old-cross-binutils/sim/mips/sky-pke.c
Ron Unrau b8140a08bf * sim-main.h: shadow NUM_CORE_REGS from tm-txvu.h
* interp.c: use NUM_CORE_REGS
        * sky-gdb.c (set_fifo_breakpoints): use VIF interrupt bit for break
        * sky-pke.c (pke_issue): use interrupt bit for break points
1998-07-31 22:02:12 +00:00

2580 lines
74 KiB
C

/* Copyright (C) 1998, Cygnus Solutions */
#include "config.h"
#include <stdlib.h>
#include "sim-main.h"
#include "sim-bits.h"
#include "sim-assert.h"
#include "sky-pke.h"
#include "sky-dma.h"
#include "sky-vu.h"
#include "sky-gpuif.h"
#include "sky-gdb.h"
#include "sky-device.h"
#ifdef HAVE_STRING_H
#include <string.h>
#else
#ifdef HAVE_STRINGS_H
#include <strings.h>
#endif
#endif
/* Internal function declarations */
static int pke_io_read_buffer(device*, void*, int, address_word,
unsigned, sim_cpu*, sim_cia);
static int pke_io_write_buffer(device*, const void*, int, address_word,
unsigned, sim_cpu*, sim_cia);
static void pke_reset(struct pke_device*);
static void pke_issue(SIM_DESC, struct pke_device*);
static void pke_pc_advance(struct pke_device*, int num_words);
static struct fifo_quadword* pke_pcrel_fifo(struct pke_device*, int operand_num,
unsigned_4** operand);
static unsigned_4* pke_pcrel_operand(struct pke_device*, int operand_num);
static unsigned_4 pke_pcrel_operand_bits(struct pke_device*, int bit_offset,
int bit_width, unsigned_4* sourceaddr);
static void pke_attach(SIM_DESC sd, struct pke_device* me);
enum pke_check_target { chk_vu, chk_path1, chk_path2, chk_path3 };
static int pke_check_stall(struct pke_device* me, enum pke_check_target what);
static void pke_flip_dbf(struct pke_device* me);
static void pke_begin_interrupt_stall(struct pke_device* me);
/* PKEcode handlers */
static void pke_code_nop(struct pke_device* me, unsigned_4 pkecode);
static void pke_code_stcycl(struct pke_device* me, unsigned_4 pkecode);
static void pke_code_offset(struct pke_device* me, unsigned_4 pkecode);
static void pke_code_base(struct pke_device* me, unsigned_4 pkecode);
static void pke_code_itop(struct pke_device* me, unsigned_4 pkecode);
static void pke_code_stmod(struct pke_device* me, unsigned_4 pkecode);
static void pke_code_mskpath3(struct pke_device* me, unsigned_4 pkecode);
static void pke_code_pkemark(struct pke_device* me, unsigned_4 pkecode);
static void pke_code_flushe(struct pke_device* me, unsigned_4 pkecode);
static void pke_code_flush(struct pke_device* me, unsigned_4 pkecode);
static void pke_code_flusha(struct pke_device* me, unsigned_4 pkecode);
static void pke_code_pkemscal(struct pke_device* me, unsigned_4 pkecode);
static void pke_code_pkemscnt(struct pke_device* me, unsigned_4 pkecode);
static void pke_code_pkemscalf(struct pke_device* me, unsigned_4 pkecode);
static void pke_code_stmask(struct pke_device* me, unsigned_4 pkecode);
static void pke_code_strow(struct pke_device* me, unsigned_4 pkecode);
static void pke_code_stcol(struct pke_device* me, unsigned_4 pkecode);
static void pke_code_mpg(struct pke_device* me, unsigned_4 pkecode);
static void pke_code_direct(struct pke_device* me, unsigned_4 pkecode);
static void pke_code_directhl(struct pke_device* me, unsigned_4 pkecode);
static void pke_code_unpack(struct pke_device* me, unsigned_4 pkecode);
static void pke_code_error(struct pke_device* me, unsigned_4 pkecode);
unsigned_4 pke_fifo_flush(struct pke_fifo*);
void pke_fifo_reset(struct pke_fifo*);
struct fifo_quadword* pke_fifo_fit(struct pke_fifo*);
struct fifo_quadword* pke_fifo_access(struct pke_fifo*, unsigned_4 qwnum);
void pke_fifo_old(struct pke_fifo*, unsigned_4 qwnum);
/* Default --log-file names */
