )
#define NEXT() { input_ptr++; if (input_ptr == input_ptr_end) fill (); }
#define OUT(x) { *output_ptr++ = (x); if (output_ptr == output_ptr_end) flush (); }
static void
write_int (int value)
{
if (value >= 0 && value <= 127)
{
OUT (value);
}
else
{
unsigned int length;
/* How many significant bytes ? */
/* FIXME FOR LONGER INTS. */
if (value & 0xff000000)
length = 4;
else if (value & 0x00ff0000)
length = 3;
else if (value & 0x0000ff00)
length = 2;
else
length = 1;
OUT ((int) ieee_number_repeat_start_enum + length);
switch (length)
{
case 4:
OUT (value >> 24);
case 3:
OUT (value >> 16);
case 2:
OUT (value >> 8);
case 1:
OUT (value);
}
}
}
static void
copy_id (void)
{
int length = THIS ();
char ch;
OUT (length);
NEXT ();
while (length--)
{
ch = THIS ();
OUT (ch);
NEXT ();
}
}
#define VAR(x) ((x | 0x80))
static void
copy_expression (void)
{
int stack[10];
int *tos = stack;
int value;
while (1)
{
switch (THIS ())
{
case 0x84:
NEXT ();
value = THIS ();
NEXT ();
value = (value << 8) | THIS ();
NEXT ();
value = (value << 8) | THIS ();
NEXT ();
value = (value << 8) | THIS ();
NEXT ();
*tos++ = value;
break;
case 0x83:
NEXT ();
value = THIS ();
NEXT ();
value = (value << 8) | THIS ();
NEXT ();
value = (value << 8) | THIS ();
NEXT ();
*tos++ = value;
break;
case 0x82:
NEXT ();
value = THIS ();
NEXT ();
value = (value << 8) | THIS ();
NEXT ();
*tos++ = value;
break;
case 0x81:
NEXT ();
value = THIS ();
NEXT ();
*tos++ = value;
break;
case 0x80:
NEXT ();
*tos++ = 0;
break;
default:
if (THIS () > 0x84)
{
/* Not a number, just bug out with the answer. */
write_int (*(--tos));
return;
}
*tos++ = THIS ();
NEXT ();
break;
case 0xa5:
/* PLUS anything. */
value = *(--tos);
value += *(--tos);
*tos++ = value;
NEXT ();
break;
case VAR ('R'):
{
int section_number;
ieee_data_type *ieee;
asection *s;
NEXT ();
section_number = THIS ();
NEXT ();
ieee = IEEE_DATA (input_bfd);
s = ieee->section_table[section_number];
value = 0;
if (s->output_section)
value = s->output_section->lma;
value += s->output_offset;
*tos++ = value;
}
break;
case 0x90:
{
NEXT ();
write_int (*(--tos));
OUT (0x90);
return;
}
}
}
}
/* Drop the int in the buffer, and copy a null into the gap, which we
will overwrite later. */
static void
fill_int (struct output_buffer_struct *buf)
{
if (buf->buffer == output_buffer)
{
/* Still a chance to output the size. */
int value = output_ptr - buf->ptrp + 3;
buf->ptrp[0] = value >> 24;
buf->ptrp[1] = value >> 16;
buf->ptrp[2] = value >> 8;
buf->ptrp[3] = value >> 0;
}
}
static void
drop_int (struct output_buffer_struct *buf)
{
int type = THIS ();
int ch;
if (type <= 0x84)
{
NEXT ();
switch (type)
{
case 0x84:
ch = THIS ();
NEXT ();
case 0x83:
ch = THIS ();
NEXT ();
case 0x82:
ch = THIS ();
NEXT ();
case 0x81:
ch = THIS ();
NEXT ();
case 0x80:
break;
}
}
OUT (0x84);
buf->ptrp = output_ptr;
buf->buffer = output_buffer;
OUT (0);
OUT (0);
OUT (0);
OUT (0);
}
static void
copy_int (void)
{
int type = THIS ();
int ch;
if (type <= 0x84)
{
OUT (type);
NEXT ();
switch (type)
{
case 0x84:
ch = THIS ();
NEXT ();
OUT (ch);
case 0x83:
ch = THIS ();
NEXT ();
OUT (ch);
case 0x82:
ch = THIS ();
NEXT ();
OUT (ch);
case 0x81:
ch = THIS ();
NEXT ();
OUT (ch);
case 0x80:
