old-cross-binutils/gdb/blockframe.c
Tom Tromey ccefe4c44c gdb
* xcoffread.c: Include psymtab.h.
	(xcoff_sym_fns): Update.
	* symtab.h (struct partial_symbol): Remove.
	(PSYMBOL_DOMAIN, PSYMBOL_CLASS): Remove.
	(struct partial_symtab): Remove.
	(PSYMTAB_TO_SYMTAB): Remove.
	(lookup_partial_symbol, lookup_partial_symtab, find_pc_psymtab)
	(find_pc_sect_psymtab): Remove.
	(find_pc_sect_symtab_via_partial): Declare.
	(find_pc_psymtab, find_pc_sect_psymbol, psymtab_to_symtab)
	(find_main_psymtab): Remove.
	(find_main_filename): Declare.
	(fixup_psymbol_section): Remove.
	(fixup_section): Declare.
	* symtab.c: Include psymtab.h.
	(lookup_symtab): Use lookup_symtab method.
	(lookup_partial_symtab): Remove.
	(find_pc_sect_psymtab_closer): Remove.
	(find_pc_sect_psymtab): Remove.
	(find_pc_sect_symtab_via_partial): New function.
	(find_pc_psymtab, find_pc_sect_psymbol, find_pc_psymbol): Remove.
	(fixup_section): No longer static.
	(fixup_psymbol_section): Remove.
	(lookup_symbol_aux): Use lookup_symbol_aux_quick.
	(lookup_global_symbol_from_objfile): Likewise.
	(lookup_symbol_aux_psymtabs): Remove.
	(lookup_symbol_aux_quick): New function.
	(lookup_symbol_global): Use lookup_symbol_aux_quick.
	(lookup_partial_symbol): Remove.
	(basic_lookup_transparent_type_quick): New function.
	(basic_lookup_transparent_type): Use it.
	(find_main_psymtab): Remove.
	(find_main_filename): New function.
	(find_pc_sect_symtab): Use find_pc_sect_symtab method.
	(find_line_symtab): Use expand_symtabs_with_filename method.
	(output_partial_symbol_filename): New function.
	(sources_info): Use map_partial_symbol_filenames.
	(struct search_symbols_data): New type.
	(search_symbols_file_matches): New function.
	(search_symbols_name_matches): Likewise.
	(search_symbols): Use expand_symtabs_matching method.
	(struct add_name_data): Rename from add_macro_name_data.
	(add_macro_name): Update.
	(add_partial_symbol_name): New function.
	(default_make_symbol_completion_list): Use
	map_partial_symbol_names.
	(struct add_partial_symbol_name): New type.
	(maybe_add_partial_symtab_filename): New function.
	(make_source_files_completion_list): Use
	map_partial_symbol_filenames.
	(expand_line_sal): Use expand_symtabs_with_filename method.
	* symmisc.c: Include psymtab.h.
	(print_objfile_statistics): Use print_stats method.
	(dump_objfile): Use dump method.
	(dump_psymtab, maintenance_print_psymbols)
	(maintenance_info_psymtabs, maintenance_check_symtabs)
	(extend_psymbol_list): Remove.
	* symfile.h (struct quick_symbol_functions): New struct.
	(struct sym_fns) <qf>: New field.
	(sort_pst_symbols): Remove.
	(increment_reading_symtab): Declare.
	* symfile.c: Include psymtab.h.
	(compare_psymbols, sort_pst_symbols): Remove.
	(psymtab_to_symtab): Remove.
	(increment_reading_symtab): New function.
	(symbol_file_add_with_addrs_or_offsets): Use expand_all_symtabs
	method.
	(set_initial_language): Use find_main_filename.
	(allocate_psymtab, discard_psymtab, cashier_psymtab): Remove.
	(free_named_symtabs): Remove unused code.
	(start_psymtab_common, add_psymbol_to_bcache)
	(append_psymbol_to_list, add_psymbol_to_list, init_psymbol_list):
	Remove.
	* stack.c: Include psymtab.h, symfile.h.
	(backtrace_command_1): Use find_pc_sect_symtab_via_partial.
	* source.h (psymtab_to_fullname): Don't declare.
	* source.c: Include psymtab.h.
	(select_source_symtab): Use find_last_source_symtab method.