const char *pke0_default_trace = "vif0.s";
const char *pke1_default_trace = "vif1.s";
/* Static data */
struct pke_device pke0_device =
{
{ "vif0", &pke_io_read_buffer, &pke_io_write_buffer }, /* device */
0, 0, /* ID, flags */
{}, /* regs */
{}, 0, /* FIFO write buffer */
{ NULL, 0, 0, 0 }, /* FIFO */
NULL, NULL, /* FIFO trace file descriptor and name */
-1, -1, 0, 0, 0, /* invalid FIFO cache */
0, 0, /* pc */
NULL, NULL /* disassembly trace file descriptor and name */
};
struct pke_device pke1_device =
{
{ "vif1", &pke_io_read_buffer, &pke_io_write_buffer }, /* device */
1, 0, /* ID, flags */
{}, /* regs */
{}, 0, /* FIFO write buffer */
{ NULL, 0, 0, 0 }, /* FIFO */
NULL, NULL, /* FIFO trace file descriptor and name */
-1, -1, 0, 0, 0, /* invalid FIFO cache */
0, 0, /* pc */
NULL, NULL /* disassembly trace file descriptor and name */
};
/* External functions */
/* Attach PKE addresses to main memory */
void
pke0_attach(SIM_DESC sd)
{
pke_attach(sd, & pke0_device);
pke_reset(& pke0_device);
}
void
pke1_attach(SIM_DESC sd)
{
pke_attach(sd, & pke1_device);
pke_reset(& pke1_device);
}
/* Issue a PKE instruction if possible */
void
pke0_issue(SIM_DESC sd)
{
pke_issue(sd, & pke0_device);
}
void
pke1_issue(SIM_DESC sd)
{
pke_issue(sd, & pke1_device);
}
/* Internal functions */
/* Attach PKE memory regions to simulator */
void
pke_attach(SIM_DESC sd, struct pke_device* me)
{
/* register file */
sim_core_attach (sd, NULL, 0, access_read_write, 0,
(me->pke_number == 0) ? PKE0_REGISTER_WINDOW_START : PKE1_REGISTER_WINDOW_START,
PKE_REGISTER_WINDOW_SIZE /*nr_bytes*/,
0 /*modulo*/,
(device*) me,
NULL /*buffer*/);
/* FIFO port */
sim_core_attach (sd, NULL, 0, access_read_write, 0,
(me->pke_number == 0) ? PKE0_FIFO_ADDR : PKE1_FIFO_ADDR,
sizeof(quadword) /*nr_bytes*/,
0 /*modulo*/,
(device*) me,
NULL /*buffer*/);
/* VU MEM0 tracking table */
sim_core_attach (sd, NULL, 0, access_read_write, 0,
((me->pke_number == 0) ? VU0_MEM0_SRCADDR_START : VU1_MEM0_SRCADDR_START),
((me->pke_number == 0) ? VU0_MEM0_SIZE : VU1_MEM0_SIZE) / 2,
0 /*modulo*/,
NULL,
NULL /*buffer*/);
/* VU MEM1 tracking table */
sim_core_attach (sd, NULL, 0, access_read_write, 0,
((me->pke_number == 0) ? VU0_MEM1_SRCADDR_START : VU1_MEM1_SRCADDR_START),
((me->pke_number == 0) ? VU0_MEM1_SIZE : VU1_MEM1_SIZE) / 4,
0 /*modulo*/,
NULL,
NULL /*buffer*/);
}
/* Read PKE Pseudo-PC index into buf in target order */
int
read_pke_pcx (struct pke_device *me, void *buf)
{
*((int *) buf) = H2T_4( (me->fifo_pc << 2) | me->qw_pc );
return 4;
}
/* Read PKE Pseudo-PC source address into buf in target order */
int
read_pke_pc (struct pke_device *me, void *buf)
{
struct fifo_quadword* fqw = pke_fifo_access(& me->fifo, me->fifo_pc);
unsigned_4 addr;
if (fqw == NULL)
*((int *) buf) = 0;
else
{
addr = (fqw->source_address & ~15) | (me->qw_pc << 2);
*((unsigned_4 *) buf) = H2T_4( addr );
}
return 4;
}
/* Read PKE reg into buf in target order */
int
read_pke_reg (struct pke_device *me, int reg_num, void *buf)
{
/* handle reads to individual registers; clear `readable' on error */
switch (reg_num)
{
/* handle common case of register reading, side-effect free */
/* PKE1-only registers*/
case PKE_REG_BASE:
case PKE_REG_OFST:
case PKE_REG_TOPS:
case PKE_REG_TOP:
case PKE_REG_DBF:
if (me->pke_number == 0)
{
*((int *) buf) = 0;
break;
}
/* fall through */
/* PKE0 & PKE1 common registers*/
case PKE_REG_STAT:
case PKE_REG_ERR:
case PKE_REG_MARK:
case PKE_REG_CYCLE:
case PKE_REG_MODE:
case PKE_REG_NUM:
case PKE_REG_MASK:
case PKE_REG_CODE:
case PKE_REG_ITOPS:
case PKE_REG_ITOP:
case PKE_REG_R0:
case PKE_REG_R1:
case PKE_REG_R2:
case PKE_REG_R3:
case PKE_REG_C0:
case PKE_REG_C1:
case PKE_REG_C2:
case PKE_REG_C3:
*((int *) buf) = H2T_4(me->regs[reg_num][0]);
break;
/* handle common case of write-only registers */
case PKE_REG_FBRST:
*((int *) buf) = 0;
break;
default:
ASSERT(0); /* tests above should prevent this possibility */
}
return 4;
}
/* Handle a PKE read; return no. of bytes read */
int
pke_io_read_buffer(device *me_,
void *dest,
int space,
address_word addr,
unsigned nr_bytes,
sim_cpu *cpu,
sim_cia cia)
{
/* downcast to gather embedding pke_device struct */
struct pke_device* me = (struct pke_device*) me_;
/* find my address ranges */
address_word my_reg_start =
(me->pke_number == 0) ? PKE0_REGISTER_WINDOW_START : PKE1_REGISTER_WINDOW_START;
address_word my_fifo_addr =
(me->pke_number == 0) ? PKE0_FIFO_ADDR : PKE1_FIFO_ADDR;
/* enforce that an access does not span more than one quadword */
address_word low = ADDR_TRUNC_QW(addr);
address_word high = ADDR_TRUNC_QW(addr + nr_bytes - 1);
if(low != high)
return 0;
/* classify address & handle */
if((addr >= my_reg_start) && (addr < my_reg_start + PKE_REGISTER_WINDOW_SIZE))
{
/* register bank */
int reg_num = ADDR_TRUNC_QW(addr - my_reg_start) >> 4;
int reg_byte = ADDR_OFFSET_QW(addr); /* find byte-offset inside register bank */
quadword result;
/* clear result */
result[0] = result[1] = result[2] = result[3] = 0;
read_pke_reg (me, reg_num, result);
/* perform transfer & return */
memcpy(dest, ((unsigned_1*) &result) + reg_byte, nr_bytes);
return nr_bytes;
/* NOTREACHED */
}
else if(addr >= my_fifo_addr &&
addr < my_fifo_addr + sizeof(quadword))
{
/* FIFO */
/* FIFO is not readable: return a word of zeroes */
memset(dest, 0, nr_bytes);
return nr_bytes;
}
/* NOTREACHED */
return 0;
}
/* Write PKE reg from buf, which is in target order */
int
write_pke_reg (struct pke_device *me, int reg_num, const void *buf)
{
int writeable = 1;
/* make words host-endian */
unsigned_4 input = T2H_4( *((unsigned_4 *) buf) );
/* handle writes to individual registers; clear `writeable' on error */
switch (reg_num)
{
case PKE_REG_FBRST:
/* Order these tests from least to most overriding, in case
multiple bits are set. */
if(BIT_MASK_GET(input, PKE_REG_FBRST_STC_B, PKE_REG_FBRST_STC_E))
{
/* clear a bunch of status bits */
PKE_REG_MASK_SET(me, STAT, PSS, 0);
PKE_REG_MASK_SET(me, STAT, PFS, 0);
PKE_REG_MASK_SET(me, STAT, PIS, 0);
PKE_REG_MASK_SET(me, STAT, INT, 0);
PKE_REG_MASK_SET(me, STAT, ER0, 0);
PKE_REG_MASK_SET(me, STAT, ER1, 0);
me->flags &= ~PKE_FLAG_PENDING_PSS;
/* will allow resumption of possible stalled instruction */
}
if(BIT_MASK_GET(input, PKE_REG_FBRST_STP_B, PKE_REG_FBRST_STP_E))
{
me->flags |= PKE_FLAG_PENDING_PSS;
}
if(BIT_MASK_GET(input, PKE_REG_FBRST_FBK_B, PKE_REG_FBRST_FBK_E))
{
PKE_REG_MASK_SET(me, STAT, PFS, 1);
}
if(BIT_MASK_GET(input, PKE_REG_FBRST_RST_B, PKE_REG_FBRST_RST_E))
{
pke_reset(me);
}
break;
case PKE_REG_ERR:
/* copy bottom three bits */
BIT_MASK_SET(me->regs[PKE_REG_ERR][0], 0, 2, BIT_MASK_GET(input, 0, 2));
break;
case PKE_REG_MARK:
/* copy bottom sixteen bits */
PKE_REG_MASK_SET(me, MARK, MARK, BIT_MASK_GET(input, 0, 15));
/* reset MRK bit in STAT */
PKE_REG_MASK_SET(me, STAT, MRK, 0);
break;
/* handle common case of read-only registers */
/* PKE1-only registers - not really necessary to handle separately */
case PKE_REG_BASE:
case PKE_REG_OFST:
case PKE_REG_TOPS:
case PKE_REG_TOP:
case PKE_REG_DBF:
if(me->pke_number == 0)
writeable = 0;
/* fall through */
/* PKE0 & PKE1 common registers*/
case PKE_REG_STAT:
/* ignore FDR bit for PKE1_STAT -- simulator does not implement PKE->RAM transfers */
case PKE_REG_CYCLE:
case PKE_REG_MODE:
case PKE_REG_NUM:
case PKE_REG_MASK:
case PKE_REG_CODE:
case PKE_REG_ITOPS:
case PKE_REG_ITOP:
case PKE_REG_R0:
case PKE_REG_R1:
case PKE_REG_R2:
case PKE_REG_R3:
case PKE_REG_C0:
case PKE_REG_C1:
case PKE_REG_C2:
case PKE_REG_C3:
writeable = 0;
break;
default:
ASSERT(0); /* test above should prevent this possibility */
}
/* perform return */
if(! writeable)
{
return 0; /* error */
}
return 4;
}
/* Handle a PKE write; return no. of bytes written */
int
pke_io_write_buffer(device *me_,
const void *src,
int space,
address_word addr,
unsigned nr_bytes,
sim_cpu *cpu,
sim_cia cia)
{
/* downcast to gather embedding pke_device struct */
struct pke_device* me = (struct pke_device*) me_;
/* find my address ranges */
address_word my_reg_start =
(me->pke_number == 0) ? PKE0_REGISTER_WINDOW_START : PKE1_REGISTER_WINDOW_START;
address_word my_fifo_addr =
(me->pke_number == 0) ? PKE0_FIFO_ADDR : PKE1_FIFO_ADDR;
/* enforce that an access does not span more than one quadword */
address_word low = ADDR_TRUNC_QW(addr);
address_word high = ADDR_TRUNC_QW(addr + nr_bytes - 1);
if(low != high)
return 0;
/* classify address & handle */
if((addr >= my_reg_start) && (addr < my_reg_start + PKE_REGISTER_WINDOW_SIZE))
{
/* register bank */
int reg_num = ADDR_TRUNC_QW(addr - my_reg_start) >> 4;
int reg_byte = ADDR_OFFSET_QW(addr); /* find byte-offset inside register bank */
quadword input;
/* clear input */
input[0] = input[1] = input[2] = input[3] = 0;
/* write user-given bytes into input */
memcpy(((unsigned_1*) &input) + reg_byte, src, nr_bytes);
write_pke_reg (me, reg_num, input);
return nr_bytes;
/* NOTREACHED */
}
else if(addr >= my_fifo_addr &&
addr < my_fifo_addr + sizeof(quadword))
{
/* FIFO */
struct fifo_quadword* fqw;
int fifo_byte = ADDR_OFFSET_QW(addr); /* find byte-offset inside fifo quadword */
unsigned_4 dma_tag_present = 0;
int i;
/* collect potentially-partial quadword in write buffer; LE byte order */
memcpy(((unsigned_1*)& me->fifo_qw_in_progress) + fifo_byte, src, nr_bytes);
/* mark bytes written */
for(i = fifo_byte; i < fifo_byte + nr_bytes; i++)
BIT_MASK_SET(me->fifo_qw_done, i, i, 1);
/* return if quadword not quite written yet */
if(BIT_MASK_GET(me->fifo_qw_done, 0, sizeof(quadword)-1) !=
BIT_MASK_BTW(0, sizeof(quadword)-1))
return nr_bytes;
/* all done - process quadword after clearing flag */
BIT_MASK_SET(me->fifo_qw_done, 0, sizeof(quadword)-1, 0);
/* allocate required address in FIFO */
fqw = pke_fifo_fit(& me->fifo);
ASSERT(fqw != NULL);
/* fill in unclassified FIFO quadword data in host byte order */
fqw->word_class[0] = fqw->word_class[1] =
fqw->word_class[2] = fqw->word_class[3] = wc_unknown;
fqw->data[0] = T2H_4(me->fifo_qw_in_progress[0]);
fqw->data[1] = T2H_4(me->fifo_qw_in_progress[1]);
fqw->data[2] = T2H_4(me->fifo_qw_in_progress[2]);
fqw->data[3] = T2H_4(me->fifo_qw_in_progress[3]);
/* read DMAC-supplied indicators */
ASSERT(sizeof(unsigned_4) == 4);
PKE_MEM_READ(me, (me->pke_number == 0 ? DMA_D0_MADR : DMA_D1_MADR),
& fqw->source_address, /* converted to host-endian */
4);
PKE_MEM_READ(me, (me->pke_number == 0 ? DMA_D0_PKTFLAG : DMA_D1_PKTFLAG),
& dma_tag_present,
4);
if(dma_tag_present)
{
/* lower two words are DMA tags */
fqw->word_class[0] = fqw->word_class[1] = wc_dma;
}
/* set FQC to "1" as FIFO is now not empty */
PKE_REG_MASK_SET(me, STAT, FQC, 1);
/* okay */
return nr_bytes;
}
/* NOTREACHED */
return 0;
}
/* Reset the simulated PKE hardware state. Preserve other internal
state. */
void
pke_reset(struct pke_device* me)
{
/* advance PC over last quadword in FIFO; keep previous FIFO history */
me->fifo_pc = pke_fifo_flush(& me->fifo);
me->qw_pc = 0;
/* clear registers, flag, other state */
memset(me->regs, 0, sizeof(me->regs));