break;
}
}
}
#define ID copy_id ()
#define INT copy_int ()
#define EXP copy_expression ()
#define INTn(q) copy_int ()
#define EXPn(q) copy_expression ()
static void
copy_till_end (void)
{
int ch = THIS ();
while (1)
{
while (ch <= 0x80)
{
OUT (ch);
NEXT ();
ch = THIS ();
}
switch (ch)
{
case 0x84:
OUT (THIS ());
NEXT ();
case 0x83:
OUT (THIS ());
NEXT ();
case 0x82:
OUT (THIS ());
NEXT ();
case 0x81:
OUT (THIS ());
NEXT ();
OUT (THIS ());
NEXT ();
ch = THIS ();
break;
default:
return;
}
}
}
static void
f1_record (void)
{
int ch;
/* ATN record. */
NEXT ();
ch = THIS ();
switch (ch)
{
default:
OUT (0xf1);
OUT (ch);
break;
case 0xc9:
NEXT ();
OUT (0xf1);
OUT (0xc9);
INT;
INT;
ch = THIS ();
switch (ch)
{
case 0x16:
NEXT ();
break;
case 0x01:
NEXT ();
break;
case 0x00:
NEXT ();
INT;
break;
case 0x03:
NEXT ();
INT;
break;
case 0x13:
EXPn (instruction address);
break;
default:
break;
}
break;
case 0xd8:
/* EXternal ref. */
NEXT ();
OUT (0xf1);
OUT (0xd8);
EXP;
EXP;
EXP;
EXP;
break;
case 0xce:
NEXT ();
OUT (0xf1);
OUT (0xce);
INT;
INT;
ch = THIS ();
INT;
switch (ch)
{
case 0x01:
INT;
INT;
break;
case 0x02:
INT;
break;
case 0x04:
EXPn (external function);
break;
case 0x05:
break;
case 0x07:
INTn (line number);
INT;
case 0x08:
break;
case 0x0a:
INTn (locked register);
INT;
break;
case 0x3f:
copy_till_end ();
break;
case 0x3e:
copy_till_end ();
break;
case 0x40:
copy_till_end ();
break;
case 0x41:
ID;
break;
}
}
}
static void
f0_record (void)
{
/* Attribute record. */
NEXT ();
OUT (0xf0);
INTn (Symbol name);
ID;
}
static void
f2_record (void)
{
NEXT ();
OUT (0xf2);
INT;
NEXT ();
OUT (0xce);
INT;
copy_till_end ();
}
static void
f8_record (void)
{
int ch;
NEXT ();
ch = THIS ();
switch (ch)
{
case 0x01:
case 0x02:
case 0x03:
/* Unique typedefs for module. */
/* GLobal typedefs. */
/* High level module scope beginning. */
{
struct output_buffer_struct ob;
NEXT ();
OUT (0xf8);
OUT (ch);
drop_int (&ob);
ID;
block ();
NEXT ();
fill_int (&ob);
OUT (0xf9);
}
break;
case 0x04:
/* Global function. */
{
struct output_buffer_struct ob;
NEXT ();
OUT (0xf8);
OUT (0x04);
drop_int (&ob);
ID;
INTn (stack size);
INTn (ret val);
EXPn (offset);
block ();
NEXT ();
OUT (0xf9);
EXPn (size of block);
fill_int (&ob);
}
break;
case 0x05:
/* File name for source line numbers. */
{
struct output_buffer_struct ob;
NEXT ();
OUT (0xf8);
OUT (0x05);
drop_int (&ob);
ID;
INTn (year);
INTn (month);
INTn (day);
INTn (hour);
INTn (monute);
INTn (second);
block ();
NEXT ();
OUT (0xf9);
fill_int (&ob);
}
break;
case 0x06:
/* Local function. */
{
struct output_buffer_struct ob;
NEXT ();
OUT (0xf8);
OUT (0x06);
drop_int (&ob);
ID;
INTn (stack size);
INTn (type return);
EXPn (offset);
block ();
NEXT ();
OUT (0xf9);
EXPn (size);
fill_int (&ob);
}
break;
case 0x0a:
/* Assembler module scope beginning - */
{
struct output_buffer_struct ob;
NEXT ();
OUT (0xf8);
OUT (0x0a);
drop_int (&ob);
ID;
ID;
INT;
ID;
INT;
INT;
INT;
INT;
INT;
INT;
block ();
NEXT ();
OUT (0xf9);
fill_int (&ob);
}
break;
case 0x0b:
{
struct output_buffer_struct ob;
NEXT ();
OUT (0xf8);
OUT (0x0b);
drop_int (&ob);
ID;
INT;
INTn (section index);
EXPn (offset);
INTn (stuff);
block ();
OUT (0xf9);
NEXT ();
EXPn (Size in Maus);
