old-cross-binutils/gdb/testsuite/gdb.threads/non-stop-fair-events.exp
Pedro Alves 1ed415e2b9 non-stop-fair-events.exp slower on software single-step && !displ-step targets
On software single-step targets that don't support displaced stepping,
threads keep hitting each other's single-step breakpoints, and then
GDB needs to pause all threads to step past those.  The end result is
that progress in the main thread will be slower and it may take a bit
longer for the signal to be queued.  This patch bumps the timeout on
such targets.

gdb/testsuite/ChangeLog:
2015-09-16  Pedro Alves  <palves@redhat.com>
	    Sandra Loosemore <sandra@codesourcery.com>

	* gdb.threads/non-stop-fair-events.c (timeout): New global.
	(SECONDS): Redefine.
	(main): Call pthread_kill and alarm early.
	* gdb.threads/non-stop-fair-events.exp: Probe displaced stepping
	support.
	(test): If the target can't hardware step and doesn't support
	displaced stepping, increase the timeout.
2015-09-16 15:51:36 +01:00

247 lines
6.3 KiB
Text

# Copyright (C) 2014-2015 Free Software Foundation, Inc.
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
# Test that GDB in non-stop mode gives roughly equal priority to
# events of all threads.
standard_testfile
set executable ${testfile}
if [target_info exists gdb,nosignals] {
verbose "Skipping ${testfile}.exp because of nosignals."
return -1
}
set options { "additional_flags=-DTIMEOUT=$timeout" debug pthreads }
if {[prepare_for_testing "failed to prepare" $testfile $srcfile $options] == -1} {
return -1
}
gdb_test_no_output "set non-stop on"
if ![runto_main] {
return -1
}
# We want "handle print", to make sure the target backend reports the
# signal to the run control core.
gdb_test "handle SIGUSR1 print nostop pass" ""
# Get current value of VAR from the inferior. TEST is used as test
# message.
proc get_value {var test} {
global expect_out
global gdb_prompt
global decimal
set value -1
gdb_test_multiple "print $var" "$test" {
-re ".*= ($decimal).*\r\n$gdb_prompt $" {
set value $expect_out(1,string)
pass "$test"
}
}
return ${value}
}
set NUM_THREADS [get_value "num_threads" "get num_threads"]
# Account for the main thread.
incr NUM_THREADS
# Probe for displaced stepping support. We're stopped at the main
# breakpoint. If displaced stepping is supported, we should see
# related debug output.
set displaced_stepping_enabled 0
set msg "check displaced-stepping"
gdb_test_no_output "set debug displaced 1"
gdb_test_multiple "next" $msg {
-re "displaced pc to.*$gdb_prompt $" {
set displaced_stepping_enabled 1
}
-re ".*$gdb_prompt $" {
}
}
gdb_test_no_output "set debug displaced 0"
# Run threads to their start positions. This prepares for a new test
# sequence.
proc restart {} {
global gdb_prompt
global NUM_THREADS
delete_breakpoints
gdb_test "print got_sig = 0" " = 0"
gdb_breakpoint [gdb_get_line_number "set thread breakpoint here"]
gdb_breakpoint [gdb_get_line_number "set kill breakpoint here"]
set test "continue -a&"
gdb_test_multiple $test $test {
-re "Continuing.\r\n$gdb_prompt " {
pass $test
}
}
for {set i 1} { $i <= $NUM_THREADS } { incr i } {
set test "thread $i restarted"
gdb_test_multiple "" $test {
-re "breakpoint here" {
# The prompt was already matched in the "continue &"
# test above. We're now consuming asynchronous output
# that comes after the prompt.
pass $test
}
}
}
delete_breakpoints
}
# Run command and wait for the prompt, without end anchor.
proc gdb_test_no_anchor {cmd} {
global gdb_prompt
gdb_test_multiple $cmd $cmd {
-re "$gdb_prompt " {
pass $cmd
}
}
}
# Enable/disable debugging.
proc enable_debug {enable} {
# Comment out to debug problems with the test.
return
gdb_test_no_anchor "set debug infrun $enable"
gdb_test_no_anchor "set debug displaced $enable"
}
# The test proper. SIGNAL_THREAD is the thread that has been elected
# to receive the SIGUSR1 signal.
proc test {signal_thread} {
global gdb_prompt
global NUM_THREADS
global timeout
global displaced_stepping_enabled
with_test_prefix "signal_thread=$signal_thread" {
restart
# Set all threads stepping the infinite loop line in parallel.
for {set i 2} { $i <= $NUM_THREADS } { incr i } {
gdb_test "thread $i" \
"child_function.*set thread breakpoint here.*" \
"switch to thread $i to step it"
if {$i == $signal_thread} {
gdb_test "print signal_thread = self" " = .*"
}
gdb_test "step&" "" "set $i thread stepping"
}
gdb_test "thread 1" "Switching to .*" \
"switch to the main thread to queue signal"
# Let the main thread queue the signal.
gdb_breakpoint "loop_broke"
enable_debug 1
# On software single-step targets that don't support displaced
# stepping, threads keep hitting each others' single-step
# breakpoints, and then GDB needs to pause all threads to step
# past those. The end result is that progress in the main
# thread will be slower and it may take a bit longer for the
# signal to be queued; bump the timeout.
if {!$displaced_stepping_enabled && ![can_hardware_single_step]} {
# The more threads we have, the longer it takes.
set factor $NUM_THREADS
} else {
set factor 1
}
with_timeout_factor $factor {
gdb_test "print timeout = $timeout" " = $timeout" \
"set timeout in the inferior"
set saw_continuing 0
set test "continue &"
gdb_test_multiple $test $test {
-re "Continuing.\r\n" {
set saw_continuing 1
exp_continue
}
-re "$gdb_prompt " {
gdb_assert $saw_continuing $test
}
-re "infrun:" {
exp_continue
}
}
set gotit 0
# Wait for all threads to finish their steps, and for the main
# thread to hit the breakpoint.
for {set i 1} { $i <= $NUM_THREADS } { incr i } {
set test "thread $i broke out of loop"
set gotit 0
gdb_test_multiple "" $test {
-re "loop_broke" {
# The prompt was already matched in the "continue
# &" test above. We're now consuming asynchronous
# output that comes after the prompt.
set gotit 1
pass $test
}
-re "infrun:" {
exp_continue
}
}
if {!$gotit} {
break
}
}
}
enable_debug 0
# It's helpful to have this in the log if the test ever
# happens to fail.
gdb_test "info threads"
return $gotit
}
}
# The kernel/debug API may always walk its thread list looking for the
# first with an event, resulting in giving priority to e.g. the thread
# with lowest kernel thread ID. So test once with the signal pending
# in each thread, except the main thread.
for {set i 2} { $i <= $NUM_THREADS } { incr i } {
if {![test $i]} {
# Avoid cascading timeouts, and bail out.
return
}
}