e17a411335
extract_long_unsigned_integer, store_signed_integer, store_unsigned_integer): Add BYTE_ORDER parameter. * findvar.c (extract_signed_integer, extract_unsigned_integer, extract_long_unsigned_integer, store_signed_integer, store_unsigned_integer): Add BYTE_ORDER parameter. Use it instead of current_gdbarch. * gdbcore.h (read_memory_integer, safe_read_memory_integer, read_memory_unsigned_integer, write_memory_signed_integer, write_memory_unsigned_integer): Add BYTE_ORDER parameter. * corefile.c (struct captured_read_memory_integer_arguments): Add BYTE_ORDER member. (safe_read_memory_integer): Add BYTE_ORDER parameter. Store it into struct captured_read_memory_integer_arguments. (do_captured_read_memory_integer): Pass it to read_memory_integer. (read_memory_integer): Add BYTE_ORDER parameter. Pass it to extract_signed_integer. (read_memory_unsigned_integer): Add BYTE_ORDER parameter. Pass it to extract_unsigned_integer. (write_memory_signed_integer): Add BYTE_ORDER parameter. Pass it to store_signed_integer. (write_memory_unsigned_integer): Add BYTE_ORDER parameter. Pass it to store_unsigned_integer. * target.h (get_target_memory_unsigned): Add BYTE_ORDER parameter. * target.c (get_target_memory_unsigned): Add BYTE_ORDER parameter. Pass it to extract_unsigned_integer. Update calls to extract_signed_integer, extract_unsigned_integer, extract_long_unsigned_integer, store_signed_integer, store_unsigned_integer, read_memory_integer, read_memory_unsigned_integer, safe_read_memory_integer, write_memory_signed_integer, write_memory_unsigned_integer, and get_target_memory_unsigned to pass byte order: * ada-lang.c (ada_value_binop): Update. * ada-valprint.c (char_at): Update. * alpha-osf1-tdep.c (alpha_osf1_sigcontext_addr): Update. * alpha-tdep.c (alpha_lds, alpha_sts, alpha_push_dummy_call, alpha_extract_return_value, alpha_read_insn, alpha_get_longjmp_target): Update. * amd64-linux-tdep.c (amd64_linux_sigcontext_addr): Update. * amd64obsd-tdep.c (amd64obsd_supply_uthread, amd64obsd_collect_uthread, amd64obsd_trapframe_cache): Update. * amd64-tdep.c (amd64_push_dummy_call, amd64_analyze_prologue, amd64_frame_cache, amd64_sigtramp_frame_cache, fixup_riprel, amd64_displaced_step_fixup): Update. * arm-linux-tdep.c (arm_linux_sigreturn_init, arm_linux_rt_sigreturn_init, arm_linux_supply_gregset): Update. * arm-tdep.c (thumb_analyze_prologue, arm_skip_prologue, arm_scan_prologue, arm_push_dummy_call, thumb_get_next_pc, arm_get_next_pc, arm_extract_return_value, arm_store_return_value, arm_return_value): Update. * arm-wince-tdep.c (arm_pe_skip_trampoline_code): Update. * auxv.c (default_auxv_parse): Update. * avr-tdep.c (avr_address_to_pointer, avr_pointer_to_address, avr_scan_prologue, avr_extract_return_value, avr_frame_prev_register, avr_push_dummy_call): Update. * bsd-uthread.c (bsd_uthread_check_magic, bsd_uthread_lookup_offset, bsd_uthread_wait, bsd_uthread_thread_alive, bsd_uthread_extra_thread_info): Update. * c-lang.c (c_printstr, print_wchar): Update. * cp-valprint.c (cp_print_class_member): Update. * cris-tdep.c (cris_sigcontext_addr, cris_sigtramp_frame_unwind_cache, cris_push_dummy_call, cris_scan_prologue, cris_store_return_value, cris_extract_return_value, find_step_target, dip_prefix, sixteen_bit_offset_branch_op, none_reg_mode_jump_op, move_mem_to_reg_movem_op, get_data_from_address): Update. * dwarf2expr.c (dwarf2_read_address, execute_stack_op): Update. * dwarf2-frame.c (execute_cfa_program): Update. * dwarf2loc.c (find_location_expression): Update. * dwarf2read.c (dwarf2_const_value): Update. * expprint.c (print_subexp_standard): Update. * findvar.c (unsigned_pointer_to_address, signed_pointer_to_address, unsigned_address_to_pointer, address_to_signed_pointer, read_var_value): Update. * frame.c (frame_unwind_register_signed, frame_unwind_register_unsigned, get_frame_memory_signed, get_frame_memory_unsigned): Update. * frame-unwind.c (frame_unwind_got_constant): Update. * frv-linux-tdep.c (frv_linux_pc_in_sigtramp, frv_linux_sigcontext_reg_addr, frv_linux_sigtramp_frame_cache): Update. * frv-tdep.c (frv_analyze_prologue, frv_skip_main_prologue, frv_extract_return_value, find_func_descr, frv_convert_from_func_ptr_addr, frv_push_dummy_call): Update. * f-valprint.c (f_val_print): Update. * gnu-v3-abi.c (gnuv3_decode_method_ptr, gnuv3_make_method_ptr): Update. * h8300-tdep.c (h8300_is_argument_spill, h8300_analyze_prologue, h8300_push_dummy_call, h8300_extract_return_value, h8300h_extract_return_value, h8300_store_return_value, h8300h_store_return_value): Update. * hppabsd-tdep.c (hppabsd_find_global_pointer): Update. * hppa-hpux-nat.c (hppa_hpux_fetch_register, hppa_hpux_store_register): Update. * hppa-hpux-tdep.c (hppa32_hpux_in_solib_call_trampoline, hppa64_hpux_in_solib_call_trampoline, hppa_hpux_in_solib_return_trampoline, hppa_hpux_skip_trampoline_code, hppa_hpux_sigtramp_frame_unwind_cache, hppa_hpux_sigtramp_unwind_sniffer, hppa32_hpux_find_global_pointer, hppa64_hpux_find_global_pointer, hppa_hpux_search_pattern, hppa32_hpux_search_dummy_call_sequence, hppa64_hpux_search_dummy_call_sequence, hppa_hpux_supply_save_state, hppa_hpux_unwind_adjust_stub): Update. * hppa-linux-tdep.c (insns_match_pattern, hppa_linux_find_global_pointer): Update. * hppa-tdep.c (hppa_in_function_epilogue_p, hppa32_push_dummy_call, hppa64_convert_code_addr_to_fptr, hppa64_push_dummy_call, skip_prologue_hard_way, hppa_frame_cache, hppa_fallback_frame_cache, hppa_pseudo_register_read, hppa_frame_prev_register_helper, hppa_match_insns): Update. * hpux-thread.c (hpux_thread_fetch_registers): Update. * i386-tdep.c (i386bsd_sigcontext_addr): Update. * i386-cygwin-tdep.c (core_process_module_section): Update. * i386-darwin-nat.c (i386_darwin_sstep_at_sigreturn, amd64_darwin_sstep_at_sigreturn): Update. * i386-darwin-tdep.c (i386_darwin_sigcontext_addr, amd64_darwin_sigcontext_addr): Likewise. * i386-linux-nat.c (i386_linux_sigcontext_addr): Update. * i386nbsd-tdep.c (i386nbsd_sigtramp_cache_init): Update. * i386-nto-tdep.c (i386nto_sigcontext_addr): Update. * i386obsd-nat.c (i386obsd_supply_pcb): Update. * i386obsd-tdep.c (i386obsd_supply_uthread, i386obsd_collect_uthread, i386obsd_trapframe_cache): Update. * i386-tdep.c (i386_displaced_step_fixup, i386_follow_jump, i386_analyze_frame_setup, i386_analyze_prologue, i386_skip_main_prologue, i386_frame_cache, i386_sigtramp_frame_cache, i386_get_longjmp_target, i386_push_dummy_call, i386_pe_skip_trampoline_code, i386_svr4_sigcontext_addr, i386_fetch_pointer_argument): Update. * i387-tdep.c (i387_supply_fsave): Update. * ia64-linux-tdep.c (ia64_linux_sigcontext_register_address): Update. * ia64-tdep.c (ia64_pseudo_register_read, ia64_pseudo_register_write, examine_prologue, ia64_frame_cache, ia64_frame_prev_register, ia64_sigtramp_frame_cache, ia64_sigtramp_frame_prev_register, ia64_access_reg, ia64_access_rse_reg, ia64_libunwind_frame_this_id, ia64_libunwind_frame_prev_register, ia64_libunwind_sigtramp_frame_this_id, ia64_libunwind_sigtramp_frame_prev_register, ia64_find_global_pointer, find_extant_func_descr, find_func_descr, ia64_convert_from_func_ptr_addr, ia64_push_dummy_call, ia64_dummy_id, ia64_unwind_pc): Update. * iq2000-tdep.c (iq2000_pointer_to_address, iq2000_address_to_pointer, iq2000_scan_prologue, iq2000_extract_return_value, iq2000_push_dummy_call): Update. * irix5nat.c (fill_gregset): Update. * jv-lang.c (evaluate_subexp_java): Update. * jv-valprint.c (java_value_print): Update. * lm32-tdep.c (lm32_analyze_prologue, lm32_push_dummy_call, lm32_extract_return_value, lm32_store_return_value): Update. * m32c-tdep.c (m32c_push_dummy_call, m32c_return_value, m32c_skip_trampoline_code, m32c_m16c_address_to_pointer, m32c_m16c_pointer_to_address): Update. * m32r-tdep.c (m32r_store_return_value, decode_prologue, m32r_skip_prologue, m32r_push_dummy_call, m32r_extract_return_value): Update. * m68hc11-tdep.c (m68hc11_pseudo_register_read, m68hc11_pseudo_register_write, m68hc11_analyze_instruction, m68hc11_push_dummy_call): Update. * m68linux-tdep.c (m68k_linux_pc_in_sigtramp, m68k_linux_get_sigtramp_info, m68k_linux_sigtramp_frame_cache): Update. * m68k-tdep.c (m68k_push_dummy_call, m68k_analyze_frame_setup, m68k_analyze_register_saves, m68k_analyze_prologue, m68k_frame_cache, m68k_get_longjmp_target): Update. * m88k-tdep.c (m88k_fetch_instruction): Update. * mep-tdep.c (mep_pseudo_cr32_read, mep_pseudo_csr_write, mep_pseudo_cr32_write, mep_get_insn, mep_push_dummy_call): Update. * mi/mi-main.c (mi_cmd_data_write_memory): Update. * mips-linux-tdep.c (mips_linux_get_longjmp_target, supply_32bit_reg, mips64_linux_get_longjmp_target, mips64_fill_gregset, mips64_fill_fpregset, mips_linux_in_dynsym_stub): Update. * mipsnbdsd-tdep.c (mipsnbsd_get_longjmp_target): Update. * mips-tdep.c (mips_fetch_instruction, fetch_mips_16, mips_eabi_push_dummy_call, mips_n32n64_push_dummy_call, mips_o32_push_dummy_call, mips_o64_push_dummy_call, mips_single_step_through_delay, mips_skip_pic_trampoline_code, mips_integer_to_address): Update. * mn10300-tdep.c (mn10300_analyze_prologue, mn10300_push_dummy_call): Update. * monitor.c (monitor_supply_register, monitor_write_memory, monitor_read_memory_single): Update. * moxie-tdep.c (moxie_store_return_value, moxie_extract_return_value, moxie_analyze_prologue): Update. * mt-tdep.c (mt_return_value, mt_skip_prologue, mt_select_coprocessor, mt_pseudo_register_read, mt_pseudo_register_write, mt_registers_info, mt_push_dummy_call): Update. * objc-lang.c (read_objc_method, read_objc_methlist_nmethods, read_objc_methlist_method, read_objc_object, read_objc_super, read_objc_class, find_implementation_from_class): Update. * ppc64-linux-tdep.c (ppc64_desc_entry_point, ppc64_linux_convert_from_func_ptr_addr, ppc_linux_sigtramp_cache): Update. * ppcobsd-tdep.c (ppcobsd_sigtramp_frame_sniffer, ppcobsd_sigtramp_frame_cache): Update. * ppc-sysv-tdep.c (ppc_sysv_abi_push_dummy_call, do_ppc_sysv_return_value, ppc64_sysv_abi_push_dummy_call, ppc64_sysv_abi_return_value): Update. * ppc-linux-nat.c (ppc_linux_auxv_parse): Update. * procfs.c (procfs_auxv_parse): Update. * p-valprint.c (pascal_val_print): Update. * regcache.c (regcache_raw_read_signed, regcache_raw_read_unsigned, regcache_raw_write_signed, regcache_raw_write_unsigned, regcache_cooked_read_signed, regcache_cooked_read_unsigned, regcache_cooked_write_signed, regcache_cooked_write_unsigned): Update. * remote-m32r-sdi.c (m32r_fetch_register): Update. * remote-mips.c (mips_wait, mips_fetch_registers, mips_xfer_memory): Update. * rs6000-aix-tdep.c (rs6000_push_dummy_call, rs6000_return_value, rs6000_convert_from_func_ptr_addr, branch_dest, rs6000_software_single_step): Update. * rs6000-tdep.c (rs6000_in_function_epilogue_p, ppc_displaced_step_fixup, ppc_deal_with_atomic_sequence, bl_to_blrl_insn_p, rs6000_fetch_instruction, skip_prologue, rs6000_skip_main_prologue, rs6000_skip_trampoline_code, rs6000_frame_cache): Update. * s390-tdep.c (s390_pseudo_register_read, s390_pseudo_register_write, s390x_pseudo_register_read, s390x_pseudo_register_write, s390_load, s390_backchain_frame_unwind_cache, s390_sigtramp_frame_unwind_cache, extend_simple_arg, s390_push_dummy_call, s390_return_value): Update. * scm-exp.c (scm_lreadr): Update. * scm-lang.c (scm_get_field, scm_unpack): Update. * scm-valprint.c (scm_val_print): Update. * score-tdep.c (score_breakpoint_from_pc, score_push_dummy_call, score_fetch_inst): Update. * sh64-tdep.c (look_for_args_moves, sh64_skip_prologue_hard_way, sh64_analyze_prologue, sh64_push_dummy_call, sh64_extract_return_value, sh64_pseudo_register_read, sh64_pseudo_register_write, sh64_frame_prev_register): Update: * sh-tdep.c (sh_analyze_prologue, sh_push_dummy_call_fpu, sh_push_dummy_call_nofpu, sh_extract_return_value_nofpu, sh_store_return_value_nofpu, sh_in_function_epilogue_p): Update. * solib-darwin.c (darwin_load_image_infos): Update. * solib-frv.c (fetch_loadmap, lm_base, frv_current_sos, enable_break2, find_canonical_descriptor_in_load_object): Update. * solib-irix.c (extract_mips_address, fetch_lm_info, irix_current_sos, irix_open_symbol_file_object): Update. * solib-som.c (som_solib_create_inferior_hook, link_map_start, som_current_sos, som_open_symbol_file_object): Update. * solib-sunos.c (SOLIB_EXTRACT_ADDRESS, LM_ADDR, LM_NEXT, LM_NAME): Update. * solib-svr4.c (read_program_header, scan_dyntag_auxv, solib_svr4_r_ldsomap): Update. * sparc64-linux-tdep.c (sparc64_linux_step_trap): Update. * sparc64obsd-tdep.c (sparc64obsd_supply_uthread, sparc64obsd_collect_uthread): Update. * sparc64-tdep.c (sparc64_pseudo_register_read, sparc64_pseudo_register_write, sparc64_supply_gregset, sparc64_collect_gregset): Update. * sparc-linux-tdep.c (sparc32_linux_step_trap): Update. * sparcobsd-tdep.c (sparc32obsd_supply_uthread, sparc32obsd_collect_uthread): Update. * sparc-tdep.c (sparc_fetch_wcookie, sparc32_push_dummy_code, sparc32_store_arguments, sparc32_return_value, sparc_supply_rwindow, sparc_collect_rwindow): Update. * spu-linux-nat.c (parse_spufs_run): Update. * spu-tdep.c (spu_pseudo_register_read_spu, spu_pseudo_register_write_spu, spu_pointer_to_address, spu_analyze_prologue, spu_in_function_epilogue_p, spu_frame_unwind_cache, spu_push_dummy_call, spu_software_single_step, spu_get_longjmp_target, spu_get_overlay_table, spu_overlay_update_osect, info_spu_signal_command, info_spu_mailbox_list, info_spu_dma_cmdlist, info_spu_dma_command, info_spu_proxydma_command): Update. * stack.c (print_frame_nameless_args, frame_info): Update. * symfile.c (read_target_long_array, simple_read_overlay_table, simple_read_overlay_region_table): Update. * target.c (debug_print_register): Update. * tramp-frame.c (tramp_frame_start): Update. * v850-tdep.c (v850_analyze_prologue, v850_push_dummy_call, v850_extract_return_value, v850_store_return_value, * valarith.c (value_binop, value_bit_index): Update. * valops.c (value_cast): Update. * valprint.c (val_print_type_code_int, val_print_string, read_string): Update. * value.c (unpack_long, unpack_double, unpack_field_as_long, modify_field, pack_long): Update. * vax-tdep.c (vax_store_arguments, vax_push_dummy_call, vax_skip_prologue): Update. * xstormy16-tdep.c (xstormy16_push_dummy_call, xstormy16_analyze_prologue, xstormy16_in_function_epilogue_p, xstormy16_resolve_jmp_table_entry, xstormy16_find_jmp_table_entry, xstormy16_pointer_to_address, xstormy16_address_to_pointer): Update. * xtensa-tdep.c (extract_call_winsize, xtensa_pseudo_register_read, xtensa_pseudo_register_write, xtensa_frame_cache, xtensa_push_dummy_call, call0_track_op, call0_frame_cache): Update. * dfp.h (decimal_to_string, decimal_from_string, decimal_from_integral, decimal_from_floating, decimal_to_doublest, decimal_is_zero): Add BYTE_ORDER parameter. (decimal_binop): Add BYTE_ORDER_X, BYTE_ORDER_Y, and BYTE_ORDER_RESULT parameters. (decimal_compare): Add BYTE_ORDER_X and BYTE_ORDER_Y parameters. (decimal_convert): Add BYTE_ORDER_FROM and BYTE_ORDER_TO parameters. * dfp.c (match_endianness): Add BYTE_ORDER parameter. Use it instead of current_gdbarch. (decimal_to_string, decimal_from_integral, decimal_from_floating, decimal_to_doublest, decimal_is_zero): Add BYTE_ORDER parameter. Pass it to match_endianness. (decimal_binop): Add BYTE_ORDER_X, BYTE_ORDER_Y, and BYTE_ORDER_RESULT parameters. Pass them to match_endianness. (decimal_compare): Add BYTE_ORDER_X and BYTE_ORDER_Y parameters. Pass them to match_endianness. (decimal_convert): Add BYTE_ORDER_FROM and BYTE_ORDER_TO parameters. Pass them to match_endianness. * valarith.c (value_args_as_decimal): Add BYTE_ORDER_X and BYTE_ORDER_Y output parameters. (value_binop): Update call to value_args_as_decimal. Update calls to decimal_to_string, decimal_from_string, decimal_from_integral, decimal_from_floating, decimal_to_doublest, decimal_is_zero, decimal_binop, decimal_compare and decimal_convert to pass/receive byte order: * c-exp.y (parse_number): Update. * printcmd.c (printf_command): Update. * valarith.c (value_args_as_decimal, value_binop, value_logical_not, value_equal, value_less): Update. * valops.c (value_cast, value_one): Update. * valprint.c (print_decimal_floating): Update. * value.c (unpack_long, unpack_double): Update. * python/python-value.c (valpy_nonzero): Update. * ada-valprint.c (char_at): Add BYTE_ORDER parameter. (printstr): Update calls to char_at. (ada_val_print_array): Likewise. * valprint.c (read_string): Add BYTE_ORDER parameter. (val_print_string): Update call to read_string. * c-lang.c (c_get_string): Likewise. * charset.h (target_wide_charset): Add BYTE_ORDER parameter. * charset.c (target_wide_charset): Add BYTE_ORDER parameter. Use it instead of current_gdbarch. * printcmd.c (printf_command): Update calls to target_wide_charset. * c-lang.c (charset_for_string_type): Add BYTE_ORDER parameter. Pass to target_wide_charset. Use it instead of current_gdbarch. (classify_type): Add BYTE_ORDER parameter. Pass to charset_for_string_type. Allow NULL encoding pointer. (print_wchar): Add BYTE_ORDER parameter. (c_emit_char): Update calls to classify_type and print_wchar. (c_printchar, c_printstr): Likewise. * gdbarch.sh (in_solib_return_trampoline): Convert to type "m". * gdbarch.c, gdbarch.h: Regenerate. * arch-utils.h (generic_in_solib_return_trampoline): Add GDBARCH parameter. * arch-utils.c (generic_in_solib_return_trampoline): Likewise. * hppa-hpux-tdep.c (hppa_hpux_in_solib_return_trampoline): Likewise. * rs6000-tdep.c (rs6000_in_solib_return_trampoline): Likewise. (rs6000_skip_trampoline_code): Update call. * alpha-tdep.h (struct gdbarch_tdep): Add GDBARCH parameter to dynamic_sigtramp_offset and pc_in_sigtramp callbacks. (alpha_read_insn): Add GDBARCH parameter. * alpha-tdep.c (alpha_lds, alpha_sts): Add GDBARCH parameter. (alpha_register_to_value): Pass architecture to alpha_sts. (alpha_extract_return_value): Likewise. (alpha_value_to_register): Pass architecture to alpha_lds. (alpha_store_return_value): Likewise. (alpha_read_insn): Add GDBARCH parameter. (alpha_skip_prologue): Pass architecture to alpha_read_insn. (alpha_heuristic_proc_start): Likewise. (alpha_heuristic_frame_unwind_cache): Likewise. (alpha_next_pc): Likewise. (alpha_sigtramp_frame_this_id): Pass architecture to tdep->dynamic_sigtramp_offset callback. (alpha_sigtramp_frame_sniffer): Pass architecture to tdep->pc_in_sigtramp callback. * alphafbsd-tdep.c (alphafbsd_pc_in_sigtramp): Add GDBARCH parameter. (alphafbsd_sigtramp_offset): Likewise. * alpha-linux-tdep.c (alpha_linux_sigtramp_offset_1): Add GDBARCH parameter. Pass to alpha_read_insn. (alpha_linux_sigtramp_offset): Add GDBARCH parameter. Pass to alpha_linux_sigtramp_offset_1. (alpha_linux_pc_in_sigtramp): Add GDBARCH parameter. Pass to alpha_linux_sigtramp_offset. (alpha_linux_sigcontext_addr): Pass architecture to alpha_read_insn and alpha_linux_sigtramp_offset. * alphanbsd-tdep.c (alphanbsd_sigtramp_offset): Add GDBARCH parameter. (alphanbsd_pc_in_sigtramp): Add GDBARCH parameter. Pass to alphanbsd_sigtramp_offset. * alphaobsd-tdep.c (alphaobsd_sigtramp_offset): Add GDBARCH parameter. (alphaobsd_pc_in_sigtramp): Add GDBARCH parameter. Pass to alpha_read_insn. (alphaobsd_sigcontext_addr): Pass architecture to alphaobsd_sigtramp_offset. * alpha-osf1-tdep.c (alpha_osf1_pc_in_sigtramp): Add GDBARCH parameter. * amd64-tdep.c (amd64_analyze_prologue): Add GDBARCH parameter. (amd64_skip_prologue): Pass architecture to amd64_analyze_prologue. (amd64_frame_cache): Likewise. * arm-tdep.c (SWAP_SHORT, SWAP_INT): Remove. (thumb_analyze_prologue, arm_skip_prologue, arm_scan_prologue, thumb_get_next_pc, arm_get_next_pc): Do not use SWAP_ macros. * arm-wince-tdep.c: Include "frame.h". * avr-tdep.c (EXTRACT_INSN): Remove. (avr_scan_prologue): Add GDBARCH argument, inline EXTRACT_INSN. (avr_skip_prologue): Pass architecture to avr_scan_prologue. (avr_frame_unwind_cache): Likewise. * cris-tdep.c (struct instruction_environment): Add BYTE_ORDER member. (find_step_target): Initialize it. (get_data_from_address): Add BYTE_ORDER parameter. (bdap_prefix): Pass byte order to get_data_from_address. (handle_prefix_assign_mode_for_aritm_op): Likewise. (three_operand_add_sub_cmp_and_or_op): Likewise. (handle_inc_and_index_mode_for_aritm_op): Likewise. * frv-linux-tdep.c (frv_linux_pc_in_sigtramp): Add GDBARCH parameter. (frv_linux_sigcontext_reg_addr): Pass architecture to frv_linux_pc_in_sigtramp. (frv_linux_sigtramp_frame_sniffer): Likewise. * h8300-tdep.c (h8300_is_argument_spill): Add GDBARCH parameter. (h8300_analyze_prologue): Add GDBARCH parameter. Pass to h8300_is_argument_spill. (h8300_frame_cache, h8300_skip_prologue): Pass architecture to h8300_analyze_prologue. * hppa-tdep.h (struct gdbarch_tdep): Add GDBARCH parameter to in_solib_call_trampoline callback. (hppa_in_solib_call_trampoline): Add GDBARCH parameter. * hppa-tdep.c (hppa64_convert_code_addr_to_fptr): Add GDBARCH parameter. (hppa64_push_dummy_call): Pass architecture to hppa64_convert_code_addr_to_fptr. (hppa_match_insns): Add GDBARCH parameter. (hppa_match_insns_relaxed): Add GDBARCH parameter. Pass to hppa_match_insns. (hppa_skip_trampoline_code): Pass architecture to hppa_match_insns. (hppa_in_solib_call_trampoline): Add GDBARCH parameter. Pass to hppa_match_insns_relaxed. (hppa_stub_unwind_sniffer): Pass