fill_int (&ob);
}
break;
}
}
static void
e2_record (void)
{
OUT (0xe2);
NEXT ();
OUT (0xce);
NEXT ();
INT;
EXP;
}
static void
block (void)
{
int ch;
while (1)
{
ch = THIS ();
switch (ch)
{
case 0xe1:
case 0xe5:
return;
case 0xf9:
return;
case 0xf0:
f0_record ();
break;
case 0xf1:
f1_record ();
break;
case 0xf2:
f2_record ();
break;
case 0xf8:
f8_record ();
break;
case 0xe2:
e2_record ();
break;
}
}
}
/* Moves all the debug information from the source bfd to the output
bfd, and relocates any expressions it finds. */
static void
relocate_debug (bfd *output ATTRIBUTE_UNUSED,
bfd *input)
{
#define IBS 400
#define OBS 400
unsigned char input_buffer[IBS];
input_ptr_start = input_ptr = input_buffer;
input_ptr_end = input_buffer + IBS;
input_bfd = input;
/* FIXME: Check return value. I'm not sure whether it needs to read
the entire buffer or not. */
bfd_bread ((void *) input_ptr_start, (bfd_size_type) IBS, input);
block ();
}
/* Gather together all the debug information from each input BFD into
one place, relocating it and emitting it as we go. */
static bfd_boolean
ieee_write_debug_part (bfd *abfd)
{
ieee_data_type *ieee = IEEE_DATA (abfd);
bfd_chain_type *chain = ieee->chain_root;
unsigned char obuff[OBS];
bfd_boolean some_debug = FALSE;
file_ptr here = bfd_tell (abfd);
output_ptr_start = output_ptr = obuff;
output_ptr_end = obuff + OBS;
output_ptr = obuff;
output_bfd = abfd;
if (chain == (bfd_chain_type *) NULL)
{
asection *s;
for (s = abfd->sections; s != NULL; s = s->next)
if ((s->flags & SEC_DEBUGGING) != 0)
break;
if (s == NULL)
{
ieee->w.r.debug_information_part = 0;
return TRUE;
}
ieee->w.r.debug_information_part = here;
if (bfd_bwrite (s->contents, s->size, abfd) != s->size)
return FALSE;
}
else
{
while (chain != (bfd_chain_type *) NULL)
{
bfd *entry = chain->this;
ieee_data_type *entry_ieee = IEEE_DATA (entry);
if (entry_ieee->w.r.debug_information_part)
{
if (bfd_seek (entry, entry_ieee->w.r.debug_information_part,
SEEK_SET) != 0)
return FALSE;
relocate_debug (abfd, entry);
}
chain = chain->next;
}
if (some_debug)
ieee->w.r.debug_information_part = here;
else
ieee->w.r.debug_information_part = 0;
flush ();
}
return TRUE;
}
/* Write the data in an ieee way. */
static bfd_boolean
ieee_write_data_part (bfd *abfd)
{
asection *s;
ieee_data_type *ieee = IEEE_DATA (abfd);
ieee->w.r.data_part = bfd_tell (abfd);
for (s = abfd->sections; s != (asection *) NULL; s = s->next)
{
/* Skip sections that have no loadable contents (.bss,
debugging, etc.) */
if ((s->flags & SEC_LOAD) == 0)
continue;
/* Sort the reloc records so we can insert them in the correct
places. */
if (s->reloc_count != 0)
{
if (! do_with_relocs (abfd, s))
return FALSE;
}
else
{
if (! do_without_relocs (abfd, s))
return FALSE;
}
}
return TRUE;
}
static bfd_boolean
init_for_output (bfd *abfd)
{
asection *s;
for (s = abfd->sections; s != (asection *) NULL; s = s->next)
{
if ((s->flags & SEC_DEBUGGING) != 0)
continue;
if (s->size != 0)
{
bfd_size_type size = s->size;
ieee_per_section (s)->data = bfd_alloc (abfd, size);
if (!ieee_per_section (s)->data)
return FALSE;
}
}
return TRUE;
}
/* Exec and core file sections. */
/* Set section contents is complicated with IEEE since the format is
