217 lines
6.1 KiB
C
217 lines
6.1 KiB
C
/* fr30 exception, interrupt, and trap (EIT) support
|
||
Copyright (C) 1998, 1999 Free Software Foundation, Inc.
|
||
Contributed by Cygnus Solutions.
|
||
|
||
This file is part of the GNU simulators.
|
||
|
||
This program is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 2, or (at your option)
|
||
any later version.
|
||
|
||
This program is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License along
|
||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||
59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
|
||
|
||
#include "sim-main.h"
|
||
#include "targ-vals.h"
|
||
#include "cgen-engine.h"
|
||
|
||
/* The semantic code invokes this for invalid (unrecognized) instructions. */
|
||
|
||
void
|
||
sim_engine_invalid_insn (SIM_CPU *current_cpu, IADDR cia)
|
||
{
|
||
SIM_DESC sd = CPU_STATE (current_cpu);
|
||
|
||
#if 0
|
||
if (STATE_ENVIRONMENT (sd) == OPERATING_ENVIRONMENT)
|
||
{
|
||
h_bsm_set (current_cpu, h_sm_get (current_cpu));
|
||
h_bie_set (current_cpu, h_ie_get (current_cpu));
|
||
h_bcond_set (current_cpu, h_cond_get (current_cpu));
|
||
/* sm not changed */
|
||
h_ie_set (current_cpu, 0);
|
||
h_cond_set (current_cpu, 0);
|
||
|
||
h_bpc_set (current_cpu, cia);
|
||
|
||
sim_engine_restart (CPU_STATE (current_cpu), current_cpu, NULL,
|
||
EIT_RSVD_INSN_ADDR);
|
||
}
|
||
else
|
||
#endif
|
||
sim_engine_halt (sd, current_cpu, NULL, cia, sim_stopped, SIM_SIGILL);
|
||
}
|
||
|
||
/* Process an address exception. */
|
||
|
||
void
|
||
fr30_core_signal (SIM_DESC sd, SIM_CPU *current_cpu, sim_cia cia,
|
||
unsigned int map, int nr_bytes, address_word addr,
|
||
transfer_type transfer, sim_core_signals sig)
|
||
{
|
||
#if 0
|
||
if (STATE_ENVIRONMENT (sd) == OPERATING_ENVIRONMENT)
|
||
{
|
||
h_bsm_set (current_cpu, h_sm_get (current_cpu));
|
||
h_bie_set (current_cpu, h_ie_get (current_cpu));
|
||
h_bcond_set (current_cpu, h_cond_get (current_cpu));
|
||
/* sm not changed */
|
||
h_ie_set (current_cpu, 0);
|
||
h_cond_set (current_cpu, 0);
|
||
|
||
h_bpc_set (current_cpu, cia);
|
||
|
||
sim_engine_restart (CPU_STATE (current_cpu), current_cpu, NULL,
|
||
EIT_ADDR_EXCP_ADDR);
|
||
}
|
||
else
|
||
#endif
|
||
sim_core_signal (sd, current_cpu, cia, map, nr_bytes, addr,
|
||
transfer, sig);
|
||
}
|
||
|
||
/* Read/write functions for system call interface. */
|
||
|
||
static int
|
||
syscall_read_mem (host_callback *cb, struct cb_syscall *sc,
|
||
unsigned long taddr, char *buf, int bytes)
|
||
{
|
||
SIM_DESC sd = (SIM_DESC) sc->p1;
|
||
SIM_CPU *cpu = (SIM_CPU *) sc->p2;
|
||
|
||
return sim_core_read_buffer (sd, cpu, read_map, buf, taddr, bytes);
|
||
}
|
||
|
||
static int
|
||
syscall_write_mem (host_callback *cb, struct cb_syscall *sc,
|
||
unsigned long taddr, const char *buf, int bytes)
|
||
{
|
||
SIM_DESC sd = (SIM_DESC) sc->p1;
|
||
SIM_CPU *cpu = (SIM_CPU *) sc->p2;
|
||
|
||
return sim_core_write_buffer (sd, cpu, write_map, buf, taddr, bytes);
|
||
}
|
||
|
||
/* Subroutine of fr30_int to save the PS and PC and setup for INT and INTE. */
|
||
|
||
static void
|
||
setup_int (SIM_CPU *current_cpu, PCADDR pc)
|
||
{
|
||
USI ssp = a_fr30_h_dr_get (current_cpu, H_DR_SSP);
|
||
USI ps = a_fr30_h_ps_get (current_cpu);
|
||
|
||
ssp -= 4;
|
||
SETMEMSI (current_cpu, pc, ssp, ps);
|
||
ssp -= 4;
|
||
SETMEMSI (current_cpu, pc, ssp, pc + 2);
|
||
a_fr30_h_dr_set (current_cpu, H_DR_SSP, ssp);
|
||
a_fr30_h_sbit_set (current_cpu, 0);
|
||
}
|
||
|
||
/* Trap support.