architecture to tdep->in_solib_call_trampoline callback. * hppa-hpux-tdep.c (hppa_hpux_search_pattern): Add GDBARCH parameter. (hppa32_hpux_search_dummy_call_sequence): Pass architecture to hppa_hpux_search_pattern. * hppa-linux-tdep.c (insns_match_pattern): Add GDBARCH parameter. (hppa_linux_sigtramp_find_sigcontext): Add GDBARCH parameter. Pass to insns_match_pattern. (hppa_linux_sigtramp_frame_unwind_cache): Pass architecture to hppa_linux_sigtramp_find_sigcontext. (hppa_linux_sigtramp_frame_sniffer): Likewise. (hppa32_hpux_in_solib_call_trampoline): Add GDBARCH parameter. (hppa64_hpux_in_solib_call_trampoline): Likewise. * i386-tdep.c (i386_follow_jump): Add GDBARCH parameter. (i386_analyze_frame_setup): Add GDBARCH parameter. (i386_analyze_prologue): Add GDBARCH parameter. Pass to i386_follow_jump and i386_analyze_frame_setup. (i386_skip_prologue): Pass architecture to i386_analyze_prologue and i386_follow_jump. (i386_frame_cache): Pass architecture to i386_analyze_prologue. (i386_pe_skip_trampoline_code): Add FRAME parameter. * i386-tdep.h (i386_pe_skip_trampoline_code): Add FRAME parameter. * i386-cygwin-tdep.c (i386_cygwin_skip_trampoline_code): Pass frame to i386_pe_skip_trampoline_code. * ia64-tdep.h (struct gdbarch_tdep): Add GDBARCH parameter to sigcontext_register_address callback. * ia64-tdep.c (ia64_find_global_pointer): Add GDBARCH parameter. (ia64_find_unwind_table): Pass architecture to ia64_find_global_pointer. (find_extant_func_descr): Add GDBARCH parameter. (find_func_descr): Pass architecture to find_extant_func_descr and ia64_find_global_pointer. (ia64_sigtramp_frame_init_saved_regs): Pass architecture to tdep->sigcontext_register_address callback. * ia64-linux-tdep.c (ia64_linux_sigcontext_register_address): Add GDBARCH parameter. * iq2000-tdep.c (iq2000_scan_prologue): Add GDBARCH parameter. (iq2000_frame_cache): Pass architecture to iq2000_scan_prologue. * lm32-tdep.c (lm32_analyze_prologue): Add GDBARCH parameter. (lm32_skip_prologue, lm32_frame_cache): Pass architecture to lm32_analyze_prologue. * m32r-tdep.c (decode_prologue): Add GDBARCH parameter. (m32r_skip_prologue): Pass architecture to decode_prologue. * m68hc11-tdep.c (m68hc11_analyze_instruction): Add GDBARCH parameter. (m68hc11_scan_prologue): Pass architecture to m68hc11_analyze_instruction. * m68k-tdep.c (m68k_analyze_frame_setup): Add GDBARCH parameter. (m68k_analyze_prologue): Pass architecture to m68k_analyze_frame_setup. * m88k-tdep.c (m88k_fetch_instruction): Add BYTE_ORDER parameter. (m88k_analyze_prologue): Add GDBARCH parameter. Pass byte order to m88k_fetch_instruction. (m88k_skip_prologue): Pass architecture to m88k_analyze_prologue. (m88k_frame_cache): Likewise. * mep-tdep.c (mep_get_insn): Add GDBARCH parameter. (mep_analyze_prologue): Pass architecture to mep_get_insn. * mips-tdep.c (mips_fetch_instruction): Add GDBARCH parameter. (mips32_next_pc): Pass architecture to mips_fetch_instruction. (deal_with_atomic_sequence): Likewise. (unpack_mips16): Add GDBARCH parameter, pass to mips_fetch_instruction. (mips16_scan_prologue): Likewise. (mips32_scan_prologue): Likewise. (mips16_in_function_epilogue_p): Likewise. (mips32_in_function_epilogue_p): Likewise. (mips_about_to_return): Likewise. (mips_insn16_frame_cache): Pass architecture to mips16_scan_prologue. (mips_insn32_frame_cache): Pass architecture to mips32_scan_prologue. (mips_skip_prologue): Pass architecture to mips16_scan_prologue and mips32_scan_prologue. (mips_in_function_epilogue_p): Pass architecture to mips16_in_function_epilogue_p and mips32_in_function_epilogue_p. (heuristic_proc_start): Pass architecture to mips_fetch_instruction and mips_about_to_return. (mips_skip_mips16_trampoline_code): Pass architecture to mips_fetch_instruction. (fetch_mips_16): Add GDBARCH parameter. (mips16_next_pc): Pass architecture to fetch_mips_16. (extended_mips16_next_pc): Pass architecture to unpack_mips16 and fetch_mips_16. * objc-lang.c (read_objc_method, read_objc_methlist_nmethods, read_objc_methlist_method, read_objc_object, read_objc_super, read_objc_class): Add GDBARCH parameter. (find_implementation_from_class): Add GDBARCH parameter, pass to read_objc_class, read_objc_methlist_nmethods, and read_objc_methlist_method. (find_implementation): Add GDBARCH parameter, pass to read_objc_object and find_implementation_from_class. (resolve_msgsend, resolve_msgsend_stret): Pass architecture to find_implementation. (resolve_msgsend_super, resolve_msgsend_super_stret): Pass architecture to read_objc_super and find_implementation_from_class. * ppc64-linux-tdep.c (ppc64_desc_entry_point): Add GDBARCH parameter. (ppc64_standard_linkage1_target, ppc64_standard_linkage2_target, ppc64_standard_linkage3_target): Pass architecture to ppc64_desc_entry_point. * rs6000-tdep.c (bl_to_blrl_insn_p): Add BYTE_ORDER parameter. (skip_prologue): Pass byte order to bl_to_blrl_insn_p. (rs6000_fetch_instruction): Add GDBARCH parameter. (rs6000_skip_stack_check): Add GDBARCH parameter, pass to rs6000_fetch_instruction. (skip_prologue): Pass architecture to rs6000_fetch_instruction. * remote-mips.c (mips_store_word): Return old_contents as host integer value instead of target bytes. * s390-tdep.c (struct s390_prologue_data): Add BYTE_ORDER member. (s390_analyze_prologue): Initialize it. (extend_simple_arg): Add GDBARCH parameter. (s390_push_dummy_call): Pass architecture to extend_simple_arg. * scm-lang.c (scm_get_field): Add BYTE_ORDER parameter. * scm-lang.h (scm_get_field): Add BYTE_ORDER parameter. (SCM_CAR, SCM_CDR): Pass SCM_BYTE_ORDER to scm_get_field. * scm-valprint.c (scm_scmval_print): Likewise. (scm_scmlist_print, scm_ipruk, scm_scmval_print): Define SCM_BYTE_ORDER. * sh64-tdep.c (look_for_args_moves): Add GDBARCH parameter. (sh64_skip_prologue_hard_way): Add GDBARCH parameter, pass to look_for_args_moves. (sh64_skip_prologue): Pass architecture to sh64_skip_prologue_hard_way. * sh-tdep.c (sh_analyze_prologue): Add GDBARCH parameter. (sh_skip_prologue): Pass architecture to sh_analyze_prologue. (sh_frame_cache): Likewise. * solib-irix.c (extract_mips_address): Add GDBARCH parameter. (fetch_lm_info, irix_current_sos, irix_open_symbol_file_object): Pass architecture to extract_mips_address. * sparc-tdep.h (sparc_fetch_wcookie): Add GDBARCH parameter. * sparc-tdep.c (sparc_fetch_wcookie): Add GDBARCH parameter. (sparc_supply_rwindow, sparc_collect_rwindow): Pass architecture to sparc_fetch_wcookie. (sparc32_frame_prev_register): Likewise. * sparc64-tdep.c (sparc64_frame_prev_register): Likewise. * sparc32nbsd-tdep.c (sparc32nbsd_sigcontext_saved_regs): Likewise. * sparc64nbsd-tdep.c (sparc64nbsd_sigcontext_saved_regs): Likewise. * spu-tdep.c (spu_analyze_prologue): Add GDBARCH parameter. (spu_skip_prologue): Pass architecture to spu_analyze_prologue. (spu_virtual_frame_pointer): Likewise. (spu_frame_unwind_cache): Likewise. (info_spu_mailbox_list): Add BYTE_ORER parameter. (info_spu_mailbox_command): Pass byte order to info_spu_mailbox_list. (info_spu_dma_cmdlist): Add BYTE_ORER parameter. (info_spu_dma_command, info_spu_proxydma_command): Pass byte order to info_spu_dma_cmdlist. * symfile.c (read_target_long_array): Add GDBARCH parameter. (simple_read_overlay_table, simple_read_overlay_region_table, simple_overlay_update_1): Pass architecture to read_target_long_array. * v850-tdep.c (v850_analyze_prologue): Add GDBARCH parameter. (v850_frame_cache): Pass architecture to v850_analyze_prologue. * xstormy16-tdep.c (xstormy16_analyze_prologue): Add GDBARCH parameter. (xstormy16_skip_prologue, xstormy16_frame_cache): Pass architecture to xstormy16_analyze_prologue. (xstormy16_resolve_jmp_table_entry): Add GDBARCH parameter. (xstormy16_find_jmp_table_entry): Likewise. (xstormy16_skip_trampoline_code): Pass architecture to xstormy16_resolve_jmp_table_entry. (xstormy16_pointer_to_address): Likewise. (xstormy16_address_to_pointer): Pass architecture to xstormy16_find_jmp_table_entry. * xtensa-tdep.c (call0_track_op): Add GDBARCH parameter. (call0_analyze_prologue): Add GDBARCH parameter, pass to call0_track_op. (call0_frame_cache): Pass architecture to call0_analyze_prologue. (xtensa_skip_prologue): Likewise.
1583 lines
49 KiB
C
1583 lines
49 KiB
C
/* Target-dependent code for HP-UX on PA-RISC.
|
||
|
||
Copyright (C) 2002, 2003, 2004, 2005, 2007, 2008, 2009
|
||
Free Software Foundation, Inc.
|
||
|
||
This file is part of GDB.
|
||
|
||
This program is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 3 of the License, or
|
||
(at your option) any later version.
|
||
|
||
This program is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with this program. If not, see <http://www.gnu.org/licenses/>. */
|
||
|
||
#include "defs.h"
|
||
#include "arch-utils.h"
|
||
#include "gdbcore.h"
|
||
#include "osabi.h"
|
||
#include "frame.h"
|
||
#include "frame-unwind.h"
|
||
#include "trad-frame.h"
|
||
#include "symtab.h"
|
||
#include "objfiles.h"
|
||
#include "inferior.h"
|
||
#include "infcall.h"
|
||
#include "observer.h"
|
||
#include "hppa-tdep.h"
|
||
#include "solib-som.h"
|
||
#include "solib-pa64.h"
|
||
#include "regset.h"
|
||
#include "regcache.h"
|
||
#include "exceptions.h"
|
||
|
||
#include "gdb_string.h"
|
||
|
||
#define IS_32BIT_TARGET(_gdbarch) \
|
||
((gdbarch_tdep (_gdbarch))->bytes_per_address == 4)
|
||
|
||
/* Bit in the `ss_flag' member of `struct save_state' that indicates
|
||
that the 64-bit register values are live. From
|
||
<machine/save_state.h>. */
|
||
#define HPPA_HPUX_SS_WIDEREGS 0x40
|
||
|
||
/* Offsets of various parts of `struct save_state'. From
|
||
<machine/save_state.h>. */
|
||
#define HPPA_HPUX_SS_FLAGS_OFFSET 0
|
||
#define HPPA_HPUX_SS_NARROW_OFFSET 4
|
||
#define HPPA_HPUX_SS_FPBLOCK_OFFSET 256
|
||
#define HPPA_HPUX_SS_WIDE_OFFSET 640
|
||
|
||
/* The size of `struct save_state. */
|
||
#define HPPA_HPUX_SAVE_STATE_SIZE 1152
|
||
|
||
/* The size of `struct pa89_save_state', which corresponds to PA-RISC
|
||
1.1, the lowest common denominator that we support. */
|
||
#define HPPA_HPUX_PA89_SAVE_STATE_SIZE 512
|
||
|
||
|
||
/* Forward declarations. */
|
||
extern void _initialize_hppa_hpux_tdep (void);
|
||
extern initialize_file_ftype _initialize_hppa_hpux_tdep;
|
||
|
||
static int
|
||
in_opd_section (CORE_ADDR pc)
|
||
{
|
||
struct obj_section *s;
|
||
int retval = 0;
|
||
|
||
s = find_pc_section (pc);
|
||
|
||
retval = (s != NULL
|
||
&& s->the_bfd_section->name != NULL
|
||
&& strcmp (s->the_bfd_section->name, ".opd") == 0);
|
||
return (retval);
|
||
}
|
||
|
||
/* Return one if PC is in the call path of a trampoline, else return zero.