not a byte image, but a record stream. */
static bfd_boolean
ieee_set_section_contents (bfd *abfd,
sec_ptr section,
const void * location,
file_ptr offset,
bfd_size_type count)
{
if ((section->flags & SEC_DEBUGGING) != 0)
{
if (section->contents == NULL)
{
bfd_size_type size = section->size;
section->contents = bfd_alloc (abfd, size);
if (section->contents == NULL)
return FALSE;
}
/* bfd_set_section_contents has already checked that everything
is within range. */
memcpy (section->contents + offset, location, (size_t) count);
return TRUE;
}
if (ieee_per_section (section)->data == (bfd_byte *) NULL)
{
if (!init_for_output (abfd))
return FALSE;
}
memcpy ((void *) (ieee_per_section (section)->data + offset),
(void *) location,
(unsigned int) count);
return TRUE;
}
/* Write the external symbols of a file. IEEE considers two sorts of
external symbols, public, and referenced. It uses to internal
forms to index them as well. When we write them out we turn their
symbol values into indexes from the right base. */
static bfd_boolean
ieee_write_external_part (bfd *abfd)
{
asymbol **q;
ieee_data_type *ieee = IEEE_DATA (abfd);
unsigned int reference_index = IEEE_REFERENCE_BASE;
unsigned int public_index = IEEE_PUBLIC_BASE + 2;
file_ptr here = bfd_tell (abfd);
bfd_boolean hadone = FALSE;
if (abfd->outsymbols != (asymbol **) NULL)
{
for (q = abfd->outsymbols; *q != (asymbol *) NULL; q++)
{
asymbol *p = *q;
if (bfd_is_und_section (p->section))
{
/* This must be a symbol reference. */
if (! ieee_write_byte (abfd, ieee_external_reference_enum)
|| ! ieee_write_int (abfd, (bfd_vma) reference_index)
|| ! ieee_write_id (abfd, p->name))
return FALSE;
p->value = reference_index;
reference_index++;
hadone = TRUE;
}
else if (bfd_is_com_section (p->section))
{
/* This is a weak reference. */
if (! ieee_write_byte (abfd, ieee_external_reference_enum)
|| ! ieee_write_int (abfd, (bfd_vma) reference_index)
|| ! ieee_write_id (abfd, p->name)
|| ! ieee_write_byte (abfd,
ieee_weak_external_reference_enum)
|| ! ieee_write_int (abfd, (bfd_vma) reference_index)
|| ! ieee_write_int (abfd, p->value))
return FALSE;
p->value = reference_index;
reference_index++;
hadone = TRUE;
}
else if (p->flags & BSF_GLOBAL)
{
/* This must be a symbol definition. */
if (! ieee_write_byte (abfd, ieee_external_symbol_enum)
|| ! ieee_write_int (abfd, (bfd_vma) public_index)
|| ! ieee_write_id (abfd, p->name)
|| ! ieee_write_2bytes (abfd, ieee_attribute_record_enum)
|| ! ieee_write_int (abfd, (bfd_vma) public_index)
|| ! ieee_write_byte (abfd, 15) /* Instruction address. */
|| ! ieee_write_byte (abfd, 19) /* Static symbol. */
|| ! ieee_write_byte (abfd, 1)) /* One of them. */
return FALSE;
/* Write out the value. */
if (! ieee_write_2bytes (abfd, ieee_value_record_enum)
|| ! ieee_write_int (abfd, (bfd_vma) public_index))
return FALSE;
if (! bfd_is_abs_section (p->section))
{
if (abfd->flags & EXEC_P)
{
/* If fully linked, then output all symbols
relocated. */
if (! (ieee_write_int
(abfd,
(p->value
+ p->section->output_offset
+ p->section->output_section->vma))))
return FALSE;
}
else
{
if (! (ieee_write_expression
(abfd,
p->value + p->section->output_offset,
p->section->output_section->symbol,
