4fbb74a605
PR 5900 * common.h (SHN_BAD): Delete. (SHN_LORESERVE .. SHN_HIRESERVE): Move to.. * external.h: ..here. * internal.h (SHN_LORESERVE, SHN_HIRESERVE): Define. (SHN_LOPROC, SHN_HIPROC, SHN_LOOS, SHN_HIOS): Define. (SHN_ABS, SHN_COMMON, SHN_XINDEX, SHN_BAD): Define. bfd/ PR 5900 * elf-bfd.h: Include elf/internal.h after elf/external.h. * elfcode.h (elf_swap_symbol_in): Map reserved shndx range. (elf_swap_symbol_out): Adjust SHN_XINDEX test. (elf_swap_ehdr_out): Mask SHN_LORESERVE and SHN_XINDEX to values seen in external structs. (valid_section_index_p): Delete. (elf_object_p): Don't increment section numbers over reserved range. Simplify test for valid sh_link, sh_info and e_shstrndx fields. (elf_write_shdrs_and_ehdr): Mask SHN_LORESERVE and SHN_XINDEX to values seen in external structs. Don't increment section numbers over reserved range. * elf.c (bfd_elf_sym_name): Remove redundant tests on st_shndx. (bfd_section_from_shdr): Likewise. (group_signature): Range check before accessing elf_elfsections. (_bfd_elf_setup_sections): Likewise. (bfd_section_from_shdr): Likewise. (bfd_section_from_shdr): Don't increment section number over reserved sections. (assign_file_positions_for_non_load_sections): Likewise. (assign_file_positions_except_relocs): Likewise. (_bfd_elf_write_object_contents): Likewise. (assign_section_numbers): Likewise. Adjust for changed SHN_*. (prep_headers): Delete unused variable. * elflink.c (bfd_elf_link_record_local_dynamic_symbol): Adjust for changed SHN_* values. (check_dynsym, elf_link_input_bfd): Likewise. (bfd_elf_final_link): Likewise. Don't skip over reserved section range. (elf_fixup_link_order): Check that sh_link field is valid. * elf-hppa.h (elf_hppa_add_symbol_hook): Make "index" unsigned. * elf32-arm.c (elf32_arm_gc_mark_extra_sections): Range check before accesssing elf_elfsections. * elf32-avr.c (elf32_avr_size_stubs): Likewise. * elf32-hppa.c (elf32_hppa_size_stubs): Likewise. * elf32-m68hc1x.c (elf32_m68hc11_size_stubs): Likewise. * elf64-hppa.c (elf64_hppa_check_relocs): Adjust for changed SHN_* defines. Test for SHN_BAD return from _bfd_elf_section_from_bfd_section binutils/ PR 5900 * readelf.c (SECTION_HEADER_INDEX, SECTION_HEADER_NUM): Delete. Remove use throughout file. (SECTION_HEADER): Likewise. (dump_relocations): Don't adjust st_shndx for reserved range. (process_file_header): Mask SHN_XINDEX to values seen in external elf structs. Simplify valid section index tests. (get_32bit_elf_symbols, get_64bit_elf_symbols): Mask SHN_XINDEX. Map reserved st_shndx to internal form. (process_section_groups): Test that group symbol st_shndx is in range, not just non-zero. Delete reserved range check. (get_symbol_index_type): Mask "type" to 16 bits when printing PRC, OS or RSV. gdb/ PR 5900 * elfread.c (elf_symtab_read): Make shndx an unsigned int. * mipsread.c: Include elf/internal.h. (read_alphacoff_dynamic_symtab): Map external reserved sym_shndx to internal range. ld/testsuite/ PR 5900 * ld-elf/sec64k.exp: Update.
1340 lines
41 KiB
C
1340 lines
41 KiB
C
/* Motorola 68HC11/HC12-specific support for 32-bit ELF
|
||
Copyright 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
|
||
Free Software Foundation, Inc.
|
||
Contributed by Stephane Carrez (stcarrez@nerim.fr)
|
||
|
||
This file is part of BFD, the Binary File Descriptor library.
|
||
|
||
This program is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 3 of the License, or
|
||
(at your option) any later version.
|
||
|
||
This program is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with this program; if not, write to the Free Software
|
||
Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
|
||
MA 02110-1301, USA. */
|
||
|
||
#include "sysdep.h"
|
||
#include "bfd.h"
|
||
#include "bfdlink.h"
|
||
#include "libbfd.h"
|
||
#include "elf-bfd.h"
|
||
#include "elf32-m68hc1x.h"
|
||
#include "elf/m68hc11.h"
|
||
#include "opcode/m68hc11.h"
|
||
|
||
|
||
#define m68hc12_stub_hash_lookup(table, string, create, copy) \
|
||
((struct elf32_m68hc11_stub_hash_entry *) \
|
||
bfd_hash_lookup ((table), (string), (create), (copy)))
|
||
|
||
static struct elf32_m68hc11_stub_hash_entry* m68hc12_add_stub
|
||
(const char *stub_name,
|
||
asection *section,
|
||
struct m68hc11_elf_link_hash_table *htab);
|
||
|
||
static struct bfd_hash_entry *stub_hash_newfunc
|
||
(struct bfd_hash_entry *, struct bfd_hash_table *, const char *);
|
||
|
||
static void m68hc11_elf_set_symbol (bfd* abfd, struct bfd_link_info *info,
|
||
const char* name, bfd_vma value,
|
||
asection* sec);
|
||
|
||
static bfd_boolean m68hc11_elf_export_one_stub
|
||
(struct bfd_hash_entry *gen_entry, void *in_arg);
|
||
|
||
static void scan_sections_for_abi (bfd*, asection*, PTR);
|
||
|
||
struct m68hc11_scan_param
|
||
{
|
||
struct m68hc11_page_info* pinfo;
|
||
bfd_boolean use_memory_banks;
|
||
};
|
||
|
||
|
||
/* Create a 68HC11/68HC12 ELF linker hash table. */
|
||
|
||
struct m68hc11_elf_link_hash_table*
|
||
m68hc11_elf_hash_table_create (bfd *abfd)
|
||
{
|
||
struct m68hc11_elf_link_hash_table *ret;
|
||
bfd_size_type amt = sizeof (struct m68hc11_elf_link_hash_table);
|
||
|
||
ret = (struct m68hc11_elf_link_hash_table *) bfd_malloc (amt);
|
||
if (ret == (struct m68hc11_elf_link_hash_table *) NULL)
|
||
return NULL;
|
||
|
||
memset (ret, 0, amt);
|
||
if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
|
||
_bfd_elf_link_hash_newfunc,
|
||
sizeof (struct elf_link_hash_entry)))
|
||
{
|
||
free (ret);
|
||
return NULL;
|
||
}
|
||
|
||
/* Init the stub hash table too. */
|
||
amt = sizeof (struct bfd_hash_table);
|
||
ret->stub_hash_table = (struct bfd_hash_table*) bfd_malloc (amt);
|
||
if (ret->stub_hash_table == NULL)
|
||
{
|
||
free (ret);
|
||
return NULL;
|
||
}
|
||
if (!bfd_hash_table_init (ret->stub_hash_table, stub_hash_newfunc,
|
||
sizeof (struct elf32_m68hc11_stub_hash_entry)))
|
||
return NULL;
|
||
|
||
ret->stub_bfd = NULL;
|
||
ret->stub_section = 0;
|
||
ret->add_stub_section = NULL;
|
||
ret->sym_sec.abfd = NULL;
|
||
|
||
return ret;
|
||
}
|
||
|
||
/* Free the derived linker hash table. */