|
||
|
||
Note we return one for *any* call trampoline (long-call, arg-reloc), not
|
||
just shared library trampolines (import, export). */
|
||
|
||
static int
|
||
hppa32_hpux_in_solib_call_trampoline (struct gdbarch *gdbarch,
|
||
CORE_ADDR pc, char *name)
|
||
{
|
||
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
||
struct minimal_symbol *minsym;
|
||
struct unwind_table_entry *u;
|
||
|
||
/* First see if PC is in one of the two C-library trampolines. */
|
||
if (pc == hppa_symbol_address("$$dyncall")
|
||
|| pc == hppa_symbol_address("_sr4export"))
|
||
return 1;
|
||
|
||
minsym = lookup_minimal_symbol_by_pc (pc);
|
||
if (minsym && strcmp (SYMBOL_LINKAGE_NAME (minsym), ".stub") == 0)
|
||
return 1;
|
||
|
||
/* Get the unwind descriptor corresponding to PC, return zero
|
||
if no unwind was found. */
|
||
u = find_unwind_entry (pc);
|
||
if (!u)
|
||
return 0;
|
||
|
||
/* If this isn't a linker stub, then return now. */
|
||
if (u->stub_unwind.stub_type == 0)
|
||
return 0;
|
||
|
||
/* By definition a long-branch stub is a call stub. */
|
||
if (u->stub_unwind.stub_type == LONG_BRANCH)
|
||
return 1;
|
||
|
||
/* The call and return path execute the same instructions within
|
||
an IMPORT stub! So an IMPORT stub is both a call and return
|
||
trampoline. */
|
||
if (u->stub_unwind.stub_type == IMPORT)
|
||
return 1;
|
||
|
||
/* Parameter relocation stubs always have a call path and may have a
|
||
return path. */
|
||
if (u->stub_unwind.stub_type == PARAMETER_RELOCATION
|
||
|| u->stub_unwind.stub_type == EXPORT)
|
||
{
|
||
CORE_ADDR addr;
|
||
|
||
/* Search forward from the current PC until we hit a branch
|
||
or the end of the stub. */
|
||
for (addr = pc; addr <= u->region_end; addr += 4)
|
||
{
|
||
unsigned long insn;
|
||
|
||
insn = read_memory_integer (addr, 4, byte_order);
|
||
|
||
/* Does it look like a bl? If so then it's the call path, if
|
||
we find a bv or be first, then we're on the return path. */
|
||
if ((insn & 0xfc00e000) == 0xe8000000)
|
||
return 1;
|
||
else if ((insn & 0xfc00e001) == 0xe800c000
|
||
|| (insn & 0xfc000000) == 0xe0000000)
|
||
return 0;
|
||
}
|
||
|
||
/* Should never happen. */
|
||
warning (_("Unable to find branch in parameter relocation stub."));
|
||
return 0;
|
||
}
|
||
|
||
/* Unknown stub type. For now, just return zero. */
|
||
return 0;
|
||
}
|
||
|
||
static int
|
||
hppa64_hpux_in_solib_call_trampoline (struct gdbarch *gdbarch,
|
||
CORE_ADDR pc, char *name)
|
||
{
|
||
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
||
|
||
/* PA64 has a completely different stub/trampoline scheme. Is it
|
||
better? Maybe. It's certainly harder to determine with any
|
||
certainty that we are in a stub because we can not refer to the
|
||
unwinders to help.
|
||
|
||
The heuristic is simple. Try to lookup the current PC value in th
|
||
minimal symbol table. If that fails, then assume we are not in a
|
||
stub and return.
|
||
|
||
Then see if the PC value falls within the section bounds for the
|
||
section containing the minimal symbol we found in the first
|
||
step. If it does, then assume we are not in a stub and return.
|
||
|
||
Finally peek at the instructions to see if they look like a stub. */
|
||
struct minimal_symbol *minsym;
|
||
asection *sec;
|
||
CORE_ADDR addr;
|
||
int insn, i;
|
||
|
||
minsym = lookup_minimal_symbol_by_pc (pc);
|
||
if (! minsym)
|
||
return 0;
|
||
|
||
sec = SYMBOL_OBJ_SECTION (minsym)->the_bfd_section;
|
||
|
||
if (bfd_get_section_vma (sec->owner, sec) <= pc
|
||
&& pc < (bfd_get_section_vma (sec->owner, sec)
|
||
+ bfd_section_size (sec->owner, sec)))
|
||
return 0;
|
||
|
||
/* We might be in a stub. Peek at the instructions. Stubs are 3
|
||
instructions long. */
|
||
insn = read_memory_integer (pc, 4, byte_order);
|
||
|
||
/* Find out where we think we are within the stub. */
|
||
if ((insn & 0xffffc00e) == 0x53610000)
|
||
addr = pc;
|
||
else if ((insn & 0xffffffff) == 0xe820d000)
|
||
addr = pc - 4;
|
||
else if ((insn & 0xffffc00e) == 0x537b0000)
|
||
addr = pc - 8;
|
||
else
|
||
return 0;
|
||
|
||
/* Now verify each insn in the range looks like a stub instruction. */
|
||
insn = read_memory_integer (addr, 4, byte_order);
|
||
if ((insn & 0xffffc00e) != 0x53610000)
|
||
return 0;
|
||
|
||
/* Now verify each insn in the range looks like a stub instruction. */
|
||
insn = read_memory_integer (addr + 4, 4, byte_order);
|
||
if ((insn & 0xffffffff) != 0xe820d000)
|
||
return 0;
|
||
|
||
/* Now verify each insn in the range looks like a stub instruction. */
|
||
insn = read_memory_integer (addr + 8, 4, byte_order);
|
||
if ((insn & 0xffffc00e) != 0x537b0000)
|
||
return 0;
|
||
|
||
/* Looks like a stub. */
|
||
return 1;
|
||
}
|
||
|
||
/* Return one if PC is in the return path of a trampoline, else return zero.
|
||
|
||
Note we return one for *any* call trampoline (long-call, arg-reloc), not
|
||
just shared library trampolines (import, export). */
|
||
|
||
static int
|
||
hppa_hpux_in_solib_return_trampoline (struct gdbarch *gdbarch,
|
||
CORE_ADDR pc, char *name)
|
||
{
|
||
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
||
struct unwind_table_entry *u;
|
||
|
||
/* Get the unwind descriptor corresponding to PC, return zero
|
||
if no unwind was found. */
|
||
u = find_unwind_entry (pc);
|
||
if (!u)
|
||
return 0;
|
||
|
||
/* If this isn't a linker stub or it's just a long branch stub, then
|
||
return zero. */
|
||
if (u->stub_unwind.stub_type == 0 || u->stub_unwind.stub_type == LONG_BRANCH)
|
||
return 0;
|
||
|
||
/* The call and return path execute the same instructions within
|
||
an IMPORT stub! So an IMPORT stub is both a call and return
|
||
trampoline. */
|
||
if (u->stub_unwind.stub_type == IMPORT)
|
||
return 1;
|
||
|
||
/* Parameter relocation stubs always have a call path and may have a
|
||
return path. */
|
||
if (u->stub_unwind.stub_type == PARAMETER_RELOCATION
|
||
|| u->stub_unwind.stub_type == EXPORT)
|
||
{
|
||
CORE_ADDR addr;
|
||
|
||
/* Search forward from the current PC until we hit a branch
|
||
or the end of the stub. */
|
||
for (addr = pc; addr <= u->region_end; addr += 4)
|
||
{
|
||
unsigned long insn;
|
||
|
||
insn = read_memory_integer (addr, 4, byte_order);
|
||
|
||
/* Does it look like a bl? If so then it's the call path, if
|
||
we find a bv or be first, then we're on the return path. */
|
||
if ((insn & 0xfc00e000) == 0xe8000000)
|
||
return 0;
|
||
else if ((insn & 0xfc00e001) == 0xe800c000
|
||
|| (insn & 0xfc000000) == 0xe0000000)
|
||
return 1;
|
||
}
|
||
|
||
/* Should never happen. */
|
||
warning (_("Unable to find branch in parameter relocation stub."));
|
||
return 0;
|
||
}
|
||
|
||
/* Unknown stub type. For now, just return zero. */
|
||
return 0;
|
||
|
||
}
|
||
|
||
/* Figure out if PC is in a trampoline, and if so find out where
|
||
the trampoline will jump to. If not in a trampoline, return zero.
|
||
|
||
Simple code examination probably is not a good idea since the code
|
||
sequences in trampolines can also appear in user code.
|
||
|
||
We use unwinds and information from the minimal symbol table to
|
||
determine when we're in a trampoline. This won't work for ELF
|
||
(yet) since it doesn't create stub unwind entries. Whether or
|
||
not ELF will create stub unwinds or normal unwinds for linker
|
||
stubs is still being debated.
|
||
|
||
This should handle simple calls through dyncall or sr4export,
|
||
long calls, argument relocation stubs, and dyncall/sr4export
|
||
calling an argument relocation stub. It even handles some stubs
|
||
used in dynamic executables. */
|
||
|
||
static CORE_ADDR
|
||
hppa_hpux_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
|
||
{
|
||
struct gdbarch *gdbarch = get_frame_arch (frame);
|
||
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
||
int word_size = gdbarch_ptr_bit (gdbarch) / 8;
|
||
long orig_pc = pc;
|
||
long prev_inst, curr_inst, loc;
|
||
struct minimal_symbol *msym;
|
||
struct unwind_table_entry *u;
|
||
|
||
/* Addresses passed to dyncall may *NOT* be the actual address
|
||
of the function. So we may have to do something special. */
|
||
if (pc == hppa_symbol_address("$$dyncall"))
|
||
{
|
||
pc = (CORE_ADDR) get_frame_register_unsigned (frame, 22);
|
||
|
||
/* If bit 30 (counting from the left) is on, then pc is the address of
|
||
the PLT entry for this function, not the address of the function
|
||
itself. Bit 31 has meaning too, but only for MPE. */
|
||
if (pc & 0x2)
|
||
pc = (CORE_ADDR) read_memory_integer (pc & ~0x3, word_size, byte_order);
|
||
}
|
||
if (pc == hppa_symbol_address("$$dyncall_external"))
|
||
{
|
||
pc = (CORE_ADDR) get_frame_register_unsigned (frame, 22);
|
||
pc = (CORE_ADDR) read_memory_integer (pc & ~0x3, word_size, byte_order);
|
||
}
|
||
else if (pc == hppa_symbol_address("_sr4export"))
|
||
pc = (CORE_ADDR) get_frame_register_unsigned (frame, 22);
|
||
|
||
/* Get the unwind descriptor corresponding to PC, return zero
|
||
if no unwind was found. */
|
||
u = find_unwind_entry (pc);
|
||
if (!u)
|
||
return 0;
|
||
|
||
/* If this isn't a linker stub, then return now. */
|
||
/* elz: attention here! (FIXME) because of a compiler/linker
|
||
error, some stubs which should have a non zero stub_unwind.stub_type
|
||
have unfortunately a value of zero. So this function would return here
|
||
as if we were not in a trampoline. To fix this, we go look at the partial
|
||
symbol information, which reports this guy as a stub.
|
||
(FIXME): Unfortunately, we are not that lucky: it turns out that the
|
||
partial symbol information is also wrong sometimes. This is because
|
||
when it is entered (somread.c::som_symtab_read()) it can happen that
|
||
if the type of the symbol (from the som) is Entry, and the symbol is
|
||
in a shared library, then it can also be a trampoline. This would
|
||
be OK, except that I believe the way they decide if we are ina shared library
|
||
does not work. SOOOO..., even if we have a regular function w/o trampolines
|
||
its minimal symbol can be assigned type mst_solib_trampoline.
|
||
Also, if we find that the symbol is a real stub, then we fix the unwind
|
||
descriptor, and define the stub type to be EXPORT.