me->fifo_qw_done = 0;
/* Command options will remain alive over the reset. */
me->flags &= PKE_FLAG_TRACE_ON;
/* NOTE: Since disassembly / trace logs remain open across ordinary
simulated hardware resets, there may be a problem of producing a
trace file that has only partial results from the prior
operation. For the current PKE model, however, this cannot
happen as stalls & interrupts only occur *between* simulated
PKEcode executions. This means that our trace files ought remain
syntactically valid, despite resets. */
if(me->trace_file != NULL)
{
fprintf(me->trace_file,
"\n;%s RESET\n",
me->dev.name);
}
}
/* Issue & swallow next PKE opcode if possible/available */
void
pke_issue(SIM_DESC sd, struct pke_device* me)
{
struct fifo_quadword* fqw;
unsigned_4 fw;
unsigned_4 cmd, intr;
/* 1 -- fetch PKE instruction */
/* confirm availability of new quadword of PKE instructions */
fqw = pke_fifo_access(& me->fifo, me->fifo_pc);
if(fqw == NULL)
return;
/* skip over DMA tag, if present */
pke_pc_advance(me, 0);
/* note: this can only change qw_pc from 0 to 2 and will not
invalidate fqw */
/* "fetch" instruction quadword and word */
fw = fqw->data[me->qw_pc];
/* store word in PKECODE register */
me->regs[PKE_REG_CODE][0] = fw;
/* 2 -- test go / no-go for PKE execution */
/* switch on STAT:PSS if PSS-pending and in idle state */
if((PKE_REG_MASK_GET(me, STAT, PPS) == PKE_REG_STAT_PPS_IDLE) &&
(me->flags & PKE_FLAG_PENDING_PSS) != 0)
{
me->flags &= ~PKE_FLAG_PENDING_PSS;
PKE_REG_MASK_SET(me, STAT, PSS, 1);
}
/* check for stall/halt control bits */
if(PKE_REG_MASK_GET(me, STAT, PFS) ||
PKE_REG_MASK_GET(me, STAT, PSS) || /* note special treatment below */
/* PEW bit not a reason to keep stalling - it's just an indication, re-computed below */
/* PGW bit not a reason to keep stalling - it's just an indication, re-computed below */
/* ER0/ER1 not a reason to keep stalling - it's just an indication */
PKE_REG_MASK_GET(me, STAT, PIS))
{
/* (still) stalled */
PKE_REG_MASK_SET(me, STAT, PPS, PKE_REG_STAT_PPS_STALL);
/* try again next cycle */
return;
}
/* 3 -- decode PKE instruction */
/* decoding */
if(PKE_REG_MASK_GET(me, STAT, PPS) == PKE_REG_STAT_PPS_IDLE)
PKE_REG_MASK_SET(me, STAT, PPS, PKE_REG_STAT_PPS_DECODE);
/* Extract relevant bits from PKEcode */
intr = BIT_MASK_GET(fw, PKE_OPCODE_I_B, PKE_OPCODE_I_E);
cmd = BIT_MASK_GET(fw, PKE_OPCODE_CMD_B, PKE_OPCODE_CMD_E);
/* handle interrupts */
if(intr)
{
/* check to see if the interrupt bit is being used for a breakpoint */
if (is_vif_breakpoint ((fqw->source_address & ~15) | (me->qw_pc << 2)))
{
sim_cpu *cpu = STATE_CPU (sd, 0);
unsigned_4 pc_addr = (fqw->source_address & ~15) | (me->qw_pc << 2);
sim_engine_halt (sd, cpu, NULL, pc_addr, sim_stopped, SIM_SIGTRAP);
}
/* are we resuming an interrupt-stalled instruction? */
if(me->flags & PKE_FLAG_INT_NOLOOP)
{
/* clear loop-prevention flag */
me->flags &= ~PKE_FLAG_INT_NOLOOP;
/* fall through to decode & execute */
/* The pke_code_* functions should not check the MSB in the
pkecode. */
}
else /* new interrupt-flagged instruction */
{
/* set INT flag in STAT register */
PKE_REG_MASK_SET(me, STAT, INT, 1);
/* set loop-prevention flag */
me->flags |= PKE_FLAG_INT_NOLOOP;
/* set PIS if stall not masked */
if(!PKE_REG_MASK_GET(me, ERR, MII))
pke_begin_interrupt_stall(me);
/* suspend this instruction unless it's PKEMARK */
if(!IS_PKE_CMD(cmd, PKEMARK))
{
PKE_REG_MASK_SET(me, STAT, PPS, PKE_REG_STAT_PPS_STALL);
return;
}
else
{
; /* fall through to decode & execute */
}
}
}
/* open trace file if necessary */
if((me->flags & PKE_FLAG_TRACE_ON) &&
(me->trace_file == NULL))
{
/* use default names */