|
||
|
||
void
|
||
m68hc11_elf_bfd_link_hash_table_free (struct bfd_link_hash_table *hash)
|
||
{
|
||
struct m68hc11_elf_link_hash_table *ret
|
||
= (struct m68hc11_elf_link_hash_table *) hash;
|
||
|
||
bfd_hash_table_free (ret->stub_hash_table);
|
||
free (ret->stub_hash_table);
|
||
_bfd_generic_link_hash_table_free (hash);
|
||
}
|
||
|
||
/* Assorted hash table functions. */
|
||
|
||
/* Initialize an entry in the stub hash table. */
|
||
|
||
static struct bfd_hash_entry *
|
||
stub_hash_newfunc (struct bfd_hash_entry *entry, struct bfd_hash_table *table,
|
||
const char *string)
|
||
{
|
||
/* Allocate the structure if it has not already been allocated by a
|
||
subclass. */
|
||
if (entry == NULL)
|
||
{
|
||
entry = bfd_hash_allocate (table,
|
||
sizeof (struct elf32_m68hc11_stub_hash_entry));
|
||
if (entry == NULL)
|
||
return entry;
|
||
}
|
||
|
||
/* Call the allocation method of the superclass. */
|
||
entry = bfd_hash_newfunc (entry, table, string);
|
||
if (entry != NULL)
|
||
{
|
||
struct elf32_m68hc11_stub_hash_entry *eh;
|
||
|
||
/* Initialize the local fields. */
|
||
eh = (struct elf32_m68hc11_stub_hash_entry *) entry;
|
||
eh->stub_sec = NULL;
|
||
eh->stub_offset = 0;
|
||
eh->target_value = 0;
|
||
eh->target_section = NULL;
|
||
}
|
||
|
||
return entry;
|
||
}
|
||
|
||
/* Add a new stub entry to the stub hash. Not all fields of the new
|
||
stub entry are initialised. */
|
||
|
||
static struct elf32_m68hc11_stub_hash_entry *
|
||
m68hc12_add_stub (const char *stub_name, asection *section,
|
||
struct m68hc11_elf_link_hash_table *htab)
|
||
{
|
||
struct elf32_m68hc11_stub_hash_entry *stub_entry;
|
||
|
||
/* Enter this entry into the linker stub hash table. */
|
||
stub_entry = m68hc12_stub_hash_lookup (htab->stub_hash_table, stub_name,
|
||
TRUE, FALSE);
|
||
if (stub_entry == NULL)
|
||
{
|
||
(*_bfd_error_handler) (_("%B: cannot create stub entry %s"),
|
||
section->owner, stub_name);
|
||
return NULL;
|
||
}
|
||
|
||
if (htab->stub_section == 0)
|
||
{
|
||
htab->stub_section = (*htab->add_stub_section) (".tramp",
|
||
htab->tramp_section);
|
||
}
|
||
|
||
stub_entry->stub_sec = htab->stub_section;
|
||
stub_entry->stub_offset = 0;
|
||
return stub_entry;
|
||
}
|
||
|
||
/* Hook called by the linker routine which adds symbols from an object
|
||
file. We use it for identify far symbols and force a loading of
|
||
the trampoline handler. */
|
||
|
||
bfd_boolean
|
||
elf32_m68hc11_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
|
||
Elf_Internal_Sym *sym,
|
||
const char **namep ATTRIBUTE_UNUSED,
|
||
flagword *flagsp ATTRIBUTE_UNUSED,
|
||
asection **secp ATTRIBUTE_UNUSED,
|
||
bfd_vma *valp ATTRIBUTE_UNUSED)
|
||
{
|
||
if (sym->st_other & STO_M68HC12_FAR)
|
||
{
|
||
struct elf_link_hash_entry *h;
|
||
|
||
h = (struct elf_link_hash_entry *)
|
||
bfd_link_hash_lookup (info->hash, "__far_trampoline",
|
||
FALSE, FALSE, FALSE);
|
||
if (h == NULL)
|
||
{
|
||
struct bfd_link_hash_entry* entry = NULL;
|
||
|
||
_bfd_generic_link_add_one_symbol (info, abfd,
|
||
"__far_trampoline",
|
||
BSF_GLOBAL,
|
||
bfd_und_section_ptr,
|
||
(bfd_vma) 0, (const char*) NULL,
|
||
FALSE, FALSE, &entry);
|
||
}
|
||
|
||
}
|
||
return TRUE;
|
||
}
|
||
|
||
/* External entry points for sizing and building linker stubs. */
|
||
|
||
/* Set up various things so that we can make a list of input sections
|
||
for each output section included in the link. Returns -1 on error,
|
||
0 when no stubs will be needed, and 1 on success. */
|
||
|
||
int
|
||
elf32_m68hc11_setup_section_lists (bfd *output_bfd, struct bfd_link_info *info)
|
||
{
|
||
bfd *input_bfd;
|
||
unsigned int bfd_count;
|
||
int top_id, top_index;
|
||
asection *section;
|
||
asection **input_list, **list;
|
||
bfd_size_type amt;
|
||
asection *text_section;
|
||
struct m68hc11_elf_link_hash_table *htab;
|
||
|
||
htab = m68hc11_elf_hash_table (info);
|
||
|
||
if (bfd_get_flavour (info->output_bfd) != bfd_target_elf_flavour)
|
||
return 0;
|
||
|
||
/* Count the number of input BFDs and find the top input section id.
|
||
Also search for an existing ".tramp" section so that we know
|
||
where generated trampolines must go. Default to ".text" if we
|
||
can't find it. */
|
||
htab->tramp_section = 0;
|
||
text_section = 0;
|
||
for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
|
||
input_bfd != NULL;
|
||
input_bfd = input_bfd->link_next)
|
||
{
|
||
bfd_count += 1;
|
||
for (section = input_bfd->sections;
|
||
section != NULL;
|
||
section = section->next)
|
||
{
|
||
const char* name = bfd_get_section_name (input_bfd, section);
|
||
|
||
if (!strcmp (name, ".tramp"))
|
||
htab->tramp_section = section;
|
||
|
||
if (!strcmp (name, ".text"))
|
||
text_section = section;
|
||
|
||
if (top_id < section->id)
|
||
top_id = section->id;
|
||
}
|
||
}
|
||
htab->bfd_count = bfd_count;
|
||
if (htab->tramp_section == 0)
|
||
htab->tramp_section = text_section;
|
||
|
||
/* We can't use output_bfd->section_count here to find the top output
|
||
section index as some sections may have been removed, and
|
||
strip_excluded_output_sections doesn't renumber the indices. */
|
||
for (section = output_bfd->sections, top_index = 0;
|
||
section != NULL;
|
||
section = section->next)
|
||
{
|
||
if (top_index < section->index)
|
||
top_index = section->index;
|
||
}
|
||
|
||
htab->top_index = top_index;
|
||
amt = sizeof (asection *) * (top_index + 1);
|
||
input_list = (asection **) bfd_malloc (amt);
|
||
htab->input_list = input_list;
|
||
if (input_list == NULL)
|
||
return -1;
|
||
|
||
/* For sections we aren't interested in, mark their entries with a
|
||
value we can check later. */
|
||
list = input_list + top_index;
|
||
do
|
||
*list = bfd_abs_section_ptr;
|
||
while (list-- != input_list);
|
||
|
||
for (section = output_bfd->sections;
|
||
section != NULL;
|
||
section = section->next)
|
||
{
|
||
if ((section->flags & SEC_CODE) != 0)
|
||
input_list[section->index] = NULL;
|
||
}
|
||
|
||
return 1;
|
||
}
|
||
|
||
/* Determine and set the size of the stub section for a final link.