|
||
Hopefully this is correct most of the times. */
|
||
if (u->stub_unwind.stub_type == 0)
|
||
{
|
||
|
||
/* elz: NOTE (FIXME!) once the problem with the unwind information is fixed
|
||
we can delete all the code which appears between the lines */
|
||
/*--------------------------------------------------------------------------*/
|
||
msym = lookup_minimal_symbol_by_pc (pc);
|
||
|
||
if (msym == NULL || MSYMBOL_TYPE (msym) != mst_solib_trampoline)
|
||
return orig_pc == pc ? 0 : pc & ~0x3;
|
||
|
||
else if (msym != NULL && MSYMBOL_TYPE (msym) == mst_solib_trampoline)
|
||
{
|
||
struct objfile *objfile;
|
||
struct minimal_symbol *msymbol;
|
||
int function_found = 0;
|
||
|
||
/* go look if there is another minimal symbol with the same name as
|
||
this one, but with type mst_text. This would happen if the msym
|
||
is an actual trampoline, in which case there would be another
|
||
symbol with the same name corresponding to the real function */
|
||
|
||
ALL_MSYMBOLS (objfile, msymbol)
|
||
{
|
||
if (MSYMBOL_TYPE (msymbol) == mst_text
|
||
&& strcmp (SYMBOL_LINKAGE_NAME (msymbol),
|
||
SYMBOL_LINKAGE_NAME (msym)) == 0)
|
||
{
|
||
function_found = 1;
|
||
break;
|
||
}
|
||
}
|
||
|
||
if (function_found)
|
||
/* the type of msym is correct (mst_solib_trampoline), but
|
||
the unwind info is wrong, so set it to the correct value */
|
||
u->stub_unwind.stub_type = EXPORT;
|
||
else
|
||
/* the stub type info in the unwind is correct (this is not a
|
||
trampoline), but the msym type information is wrong, it
|
||
should be mst_text. So we need to fix the msym, and also
|
||
get out of this function */
|
||
{
|
||
MSYMBOL_TYPE (msym) = mst_text;
|
||
return orig_pc == pc ? 0 : pc & ~0x3;
|
||
}
|
||
}
|
||
|
||
/*--------------------------------------------------------------------------*/
|
||
}
|
||
|
||
/* It's a stub. Search for a branch and figure out where it goes.
|
||
Note we have to handle multi insn branch sequences like ldil;ble.
|
||
Most (all?) other branches can be determined by examining the contents
|
||
of certain registers and the stack. */
|
||
|
||
loc = pc;
|
||
curr_inst = 0;
|
||
prev_inst = 0;
|
||
while (1)
|
||
{
|
||
/* Make sure we haven't walked outside the range of this stub. */
|
||
if (u != find_unwind_entry (loc))
|
||
{
|
||
warning (_("Unable to find branch in linker stub"));
|
||
return orig_pc == pc ? 0 : pc & ~0x3;
|
||
}
|
||
|
||
prev_inst = curr_inst;
|
||
curr_inst = read_memory_integer (loc, 4, byte_order);
|
||
|
||
/* Does it look like a branch external using %r1? Then it's the
|
||
branch from the stub to the actual function. */
|
||
if ((curr_inst & 0xffe0e000) == 0xe0202000)
|
||
{
|
||
/* Yup. See if the previous instruction loaded
|
||
a value into %r1. If so compute and return the jump address. */
|
||
if ((prev_inst & 0xffe00000) == 0x20200000)
|
||
return (hppa_extract_21 (prev_inst) + hppa_extract_17 (curr_inst)) & ~0x3;
|
||
else
|
||
{
|
||
warning (_("Unable to find ldil X,%%r1 before ble Y(%%sr4,%%r1)."));
|
||
return orig_pc == pc ? 0 : pc & ~0x3;
|
||
}
|
||
}
|
||
|
||
/* Does it look like a be 0(sr0,%r21)? OR
|
||
Does it look like a be, n 0(sr0,%r21)? OR
|
||
Does it look like a bve (r21)? (this is on PA2.0)
|
||
Does it look like a bve, n(r21)? (this is also on PA2.0)
|
||
That's the branch from an
|
||
import stub to an export stub.
|
||
|
||
It is impossible to determine the target of the branch via
|
||
simple examination of instructions and/or data (consider
|
||
that the address in the plabel may be the address of the
|
||
bind-on-reference routine in the dynamic loader).
|
||
|
||
So we have try an alternative approach.
|
||
|
||
Get the name of the symbol at our current location; it should
|
||
be a stub symbol with the same name as the symbol in the
|
||
shared library.
|
||
|
||
Then lookup a minimal symbol with the same name; we should
|
||
get the minimal symbol for the target routine in the shared
|
||
library as those take precedence of import/export stubs. */
|
||
if ((curr_inst == 0xe2a00000) ||
|
||
(curr_inst == 0xe2a00002) ||
|
||
(curr_inst == 0xeaa0d000) ||
|
||
(curr_inst == 0xeaa0d002))
|
||
{
|
||
struct minimal_symbol *stubsym, *libsym;
|
||
|
||
stubsym = lookup_minimal_symbol_by_pc (loc);
|
||
if (stubsym == NULL)
|
||
{
|
||
warning (_("Unable to find symbol for 0x%lx"), loc);
|
||
return orig_pc == pc ? 0 : pc & ~0x3;
|
||
}
|
||
|
||
libsym = lookup_minimal_symbol (SYMBOL_LINKAGE_NAME (stubsym), NULL, NULL);
|
||
if (libsym == NULL)
|
||
{
|
||
warning (_("Unable to find library symbol for %s."),
|
||
SYMBOL_PRINT_NAME (stubsym));
|
||
return orig_pc == pc ? 0 : pc & ~0x3;
|
||
}
|
||
|
||
return SYMBOL_VALUE (libsym);
|
||
}
|
||
|
||
/* Does it look like bl X,%rp or bl X,%r0? Another way to do a
|
||
branch from the stub to the actual function. */
|
||
/*elz */
|
||
else if ((curr_inst & 0xffe0e000) == 0xe8400000
|
||
|| (curr_inst & 0xffe0e000) == 0xe8000000
|
||
|| (curr_inst & 0xffe0e000) == 0xe800A000)
|
||
return (loc + hppa_extract_17 (curr_inst) + 8) & ~0x3;
|
||
|
||
/* Does it look like bv (rp)? Note this depends on the
|
||
current stack pointer being the same as the stack
|
||
pointer in the stub itself! This is a branch on from the
|
||
stub back to the original caller. */
|
||
/*else if ((curr_inst & 0xffe0e000) == 0xe840c000) */
|
||
else if ((curr_inst & 0xffe0f000) == 0xe840c000)
|
||
{
|
||
/* Yup. See if the previous instruction loaded
|
||
rp from sp - 8. */
|
||
if (prev_inst == 0x4bc23ff1)
|
||
{
|
||
CORE_ADDR sp;
|
||
sp = get_frame_register_unsigned (frame, HPPA_SP_REGNUM);
|
||
return read_memory_integer (sp - 8, 4, byte_order) & ~0x3;
|
||
}
|
||
else
|
||
{
|
||
warning (_("Unable to find restore of %%rp before bv (%%rp)."));
|
||
return orig_pc == pc ? 0 : pc & ~0x3;
|
||
}
|
||
}
|
||
|
||
/* elz: added this case to capture the new instruction
|
||
at the end of the return part of an export stub used by
|
||
the PA2.0: BVE, n (rp) */
|
||
else if ((curr_inst & 0xffe0f000) == 0xe840d000)
|
||
{
|
||
return (read_memory_integer
|
||
(get_frame_register_unsigned (frame, HPPA_SP_REGNUM) - 24,
|
||
word_size, byte_order)) & ~0x3;
|
||
}
|
||
|
||
/* What about be,n 0(sr0,%rp)? It's just another way we return to
|
||
the original caller from the stub. Used in dynamic executables. */
|
||
else if (curr_inst == 0xe0400002)
|
||
{
|
||
/* The value we jump to is sitting in sp - 24. But that's
|
||
loaded several instructions before the be instruction.
|
||
I guess we could check for the previous instruction being
|
||
mtsp %r1,%sr0 if we want to do sanity checking. */
|
||
return (read_memory_integer
|
||
(get_frame_register_unsigned (frame, HPPA_SP_REGNUM) - 24,
|
||
word_size, byte_order)) & ~0x3;
|
||
}
|
||
|
||
/* Haven't found the branch yet, but we're still in the stub.
|
||
Keep looking. */
|
||
loc += 4;
|
||
}
|
||
}
|
||
|
||
static void
|
||
hppa_skip_permanent_breakpoint (struct regcache *regcache)
|
||
{
|
||
/* To step over a breakpoint instruction on the PA takes some
|
||
fiddling with the instruction address queue.
|
||
|
||
When we stop at a breakpoint, the IA queue front (the instruction
|
||
we're executing now) points at the breakpoint instruction, and
|
||
the IA queue back (the next instruction to execute) points to
|
||
whatever instruction we would execute after the breakpoint, if it
|
||
were an ordinary instruction. This is the case even if the
|
||
breakpoint is in the delay slot of a branch instruction.
|
||
|
||
Clearly, to step past the breakpoint, we need to set the queue
|
||
front to the back. But what do we put in the back? What
|
||
instruction comes after that one? Because of the branch delay
|
||
slot, the next insn is always at the back + 4. */
|
||
|
||
ULONGEST pcoq_tail, pcsq_tail;
|
||
regcache_cooked_read_unsigned (regcache, HPPA_PCOQ_TAIL_REGNUM, &pcoq_tail);
|
||
regcache_cooked_read_unsigned (regcache, HPPA_PCSQ_TAIL_REGNUM, &pcsq_tail);
|
||
|
||
regcache_cooked_write_unsigned (regcache, HPPA_PCOQ_HEAD_REGNUM, pcoq_tail);
|
||
regcache_cooked_write_unsigned (regcache, HPPA_PCSQ_HEAD_REGNUM, pcsq_tail);
|
||
|
||
regcache_cooked_write_unsigned (regcache, HPPA_PCOQ_TAIL_REGNUM, pcoq_tail + 4);
|
||
/* We can leave the tail's space the same, since there's no jump. */
|
||
}
|
||
|
||
|
||
/* Signal frames. */
|
||
struct hppa_hpux_sigtramp_unwind_cache
|
||
{
|
||
CORE_ADDR base;
|
||
struct trad_frame_saved_reg *saved_regs;
|
||
};
|
||
|
||
static int hppa_hpux_tramp_reg[] = {
|
||
HPPA_SAR_REGNUM,
|
||
HPPA_PCOQ_HEAD_REGNUM,
|
||
HPPA_PCSQ_HEAD_REGNUM,
|
||
HPPA_PCOQ_TAIL_REGNUM,
|
||
HPPA_PCSQ_TAIL_REGNUM,
|
||
HPPA_EIEM_REGNUM,
|
||
HPPA_IIR_REGNUM,
|
||
HPPA_ISR_REGNUM,
|
||
HPPA_IOR_REGNUM,
|
||
HPPA_IPSW_REGNUM,
|
||
-1,
|
||
HPPA_SR4_REGNUM,
|
||
HPPA_SR4_REGNUM + 1,
|
||
HPPA_SR4_REGNUM + 2,
|
||
HPPA_SR4_REGNUM + 3,
|
||
HPPA_SR4_REGNUM + 4,
|
||
HPPA_SR4_REGNUM + 5,
|
||
HPPA_SR4_REGNUM + 6,
|
||
HPPA_SR4_REGNUM + 7,
|
||
HPPA_RCR_REGNUM,
|
||
HPPA_PID0_REGNUM,
|
||
HPPA_PID1_REGNUM,
|
||
HPPA_CCR_REGNUM,
|
||
HPPA_PID2_REGNUM,
|
||
HPPA_PID3_REGNUM,
|
||
HPPA_TR0_REGNUM,
|
||
HPPA_TR0_REGNUM + 1,
|
||
HPPA_TR0_REGNUM + 2,
|
||
HPPA_CR27_REGNUM
|
||
};
|
||
|
||
static struct hppa_hpux_sigtramp_unwind_cache *
|
||
hppa_hpux_sigtramp_frame_unwind_cache (struct frame_info *this_frame,
|
||
void **this_cache)
|
||
|
||
{
|
||
struct gdbarch *gdbarch = get_frame_arch (this_frame);
|
||
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
||
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
||
struct hppa_hpux_sigtramp_unwind_cache *info;
|
||
unsigned int flag;
|
||
CORE_ADDR sp, scptr, off;
|
||
int i, incr, szoff;
|
||
|
||
if (*this_cache)
|
||
return *this_cache;
|
||
|
||
info = FRAME_OBSTACK_ZALLOC (struct hppa_hpux_sigtramp_unwind_cache);
|
||
*this_cache = info;
|
||
info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
|
||
|
||
sp = get_frame_register_unsigned (this_frame, HPPA_SP_REGNUM);
|
||
|
||
if (IS_32BIT_TARGET (gdbarch))
|
||
scptr = sp - 1352;
|
||
else
|
||
scptr = sp - 1520;
|
||
|
||
off = scptr;
|
||
|
||
/* See /usr/include/machine/save_state.h for the structure of the save_state_t
|
||
structure. */
|
||
|
||
flag = read_memory_unsigned_integer (scptr + HPPA_HPUX_SS_FLAGS_OFFSET,
|
||
4, byte_order);
|
||
|
||
if (!(flag & HPPA_HPUX_SS_WIDEREGS))
|
||
{
|
||
/* Narrow registers. */
|
||
off = scptr + HPPA_HPUX_SS_NARROW_OFFSET;
|
||
incr = 4;
|
||
szoff = 0;
|
||
}
|
||
else
|
||
{
|
||
/* Wide registers. */
|
||
off = scptr + HPPA_HPUX_SS_WIDE_OFFSET + 8;
|
||
incr = 8;
|
||
szoff = (tdep->bytes_per_address == 4 ? 4 : 0);
|
||
}
|
||
|
||
for (i = 1; i < 32; i++)
|
||
{
|
||
info->saved_regs[HPPA_R0_REGNUM + i].addr = off + szoff;
|
||
off += incr;
|
||
}
|
||
|
||
for (i = 0; i < ARRAY_SIZE (hppa_hpux_tramp_reg); i++)
|
||
{
|
||
if (hppa_hpux_tramp_reg[i] > 0)
|
||
info->saved_regs[hppa_hpux_tramp_reg[i]].addr = off + szoff;
|
||
|
||
off += incr;
|
||
}
|
||
|
||
/* TODO: fp regs */
|
||
|
||
info->base = get_frame_register_unsigned (this_frame, HPPA_SP_REGNUM);
|
||
|
||
return info;
|
||
}
|
||
|
||
static void
|
||
hppa_hpux_sigtramp_frame_this_id (struct frame_info *this_frame,
|
||
void **this_prologue_cache,
|
||
struct frame_id *this_id)
|
||
{
|
||