	(forget_cached_source_info): Use forget_cached_source_info
	method.
	(find_and_open_source): No longer static.
	(psymtab_to_fullname): Remove.
	* somread.c: Include psymtab.h.
	(som_sym_fns): Update.
	* psympriv.h: New file.
	* psymtab.h: New file.
	* psymtab.c: New file.
	* objfiles.h: (ALL_OBJFILE_PSYMTABS): Remove.
	(ALL_PSYMTABS, ALL_PSPACE_PSYMTABS): Likewise.
	* objfiles.c: Include psymtab.h.
	(objfile_relocate1): Use relocate method.
	(objfile_has_partial_symbols): Use has_symbols method.
	* mipsread.c: Include psymtab.h.
	(ecoff_sym_fns): Update.
	* mi/mi-cmd-file.c: Include psymtab.h.
	(print_partial_file_name): New function.
	(mi_cmd_file_list_exec_source_files): Use
	map_partial_symbol_filenames.
	* mdebugread.c: Include psympriv.h.
	* machoread.c: Include psympriv.h.
	(macho_sym_fns): Update.
	* m2-exp.y (yylex): Use lookup_symtab.
	* elfread.c: Include psympriv.h.
	(elf_sym_fns): Update.
	* dwarf2read.c: Include psympriv.h.
	* dbxread.c: Include psympriv.h.
	(aout_sym_fns): Update.
	* cp-support.c: Include psymtab.h.
	(read_in_psymtabs): Remove.
	(make_symbol_overload_list_qualified): Use
	expand_symtabs_for_function method.
	* coffread.c: Include psympriv.h.
	(coff_sym_fns): Update.
	* blockframe.c: Include psymtab.h.
	(find_pc_partial_function): Use find_pc_sect_symtab method.
	* ada-lang.h (ada_update_initial_language): Update.
	* ada-lang.c: Include psymtab.h.
	(ada_update_initial_language): Remove 'main_pst' argument.
	(ada_lookup_partial_symbol): Remove.
	(struct ada_psym_data): New type.
	(ada_add_psyms): New function.
	(ada_add_non_local_symbols): Use map_ada_symtabs method.
	(struct add_partial_datum): New type.
	(ada_add_partial_symbol_completions): New function.
	(ada_make_symbol_completion_list): Use map_partial_symbol_names.
	(ada_exception_support_info_sniffer): Update.
	* Makefile.in (SFILES): Add psymtab.c.
	(COMMON_OBS): Add psymtab.o.
	(HFILES_NO_SRCDIR): Add psymtab.h, psympriv.h.
gdb/doc
	* gdbint.texinfo (Symbol Handling): Update.
2010-03-10 18:20:08 +00:00

356 lines
10 KiB
C
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/* Get info from stack frames; convert between frames, blocks,
functions and pc values.
Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2007, 2008, 2009,
2010 Free Software Foundation, Inc.
This file is part of GDB.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>. */
#include "defs.h"
#include "symtab.h"
#include "bfd.h"
#include "objfiles.h"
#include "frame.h"
#include "gdbcore.h"
#include "value.h"
#include "target.h"
#include "inferior.h"
#include "annotate.h"
#include "regcache.h"
#include "gdb_assert.h"
#include "dummy-frame.h"
#include "command.h"
#include "gdbcmd.h"
#include "block.h"
#include "inline-frame.h"
#include "psymtab.h"
/* Return the innermost lexical block in execution
in a specified stack frame. The frame address is assumed valid.
If ADDR_IN_BLOCK is non-zero, set *ADDR_IN_BLOCK to the exact code
address we used to choose the block. We use this to find a source
line, to decide which macro definitions are in scope.