|
||
|
||
The basic idea here is to examine all the relocations looking for
|
||
PC-relative calls to a target that is unreachable with a "bl"
|
||
instruction. */
|
||
|
||
bfd_boolean
|
||
elf32_m68hc11_size_stubs (bfd *output_bfd, bfd *stub_bfd,
|
||
struct bfd_link_info *info,
|
||
asection * (*add_stub_section) (const char*, asection*))
|
||
{
|
||
bfd *input_bfd;
|
||
asection *section;
|
||
Elf_Internal_Sym *local_syms, **all_local_syms;
|
||
unsigned int bfd_indx, bfd_count;
|
||
bfd_size_type amt;
|
||
asection *stub_sec;
|
||
|
||
struct m68hc11_elf_link_hash_table *htab = m68hc11_elf_hash_table (info);
|
||
|
||
/* Stash our params away. */
|
||
htab->stub_bfd = stub_bfd;
|
||
htab->add_stub_section = add_stub_section;
|
||
|
||
/* Count the number of input BFDs and find the top input section id. */
|
||
for (input_bfd = info->input_bfds, bfd_count = 0;
|
||
input_bfd != NULL;
|
||
input_bfd = input_bfd->link_next)
|
||
{
|
||
bfd_count += 1;
|
||
}
|
||
|
||
/* We want to read in symbol extension records only once. To do this
|
||
we need to read in the local symbols in parallel and save them for
|
||
later use; so hold pointers to the local symbols in an array. */
|
||
amt = sizeof (Elf_Internal_Sym *) * bfd_count;
|
||
all_local_syms = (Elf_Internal_Sym **) bfd_zmalloc (amt);
|
||
if (all_local_syms == NULL)
|
||
return FALSE;
|
||
|
||
/* Walk over all the input BFDs, swapping in local symbols. */
|
||
for (input_bfd = info->input_bfds, bfd_indx = 0;
|
||
input_bfd != NULL;
|
||
input_bfd = input_bfd->link_next, bfd_indx++)
|
||
{
|
||
Elf_Internal_Shdr *symtab_hdr;
|
||
|
||
/* We'll need the symbol table in a second. */
|
||
symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
|
||
if (symtab_hdr->sh_info == 0)
|
||
continue;
|
||
|
||
/* We need an array of the local symbols attached to the input bfd. */
|
||
local_syms = (Elf_Internal_Sym *) symtab_hdr->contents;
|
||
if (local_syms == NULL)
|
||
{
|
||
local_syms = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
|
||
symtab_hdr->sh_info, 0,
|
||
NULL, NULL, NULL);
|
||
/* Cache them for elf_link_input_bfd. */
|
||
symtab_hdr->contents = (unsigned char *) local_syms;
|
||
}
|
||
if (local_syms == NULL)
|
||
{
|
||
free (all_local_syms);
|
||
return FALSE;
|
||
}
|
||
|
||
all_local_syms[bfd_indx] = local_syms;
|
||
}
|
||
|
||
for (input_bfd = info->input_bfds, bfd_indx = 0;
|
||
input_bfd != NULL;
|
||
input_bfd = input_bfd->link_next, bfd_indx++)
|
||
{
|
||
Elf_Internal_Shdr *symtab_hdr;
|
||
Elf_Internal_Sym *local_syms;
|
||
struct elf_link_hash_entry ** sym_hashes;
|
||
|
||
sym_hashes = elf_sym_hashes (input_bfd);
|
||
|
||
/* We'll need the symbol table in a second. */
|
||
symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
|
||
if (symtab_hdr->sh_info == 0)
|
||
continue;
|
||
|
||
local_syms = all_local_syms[bfd_indx];
|
||
|
||
/* Walk over each section attached to the input bfd. */
|
||
for (section = input_bfd->sections;
|
||
section != NULL;
|
||
section = section->next)
|
||
{
|
||
Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
|
||
|
||
/* If there aren't any relocs, then there's nothing more
|
||
to do. */
|
||
if ((section->flags & SEC_RELOC) == 0
|
||
|| section->reloc_count == 0)
|
||
continue;
|
||
|
||
/* If this section is a link-once section that will be
|
||
discarded, then don't create any stubs. */
|
||
if (section->output_section == NULL
|
||
|| section->output_section->owner != output_bfd)
|
||
continue;
|
||
|
||
/* Get the relocs. */
|
||
internal_relocs
|
||
= _bfd_elf_link_read_relocs (input_bfd, section, NULL,
|
||
(Elf_Internal_Rela *) NULL,
|
||
info->keep_memory);
|
||
if (internal_relocs == NULL)
|
||
goto error_ret_free_local;
|
||
|
||
/* Now examine each relocation. */
|
||
irela = internal_relocs;
|
||
irelaend = irela + section->reloc_count;
|
||
for (; irela < irelaend; irela++)
|
||
{
|
||
unsigned int r_type, r_indx;
|
||
struct elf32_m68hc11_stub_hash_entry *stub_entry;
|
||
asection *sym_sec;
|
||
bfd_vma sym_value;
|
||
struct elf_link_hash_entry *hash;
|
||
const char *stub_name;
|
||
Elf_Internal_Sym *sym;
|
||
|
||
r_type = ELF32_R_TYPE (irela->r_info);
|
||
|
||
/* Only look at 16-bit relocs. */
|
||
if (r_type != (unsigned int) R_M68HC11_16)
|
||
continue;
|
||
|
||
/* Now determine the call target, its name, value,
|
||
section. */
|
||
r_indx = ELF32_R_SYM (irela->r_info);
|
||
if (r_indx < symtab_hdr->sh_info)
|
||
{
|
||
/* It's a local symbol. */
|
||
Elf_Internal_Shdr *hdr;
|
||
bfd_boolean is_far;
|
||
|
||
sym = local_syms + r_indx;
|
||
is_far = (sym && (sym->st_other & STO_M68HC12_FAR));
|
||
if (!is_far)
|
||
continue;
|
||
|
||
if (sym->st_shndx >= elf_numsections (input_bfd))
|
||
sym_sec = NULL;
|
||
else
|
||
{
|
||
hdr = elf_elfsections (input_bfd)[sym->st_shndx];
|
||
sym_sec = hdr->bfd_section;
|
||
}
|
||
stub_name = (bfd_elf_string_from_elf_section
|
||
(input_bfd, symtab_hdr->sh_link,
|
||
sym->st_name));
|
||
sym_value = sym->st_value;
|
||
hash = NULL;
|
||
}
|
||
else
|
||
{
|
||
/* It's an external symbol. */
|
||
int e_indx;
|
||
|
||
e_indx = r_indx - symtab_hdr->sh_info;
|
||