struct hppa_hpux_sigtramp_unwind_cache *info
|
||
= hppa_hpux_sigtramp_frame_unwind_cache (this_frame, this_prologue_cache);
|
||
|
||
*this_id = frame_id_build (info->base, get_frame_pc (this_frame));
|
||
}
|
||
|
||
static struct value *
|
||
hppa_hpux_sigtramp_frame_prev_register (struct frame_info *this_frame,
|
||
void **this_prologue_cache,
|
||
int regnum)
|
||
{
|
||
struct hppa_hpux_sigtramp_unwind_cache *info
|
||
= hppa_hpux_sigtramp_frame_unwind_cache (this_frame, this_prologue_cache);
|
||
|
||
return hppa_frame_prev_register_helper (this_frame, info->saved_regs, regnum);
|
||
}
|
||
|
||
static int
|
||
hppa_hpux_sigtramp_unwind_sniffer (const struct frame_unwind *self,
|
||
struct frame_info *this_frame,
|
||
void **this_cache)
|
||
{
|
||
struct gdbarch *gdbarch = get_frame_arch (this_frame);
|
||
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
||
struct unwind_table_entry *u;
|
||
CORE_ADDR pc = get_frame_pc (this_frame);
|
||
|
||
u = find_unwind_entry (pc);
|
||
|
||
/* If this is an export stub, try to get the unwind descriptor for
|
||
the actual function itself. */
|
||
if (u && u->stub_unwind.stub_type == EXPORT)
|
||
{
|
||
gdb_byte buf[HPPA_INSN_SIZE];
|
||
unsigned long insn;
|
||
|
||
if (!safe_frame_unwind_memory (this_frame, u->region_start,
|
||
buf, sizeof buf))
|
||
return 0;
|
||
|
||
insn = extract_unsigned_integer (buf, sizeof buf, byte_order);
|
||
if ((insn & 0xffe0e000) == 0xe8400000)
|
||
u = find_unwind_entry(u->region_start + hppa_extract_17 (insn) + 8);
|
||
}
|
||
|
||
if (u && u->HP_UX_interrupt_marker)
|
||
return 1;
|
||
|
||
return 0;
|
||
}
|
||
|
||
static const struct frame_unwind hppa_hpux_sigtramp_frame_unwind = {
|
||
SIGTRAMP_FRAME,
|
||
hppa_hpux_sigtramp_frame_this_id,
|
||
hppa_hpux_sigtramp_frame_prev_register,
|
||
NULL,
|
||
hppa_hpux_sigtramp_unwind_sniffer
|
||
};
|
||
|
||
static CORE_ADDR
|
||
hppa32_hpux_find_global_pointer (struct gdbarch *gdbarch,
|
||
struct value *function)
|
||
{
|
||
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
||
CORE_ADDR faddr;
|
||
|
||
faddr = value_as_address (function);
|
||
|
||
/* Is this a plabel? If so, dereference it to get the gp value. */
|
||
if (faddr & 2)
|
||
{
|
||
int status;
|
||
char buf[4];
|
||
|
||
faddr &= ~3;
|
||
|
||
status = target_read_memory (faddr + 4, buf, sizeof (buf));
|
||
if (status == 0)
|
||
return extract_unsigned_integer (buf, sizeof (buf), byte_order);
|
||
}
|
||
|
||
return gdbarch_tdep (gdbarch)->solib_get_got_by_pc (faddr);
|
||
}
|
||
|
||
static CORE_ADDR
|
||
hppa64_hpux_find_global_pointer (struct gdbarch *gdbarch,
|
||
struct value *function)
|
||
{
|
||
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
||
CORE_ADDR faddr;
|
||
char buf[32];
|
||
|
||
faddr = value_as_address (function);
|
||
|
||
if (in_opd_section (faddr))
|
||
{
|
||
target_read_memory (faddr, buf, sizeof (buf));
|
||
return extract_unsigned_integer (&buf[24], 8, byte_order);
|
||
}
|
||
else
|
||
{
|
||
return gdbarch_tdep (gdbarch)->solib_get_got_by_pc (faddr);
|
||
}
|
||
}
|
||
|
||
static unsigned int ldsid_pattern[] = {
|
||
0x000010a0, /* ldsid (rX),rY */
|
||
0x00001820, /* mtsp rY,sr0 */
|
||
0xe0000000 /* be,n (sr0,rX) */
|
||
};
|
||
|
||
static CORE_ADDR
|
||
hppa_hpux_search_pattern (struct gdbarch *gdbarch,
|
||
CORE_ADDR start, CORE_ADDR end,
|
||
unsigned int *patterns, int count)
|
||
{
|
||
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
||
int num_insns = (end - start + HPPA_INSN_SIZE) / HPPA_INSN_SIZE;
|
||
unsigned int *insns;
|
||
gdb_byte *buf;
|
||
int offset, i;
|
||
|
||
buf = alloca (num_insns * HPPA_INSN_SIZE);
|
||
insns = alloca (num_insns * sizeof (unsigned int));
|
||
|
||
read_memory (start, buf, num_insns * HPPA_INSN_SIZE);
|
||
for (i = 0; i < num_insns; i++, buf += HPPA_INSN_SIZE)
|
||
insns[i] = extract_unsigned_integer (buf, HPPA_INSN_SIZE, byte_order);
|
||
|
||
for (offset = 0; offset <= num_insns - count; offset++)
|
||
{
|
||
for (i = 0; i < count; i++)
|
||
{
|
||
if ((insns[offset + i] & patterns[i]) != patterns[i])
|
||
break;
|
||
}
|
||
if (i == count)
|
||
break;
|
||
}
|
||
|
||
if (offset <= num_insns - count)
|
||
return start + offset * HPPA_INSN_SIZE;
|
||
else
|
||
return 0;
|
||
}
|
||
|
||
static CORE_ADDR
|
||
hppa32_hpux_search_dummy_call_sequence (struct gdbarch *gdbarch, CORE_ADDR pc,
|
||
int *argreg)
|
||
{
|
||
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
||
struct objfile *obj;
|
||
struct obj_section *sec;
|
||
struct hppa_objfile_private *priv;
|
||
struct frame_info *frame;
|
||
struct unwind_table_entry *u;
|
||
CORE_ADDR addr, rp;
|
||
char buf[4];
|
||
unsigned int insn;
|
||
|
||
sec = find_pc_section (pc);
|
||
obj = sec->objfile;
|
||
priv = objfile_data (obj, hppa_objfile_priv_data);
|
||
|
||
if (!priv)
|
||
priv = hppa_init_objfile_priv_data (obj);
|
||
if (!priv)
|
||
error (_("Internal error creating objfile private data."));
|
||
|
||
/* Use the cached value if we have one. */
|
||
if (priv->dummy_call_sequence_addr != 0)
|
||
{
|
||
*argreg = priv->dummy_call_sequence_reg;
|
||
return priv->dummy_call_sequence_addr;
|
||
}
|
||
|
||
/* First try a heuristic; if we are in a shared library call, our return
|
||
pointer is likely to point at an export stub. */
|
||
frame = get_current_frame ();
|
||
rp = frame_unwind_register_unsigned (frame, 2);
|
||
u = find_unwind_entry (rp);
|
||
if (u && u->stub_unwind.stub_type == EXPORT)
|
||
{
|
||
addr = hppa_hpux_search_pattern (gdbarch,
|
||
u->region_start, u->region_end,
|
||
ldsid_pattern,
|
||
ARRAY_SIZE (ldsid_pattern));
|
||
if (addr)
|
||
goto found_pattern;
|
||
}
|
||
|
||
/* Next thing to try is to look for an export stub. */
|
||
if (priv->unwind_info)
|
||
{
|
||
int i;
|
||
|
||
for (i = 0; i < priv->unwind_info->last; i++)
|
||
{
|
||
struct unwind_table_entry *u;
|
||
u = &priv->unwind_info->table[i];
|
||
if (u->stub_unwind.stub_type == EXPORT)
|
||
{
|
||
addr = hppa_hpux_search_pattern (gdbarch,
|
||
u->region_start, u->region_end,
|
||
ldsid_pattern,
|
||
ARRAY_SIZE (ldsid_pattern));
|
||
if (addr)
|
||
{
|
||
goto found_pattern;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Finally, if this is the main executable, try to locate a sequence
|
||
from noshlibs */
|
||
addr = hppa_symbol_address ("noshlibs");
|
||
sec = find_pc_section (addr);
|
||
|
||
if (sec && sec->objfile == obj)
|
||
{
|
||
CORE_ADDR start, end;
|
||
|
||
find_pc_partial_function (addr, NULL, &start, &end);
|
||
if (start != 0 && end != 0)
|
||
{
|
||
addr = hppa_hpux_search_pattern (gdbarch, start, end, ldsid_pattern,
|
||
ARRAY_SIZE (ldsid_pattern));
|
||
if (addr)
|
||
goto found_pattern;
|
||
}
|
||
}
|
||
|
||
/* Can't find a suitable sequence. */
|
||
return 0;
|
||
|
||
found_pattern:
|
||
target_read_memory (addr, buf, sizeof (buf));
|
||
insn = extract_unsigned_integer (buf, sizeof (buf), byte_order);
|
||
priv->dummy_call_sequence_addr = addr;
|
||
priv->dummy_call_sequence_reg = (insn >> 21) & 0x1f;
|
||
|
||
*argreg = priv->dummy_call_sequence_reg;
|
||
return priv->dummy_call_sequence_addr;
|
||
}
|
||
|
||
static CORE_ADDR
|
||
hppa64_hpux_search_dummy_call_sequence (struct gdbarch *gdbarch, CORE_ADDR pc,
|
||
int *argreg)
|
||
{
|
||
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
||
struct objfile *obj;
|
||
struct obj_section *sec;
|
||
struct hppa_objfile_private *priv;
|
||
CORE_ADDR addr;
|
||
struct minimal_symbol *msym;
|
||
int i;
|
||
|
||
sec = find_pc_section (pc);
|
||
obj = sec->objfile;
|
||
priv = objfile_data (obj, hppa_objfile_priv_data);
|
||
|
||
if (!priv)
|
||
priv = hppa_init_objfile_priv_data (obj);
|
||
if (!priv)
|
||
error (_("Internal error creating objfile private data."));
|
||
|
||
/* Use the cached value if we have one. */
|
||
if (priv->dummy_call_sequence_addr != 0)
|
||
{
|
||
*argreg = priv->dummy_call_sequence_reg;
|
||
return priv->dummy_call_sequence_addr;
|
||
}
|
||
|
||
/* FIXME: Without stub unwind information, locating a suitable sequence is
|
||
fairly difficult. For now, we implement a very naive and inefficient
|
||
scheme; try to read in blocks of code, and look for a "bve,n (rp)"
|
||
instruction. These are likely to occur at the end of functions, so
|
||
we only look at the last two instructions of each function. */
|
||
for (i = 0, msym = obj->msymbols; i < obj->minimal_symbol_count; i++, msym++)
|
||
{
|
||
CORE_ADDR begin, end;
|
||
char *name;
|
||
gdb_byte buf[2 * HPPA_INSN_SIZE];
|
||
int offset;
|
||
|
||
find_pc_partial_function (SYMBOL_VALUE_ADDRESS (msym), &name,
|
||
&begin, &end);
|
||
|
||
if (name == NULL || begin == 0 || end == 0)
|
||
continue;
|
||
|
||
if (target_read_memory (end - sizeof (buf), buf, sizeof (buf)) == 0)
|
||
{
|
||
for (offset = 0; offset < sizeof (buf); offset++)
|
||
{
|
||
unsigned int insn;
|
||
|
||
insn = extract_unsigned_integer (buf + offset,
|
||
HPPA_INSN_SIZE, byte_order);
|
||
if (insn == 0xe840d002) /* bve,n (rp) */
|
||
{
|
||
addr = (end - sizeof (buf)) + offset;
|
||
goto found_pattern;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Can't find a suitable sequence. */
|
||
return 0;
|
||
|
||
found_pattern:
|
||
priv->dummy_call_sequence_addr = addr;
|
||
/* Right now we only look for a "bve,l (rp)" sequence, so the register is
|
||
always HPPA_RP_REGNUM. */
|
||
priv->dummy_call_sequence_reg = HPPA_RP_REGNUM;
|
||
|
||
*argreg = priv->dummy_call_sequence_reg;
|
||
return priv->dummy_call_sequence_addr;
|
||
}
|
||
|
||
static CORE_ADDR
|
||
hppa_hpux_find_import_stub_for_addr (CORE_ADDR funcaddr)
|
||
{
|
||
struct objfile *objfile;
|
||
struct minimal_symbol *funsym, *stubsym;
|
||
CORE_ADDR stubaddr;
|
||
|
||
funsym = lookup_minimal_symbol_by_pc (funcaddr);
|
||
stubaddr = 0;
|
||
|
||
ALL_OBJFILES (objfile)
|
||
{
|
||
stubsym = lookup_minimal_symbol_solib_trampoline
|
||
(SYMBOL_LINKAGE_NAME (funsym), objfile);
|
||
|
||
if (stubsym)
|
||
{
|
||
struct unwind_table_entry *u;
|
||
|
||
u = find_unwind_entry (SYMBOL_VALUE (stubsym));
|
||
if (u == NULL
|
||
|| (u->stub_unwind.stub_type != IMPORT
|
||
&& u->stub_unwind.stub_type != IMPORT_SHLIB))
|
||
continue;
|
||
|
||
stubaddr = SYMBOL_VALUE (stubsym);
|
||
|
||
/* If we found an IMPORT stub, then we can stop searching;
|
||
if we found an IMPORT_SHLIB, we want to continue the search
|
||
in the hopes that we will find an IMPORT stub. */
|
||
if (u->stub_unwind.stub_type == IMPORT)
|
||
break;
|
||
}
|
||
}
|
||
|
||
return stubaddr;
|
||
}
|
||
|
||
static int
|
||
hppa_hpux_sr_for_addr (struct gdbarch *gdbarch, CORE_ADDR addr)
|
||
{
|
||
int sr;
|
||
/* The space register to use is encoded in the top 2 bits of the address. */
|
||
sr = addr >> (gdbarch_tdep (gdbarch)->bytes_per_address * 8 - 2);
|
||
return sr + 4;
|
||
}
|
||
|
||
static CORE_ADDR
|
||
hppa_hpux_find_dummy_bpaddr (CORE_ADDR addr)
|
||
{
|
||
/* In order for us to restore the space register to its starting state,
|
||
we need the dummy trampoline to return to the an instruction address in
|
||
the same space as where we started the call. We used to place the
|
||
breakpoint near the current pc, however, this breaks nested dummy calls
|
||
as the nested call will hit the breakpoint address and terminate
|
||
prematurely. Instead, we try to look for an address in the same space to
|
||
put the breakpoint.