The value returned in *ADDR_IN_BLOCK isn't necessarily the frame's
PC, and may not really be a valid PC at all. For example, in the
caller of a function declared to never return, the code at the
return address will never be reached, so the call instruction may
be the very last instruction in the block. So the address we use
to choose the block is actually one byte before the return address
--- hopefully pointing us at the call instruction, or its delay
slot instruction. */
struct block *
get_frame_block (struct frame_info *frame, CORE_ADDR *addr_in_block)
{
const CORE_ADDR pc = get_frame_address_in_block (frame);
struct frame_info *next_frame;
struct block *bl;
int inline_count;
if (addr_in_block)
*addr_in_block = pc;
bl = block_for_pc (pc);
if (bl == NULL)
return NULL;
inline_count = frame_inlined_callees (frame);
while (inline_count > 0)
{
if (block_inlined_p (bl))
inline_count--;
bl = BLOCK_SUPERBLOCK (bl);
gdb_assert (bl != NULL);
}
return bl;
}
CORE_ADDR
get_pc_function_start (CORE_ADDR pc)
{
struct block *bl;
struct minimal_symbol *msymbol;
bl = block_for_pc (pc);
if (bl)
{
struct symbol *symbol = block_linkage_function (bl);
if (symbol)
{
bl = SYMBOL_BLOCK_VALUE (symbol);
return BLOCK_START (bl);
}
}
msymbol = lookup_minimal_symbol_by_pc (pc);
if (msymbol)
{
CORE_ADDR fstart = SYMBOL_VALUE_ADDRESS (msymbol);
if (find_pc_section (fstart))
return fstart;
}
return 0;
}
/* Return the symbol for the function executing in frame FRAME. */
struct symbol *
get_frame_function (struct frame_info *frame)
{
struct block *bl = get_frame_block (frame, 0);
if (bl == NULL)
return NULL;
while (BLOCK_FUNCTION (bl) == NULL && BLOCK_SUPERBLOCK (bl) != NULL)
bl = BLOCK_SUPERBLOCK (bl);
return BLOCK_FUNCTION (bl);
}
/* Return the function containing pc value PC in section SECTION.
Returns 0 if function is not known. */
struct symbol *
find_pc_sect_function (CORE_ADDR pc, struct obj_section *section)
{
struct block *b = block_for_pc_sect (pc, section);
if (b == 0)
return 0;
return block_linkage_function (b);
}
/* Return the function containing pc value PC.
Returns 0 if function is not known. Backward compatibility, no section */
struct symbol *
find_pc_function (CORE_ADDR pc)
{
return find_pc_sect_function (pc, find_pc_mapped_section (pc));
}
/* These variables are used to cache the most recent result
* of find_pc_partial_function. */
static CORE_ADDR cache_pc_function_low = 0;
static CORE_ADDR cache_pc_function_high = 0;
static char *cache_pc_function_name = 0;
static struct obj_section *cache_pc_function_section = NULL;
/* Clear cache, e.g. when symbol table is discarded. */
void
clear_pc_function_cache (void)
{
cache_pc_function_low = 0;
cache_pc_function_high = 0;
cache_pc_function_name = (char *) 0;
cache_pc_function_section = NULL;
}
/* Finds the "function" (text symbol) that is smaller than PC but
greatest of all of the potential text symbols in SECTION. Sets
*NAME and/or *ADDRESS conditionally if that pointer is non-null.
If ENDADDR is non-null, then set *ENDADDR to be the end of the
function (exclusive), but passing ENDADDR as non-null means that
the function might cause symbols to be read. This function either
succeeds or fails (not halfway succeeds). If it succeeds, it sets
*NAME, *ADDRESS, and *ENDADDR to real information and returns 1.
If it fails, it sets *NAME, *ADDRESS, and *ENDADDR to zero and
returns 0. */
/* Backward compatibility, no section argument. */
int
find_pc_partial_function (CORE_ADDR pc, char **name, CORE_ADDR *address,
CORE_ADDR *endaddr)
{
struct obj_section *section;
struct symbol *f;
struct minimal_symbol *msymbol;
struct symtab *symtab = NULL;
struct objfile *objfile;
int i;
CORE_ADDR mapped_pc;
/* To ensure that the symbol returned belongs to the correct setion
(and that the last [random] symbol from the previous section
isn't returned) try to find the section containing PC. First try
the overlay code (which by default returns NULL); and second try
the normal section code (which almost always succeeds). */
section = find_pc_overlay (pc);
if (section == NULL)
section = find_pc_section (pc);
mapped_pc = overlay_mapped_address (pc, section);
if (mapped_pc >= cache_pc_function_low
&& mapped_pc < cache_pc_function_high
&& section == cache_pc_function_section)
goto return_cached_value;
msymbol = lookup_minimal_symbol_by_pc_section (mapped_pc, section);
ALL_OBJFILES (objfile)
{
if (objfile->sf)
symtab = objfile->sf->qf->find_pc_sect_symtab (objfile, msymbol,
mapped_pc, section, 0);
if (symtab)
break;
}
if (symtab)
{
/* Checking whether the msymbol has a larger value is for the
"pathological" case mentioned in print_frame_info. */
f = find_pc_sect_function (mapped_pc, section);
if (f != NULL
&& (msymbol == NULL
|| (BLOCK_START (SYMBOL_BLOCK_VALUE (f))
>= SYMBOL_VALUE_ADDRESS (msymbol))))
{
cache_pc_function_low = BLOCK_START (SYMBOL_BLOCK_VALUE (f));
cache_pc_function_high = BLOCK_END (SYMBOL_BLOCK_VALUE (f));
cache_pc_function_name = SYMBOL_LINKAGE_NAME (f);
cache_pc_function_section = section;
goto return_cached_value;
}
}
/* Not in the normal symbol tables, see if the pc is in a known section.