hash = (struct elf_link_hash_entry *)
|
||
(sym_hashes[e_indx]);
|
||
|
||
while (hash->root.type == bfd_link_hash_indirect
|
||
|| hash->root.type == bfd_link_hash_warning)
|
||
hash = ((struct elf_link_hash_entry *)
|
||
hash->root.u.i.link);
|
||
|
||
if (hash->root.type == bfd_link_hash_defined
|
||
|| hash->root.type == bfd_link_hash_defweak
|
||
|| hash->root.type == bfd_link_hash_new)
|
||
{
|
||
if (!(hash->other & STO_M68HC12_FAR))
|
||
continue;
|
||
}
|
||
else if (hash->root.type == bfd_link_hash_undefweak)
|
||
{
|
||
continue;
|
||
}
|
||
else if (hash->root.type == bfd_link_hash_undefined)
|
||
{
|
||
continue;
|
||
}
|
||
else
|
||
{
|
||
bfd_set_error (bfd_error_bad_value);
|
||
goto error_ret_free_internal;
|
||
}
|
||
sym_sec = hash->root.u.def.section;
|
||
sym_value = hash->root.u.def.value;
|
||
stub_name = hash->root.root.string;
|
||
}
|
||
|
||
if (!stub_name)
|
||
goto error_ret_free_internal;
|
||
|
||
stub_entry = m68hc12_stub_hash_lookup
|
||
(htab->stub_hash_table,
|
||
stub_name,
|
||
FALSE, FALSE);
|
||
if (stub_entry == NULL)
|
||
{
|
||
if (add_stub_section == 0)
|
||
continue;
|
||
|
||
stub_entry = m68hc12_add_stub (stub_name, section, htab);
|
||
if (stub_entry == NULL)
|
||
{
|
||
error_ret_free_internal:
|
||
if (elf_section_data (section)->relocs == NULL)
|
||
free (internal_relocs);
|
||
goto error_ret_free_local;
|
||
}
|
||
}
|
||
|
||
stub_entry->target_value = sym_value;
|
||
stub_entry->target_section = sym_sec;
|
||
}
|
||
|
||
/* We're done with the internal relocs, free them. */
|
||
if (elf_section_data (section)->relocs == NULL)
|
||
free (internal_relocs);
|
||
}
|
||
}
|
||
|
||
if (add_stub_section)
|
||
{
|
||
/* OK, we've added some stubs. Find out the new size of the
|
||
stub sections. */
|
||
for (stub_sec = htab->stub_bfd->sections;
|
||
stub_sec != NULL;
|
||
stub_sec = stub_sec->next)
|
||
{
|
||
stub_sec->size = 0;
|
||
}
|
||
|
||
bfd_hash_traverse (htab->stub_hash_table, htab->size_one_stub, htab);
|
||
}
|
||
free (all_local_syms);
|
||
return TRUE;
|
||
|
||
error_ret_free_local:
|
||
free (all_local_syms);
|
||
return FALSE;
|
||
}
|
||
|
||
/* Export the trampoline addresses in the symbol table. */
|
||
static bfd_boolean
|
||
m68hc11_elf_export_one_stub (struct bfd_hash_entry *gen_entry, void *in_arg)
|
||
{
|
||
struct bfd_link_info *info;
|
||
struct m68hc11_elf_link_hash_table *htab;
|
||
struct elf32_m68hc11_stub_hash_entry *stub_entry;
|
||
char* name;
|
||
bfd_boolean result;
|
||
|
||
info = (struct bfd_link_info *) in_arg;
|
||
htab = m68hc11_elf_hash_table (info);
|
||
|
||
/* Massage our args to the form they really have. */
|
||
stub_entry = (struct elf32_m68hc11_stub_hash_entry *) gen_entry;
|
||
|
||
/* Generate the trampoline according to HC11 or HC12. */
|
||
result = (* htab->build_one_stub) (gen_entry, in_arg);
|
||
|
||
/* Make a printable name that does not conflict with the real function. */
|
||
name = alloca (strlen (stub_entry->root.string) + 16);
|
||
sprintf (name, "tramp.%s", stub_entry->root.string);
|
||
|
||
/* Export the symbol for debugging/disassembling. */
|
||
m68hc11_elf_set_symbol (htab->stub_bfd, info, name,
|
||
stub_entry->stub_offset,
|
||
stub_entry->stub_sec);
|
||
return result;
|
||
}
|
||
|
||
/* Export a symbol or set its value and section. */
|
||
static void
|
||
m68hc11_elf_set_symbol (bfd *abfd, struct bfd_link_info *info,
|
||
const char *name, bfd_vma value, asection *sec)
|
||
{
|
||
struct elf_link_hash_entry *h;
|
||
|
||
h = (struct elf_link_hash_entry *)
|
||
bfd_link_hash_lookup (info->hash, name, FALSE, FALSE, FALSE);
|
||
if (h == NULL)
|
||
{
|
||
_bfd_generic_link_add_one_symbol (info, abfd,
|
||
name,
|
||
BSF_GLOBAL,
|
||
sec,
|
||
value,
|
||
(const char*) NULL,
|
||
TRUE, FALSE, NULL);
|
||
}
|
||
else
|
||
{
|
||
h->root.type = bfd_link_hash_defined;
|
||
h->root.u.def.value = value;
|
||
h->root.u.def.section = sec;
|
||
}
|
||
}
|
||
|
||
|
||
/* Build all the stubs associated with the current output file. The
|
||
stubs are kept in a hash table attached to the main linker hash
|
||
table. This function is called via m68hc12elf_finish in the
|
||
linker. */
|
||
|
||
bfd_boolean
|
||
elf32_m68hc11_build_stubs (bfd *abfd, struct bfd_link_info *info)
|
||
{
|
||
asection *stub_sec;
|
||
struct bfd_hash_table *table;
|
||
struct m68hc11_elf_link_hash_table *htab;
|
||
struct m68hc11_scan_param param;
|
||
|
||
m68hc11_elf_get_bank_parameters (info);
|
||
htab = m68hc11_elf_hash_table (info);
|
||
|
||
for (stub_sec = htab->stub_bfd->sections;
|
||
stub_sec != NULL;
|
||
stub_sec = stub_sec->next)
|
||
{
|
||
bfd_size_type size;
|
||
|
||
/* Allocate memory to hold the linker stubs. */
|
||
size = stub_sec->size;
|
||
stub_sec->contents = (unsigned char *) bfd_zalloc (htab->stub_bfd, size);
|
||
if (stub_sec->contents == NULL && size != 0)
|
||
return FALSE;
|
||
stub_sec->size = 0;
|
||
}
|
||
|
||
/* Build the stubs as directed by the stub hash table. */
|
||
table = htab->stub_hash_table;
|
||
bfd_hash_traverse (table, m68hc11_elf_export_one_stub, info);
|
||
|
||
/* Scan the output sections to see if we use the memory banks.