|
||
|
||
This is similar in spirit to putting the breakpoint at the "entry point"
|
||
of an executable. */
|
||
|
||
struct obj_section *sec;
|
||
struct unwind_table_entry *u;
|
||
struct minimal_symbol *msym;
|
||
CORE_ADDR func;
|
||
int i;
|
||
|
||
sec = find_pc_section (addr);
|
||
if (sec)
|
||
{
|
||
/* First try the lowest address in the section; we can use it as long
|
||
as it is "regular" code (i.e. not a stub) */
|
||
u = find_unwind_entry (obj_section_addr (sec));
|
||
if (!u || u->stub_unwind.stub_type == 0)
|
||
return obj_section_addr (sec);
|
||
|
||
/* Otherwise, we need to find a symbol for a regular function. We
|
||
do this by walking the list of msymbols in the objfile. The symbol
|
||
we find should not be the same as the function that was passed in. */
|
||
|
||
/* FIXME: this is broken, because we can find a function that will be
|
||
called by the dummy call target function, which will still not
|
||
work. */
|
||
|
||
find_pc_partial_function (addr, NULL, &func, NULL);
|
||
for (i = 0, msym = sec->objfile->msymbols;
|
||
i < sec->objfile->minimal_symbol_count;
|
||
i++, msym++)
|
||
{
|
||
u = find_unwind_entry (SYMBOL_VALUE_ADDRESS (msym));
|
||
if (func != SYMBOL_VALUE_ADDRESS (msym)
|
||
&& (!u || u->stub_unwind.stub_type == 0))
|
||
return SYMBOL_VALUE_ADDRESS (msym);
|
||
}
|
||
}
|
||
|
||
warning (_("Cannot find suitable address to place dummy breakpoint; nested "
|
||
"calls may fail."));
|
||
return addr - 4;
|
||
}
|
||
|
||
static CORE_ADDR
|
||
hppa_hpux_push_dummy_code (struct gdbarch *gdbarch, CORE_ADDR sp,
|
||
CORE_ADDR funcaddr,
|
||
struct value **args, int nargs,
|
||
struct type *value_type,
|
||
CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
|
||
struct regcache *regcache)
|
||
{
|
||
CORE_ADDR pc, stubaddr;
|
||
int argreg = 0;
|
||
|
||
pc = regcache_read_pc (regcache);
|
||
|
||
/* Note: we don't want to pass a function descriptor here; push_dummy_call
|
||
fills in the PIC register for us. */
|
||
funcaddr = gdbarch_convert_from_func_ptr_addr (gdbarch, funcaddr, NULL);
|
||
|
||
/* The simple case is where we call a function in the same space that we are
|
||
currently in; in that case we don't really need to do anything. */
|
||
if (hppa_hpux_sr_for_addr (gdbarch, pc)
|
||
== hppa_hpux_sr_for_addr (gdbarch, funcaddr))
|
||
{
|
||
/* Intraspace call. */
|
||
*bp_addr = hppa_hpux_find_dummy_bpaddr (pc);
|
||
*real_pc = funcaddr;
|
||
regcache_cooked_write_unsigned (regcache, HPPA_RP_REGNUM, *bp_addr);
|
||
|
||
return sp;
|
||
}
|
||
|
||
/* In order to make an interspace call, we need to go through a stub.
|
||
gcc supplies an appropriate stub called "__gcc_plt_call", however, if
|
||
an application is compiled with HP compilers then this stub is not
|
||
available. We used to fallback to "__d_plt_call", however that stub
|
||
is not entirely useful for us because it doesn't do an interspace
|
||
return back to the caller. Also, on hppa64-hpux, there is no
|
||
__gcc_plt_call available. In order to keep the code uniform, we
|
||
instead don't use either of these stubs, but instead write our own
|
||
onto the stack.
|
||
|
||
A problem arises since the stack is located in a different space than
|
||
code, so in order to branch to a stack stub, we will need to do an
|
||
interspace branch. Previous versions of gdb did this by modifying code
|
||
at the current pc and doing single-stepping to set the pcsq. Since this
|
||
is highly undesirable, we use a different scheme:
|
||
|
||
All we really need to do the branch to the stub is a short instruction
|
||
sequence like this:
|
||
|
||
PA1.1:
|
||
ldsid (rX),r1
|
||
mtsp r1,sr0
|
||
be,n (sr0,rX)
|
||
|
||
PA2.0:
|
||
bve,n (sr0,rX)
|
||
|
||
Instead of writing these sequences ourselves, we can find it in
|
||
the instruction stream that belongs to the current space. While this
|
||
seems difficult at first, we are actually guaranteed to find the sequences
|
||
in several places:
|
||
|
||
For 32-bit code:
|
||
- in export stubs for shared libraries
|
||
- in the "noshlibs" routine in the main module
|
||
|
||
For 64-bit code:
|
||
- at the end of each "regular" function
|
||
|
||
We cache the address of these sequences in the objfile's private data
|
||
since these operations can potentially be quite expensive.
|
||
|
||
So, what we do is:
|
||
- write a stack trampoline
|
||
- look for a suitable instruction sequence in the current space
|
||
- point the sequence at the trampoline
|
||
- set the return address of the trampoline to the current space
|
||
(see hppa_hpux_find_dummy_call_bpaddr)
|
||
- set the continuing address of the "dummy code" as the sequence.
|
||
|
||
*/
|
||
|
||
if (IS_32BIT_TARGET (gdbarch))
|
||
{
|
||
static unsigned int hppa32_tramp[] = {
|
||
0x0fdf1291, /* stw r31,-8(,sp) */
|
||
0x02c010a1, /* ldsid (,r22),r1 */
|
||
0x00011820, /* mtsp r1,sr0 */
|
||
0xe6c00000, /* be,l 0(sr0,r22),%sr0,%r31 */
|
||
0x081f0242, /* copy r31,rp */
|
||
0x0fd11082, /* ldw -8(,sp),rp */
|
||
0x004010a1, /* ldsid (,rp),r1 */
|
||
0x00011820, /* mtsp r1,sr0 */
|
||
0xe0400000, /* be 0(sr0,rp) */
|
||
0x08000240 /* nop */
|
||
};
|
||
|
||
/* for hppa32, we must call the function through a stub so that on
|
||
return it can return to the space of our trampoline. */
|
||
stubaddr = hppa_hpux_find_import_stub_for_addr (funcaddr);
|
||
if (stubaddr == 0)
|
||
error (_("Cannot call external function not referenced by application "
|
||
"(no import stub).\n"));
|
||
regcache_cooked_write_unsigned (regcache, 22, stubaddr);
|
||
|
||
write_memory (sp, (char *)&hppa32_tramp, sizeof (hppa32_tramp));
|
||
|
||
*bp_addr = hppa_hpux_find_dummy_bpaddr (pc);
|
||
regcache_cooked_write_unsigned (regcache, 31, *bp_addr);
|
||
|
||
*real_pc = hppa32_hpux_search_dummy_call_sequence (gdbarch, pc, &argreg);
|
||
if (*real_pc == 0)
|
||
error (_("Cannot make interspace call from here."));
|
||
|
||
regcache_cooked_write_unsigned (regcache, argreg, sp);
|
||
|
||
sp += sizeof (hppa32_tramp);
|
||
}
|
||
else
|
||
{
|
||
static unsigned int hppa64_tramp[] = {
|
||
0xeac0f000, /* bve,l (r22),%r2 */
|
||
0x0fdf12d1, /* std r31,-8(,sp) */
|
||
0x0fd110c2, /* ldd -8(,sp),rp */
|
||
0xe840d002, /* bve,n (rp) */
|
||
0x08000240 /* nop */
|
||
};
|
||
|
||
/* for hppa64, we don't need to call through a stub; all functions
|
||
return via a bve. */
|
||
regcache_cooked_write_unsigned (regcache, 22, funcaddr);
|
||
write_memory (sp, (char *)&hppa64_tramp, sizeof (hppa64_tramp));
|
||
|
||
*bp_addr = pc - 4;
|
||
regcache_cooked_write_unsigned (regcache, 31, *bp_addr);
|
||
|
||
*real_pc = hppa64_hpux_search_dummy_call_sequence (gdbarch, pc, &argreg);
|
||
if (*real_pc == 0)
|
||
error (_("Cannot make interspace call from here."));
|
||
|
||
regcache_cooked_write_unsigned (regcache, argreg, sp);
|
||
|
||
sp += sizeof (hppa64_tramp);
|
||
}
|
||
|
||
sp = gdbarch_frame_align (gdbarch, sp);
|
||
|
||
return sp;
|
||
}
|
||
|
||
|
||
|
||
static void
|
||
hppa_hpux_supply_ss_narrow (struct regcache *regcache,
|
||
int regnum, const char *save_state)
|
||
{
|
||
const char *ss_narrow = save_state + HPPA_HPUX_SS_NARROW_OFFSET;
|
||
int i, offset = 0;
|
||
|
||
for (i = HPPA_R1_REGNUM; i < HPPA_FP0_REGNUM; i++)
|
||
{
|
||
if (regnum == i || regnum == -1)
|
||
regcache_raw_supply (regcache, i, ss_narrow + offset);
|
||
|
||
offset += 4;
|
||
}
|
||
}
|
||
|
||
static void
|
||
hppa_hpux_supply_ss_fpblock (struct regcache *regcache,
|
||
int regnum, const char *save_state)
|
||
{
|
||
const char *ss_fpblock = save_state + HPPA_HPUX_SS_FPBLOCK_OFFSET;
|
||
int i, offset = 0;
|
||
|
||
/* FIXME: We view the floating-point state as 64 single-precision
|
||
registers for 32-bit code, and 32 double-precision register for
|
||
64-bit code. This distinction is artificial and should be
|
||
eliminated. If that ever happens, we should remove the if-clause
|
||
below. */
|
||
|
||
if (register_size (get_regcache_arch (regcache), HPPA_FP0_REGNUM) == 4)
|
||
{
|
||
for (i = HPPA_FP0_REGNUM; i < HPPA_FP0_REGNUM + 64; i++)
|
||
{
|
||
if (regnum == i || regnum == -1)
|
||
regcache_raw_supply (regcache, i, ss_fpblock + offset);
|
||
|
||
offset += 4;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
for (i = HPPA_FP0_REGNUM; i < HPPA_FP0_REGNUM + 32; i++)
|
||
{
|
||
if (regnum == i || regnum == -1)
|
||
regcache_raw_supply (regcache, i, ss_fpblock + offset);
|
||
|
||
offset += 8;
|
||
}
|
||
}
|
||
}
|
||
|
||
static void
|
||
hppa_hpux_supply_ss_wide (struct regcache *regcache,
|
||