if(me->trace_file_name == NULL)
{
if(me->pke_number == 0)
me->trace_file_name = (char *) pke0_default_trace;
else
me->trace_file_name = (char *) pke1_default_trace;
}
sky_open_file(& (me->trace_file),
me->trace_file_name,
(char *) NULL, _IOFBF );
/* print disassembly header */
fprintf(me->trace_file,
"\t.global %s_disassembly_tag\n"
"%s_disassembly_tag:\n",
me->dev.name, me->dev.name);
}
/* decode & execute */
/* order tests in decreasing order of frequency */
if(IS_PKE_CMD(cmd, PKENOP))
pke_code_nop(me, fw);
else if(IS_PKE_CMD(cmd, PKEMSCAL))
pke_code_pkemscal(me, fw);
else if(IS_PKE_CMD(cmd, PKEMSCNT))
pke_code_pkemscnt(me, fw);
else if(me->pke_number == 1 && IS_PKE_CMD(cmd, PKEMSCALF))
pke_code_pkemscalf(me, fw);
else if(IS_PKE_CMD(cmd, UNPACK))
pke_code_unpack(me, fw);
else if(IS_PKE_CMD(cmd, STCYCL))
pke_code_stcycl(me, fw);
else if(IS_PKE_CMD(cmd, FLUSHE))
pke_code_flushe(me, fw);
else if(me->pke_number == 1 && IS_PKE_CMD(cmd, FLUSH))
pke_code_flush(me, fw);
else if(me->pke_number == 1 && IS_PKE_CMD(cmd, FLUSHA))
pke_code_flusha(me, fw);
else if(IS_PKE_CMD(cmd, DIRECT))
pke_code_direct(me, fw);
else if(IS_PKE_CMD(cmd, DIRECTHL))
pke_code_directhl(me, fw);
else if(me->pke_number == 1 && IS_PKE_CMD(cmd, OFFSET))
pke_code_offset(me, fw);
else if(me->pke_number == 1 && IS_PKE_CMD(cmd, BASE))
pke_code_base(me, fw);
else if(IS_PKE_CMD(cmd, ITOP))
pke_code_itop(me, fw);
else if(IS_PKE_CMD(cmd, STMOD))
pke_code_stmod(me, fw);
else if(IS_PKE_CMD(cmd, PKEMARK))
pke_code_pkemark(me, fw);
else if(IS_PKE_CMD(cmd, STMASK))
pke_code_stmask(me, fw);
else if(IS_PKE_CMD(cmd, STROW))
pke_code_strow(me, fw);
else if(IS_PKE_CMD(cmd, STCOL))
pke_code_stcol(me, fw);
else if(IS_PKE_CMD(cmd, MPG))
pke_code_mpg(me, fw);
else if(me->pke_number == 1 && IS_PKE_CMD(cmd, MSKPATH3))
pke_code_mskpath3(me, fw);
/* ... no other commands ... */
else
pke_code_error(me, fw);
}
/* Clear out contents of FIFO; act as if it was empty. Return PC
pointing to one-past-last word. */
unsigned_4
pke_fifo_flush(struct pke_fifo* fifo)
{
/* don't modify any state! */
return fifo->origin + fifo->next;
}
/* Clear out contents of FIFO; make it really empty. */
void
pke_fifo_reset(struct pke_fifo* fifo)
{
int i;
/* clear fifo quadwords */
for(i=0; i<fifo->next; i++)
{
zfree(fifo->quadwords[i]);
fifo->quadwords[i] = NULL;
}
/* reset pointers */
fifo->origin = 0;
fifo->next = 0;
}
/* Make space for the next quadword in the FIFO. Allocate/enlarge
FIFO pointer block if necessary. Return a pointer to it. */
struct fifo_quadword*
pke_fifo_fit(struct pke_fifo* fifo)
{
struct fifo_quadword* fqw;
/* out of space on quadword pointer array? */
if(fifo->next == fifo->length) /* also triggered before fifo->quadwords allocated */
{
struct fifo_quadword** new_qw;
unsigned_4 new_length = fifo->length + PKE_FIFO_GROW_SIZE;
/* allocate new pointer block */
new_qw = zalloc(new_length * sizeof(struct fifo_quadword*));
ASSERT(new_qw != NULL);
/* copy over old contents, if any */
if(fifo->quadwords != NULL)
{
/* copy over old pointers to beginning of new block */
memcpy(new_qw, fifo->quadwords,
fifo->length * sizeof(struct fifo_quadword*));
/* free old block */
zfree(fifo->quadwords);
}
/* replace pointers & counts */
fifo->quadwords = new_qw;
fifo->length = new_length;
}
/* sanity check */
ASSERT(fifo->quadwords != NULL);
/* allocate new quadword from heap */
fqw = zalloc(sizeof(struct fifo_quadword));
ASSERT(fqw != NULL);
/* push quadword onto fifo */
fifo->quadwords[fifo->next] = fqw;
fifo->next++;
return fqw;
}
/* Return a pointer to the FIFO quadword with given absolute index, or
NULL if it is out of range */
struct fifo_quadword*