|
||
If so, export the symbols that define how the memory banks
|
||
are mapped. This is used by gdb and the simulator to obtain
|
||
the information. It can be used by programs to burn the eprom
|
||
at the good addresses. */
|
||
param.use_memory_banks = FALSE;
|
||
param.pinfo = &htab->pinfo;
|
||
bfd_map_over_sections (abfd, scan_sections_for_abi, ¶m);
|
||
if (param.use_memory_banks)
|
||
{
|
||
m68hc11_elf_set_symbol (abfd, info, BFD_M68HC11_BANK_START_NAME,
|
||
htab->pinfo.bank_physical,
|
||
bfd_abs_section_ptr);
|
||
m68hc11_elf_set_symbol (abfd, info, BFD_M68HC11_BANK_VIRTUAL_NAME,
|
||
htab->pinfo.bank_virtual,
|
||
bfd_abs_section_ptr);
|
||
m68hc11_elf_set_symbol (abfd, info, BFD_M68HC11_BANK_SIZE_NAME,
|
||
htab->pinfo.bank_size,
|
||
bfd_abs_section_ptr);
|
||
}
|
||
|
||
return TRUE;
|
||
}
|
||
|
||
void
|
||
m68hc11_elf_get_bank_parameters (struct bfd_link_info *info)
|
||
{
|
||
unsigned i;
|
||
struct m68hc11_page_info *pinfo;
|
||
struct bfd_link_hash_entry *h;
|
||
|
||
pinfo = &m68hc11_elf_hash_table (info)->pinfo;
|
||
if (pinfo->bank_param_initialized)
|
||
return;
|
||
|
||
pinfo->bank_virtual = M68HC12_BANK_VIRT;
|
||
pinfo->bank_mask = M68HC12_BANK_MASK;
|
||
pinfo->bank_physical = M68HC12_BANK_BASE;
|
||
pinfo->bank_shift = M68HC12_BANK_SHIFT;
|
||
pinfo->bank_size = 1 << M68HC12_BANK_SHIFT;
|
||
|
||
h = bfd_link_hash_lookup (info->hash, BFD_M68HC11_BANK_START_NAME,
|
||
FALSE, FALSE, TRUE);
|
||
if (h != (struct bfd_link_hash_entry*) NULL
|
||
&& h->type == bfd_link_hash_defined)
|
||
pinfo->bank_physical = (h->u.def.value
|
||
+ h->u.def.section->output_section->vma
|
||
+ h->u.def.section->output_offset);
|
||
|
||
h = bfd_link_hash_lookup (info->hash, BFD_M68HC11_BANK_VIRTUAL_NAME,
|
||
FALSE, FALSE, TRUE);
|
||
if (h != (struct bfd_link_hash_entry*) NULL
|
||
&& h->type == bfd_link_hash_defined)
|
||
pinfo->bank_virtual = (h->u.def.value
|
||
+ h->u.def.section->output_section->vma
|
||
+ h->u.def.section->output_offset);
|
||
|
||
h = bfd_link_hash_lookup (info->hash, BFD_M68HC11_BANK_SIZE_NAME,
|
||
FALSE, FALSE, TRUE);
|
||
if (h != (struct bfd_link_hash_entry*) NULL
|
||
&& h->type == bfd_link_hash_defined)
|
||
pinfo->bank_size = (h->u.def.value
|
||
+ h->u.def.section->output_section->vma
|
||
+ h->u.def.section->output_offset);
|
||
|
||
pinfo->bank_shift = 0;
|
||
for (i = pinfo->bank_size; i != 0; i >>= 1)
|
||
pinfo->bank_shift++;
|
||
pinfo->bank_shift--;
|
||
pinfo->bank_mask = (1 << pinfo->bank_shift) - 1;
|
||
pinfo->bank_physical_end = pinfo->bank_physical + pinfo->bank_size;
|
||
pinfo->bank_param_initialized = 1;
|
||
|
||
h = bfd_link_hash_lookup (info->hash, "__far_trampoline", FALSE,
|
||
FALSE, TRUE);
|
||
if (h != (struct bfd_link_hash_entry*) NULL
|
||
&& h->type == bfd_link_hash_defined)
|
||
pinfo->trampoline_addr = (h->u.def.value
|
||
+ h->u.def.section->output_section->vma
|
||
+ h->u.def.section->output_offset);
|
||
}
|
||
|
||
/* Return 1 if the address is in banked memory.
|
||
This can be applied to a virtual address and to a physical address. */
|
||
int
|
||
m68hc11_addr_is_banked (struct m68hc11_page_info *pinfo, bfd_vma addr)
|
||
{
|
||
if (addr >= pinfo->bank_virtual)
|
||
return 1;
|
||
|
||
if (addr >= pinfo->bank_physical && addr <= pinfo->bank_physical_end)
|
||
return 1;
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Return the physical address seen by the processor, taking
|
||
into account banked memory. */
|
||
bfd_vma
|
||
m68hc11_phys_addr (struct m68hc11_page_info *pinfo, bfd_vma addr)
|
||
{
|
||
if (addr < pinfo->bank_virtual)
|
||
return addr;
|
||
|
||
/* Map the address to the memory bank. */
|
||
addr -= pinfo->bank_virtual;
|
||
addr &= pinfo->bank_mask;
|
||
addr += pinfo->bank_physical;
|
||
return addr;
|
||
}
|
||
|
||
/* Return the page number corresponding to an address in banked memory. */
|
||
bfd_vma
|
||
m68hc11_phys_page (struct m68hc11_page_info *pinfo, bfd_vma addr)
|
||
{
|
||
if (addr < pinfo->bank_virtual)
|
||
return 0;
|
||
|
||
/* Map the address to the memory bank. */
|
||
addr -= pinfo->bank_virtual;
|
||
addr >>= pinfo->bank_shift;
|
||
addr &= 0x0ff;
|
||
return addr;
|
||
}
|
||
|
||
/* This function is used for relocs which are only used for relaxing,
|
||
which the linker should otherwise ignore. */
|
||
|
||
bfd_reloc_status_type
|
||
m68hc11_elf_ignore_reloc (bfd *abfd ATTRIBUTE_UNUSED,
|
||
arelent *reloc_entry,
|
||
asymbol *symbol ATTRIBUTE_UNUSED,
|
||
void *data ATTRIBUTE_UNUSED,
|
||
asection *input_section,
|
||
bfd *output_bfd,
|
||
char **error_message ATTRIBUTE_UNUSED)
|
||
{
|
||
if (output_bfd != NULL)
|
||
reloc_entry->address += input_section->output_offset;
|
||
return bfd_reloc_ok;
|
||
}
|
||
|
||
bfd_reloc_status_type
|
||
m68hc11_elf_special_reloc (bfd *abfd ATTRIBUTE_UNUSED,
|
||
arelent *reloc_entry,
|
||
asymbol *symbol,
|
||
void *data ATTRIBUTE_UNUSED,
|
||
asection *input_section,
|
||
bfd *output_bfd,
|
||
char **error_message ATTRIBUTE_UNUSED)
|
||
{
|
||
if (output_bfd != (bfd *) NULL
|
||
&& (symbol->flags & BSF_SECTION_SYM) == 0
|
||
&& (! reloc_entry->howto->partial_inplace
|
||
|| reloc_entry->addend == 0))
|
||
{
|
||
reloc_entry->address += input_section->output_offset;
|
||
return bfd_reloc_ok;
|
||
}
|
||
|
||
if (output_bfd != NULL)
|
||
return bfd_reloc_continue;
|
||
|
||
if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
|
||
return bfd_reloc_outofrange;
|
||
|
||
abort();
|
||
}
|
||
|
||
/* Look through the relocs for a section during the first phase.
