old-cross-binutils/ld/emultempl/bfin.em
Catherine Moore 95f4309b98 * Makefile.am: Bfin support.
* Makefile.in: Regenerated.
	* aclocal.m4: Regenerated.
	* configure.tgt: Bfin support.
	* emulparams/bfin.sh: New file.
	* emultempl/bfin.em: New file.
2005-09-30 15:23:16 +00:00

174 lines
5.6 KiB
Text

# This shell script emits a C file. -*- C -*-
# Copyright 2000, 2001, 2003 Free Software Foundation, Inc.
# Written by Michael Sokolov <msokolov@ivan.Harhan.ORG>, based on armelf.em
#
# This file is part of GLD, the Gnu Linker.
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software
# Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
# This file is sourced from elf32.em, and defines some extra routines for bfin
# embedded systems using ELF and for some other systems using bfin ELF. While
# it is sourced from elf32.em for all bfin ELF configurations, here we include
# only the features we want depending on the configuration.
case ${target} in
bfin*-*-elf)
echo "#define SUPPORT_EMBEDDED_RELOCS" >>e${EMULATION_NAME}.c
;;
esac
cat >>e${EMULATION_NAME}.c <<EOF
#ifdef SUPPORT_EMBEDDED_RELOCS
static void check_sections (bfd *, asection *, void *);
#endif
/* This function is run after all the input files have been opened. */
static void
bfin_elf_after_open (void)
{
/* Call the standard elf routine. */
gld${EMULATION_NAME}_after_open ();
#ifdef SUPPORT_EMBEDDED_RELOCS
if (command_line.embedded_relocs
&& (! link_info.relocatable))
{
bfd *abfd;
/* In the embedded relocs mode we create a .emreloc section for each
input file with a nonzero .data section. The BFD backend will fill in
these sections with magic numbers which can be used to relocate the
data section at run time. */
for (abfd = link_info.input_bfds; abfd != NULL; abfd = abfd->link_next)
{
asection *datasec;
/* As first-order business, make sure that each input BFD is either
COFF or ELF. We need to call a special BFD backend function to
generate the embedded relocs, and we have such functions only for
COFF and ELF. */
if (bfd_get_flavour (abfd) != bfd_target_coff_flavour
&& bfd_get_flavour (abfd) != bfd_target_elf_flavour)
einfo ("%F%B: all input objects must be COFF or ELF for --embedded-relocs\n");
datasec = bfd_get_section_by_name (abfd, ".data");
/* Note that we assume that the reloc_count field has already
been set up. We could call bfd_get_reloc_upper_bound, but
that returns the size of a memory buffer rather than a reloc
count. We do not want to call bfd_canonicalize_reloc,
because although it would always work it would force us to
read in the relocs into BFD canonical form, which would waste
a significant amount of time and memory. */
if (datasec != NULL && datasec->reloc_count > 0)
{
asection *relsec;
relsec = bfd_make_section (abfd, ".emreloc");
if (relsec == NULL
|| ! bfd_set_section_flags (abfd, relsec,
(SEC_ALLOC
| SEC_LOAD
| SEC_HAS_CONTENTS
| SEC_IN_MEMORY))
|| ! bfd_set_section_alignment (abfd, relsec, 2)
|| ! bfd_set_section_size (abfd, relsec,
datasec->reloc_count * 12))
einfo ("%F%B: can not create .emreloc section: %E\n");
}
/* Double check that all other data sections are empty, as is
required for embedded PIC code. */
bfd_map_over_sections (abfd, check_sections, datasec);
}
}
#endif /* SUPPORT_EMBEDDED_RELOCS */
}
#ifdef SUPPORT_EMBEDDED_RELOCS
/* Check that of the data sections, only the .data section has
relocs. This is called via bfd_map_over_sections. */
static void
check_sections (bfd *abfd, asection *sec, void *datasec)
{
if ((bfd_get_section_flags (abfd, sec) & SEC_DATA)
&& sec != datasec
&& sec->reloc_count != 0)
einfo ("%B%X: section %s has relocs; can not use --embedded-relocs\n",
abfd, bfd_get_section_name (abfd, sec));
}
#endif /* SUPPORT_EMBEDDED_RELOCS */
/* This function is called after the section sizes and offsets have
been set. */
static void
bfin_elf_after_allocation (void)
{
/* Call the standard elf routine. */
after_allocation_default ();
#ifdef SUPPORT_EMBEDDED_RELOCS
if (command_line.embedded_relocs
&& (! link_info.relocatable))
{
bfd *abfd;
/* If we are generating embedded relocs, call a special BFD backend
routine to do the work. */
for (abfd = link_info.input_bfds; abfd != NULL; abfd = abfd->link_next)
{
asection *datasec, *relsec;
char *errmsg;
datasec = bfd_get_section_by_name (abfd, ".data");
if (datasec == NULL || datasec->reloc_count == 0)
continue;
relsec = bfd_get_section_by_name (abfd, ".emreloc");
ASSERT (relsec != NULL);
if (bfd_get_flavour (abfd) == bfd_target_elf_flavour)
{
if (! bfd_bfin_elf32_create_embedded_relocs (abfd, &link_info,
datasec, relsec,
&errmsg))
{
if (errmsg == NULL)
einfo ("%B%X: can not create runtime reloc information: %E\n",
abfd);
else
einfo ("%X%B: can not create runtime reloc information: %s\n",
abfd, errmsg);
}
}
else
abort ();
}
}
#endif /* SUPPORT_EMBEDDED_RELOCS */
}
EOF
# We have our own after_open and after_allocation functions, but they call
# the standard routines, so give them a different name.
LDEMUL_AFTER_OPEN=bfin_elf_after_open
LDEMUL_AFTER_ALLOCATION=bfin_elf_after_allocation