|
||
The result is the pc address to continue at.
|
||
Preprocessing like saving the various registers has already been done. */
|
||
|
||
USI
|
||
fr30_int (SIM_CPU *current_cpu, PCADDR pc, int num)
|
||
{
|
||
SIM_DESC sd = CPU_STATE (current_cpu);
|
||
host_callback *cb = STATE_CALLBACK (sd);
|
||
|
||
#ifdef SIM_HAVE_BREAKPOINTS
|
||
/* Check for breakpoints "owned" by the simulator first, regardless
|
||
of --environment. */
|
||
if (num == TRAP_BREAKPOINT)
|
||
{
|
||
/* First try sim-break.c. If it's a breakpoint the simulator "owns"
|
||
it doesn't return. Otherwise it returns and let's us try. */
|
||
sim_handle_breakpoint (sd, current_cpu, pc);
|
||
/* Fall through. */
|
||
}
|
||
#endif
|
||
|
||
if (STATE_ENVIRONMENT (sd) == OPERATING_ENVIRONMENT)
|
||
{
|
||
/* The new pc is the trap vector entry.
|
||
We assume there's a branch there to some handler. */
|
||
USI new_pc;
|
||
setup_int (current_cpu, pc);
|
||
a_fr30_h_ibit_set (current_cpu, 0);
|
||
new_pc = GETMEMSI (current_cpu, pc,
|
||
a_fr30_h_dr_get (current_cpu, H_DR_TBR)
|
||
+ 1024 - ((num + 1) * 4));
|
||
return new_pc;
|
||
}
|
||
|
||
switch (num)
|
||
{
|
||
case TRAP_SYSCALL :
|
||
{
|
||
/* TODO: find out what the ABI for this is */
|
||
CB_SYSCALL s;
|
||
|
||
CB_SYSCALL_INIT (&s);
|
||
s.func = a_fr30_h_gr_get (current_cpu, 0);
|
||
s.arg1 = a_fr30_h_gr_get (current_cpu, 4);
|
||
s.arg2 = a_fr30_h_gr_get (current_cpu, 5);
|
||
s.arg3 = a_fr30_h_gr_get (current_cpu, 6);
|
||
|
||
if (s.func == TARGET_SYS_exit)
|
||
{
|
||
sim_engine_halt (sd, current_cpu, NULL, pc, sim_exited, s.arg1);
|
||
}
|
||
|
||
s.p1 = (PTR) sd;
|
||
s.p2 = (PTR) current_cpu;
|
||
s.read_mem = syscall_read_mem;
|
||
s.write_mem = syscall_write_mem;
|
||
cb_syscall (cb, &s);
|
||
a_fr30_h_gr_set (current_cpu, 2, s.errcode); /* TODO: check this one */
|
||
a_fr30_h_gr_set (current_cpu, 4, s.result);
|
||
a_fr30_h_gr_set (current_cpu, 1, s.result2); /* TODO: check this one */
|
||
break;
|
||
}
|
||
|
||
case TRAP_BREAKPOINT:
|
||
sim_engine_halt (sd, current_cpu, NULL, pc,
|
||
sim_stopped, SIM_SIGTRAP);
|
||
break;
|
||
|
||
default :
|
||
{
|
||
USI new_pc;
|
||
setup_int (current_cpu, pc);
|
||
a_fr30_h_ibit_set (current_cpu, 0);
|
||
new_pc = GETMEMSI (current_cpu, pc,
|
||
a_fr30_h_dr_get (current_cpu, H_DR_TBR)
|
||
+ 1024 - ((num + 1) * 4));
|
||
return new_pc;
|
||
}
|
||
}
|
||
|
||
/* Fake an "reti" insn.
|
||
Since we didn't push anything to stack, all we need to do is
|
||
update pc. */
|
||
return pc + 2;
|
||
}
|
||
|
||
USI
|
||
fr30_inte (SIM_CPU *current_cpu, PCADDR pc, int num)
|
||
{
|
||
/* The new pc is the trap #9 vector entry.
|
||
We assume there's a branch there to some handler. */
|
||
USI new_pc;
|
||
setup_int (current_cpu, pc);
|
||
a_fr30_h_ilm_set (current_cpu, 4);
|
||
new_pc = GETMEMSI (current_cpu, pc,
|
||
a_fr30_h_dr_get (current_cpu, H_DR_TBR)
|
||
+ 1024 - ((9 + 1) * 4));
|
||
return new_pc;
|
||
}
|