|
||
Since we don't do .gots or .plts, we just need to consider the
|
||
virtual table relocs for gc. */
|
||
|
||
bfd_boolean
|
||
elf32_m68hc11_check_relocs (bfd *abfd, struct bfd_link_info *info,
|
||
asection *sec, const Elf_Internal_Rela *relocs)
|
||
{
|
||
Elf_Internal_Shdr * symtab_hdr;
|
||
struct elf_link_hash_entry ** sym_hashes;
|
||
const Elf_Internal_Rela * rel;
|
||
const Elf_Internal_Rela * rel_end;
|
||
|
||
if (info->relocatable)
|
||
return TRUE;
|
||
|
||
symtab_hdr = & elf_tdata (abfd)->symtab_hdr;
|
||
sym_hashes = elf_sym_hashes (abfd);
|
||
rel_end = relocs + sec->reloc_count;
|
||
|
||
for (rel = relocs; rel < rel_end; rel++)
|
||
{
|
||
struct elf_link_hash_entry * h;
|
||
unsigned long r_symndx;
|
||
|
||
r_symndx = ELF32_R_SYM (rel->r_info);
|
||
|
||
if (r_symndx < symtab_hdr->sh_info)
|
||
h = NULL;
|
||
else
|
||
{
|
||
h = sym_hashes [r_symndx - symtab_hdr->sh_info];
|
||
while (h->root.type == bfd_link_hash_indirect
|
||
|| h->root.type == bfd_link_hash_warning)
|
||
h = (struct elf_link_hash_entry *) h->root.u.i.link;
|
||
}
|
||
|
||
switch (ELF32_R_TYPE (rel->r_info))
|
||
{
|
||
/* This relocation describes the C++ object vtable hierarchy.
|
||
Reconstruct it for later use during GC. */
|
||
case R_M68HC11_GNU_VTINHERIT:
|
||
if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
|
||
return FALSE;
|
||
break;
|
||
|
||
/* This relocation describes which C++ vtable entries are actually
|
||
used. Record for later use during GC. */
|
||
case R_M68HC11_GNU_VTENTRY:
|
||
BFD_ASSERT (h != NULL);
|
||
if (h != NULL
|
||
&& !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
|
||
return FALSE;
|
||
break;
|
||
}
|
||
}
|
||
|
||
return TRUE;
|
||
}
|
||
|
||
/* Relocate a 68hc11/68hc12 ELF section. */
|
||
bfd_boolean
|
||
elf32_m68hc11_relocate_section (bfd *output_bfd ATTRIBUTE_UNUSED,
|
||
struct bfd_link_info *info,
|
||
bfd *input_bfd, asection *input_section,
|
||
bfd_byte *contents, Elf_Internal_Rela *relocs,
|
||
Elf_Internal_Sym *local_syms,
|
||
asection **local_sections)
|
||
{
|
||
Elf_Internal_Shdr *symtab_hdr;
|
||
struct elf_link_hash_entry **sym_hashes;
|
||
Elf_Internal_Rela *rel, *relend;
|
||
const char *name = NULL;
|
||
struct m68hc11_page_info *pinfo;
|
||
const struct elf_backend_data * const ebd = get_elf_backend_data (input_bfd);
|
||
|
||
symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
|
||
sym_hashes = elf_sym_hashes (input_bfd);
|
||
|
||
/* Get memory bank parameters. */
|
||
m68hc11_elf_get_bank_parameters (info);
|
||
pinfo = &m68hc11_elf_hash_table (info)->pinfo;
|
||
|
||
rel = relocs;
|
||
relend = relocs + input_section->reloc_count;
|
||
for (; rel < relend; rel++)
|
||
{
|
||
int r_type;
|
||
arelent arel;
|
||
reloc_howto_type *howto;
|
||
unsigned long r_symndx;
|
||
Elf_Internal_Sym *sym;
|
||
asection *sec;
|
||
bfd_vma relocation = 0;
|
||
bfd_reloc_status_type r = bfd_reloc_undefined;
|
||
bfd_vma phys_page;
|
||
bfd_vma phys_addr;
|
||
bfd_vma insn_addr;
|
||
bfd_vma insn_page;
|
||
bfd_boolean is_far = FALSE;
|
||
struct elf_link_hash_entry *h;
|
||
const char* stub_name = 0;
|
||
|
||
r_symndx = ELF32_R_SYM (rel->r_info);
|
||
r_type = ELF32_R_TYPE (rel->r_info);
|
||
|
||
if (r_type == R_M68HC11_GNU_VTENTRY
|
||
|| r_type == R_M68HC11_GNU_VTINHERIT )
|
||
continue;
|
||
|
||
(*ebd->elf_info_to_howto_rel) (input_bfd, &arel, rel);
|
||
howto = arel.howto;
|
||
|
||
h = NULL;
|
||
sym = NULL;
|
||
sec = NULL;
|
||
if (r_symndx < symtab_hdr->sh_info)
|
||
{
|
||
sym = local_syms + r_symndx;
|
||
sec = local_sections[r_symndx];
|
||
relocation = (sec->output_section->vma
|
||
+ sec->output_offset
|
||
+ sym->st_value);
|
||
is_far = (sym && (sym->st_other & STO_M68HC12_FAR));
|
||
if (is_far)
|
||
stub_name = (bfd_elf_string_from_elf_section
|
||
(input_bfd, symtab_hdr->sh_link,
|
||
sym->st_name));
|
||
}
|
||
else
|
||
{
|
||
bfd_boolean unresolved_reloc, warned;
|
||
|
||
RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
|
||
r_symndx, symtab_hdr, sym_hashes,
|
||
h, sec, relocation, unresolved_reloc,
|
||
warned);
|
||
|
||
is_far = (h && (h->other & STO_M68HC12_FAR));
|
||
stub_name = h->root.root.string;
|
||
}
|
||
|
||
if (sec != NULL && elf_discarded_section (sec))
|
||
{
|
||
/* For relocs against symbols from removed linkonce sections,
|
||
or sections discarded by a linker script, we just want the
|
||
section contents zeroed. Avoid any special processing. */
|
||
_bfd_clear_contents (howto, input_bfd, contents + rel->r_offset);
|
||
rel->r_info = 0;
|
||
rel->r_addend = 0;
|
||
continue;
|
||
}
|
||
|
||
if (info->relocatable)
|
||
{
|
||
/* This is a relocatable link. We don't have to change
|
||
anything, unless the reloc is against a section symbol,
|
||
in which case we have to adjust according to where the
|
||
section symbol winds up in the output section. */
|
||
if (sym != NULL && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
|
||
rel->r_addend += sec->output_offset;
|
||
continue;
|
||
}
|
||
|
||
if (h != NULL)
|
||
name = h->root.root.string;
|
||
else
|
||
{
|
||