pke_fifo_access(struct pke_fifo* fifo, unsigned_4 qwnum)
{
struct fifo_quadword* fqw;
if((qwnum < fifo->origin) || /* before history */
(qwnum >= fifo->origin + fifo->next)) /* after last available quadword */
fqw = NULL;
else
{
ASSERT(fifo->quadwords != NULL); /* must be allocated already */
fqw = fifo->quadwords[qwnum - fifo->origin]; /* pull out pointer from array */
ASSERT(fqw != NULL); /* must be allocated already */
}
return fqw;
}
/* Authorize release of any FIFO entries older than given absolute quadword. */
void
pke_fifo_old(struct pke_fifo* fifo, unsigned_4 qwnum)
{
/* do we have any too-old FIFO elements? */
if(fifo->origin + PKE_FIFO_ARCHEOLOGY < qwnum)
{
/* count quadwords to forget */
int horizon = qwnum - (fifo->origin + PKE_FIFO_ARCHEOLOGY);
int i;
/* free quadwords at indices below horizon */
for(i=0; i < horizon; i++)
zfree(fifo->quadwords[i]);
/* move surviving quadword pointers down to beginning of array */
for(i=horizon; i < fifo->next; i++)
fifo->quadwords[i-horizon] = fifo->quadwords[i];
/* clear duplicate pointers */
for(i=fifo->next - horizon; i < fifo->next; i++)
fifo->quadwords[i] = NULL;
/* adjust FIFO pointers */
fifo->origin = fifo->origin + horizon;
fifo->next = fifo->next - horizon;
}
}
/* advance the PC by given number of data words; update STAT/FQC
field; assume FIFO is filled enough; classify passed-over words;
write FIFO trace line */
void
pke_pc_advance(struct pke_device* me, int num_words)
{
int num = num_words;
struct fifo_quadword* fq = NULL;
unsigned_4 old_fifo_pc = me->fifo_pc;
ASSERT(num_words >= 0);
/* printf("pke %d pc_advance num_words %d\n", me->pke_number, num_words); */
while(1)
{
/* find next quadword, if any */
fq = pke_fifo_access(& me->fifo, me->fifo_pc);
/* skip over DMA tag words if present in word 0 or 1 */
if(fq != NULL && fq->word_class[me->qw_pc] == wc_dma)
{
/* skip by going around loop an extra time */
num ++;
}
/* nothing left to skip / no DMA tag here */
if(num == 0)
break;
/* we are supposed to skip existing words */
ASSERT(fq != NULL);
/* one word skipped */
num --;
/* point to next word */
me->qw_pc ++;
if(me->qw_pc == 4)
{
me->qw_pc = 0;
me->fifo_pc ++;
/* trace the consumption of the FIFO quadword we just skipped over */
/* fq still points to it */
if ( indebug (me->dev.name))
{
if (( me->fifo_trace_file == NULL) &&
( me->fifo_trace_file_name != NULL ))
sky_open_file (&me->fifo_trace_file, me->fifo_trace_file_name,
(char *) NULL, _IOLBF );
/* assert complete classification */
ASSERT(fq->word_class[3] != wc_unknown);
ASSERT(fq->word_class[2] != wc_unknown);
ASSERT(fq->word_class[1] != wc_unknown);
ASSERT(fq->word_class[0] != wc_unknown);
/* print trace record */
fprintf((me->fifo_trace_file != NULL) ? me->fifo_trace_file : stdout,
"%d 0x%08x_%08x_%08x_%08x 0x%08x %c%c%c%c\n",
(me->pke_number == 0 ? 0 : 1),
(unsigned) fq->data[3], (unsigned) fq->data[2],
(unsigned) fq->data[1], (unsigned) fq->data[0],
(unsigned) fq->source_address,
fq->word_class[3], fq->word_class[2],
fq->word_class[1], fq->word_class[0]);
}
} /* next quadword */
}
/* age old entries before PC */
if(me->fifo_pc != old_fifo_pc)
{
/* we advanced the fifo-pc; authorize disposal of anything
before previous PKEcode */
pke_fifo_old(& me->fifo, old_fifo_pc);
}
/* clear FQC if FIFO is now empty */
fq = pke_fifo_access(& me->fifo, me->fifo_pc);
if(fq == NULL)
{
PKE_REG_MASK_SET(me, STAT, FQC, 0);
}
else /* annote the word where the PC lands as an PKEcode */
{
ASSERT(fq->word_class[me->qw_pc] == wc_pkecode || fq->word_class[me->qw_pc] == wc_unknown);
fq->word_class[me->qw_pc] = wc_pkecode;
}
}
/* Return pointer to FIFO quadword containing given operand# in FIFO.