FALSE, 0)))
return FALSE;
}
}
else
{
if (! ieee_write_expression (abfd,
p->value,
bfd_abs_section_ptr->symbol,
FALSE, 0))
return FALSE;
}
p->value = public_index;
public_index++;
hadone = TRUE;
}
else
{
/* This can happen - when there are gaps in the symbols read
from an input ieee file. */
}
}
}
if (hadone)
ieee->w.r.external_part = here;
return TRUE;
}
static const unsigned char exten[] =
{
0xf0, 0x20, 0x00,
0xf1, 0xce, 0x20, 0x00, 37, 3, 3, /* Set version 3 rev 3. */
0xf1, 0xce, 0x20, 0x00, 39, 2, /* Keep symbol in original case. */
0xf1, 0xce, 0x20, 0x00, 38 /* Set object type relocatable to x. */
};
static const unsigned char envi[] =
{
0xf0, 0x21, 0x00,
/* 0xf1, 0xce, 0x21, 00, 50, 0x82, 0x07, 0xc7, 0x09, 0x11, 0x11,
0x19, 0x2c,
*/
0xf1, 0xce, 0x21, 00, 52, 0x00, /* exec ok. */
0xf1, 0xce, 0x21, 0, 53, 0x03,/* host unix. */
/* 0xf1, 0xce, 0x21, 0, 54, 2,1,1 tool & version # */
};
static bfd_boolean
ieee_write_me_part (bfd *abfd)
{
ieee_data_type *ieee = IEEE_DATA (abfd);
ieee->w.r.trailer_part = bfd_tell (abfd);
if (abfd->start_address)
{
if (! ieee_write_2bytes (abfd, ieee_value_starting_address_enum)
|| ! ieee_write_byte (abfd, ieee_function_either_open_b_enum)
|| ! ieee_write_int (abfd, abfd->start_address)
|| ! ieee_write_byte (abfd, ieee_function_either_close_b_enum))
return FALSE;
}
ieee->w.r.me_record = bfd_tell (abfd);
if (! ieee_write_byte (abfd, ieee_module_end_enum))
return FALSE;
return TRUE;
}
/* Write out the IEEE processor ID. */
static bfd_boolean
ieee_write_processor (bfd *abfd)
{
const bfd_arch_info_type *arch;
arch = bfd_get_arch_info (abfd);
switch (arch->arch)
{
default:
if (! ieee_write_id (abfd, bfd_printable_name (abfd)))
return FALSE;
break;
case bfd_arch_h8300:
if (! ieee_write_id (abfd, "H8/300"))
return FALSE;
break;
case bfd_arch_h8500:
if (! ieee_write_id (abfd, "H8/500"))
return FALSE;
break;
case bfd_arch_i960:
switch (arch->mach)
{
default:
case bfd_mach_i960_core:
case bfd_mach_i960_ka_sa:
if (! ieee_write_id (abfd, "80960KA"))
return FALSE;
break;
case bfd_mach_i960_kb_sb:
if (! ieee_write_id (abfd, "80960KB"))
return FALSE;
break;
case bfd_mach_i960_ca:
if (! ieee_write_id (abfd, "80960CA"))
return FALSE;
break;
case bfd_mach_i960_mc:
case bfd_mach_i960_xa:
if (! ieee_write_id (abfd, "80960MC"))
return FALSE;
break;
}
break;
case bfd_arch_m68k:
{
const char *id;
switch (arch->mach)
{
default: id = "68020"; break;
case bfd_mach_m68000: id = "68000"; break;
case bfd_mach_m68008: id = "68008"; break;
case bfd_mach_m68010: id = "68010"; break;
case bfd_mach_m68020: id = "68020"; break;
case bfd_mach_m68030: id = "68030"; break;
case bfd_mach_m68040: id = "68040"; break;
case bfd_mach_m68060: id = "68060"; break;
case bfd_mach_cpu32: id = "cpu32"; break;
case bfd_mach_mcf5200:id = "5200"; break;
case bfd_mach_mcf5206e:id = "5206e"; break;
case bfd_mach_mcf5307:id = "5307"; break;
case bfd_mach_mcf5407:id = "5407"; break;
case bfd_mach_mcf528x:id = "5282"; break;
}
if (! ieee_write_id (abfd, id))
return FALSE;
}
break;
}
return TRUE;
}
static bfd_boolean
ieee_write_object_contents (bfd *abfd)
{
ieee_data_type *ieee = IEEE_DATA (abfd);
unsigned int i;
file_ptr old;
/* Fast forward over the header area. */