name = (bfd_elf_string_from_elf_section
|
||
(input_bfd, symtab_hdr->sh_link, sym->st_name));
|
||
if (name == NULL || *name == '\0')
|
||
name = bfd_section_name (input_bfd, sec);
|
||
}
|
||
|
||
if (is_far && ELF32_R_TYPE (rel->r_info) == R_M68HC11_16)
|
||
{
|
||
struct elf32_m68hc11_stub_hash_entry* stub;
|
||
struct m68hc11_elf_link_hash_table *htab;
|
||
|
||
htab = m68hc11_elf_hash_table (info);
|
||
stub = m68hc12_stub_hash_lookup (htab->stub_hash_table,
|
||
name, FALSE, FALSE);
|
||
if (stub)
|
||
{
|
||
relocation = stub->stub_offset
|
||
+ stub->stub_sec->output_section->vma
|
||
+ stub->stub_sec->output_offset;
|
||
is_far = FALSE;
|
||
}
|
||
}
|
||
|
||
/* Do the memory bank mapping. */
|
||
phys_addr = m68hc11_phys_addr (pinfo, relocation + rel->r_addend);
|
||
phys_page = m68hc11_phys_page (pinfo, relocation + rel->r_addend);
|
||
switch (r_type)
|
||
{
|
||
case R_M68HC11_24:
|
||
/* Reloc used by 68HC12 call instruction. */
|
||
bfd_put_16 (input_bfd, phys_addr,
|
||
(bfd_byte*) contents + rel->r_offset);
|
||
bfd_put_8 (input_bfd, phys_page,
|
||
(bfd_byte*) contents + rel->r_offset + 2);
|
||
r = bfd_reloc_ok;
|
||
r_type = R_M68HC11_NONE;
|
||
break;
|
||
|
||
case R_M68HC11_NONE:
|
||
r = bfd_reloc_ok;
|
||
break;
|
||
|
||
case R_M68HC11_LO16:
|
||
/* Reloc generated by %addr(expr) gas to obtain the
|
||
address as mapped in the memory bank window. */
|
||
relocation = phys_addr;
|
||
break;
|
||
|
||
case R_M68HC11_PAGE:
|
||
/* Reloc generated by %page(expr) gas to obtain the
|
||
page number associated with the address. */
|
||
relocation = phys_page;
|
||
break;
|
||
|
||
case R_M68HC11_16:
|
||
/* Get virtual address of instruction having the relocation. */
|
||
if (is_far)
|
||
{
|
||
const char* msg;
|
||
char* buf;
|
||
msg = _("Reference to the far symbol `%s' using a wrong "
|
||
"relocation may result in incorrect execution");
|
||
buf = alloca (strlen (msg) + strlen (name) + 10);
|
||
sprintf (buf, msg, name);
|
||
|
||
(* info->callbacks->warning)
|
||
(info, buf, name, input_bfd, NULL, rel->r_offset);
|
||
}
|
||
|
||
/* Get virtual address of instruction having the relocation. */
|
||
insn_addr = input_section->output_section->vma
|
||
+ input_section->output_offset
|
||
+ rel->r_offset;
|
||
|
||
insn_page = m68hc11_phys_page (pinfo, insn_addr);
|
||
|
||
if (m68hc11_addr_is_banked (pinfo, relocation + rel->r_addend)
|
||
&& m68hc11_addr_is_banked (pinfo, insn_addr)
|
||
&& phys_page != insn_page)
|
||
{
|
||
const char* msg;
|
||
char* buf;
|
||
|
||
msg = _("banked address [%lx:%04lx] (%lx) is not in the same bank "
|
||
"as current banked address [%lx:%04lx] (%lx)");
|
||
|
||
buf = alloca (strlen (msg) + 128);
|
||
sprintf (buf, msg, phys_page, phys_addr,
|
||
(long) (relocation + rel->r_addend),
|
||
insn_page, m68hc11_phys_addr (pinfo, insn_addr),
|
||
(long) (insn_addr));
|
||
if (!((*info->callbacks->warning)
|
||
(info, buf, name, input_bfd, input_section,
|
||
rel->r_offset)))
|
||
return FALSE;
|
||
break;
|
||
}
|
||
if (phys_page != 0 && insn_page == 0)
|
||
{
|
||
const char* msg;
|
||
char* buf;
|
||
|
||
msg = _("reference to a banked address [%lx:%04lx] in the "
|
||
"normal address space at %04lx");
|
||
|
||
buf = alloca (strlen (msg) + 128);
|
||
sprintf (buf, msg, phys_page, phys_addr, insn_addr);
|
||
if (!((*info->callbacks->warning)
|
||
(info, buf, name, input_bfd, input_section,
|
||
insn_addr)))
|
||
return FALSE;
|
||
|
||
relocation = phys_addr;
|
||
break;
|
||
}
|
||
|
||
/* If this is a banked address use the phys_addr so that
|
||
we stay in the banked window. */
|
||
if (m68hc11_addr_is_banked (pinfo, relocation + rel->r_addend))
|
||
relocation = phys_addr;
|
||
break;
|
||
}
|
||
if (r_type != R_M68HC11_NONE)
|
||
r = _bfd_final_link_relocate (howto, input_bfd, input_section,
|
||
contents, rel->r_offset,
|
||
relocation, rel->r_addend);
|
||
|
||
if (r != bfd_reloc_ok)
|
||
{
|
||
const char * msg = (const char *) 0;
|
||
|
||
switch (r)
|
||
{
|
||
case bfd_reloc_overflow:
|
||
if (!((*info->callbacks->reloc_overflow)
|
||
(info, NULL, name, howto->name, (bfd_vma) 0,
|
||
input_bfd, input_section, rel->r_offset)))
|
||
return FALSE;
|
||
break;
|
||
|
||
case bfd_reloc_undefined:
|
||
if (!((*info->callbacks->undefined_symbol)
|
||
(info, name, input_bfd, input_section,
|
||
rel->r_offset, TRUE)))
|
||
return FALSE;
|
||
break;
|
||
|
||
case bfd_reloc_outofrange:
|
||
msg = _ ("internal error: out of range error");
|
||
goto common_error;
|
||
|
||
case bfd_reloc_notsupported:
|
||
msg = _ ("internal error: unsupported relocation error");
|
||
goto common_error;
|
||
|
||
case bfd_reloc_dangerous:
|
||
msg = _ ("internal error: dangerous error");
|
||
goto common_error;
|
||
|
||
default:
|
||
msg = _ ("internal error: unknown error");
|
||
/* fall through */
|
||
|
||
common_error:
|
||
if (!((*info->callbacks->warning)
|
||
(info, msg, name, input_bfd, input_section,
|
||
rel->r_offset)))
|
||
return FALSE;
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
|
||
return TRUE;
|
||
}
|
||
|
||
|
||
|
||