If it's not, then give up. This ensures that anything beyond the end
of the text seg doesn't appear to be part of the last function in the
text segment. */
if (!section)
msymbol = NULL;
/* Must be in the minimal symbol table. */
if (msymbol == NULL)
{
/* No available symbol. */
if (name != NULL)
*name = 0;
if (address != NULL)
*address = 0;
if (endaddr != NULL)
*endaddr = 0;
return 0;
}
cache_pc_function_low = SYMBOL_VALUE_ADDRESS (msymbol);
cache_pc_function_name = SYMBOL_LINKAGE_NAME (msymbol);
cache_pc_function_section = section;
/* If the minimal symbol has a size, use it for the cache.
Otherwise use the lesser of the next minimal symbol in the same
section, or the end of the section, as the end of the
function. */
if (MSYMBOL_SIZE (msymbol) != 0)
cache_pc_function_high = cache_pc_function_low + MSYMBOL_SIZE (msymbol);
else
{
/* Step over other symbols at this same address, and symbols in
other sections, to find the next symbol in this section with
a different address. */
for (i = 1; SYMBOL_LINKAGE_NAME (msymbol + i) != NULL; i++)
{
if (SYMBOL_VALUE_ADDRESS (msymbol + i) != SYMBOL_VALUE_ADDRESS (msymbol)
&& SYMBOL_OBJ_SECTION (msymbol + i) == SYMBOL_OBJ_SECTION (msymbol))
break;
}
if (SYMBOL_LINKAGE_NAME (msymbol + i) != NULL
&& SYMBOL_VALUE_ADDRESS (msymbol + i) < obj_section_endaddr (section))
cache_pc_function_high = SYMBOL_VALUE_ADDRESS (msymbol + i);
else
/* We got the start address from the last msymbol in the objfile.
So the end address is the end of the section. */
cache_pc_function_high = obj_section_endaddr (section);
}
return_cached_value:
if (address)
{
if (pc_in_unmapped_range (pc, section))
*address = overlay_unmapped_address (cache_pc_function_low, section);
else
*address = cache_pc_function_low;
}
if (name)
*name = cache_pc_function_name;
if (endaddr)
{
if (pc_in_unmapped_range (pc, section))
{
/* Because the high address is actually beyond the end of
the function (and therefore possibly beyond the end of
the overlay), we must actually convert (high - 1) and
then add one to that. */
*endaddr = 1 + overlay_unmapped_address (cache_pc_function_high - 1,
section);
}
else
*endaddr = cache_pc_function_high;
}
return 1;
}
/* Return the innermost stack frame executing inside of BLOCK,
or NULL if there is no such frame. If BLOCK is NULL, just return NULL. */
struct frame_info *
block_innermost_frame (struct block *block)
{
struct frame_info *frame;
CORE_ADDR start;
CORE_ADDR end;
if (block == NULL)
return NULL;
start = BLOCK_START (block);
end = BLOCK_END (block);
frame = get_current_frame ();
while (frame != NULL)
{
struct block *frame_block = get_frame_block (frame, NULL);
if (frame_block != NULL && contained_in (frame_block, block))
return frame;
frame = get_prev_frame (frame);
}
return NULL;
}