if (bfd_seek (abfd, (file_ptr) 0, SEEK_SET) != 0)
return FALSE;
if (! ieee_write_byte (abfd, ieee_module_beginning_enum)
|| ! ieee_write_processor (abfd)
|| ! ieee_write_id (abfd, abfd->filename))
return FALSE;
/* Fast forward over the variable bits. */
if (! ieee_write_byte (abfd, ieee_address_descriptor_enum))
return FALSE;
/* Bits per MAU. */
if (! ieee_write_byte (abfd, (bfd_byte) (bfd_arch_bits_per_byte (abfd))))
return FALSE;
/* MAU's per address. */
if (! ieee_write_byte (abfd,
(bfd_byte) (bfd_arch_bits_per_address (abfd)
/ bfd_arch_bits_per_byte (abfd))))
return FALSE;
old = bfd_tell (abfd);
if (bfd_seek (abfd, (file_ptr) (8 * N_W_VARIABLES), SEEK_CUR) != 0)
return FALSE;
ieee->w.r.extension_record = bfd_tell (abfd);
if (bfd_bwrite ((char *) exten, (bfd_size_type) sizeof (exten), abfd)
!= sizeof (exten))
return FALSE;
if (abfd->flags & EXEC_P)
{
if (! ieee_write_byte (abfd, 0x1)) /* Absolute. */
return FALSE;
}
else
{
if (! ieee_write_byte (abfd, 0x2)) /* Relocateable. */
return FALSE;
}
ieee->w.r.environmental_record = bfd_tell (abfd);
if (bfd_bwrite ((char *) envi, (bfd_size_type) sizeof (envi), abfd)
!= sizeof (envi))
return FALSE;
/* The HP emulator database requires a timestamp in the file. */
{
time_t now;
const struct tm *t;
time (&now);
t = (struct tm *) localtime (&now);
if (! ieee_write_2bytes (abfd, (int) ieee_atn_record_enum)
|| ! ieee_write_byte (abfd, 0x21)
|| ! ieee_write_byte (abfd, 0)
|| ! ieee_write_byte (abfd, 50)
|| ! ieee_write_int (abfd, (bfd_vma) (t->tm_year + 1900))
|| ! ieee_write_int (abfd, (bfd_vma) (t->tm_mon + 1))
|| ! ieee_write_int (abfd, (bfd_vma) t->tm_mday)
|| ! ieee_write_int (abfd, (bfd_vma) t->tm_hour)
|| ! ieee_write_int (abfd, (bfd_vma) t->tm_min)
|| ! ieee_write_int (abfd, (bfd_vma) t->tm_sec))
return FALSE;
}
output_bfd = abfd;
flush ();
if (! ieee_write_section_part (abfd))
return FALSE;
/* First write the symbols. This changes their values into table
indeces so we cant use it after this point. */
if (! ieee_write_external_part (abfd))
return FALSE;
/* Write any debugs we have been told about. */
if (! ieee_write_debug_part (abfd))
return FALSE;
/* Can only write the data once the symbols have been written, since
the data contains relocation information which points to the
symbols. */
if (! ieee_write_data_part (abfd))
return FALSE;
/* At the end we put the end! */
if (! ieee_write_me_part (abfd))
return FALSE;
/* Generate the header. */
if (bfd_seek (abfd, old, SEEK_SET) != 0)
return FALSE;
for (i = 0; i < N_W_VARIABLES; i++)
{
if (! ieee_write_2bytes (abfd, ieee_assign_value_to_variable_enum)
|| ! ieee_write_byte (abfd, (bfd_byte) i)
|| ! ieee_write_int5_out (abfd, (bfd_vma) ieee->w.offset[i]))
return FALSE;
}
return TRUE;
}
/* Native-level interface to symbols. */
/* We read the symbols into a buffer, which is discarded when this
function exits. We read the strings into a buffer large enough to
hold them all plus all the cached symbol entries. */
static asymbol *
ieee_make_empty_symbol (bfd *abfd)
{
bfd_size_type amt = sizeof (ieee_symbol_type);
ieee_symbol_type *new = bfd_zalloc (abfd, amt);
if (!new)
return NULL;
new->symbol.the_bfd = abfd;
return &new->symbol;
}
static bfd *