/* Set and control ELF flags in ELF header. */
|
||
|
||
bfd_boolean
|
||
_bfd_m68hc11_elf_set_private_flags (bfd *abfd, flagword flags)
|
||
{
|
||
BFD_ASSERT (!elf_flags_init (abfd)
|
||
|| elf_elfheader (abfd)->e_flags == flags);
|
||
|
||
elf_elfheader (abfd)->e_flags = flags;
|
||
elf_flags_init (abfd) = TRUE;
|
||
return TRUE;
|
||
}
|
||
|
||
/* Merge backend specific data from an object file to the output
|
||
object file when linking. */
|
||
|
||
bfd_boolean
|
||
_bfd_m68hc11_elf_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
|
||
{
|
||
flagword old_flags;
|
||
flagword new_flags;
|
||
bfd_boolean ok = TRUE;
|
||
|
||
/* Check if we have the same endianess */
|
||
if (!_bfd_generic_verify_endian_match (ibfd, obfd))
|
||
return FALSE;
|
||
|
||
if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
|
||
|| bfd_get_flavour (obfd) != bfd_target_elf_flavour)
|
||
return TRUE;
|
||
|
||
new_flags = elf_elfheader (ibfd)->e_flags;
|
||
elf_elfheader (obfd)->e_flags |= new_flags & EF_M68HC11_ABI;
|
||
old_flags = elf_elfheader (obfd)->e_flags;
|
||
|
||
if (! elf_flags_init (obfd))
|
||
{
|
||
elf_flags_init (obfd) = TRUE;
|
||
elf_elfheader (obfd)->e_flags = new_flags;
|
||
elf_elfheader (obfd)->e_ident[EI_CLASS]
|
||
= elf_elfheader (ibfd)->e_ident[EI_CLASS];
|
||
|
||
if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
|
||
&& bfd_get_arch_info (obfd)->the_default)
|
||
{
|
||
if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
|
||
bfd_get_mach (ibfd)))
|
||
return FALSE;
|
||
}
|
||
|
||
return TRUE;
|
||
}
|
||
|
||
/* Check ABI compatibility. */
|
||
if ((new_flags & E_M68HC11_I32) != (old_flags & E_M68HC11_I32))
|
||
{
|
||
(*_bfd_error_handler)
|
||
(_("%B: linking files compiled for 16-bit integers (-mshort) "
|
||
"and others for 32-bit integers"), ibfd);
|
||
ok = FALSE;
|
||
}
|
||
if ((new_flags & E_M68HC11_F64) != (old_flags & E_M68HC11_F64))
|
||
{
|
||
(*_bfd_error_handler)
|
||
(_("%B: linking files compiled for 32-bit double (-fshort-double) "
|
||
"and others for 64-bit double"), ibfd);
|
||
ok = FALSE;
|
||
}
|
||
|
||
/* Processor compatibility. */
|
||
if (!EF_M68HC11_CAN_MERGE_MACH (new_flags, old_flags))
|
||
{
|
||
(*_bfd_error_handler)
|
||
(_("%B: linking files compiled for HCS12 with "
|
||
"others compiled for HC12"), ibfd);
|
||
ok = FALSE;
|
||
}
|
||
new_flags = ((new_flags & ~EF_M68HC11_MACH_MASK)
|
||
| (EF_M68HC11_MERGE_MACH (new_flags, old_flags)));
|
||
|
||
elf_elfheader (obfd)->e_flags = new_flags;
|
||
|
||
new_flags &= ~(EF_M68HC11_ABI | EF_M68HC11_MACH_MASK);
|
||
old_flags &= ~(EF_M68HC11_ABI | EF_M68HC11_MACH_MASK);
|
||
|
||
/* Warn about any other mismatches */
|
||
if (new_flags != old_flags)
|
||
{
|
||
(*_bfd_error_handler)
|
||
(_("%B: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
|
||
ibfd, (unsigned long) new_flags, (unsigned long) old_flags);
|
||
ok = FALSE;
|
||
}
|
||
|
||
if (! ok)
|
||
{
|
||
bfd_set_error (bfd_error_bad_value);
|
||
return FALSE;
|
||
}
|
||
|
||
return TRUE;
|
||
}
|
||
|
||
bfd_boolean
|
||
_bfd_m68hc11_elf_print_private_bfd_data (bfd *abfd, void *ptr)
|
||
{
|
||
FILE *file = (FILE *) ptr;
|
||
|
||
BFD_ASSERT (abfd != NULL && ptr != NULL);
|
||
|
||
/* Print normal ELF private data. */
|
||
_bfd_elf_print_private_bfd_data (abfd, ptr);
|
||
|
||
/* xgettext:c-format */
|
||
fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
|
||
|
||
if (elf_elfheader (abfd)->e_flags & E_M68HC11_I32)
|
||
fprintf (file, _("[abi=32-bit int, "));
|
||
else
|
||
fprintf (file, _("[abi=16-bit int, "));
|
||
|
||
if (elf_elfheader (abfd)->e_flags & E_M68HC11_F64)
|
||
fprintf (file, _("64-bit double, "));
|
||
else
|
||
fprintf (file, _("32-bit double, "));
|
||
|
||
if (strcmp (bfd_get_target (abfd), "elf32-m68hc11") == 0)
|
||
fprintf (file, _("cpu=HC11]"));
|
||
else if (elf_elfheader (abfd)->e_flags & EF_M68HCS12_MACH)
|
||
fprintf (file, _("cpu=HCS12]"));
|
||
else
|
||
fprintf (file, _("cpu=HC12]"));
|
||
|
||
if (elf_elfheader (abfd)->e_flags & E_M68HC12_BANKS)
|
||
fprintf (file, _(" [memory=bank-model]"));
|
||
else
|
||
fprintf (file, _(" [memory=flat]"));
|
||
|
||
fputc ('\n', file);
|
||
|
||
return TRUE;
|
||
}
|
||
|
||
static void scan_sections_for_abi (bfd *abfd ATTRIBUTE_UNUSED,
|
||
asection *asect, void *arg)
|
||
{
|
||
struct m68hc11_scan_param* p = (struct m68hc11_scan_param*) arg;
|
||
|
||
if (asect->vma >= p->pinfo->bank_virtual)
|
||
p->use_memory_banks = TRUE;
|
||
}
|
||
|
||
/* Tweak the OSABI field of the elf header. */
|
||
|
||
void
|
||
elf32_m68hc11_post_process_headers (bfd *abfd, struct bfd_link_info *link_info)
|
||
{
|
||
struct m68hc11_scan_param param;
|
||
|
||
if (link_info == 0)
|
||
return;
|
||
|
||
m68hc11_elf_get_bank_parameters (link_info);
|
||
|
||
param.use_memory_banks = FALSE;
|
||
param.pinfo = &m68hc11_elf_hash_table (link_info)->pinfo;
|
||
bfd_map_over_sections (abfd, scan_sections_for_abi, ¶m);
|
||
if (param.use_memory_banks)
|
||
{
|
||
Elf_Internal_Ehdr * i_ehdrp;
|
||
|
||
i_ehdrp = elf_elfheader (abfd);
|
||
i_ehdrp->e_flags |= E_M68HC12_BANKS;
|
||
}
|
||
}
|
||
|