int regnum, const char *save_state)
|
||
{
|
||
const char *ss_wide = save_state + HPPA_HPUX_SS_WIDE_OFFSET;
|
||
int i, offset = 8;
|
||
|
||
if (register_size (get_regcache_arch (regcache), HPPA_R1_REGNUM) == 4)
|
||
offset += 4;
|
||
|
||
for (i = HPPA_R1_REGNUM; i < HPPA_FP0_REGNUM; i++)
|
||
{
|
||
if (regnum == i || regnum == -1)
|
||
regcache_raw_supply (regcache, i, ss_wide + offset);
|
||
|
||
offset += 8;
|
||
}
|
||
}
|
||
|
||
static void
|
||
hppa_hpux_supply_save_state (const struct regset *regset,
|
||
struct regcache *regcache,
|
||
int regnum, const void *regs, size_t len)
|
||
{
|
||
struct gdbarch *gdbarch = get_regcache_arch (regcache);
|
||
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
||
const char *proc_info = regs;
|
||
const char *save_state = proc_info + 8;
|
||
ULONGEST flags;
|
||
|
||
flags = extract_unsigned_integer (save_state + HPPA_HPUX_SS_FLAGS_OFFSET,
|
||
4, byte_order);
|
||
if (regnum == -1 || regnum == HPPA_FLAGS_REGNUM)
|
||
{
|
||
size_t size = register_size (gdbarch, HPPA_FLAGS_REGNUM);
|
||
char buf[8];
|
||
|
||
store_unsigned_integer (buf, size, byte_order, flags);
|
||
regcache_raw_supply (regcache, HPPA_FLAGS_REGNUM, buf);
|
||
}
|
||
|
||
/* If the SS_WIDEREGS flag is set, we really do need the full
|
||
`struct save_state'. */
|
||
if (flags & HPPA_HPUX_SS_WIDEREGS && len < HPPA_HPUX_SAVE_STATE_SIZE)
|
||
error (_("Register set contents too small"));
|
||
|
||
if (flags & HPPA_HPUX_SS_WIDEREGS)
|
||
hppa_hpux_supply_ss_wide (regcache, regnum, save_state);
|
||
else
|
||
hppa_hpux_supply_ss_narrow (regcache, regnum, save_state);
|
||
|
||
hppa_hpux_supply_ss_fpblock (regcache, regnum, save_state);
|
||
}
|
||
|
||
/* HP-UX register set. */
|
||
|
||
static struct regset hppa_hpux_regset =
|
||
{
|
||
NULL,
|
||
hppa_hpux_supply_save_state
|
||
};
|
||
|
||
static const struct regset *
|
||
hppa_hpux_regset_from_core_section (struct gdbarch *gdbarch,
|
||
const char *sect_name, size_t sect_size)
|
||
{
|
||
if (strcmp (sect_name, ".reg") == 0
|
||
&& sect_size >= HPPA_HPUX_PA89_SAVE_STATE_SIZE + 8)
|
||
return &hppa_hpux_regset;
|
||
|
||
return NULL;
|
||
}
|
||
|
||
|
||
/* Bit in the `ss_flag' member of `struct save_state' that indicates
|
||
the state was saved from a system call. From
|
||
<machine/save_state.h>. */
|
||
#define HPPA_HPUX_SS_INSYSCALL 0x02
|
||
|
||
static CORE_ADDR
|
||
hppa_hpux_read_pc (struct regcache *regcache)
|
||
{
|
||
ULONGEST flags;
|
||
|
||
/* If we're currently in a system call return the contents of %r31. */
|
||
regcache_cooked_read_unsigned (regcache, HPPA_FLAGS_REGNUM, &flags);
|
||
if (flags & HPPA_HPUX_SS_INSYSCALL)
|
||
{
|
||
ULONGEST pc;
|
||
regcache_cooked_read_unsigned (regcache, HPPA_R31_REGNUM, &pc);
|
||
return pc & ~0x3;
|
||
}
|
||
|
||
return hppa_read_pc (regcache);
|
||
}
|
||
|
||
static void
|
||
hppa_hpux_write_pc (struct regcache *regcache, CORE_ADDR pc)
|
||
{
|
||
ULONGEST flags;
|
||
|
||
/* If we're currently in a system call also write PC into %r31. */
|
||
regcache_cooked_read_unsigned (regcache, HPPA_FLAGS_REGNUM, &flags);
|
||
if (flags & HPPA_HPUX_SS_INSYSCALL)
|
||
regcache_cooked_write_unsigned (regcache, HPPA_R31_REGNUM, pc | 0x3);
|
||
|
||
hppa_write_pc (regcache, pc);
|
||
}
|
||
|
||
static CORE_ADDR
|
||
hppa_hpux_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
|
||
{
|
||
ULONGEST flags;
|
||
|
||
/* If we're currently in a system call return the contents of %r31. */
|
||
flags = frame_unwind_register_unsigned (next_frame, HPPA_FLAGS_REGNUM);
|
||
if (flags & HPPA_HPUX_SS_INSYSCALL)
|
||
return frame_unwind_register_unsigned (next_frame, HPPA_R31_REGNUM) & ~0x3;
|
||
|
||
return hppa_unwind_pc (gdbarch, next_frame);
|
||
}
|
||
|
||
|
||
/* Given the current value of the pc, check to see if it is inside a stub, and
|
||
if so, change the value of the pc to point to the caller of the stub.
|
||
THIS_FRAME is the current frame in the current list of frames.
|
||
BASE contains to stack frame base of the current frame.
|
||
SAVE_REGS is the register file stored in the frame cache. */
|
||
static void
|
||
hppa_hpux_unwind_adjust_stub (struct frame_info *this_frame, CORE_ADDR base,
|
||
struct trad_frame_saved_reg *saved_regs)
|
||
{
|
||
struct gdbarch *gdbarch = get_frame_arch (this_frame);
|
||
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
||
int word_size = gdbarch_ptr_bit (gdbarch) / 8;
|
||
struct value *pcoq_head_val;
|
||
ULONGEST pcoq_head;
|
||
CORE_ADDR stubpc;
|
||
struct unwind_table_entry *u;
|
||
|
||
pcoq_head_val = trad_frame_get_prev_register (this_frame, saved_regs,
|
||
HPPA_PCOQ_HEAD_REGNUM);
|
||
pcoq_head =
|
||
extract_unsigned_integer (value_contents_all (pcoq_head_val),
|
||
register_size (gdbarch, HPPA_PCOQ_HEAD_REGNUM),
|
||
byte_order);
|
||
|
||
u = find_unwind_entry (pcoq_head);
|
||
if (u && u->stub_unwind.stub_type == EXPORT)
|
||
{
|
||
stubpc = read_memory_integer (base - 24, word_size, byte_order);
|
||
trad_frame_set_value (saved_regs, HPPA_PCOQ_HEAD_REGNUM, stubpc);
|
||
}
|
||
else if (hppa_symbol_address ("__gcc_plt_call")
|
||
== get_pc_function_start (pcoq_head))
|
||
{
|
||
stubpc = read_memory_integer (base - 8, word_size, byte_order);
|
||
trad_frame_set_value (saved_regs, HPPA_PCOQ_HEAD_REGNUM, stubpc);
|
||
}
|
||
}
|
||
|
||
static void
|
||
hppa_hpux_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
|
||
{
|
||
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
||
|
||
if (IS_32BIT_TARGET (gdbarch))
|
||
tdep->in_solib_call_trampoline = hppa32_hpux_in_solib_call_trampoline;
|
||
else
|
||
tdep->in_solib_call_trampoline = hppa64_hpux_in_solib_call_trampoline;
|
||
|
||
tdep->unwind_adjust_stub = hppa_hpux_unwind_adjust_stub;
|
||
|
||
set_gdbarch_in_solib_return_trampoline
|
||
(gdbarch, hppa_hpux_in_solib_return_trampoline);
|
||
set_gdbarch_skip_trampoline_code (gdbarch, hppa_hpux_skip_trampoline_code);
|
||
|
||
set_gdbarch_push_dummy_code (gdbarch, hppa_hpux_push_dummy_code);
|
||
set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
|
||
|
||
set_gdbarch_read_pc (gdbarch, hppa_hpux_read_pc);
|
||
set_gdbarch_write_pc (gdbarch, hppa_hpux_write_pc);
|
||
set_gdbarch_unwind_pc (gdbarch, hppa_hpux_unwind_pc);
|
||
set_gdbarch_skip_permanent_breakpoint
|
||
(gdbarch, hppa_skip_permanent_breakpoint);
|
||
|
||
set_gdbarch_regset_from_core_section
|
||
(gdbarch, hppa_hpux_regset_from_core_section);
|
||
|
||
frame_unwind_append_unwinder (gdbarch, &hppa_hpux_sigtramp_frame_unwind);
|
||
}
|
||
|
||
static void
|
||
hppa_hpux_som_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
|
||
{
|
||
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
||
|
||
tdep->is_elf = 0;
|
||
|
||
tdep->find_global_pointer = hppa32_hpux_find_global_pointer;
|
||
|
||
hppa_hpux_init_abi (info, gdbarch);
|
||
som_solib_select (gdbarch);
|
||
}
|
||
|
||
static void
|
||
hppa_hpux_elf_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
|
||
{
|
||
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
||
|
||
tdep->is_elf = 1;
|
||
tdep->find_global_pointer = hppa64_hpux_find_global_pointer;
|
||
|
||
hppa_hpux_init_abi (info, gdbarch);
|
||
pa64_solib_select (gdbarch);
|
||
}
|
||
|
||
static enum gdb_osabi
|
||
hppa_hpux_core_osabi_sniffer (bfd *abfd)
|
||
{
|
||
if (strcmp (bfd_get_target (abfd), "hpux-core") == 0)
|
||
return GDB_OSABI_HPUX_SOM;
|
||
else if (strcmp (bfd_get_target (abfd), "elf64-hppa") == 0)
|
||
{
|
||
asection *section;
|
||
|
||
section = bfd_get_section_by_name (abfd, ".kernel");
|
||
if (section)
|
||
{
|
||
bfd_size_type size;
|
||
char *contents;
|
||
|
||
size = bfd_section_size (abfd, section);
|
||
contents = alloca (size);
|
||
if (bfd_get_section_contents (abfd, section, contents,
|
||
(file_ptr) 0, size)
|
||
&& strcmp (contents, "HP-UX") == 0)
|
||
return GDB_OSABI_HPUX_ELF;
|
||
}
|
||
}
|
||
|
||
return GDB_OSABI_UNKNOWN;
|
||
}
|
||
|
||
void
|
||
_initialize_hppa_hpux_tdep (void)
|
||
{
|
||
/* BFD doesn't set a flavour for HP-UX style core files. It doesn't
|
||
set the architecture either. */
|
||
gdbarch_register_osabi_sniffer (bfd_arch_unknown,
|
||
bfd_target_unknown_flavour,
|
||
hppa_hpux_core_osabi_sniffer);
|
||
gdbarch_register_osabi_sniffer (bfd_arch_hppa,
|
||
bfd_target_elf_flavour,
|
||
hppa_hpux_core_osabi_sniffer);
|
||
|
||
gdbarch_register_osabi (bfd_arch_hppa, 0, GDB_OSABI_HPUX_SOM,
|
||
hppa_hpux_som_init_abi);
|
||
gdbarch_register_osabi (bfd_arch_hppa, bfd_mach_hppa20w, GDB_OSABI_HPUX_ELF,
|
||
hppa_hpux_elf_init_abi);
|
||
}
|