ieee_openr_next_archived_file (bfd *arch, bfd *prev)
{
ieee_ar_data_type *ar = IEEE_AR_DATA (arch);
/* Take the next one from the arch state, or reset. */
if (prev == (bfd *) NULL)
/* Reset the index - the first two entries are bogus. */
ar->element_index = 2;
while (TRUE)
{
ieee_ar_obstack_type *p = ar->elements + ar->element_index;
ar->element_index++;
if (ar->element_index <= ar->element_count)
{
if (p->file_offset != (file_ptr) 0)
{
if (p->abfd == (bfd *) NULL)
{
p->abfd = _bfd_create_empty_archive_element_shell (arch);
p->abfd->origin = p->file_offset;
}
return p->abfd;
}
}
else
{
bfd_set_error (bfd_error_no_more_archived_files);
return NULL;
}
}
}
static bfd_boolean
ieee_find_nearest_line (bfd *abfd ATTRIBUTE_UNUSED,
asection *section ATTRIBUTE_UNUSED,
asymbol **symbols ATTRIBUTE_UNUSED,
bfd_vma offset ATTRIBUTE_UNUSED,
const char **filename_ptr ATTRIBUTE_UNUSED,
const char **functionname_ptr ATTRIBUTE_UNUSED,
unsigned int *line_ptr ATTRIBUTE_UNUSED)
{
return FALSE;
}
static bfd_boolean
ieee_find_inliner_info (bfd *abfd ATTRIBUTE_UNUSED,
const char **filename_ptr ATTRIBUTE_UNUSED,
const char **functionname_ptr ATTRIBUTE_UNUSED,
unsigned int *line_ptr ATTRIBUTE_UNUSED)
{
return FALSE;
}
static int
ieee_generic_stat_arch_elt (bfd *abfd, struct stat *buf)
{
ieee_ar_data_type *ar = (ieee_ar_data_type *) NULL;
ieee_data_type *ieee;
if (abfd->my_archive != NULL)
ar = abfd->my_archive->tdata.ieee_ar_data;
if (ar == (ieee_ar_data_type *) NULL)
{
bfd_set_error (bfd_error_invalid_operation);
return -1;
}
if (IEEE_DATA (abfd) == NULL)
{
if (ieee_object_p (abfd) == NULL)
{
bfd_set_error (bfd_error_wrong_format);
return -1;
}
}
ieee = IEEE_DATA (abfd);
buf->st_size = ieee->w.r.me_record + 1;
buf->st_mode = 0644;
return 0;
}
static int
ieee_sizeof_headers (bfd *abfd ATTRIBUTE_UNUSED,
bfd_boolean x ATTRIBUTE_UNUSED)
{
return 0;
}
#define ieee_close_and_cleanup _bfd_generic_close_and_cleanup
#define ieee_bfd_free_cached_info _bfd_generic_bfd_free_cached_info
#define ieee_slurp_armap bfd_true
#define ieee_slurp_extended_name_table bfd_true
#define ieee_construct_extended_name_table \
((bfd_boolean (*) \
(bfd *, char **, bfd_size_type *, const char **)) \
bfd_true)
#define ieee_truncate_arname bfd_dont_truncate_arname
#define ieee_write_armap \
((bfd_boolean (*) \
(bfd *, unsigned int, struct orl *, unsigned int, int)) \
bfd_true)
#define ieee_read_ar_hdr bfd_nullvoidptr
#define ieee_update_armap_timestamp bfd_true
#define ieee_get_elt_at_index _bfd_generic_get_elt_at_index
#define ieee_bfd_is_target_special_symbol \
((bfd_boolean (*) (bfd *, asymbol *)) bfd_false)
#define ieee_bfd_is_local_label_name bfd_generic_is_local_label_name
#define ieee_get_lineno _bfd_nosymbols_get_lineno
#define ieee_bfd_make_debug_symbol _bfd_nosymbols_bfd_make_debug_symbol
#define ieee_read_minisymbols _bfd_generic_read_minisymbols
#define ieee_minisymbol_to_symbol _bfd_generic_minisymbol_to_symbol
#define ieee_bfd_reloc_type_lookup _bfd_norelocs_bfd_reloc_type_lookup
#define ieee_set_arch_mach _bfd_generic_set_arch_mach
#define ieee_get_section_contents_in_window \
_bfd_generic_get_section_contents_in_window
#define ieee_bfd_get_relocated_section_contents \
bfd_generic_get_relocated_section_contents
#define ieee_bfd_relax_section bfd_generic_relax_section
#define ieee_bfd_gc_sections bfd_generic_gc_sections
#define ieee_bfd_merge_sections bfd_generic_merge_sections
#define ieee_bfd_is_group_section bfd_generic_is_group_section
#define ieee_bfd_discard_group bfd_generic_discard_group
#define ieee_section_already_linked \
_bfd_generic_section_already_linked
#define ieee_bfd_link_hash_table_create _bfd_generic_link_hash_table_create
#define ieee_bfd_link_hash_table_free _bfd_generic_link_hash_table_free
#define ieee_bfd_link_add_symbols _bfd_generic_link_add_symbols
#define ieee_bfd_link_just_syms _bfd_generic_link_just_syms
#define ieee_bfd_final_link _bfd_generic_final_link
#define ieee_bfd_link_split_section _bfd_generic_link_split_section
const bfd_target ieee_vec =
{
"ieee", /* Name. */
bfd_target_ieee_flavour,
BFD_ENDIAN_UNKNOWN, /* Target byte order. */
BFD_ENDIAN_UNKNOWN, /* Target headers byte order. */
(HAS_RELOC | EXEC_P | /* Object flags. */
HAS_LINENO | HAS_DEBUG |
HAS_SYMS | HAS_LOCALS | WP_TEXT | D_PAGED),
(SEC_CODE | SEC_DATA | SEC_ROM | SEC_HAS_CONTENTS
| SEC_ALLOC | SEC_LOAD | SEC_RELOC), /* Section flags. */
'_', /* Leading underscore. */
' ', /* AR_pad_char. */
16, /* AR_max_namelen. */
bfd_getb64, bfd_getb_signed_64, bfd_putb64,
bfd_getb32, bfd_getb_signed_32, bfd_putb32,
bfd_getb16, bfd_getb_signed_16, bfd_putb16, /* Data. */
bfd_getb64, bfd_getb_signed_64, bfd_putb64,
bfd_getb32, bfd_getb_signed_32, bfd_putb32,
bfd_getb16, bfd_getb_signed_16, bfd_putb16, /* Headers. */
{_bfd_dummy_target,
ieee_object_p, /* bfd_check_format. */
ieee_archive_p,
_bfd_dummy_target,
},
{
bfd_false,
ieee_mkobject,
_bfd_generic_mkarchive,
bfd_false
},
{
bfd_false,
ieee_write_object_contents,
_bfd_write_archive_contents,
bfd_false,
},
/* ieee_close_and_cleanup, ieee_bfd_free_cached_info, ieee_new_section_hook,
ieee_get_section_contents, ieee_get_section_contents_in_window. */
BFD_JUMP_TABLE_GENERIC (ieee),
BFD_JUMP_TABLE_COPY (_bfd_generic),
BFD_JUMP_TABLE_CORE (_bfd_nocore),
/* ieee_slurp_armap, ieee_slurp_extended_name_table,
ieee_construct_extended_name_table, ieee_truncate_arname,
ieee_write_armap, ieee_read_ar_hdr, ieee_openr_next_archived_file,
ieee_get_elt_at_index, ieee_generic_stat_arch_elt,
ieee_update_armap_timestamp. */
BFD_JUMP_TABLE_ARCHIVE (ieee),
/* ieee_get_symtab_upper_bound, ieee_canonicalize_symtab,
ieee_make_empty_symbol, ieee_print_symbol, ieee_get_symbol_info,
ieee_bfd_is_local_label_name, ieee_get_lineno,
ieee_find_nearest_line, ieee_bfd_make_debug_symbol,
ieee_read_minisymbols, ieee_minisymbol_to_symbol. */
BFD_JUMP_TABLE_SYMBOLS (ieee),
/* ieee_get_reloc_upper_bound, ieee_canonicalize_reloc,
ieee_bfd_reloc_type_lookup. */
BFD_JUMP_TABLE_RELOCS (ieee),
/* ieee_set_arch_mach, ieee_set_section_contents. */
BFD_JUMP_TABLE_WRITE (ieee),
/* ieee_sizeof_headers, ieee_bfd_get_relocated_section_contents,
ieee_bfd_relax_section, ieee_bfd_link_hash_table_create,
_bfd_generic_link_hash_table_free,
ieee_bfd_link_add_symbols, ieee_bfd_final_link,
ieee_bfd_link_split_section, ieee_bfd_gc_sections,
ieee_bfd_merge_sections. */
BFD_JUMP_TABLE_LINK (ieee),
BFD_JUMP_TABLE_DYNAMIC (_bfd_nodynamic),
NULL,
NULL
};