`operand_num' starts at 1. Return pointer to operand word in last
argument, if non-NULL. If FIFO is not full enough, return 0.
Signal an ER0 indication upon skipping a DMA tag. */
struct fifo_quadword*
pke_pcrel_fifo(struct pke_device* me, int operand_num, unsigned_4** operand)
{
int num;
int new_qw_pc, new_fifo_pc;
struct fifo_quadword* fq = NULL;
/* check for validity of last search results in cache */
if(me->last_fifo_pc == me->fifo_pc &&
me->last_qw_pc == me->qw_pc &&
operand_num > me->last_num)
{
/* continue search from last stop */
new_fifo_pc = me->last_new_fifo_pc;
new_qw_pc = me->last_new_qw_pc;
num = operand_num - me->last_num;
}
else
{
/* start search from scratch */
new_fifo_pc = me->fifo_pc;
new_qw_pc = me->qw_pc;
num = operand_num;
}
ASSERT(num > 0);
/* printf("pke %d pcrel_fifo operand_num %d\n", me->pke_number, operand_num); */
do
{
/* one word skipped */
num --;
/* point to next word */
new_qw_pc ++;
if(new_qw_pc == 4)
{
new_qw_pc = 0;
new_fifo_pc ++;
}
fq = pke_fifo_access(& me->fifo, new_fifo_pc);
/* check for FIFO underflow */
if(fq == NULL)
break;
/* skip over DMA tag words if present in word 0 or 1 */
if(fq->word_class[new_qw_pc] == wc_dma)
{
/* set ER0 */
PKE_REG_MASK_SET(me, STAT, ER0, 1);
/* mismatch error! */
if(! PKE_REG_MASK_GET(me, ERR, ME0))
{
pke_begin_interrupt_stall(me);
/* don't stall just yet -- finish this instruction */
/* the PPS_STALL state will be entered by pke_issue() next time */
}
/* skip by going around loop an extra time */
num ++;
}
}
while(num > 0);
/* return pointer to operand word itself */
if(fq != NULL)
{
*operand = & fq->data[new_qw_pc];
/* annote the word where the pseudo-PC lands as an PKE operand */
ASSERT(fq->word_class[new_qw_pc] == wc_pkedata || fq->word_class[new_qw_pc] == wc_unknown);
fq->word_class[new_qw_pc] = wc_pkedata;
/* store search results in cache */
/* keys */
me->last_fifo_pc = me->fifo_pc;
me->last_qw_pc = me->qw_pc;
/* values */
me->last_num = operand_num;
me->last_new_fifo_pc = new_fifo_pc;
me->last_new_qw_pc = new_qw_pc;
}
return fq;
}
/* Return pointer to given operand# in FIFO. `operand_num' starts at 1.
If FIFO is not full enough, return 0. Skip over DMA tags, but mark
them as an error (ER0). */
unsigned_4*
pke_pcrel_operand(struct pke_device* me, int operand_num)
{
unsigned_4* operand = NULL;
struct fifo_quadword* fifo_operand;
fifo_operand = pke_pcrel_fifo(me, operand_num, & operand);
if(fifo_operand == NULL)
ASSERT(operand == NULL); /* pke_pcrel_fifo() ought leave it untouched */
return operand;
}
/* Return a bit-field extract of given operand# in FIFO, and its
word-accurate source-addr. `bit_offset' starts at 0, referring to
LSB after PKE instruction word. Width must be >0, <=32. Assume
FIFO is full enough. Skip over DMA tags, but mark them as an error
(ER0). */
unsigned_4
pke_pcrel_operand_bits(struct pke_device* me, int bit_offset, int bit_width, unsigned_4* source_addr)
{
unsigned_4* word = NULL;
unsigned_4 value;
struct fifo_quadword* fifo_operand;
int wordnumber, bitnumber;
int i;
wordnumber = bit_offset/32;
bitnumber = bit_offset%32;
/* find operand word with bitfield */
fifo_operand = pke_pcrel_fifo(me, wordnumber + 1, &word);
ASSERT(word != NULL);
/* extract bitfield from word */
value = BIT_MASK_GET(*word, bitnumber, bitnumber + bit_width - 1);
/* extract source addr from fifo word */
*source_addr = fifo_operand->source_address;
/* add word offset */
for(i=0; i<3; i++)
if(word == & fifo_operand->data[i])
*source_addr += sizeof(unsigned_4) * i;
return value;
}
/* check for stall conditions on indicated devices (path* only on
PKE1), do not change status; return 0 iff no stall */
int
pke_check_stall(struct pke_device* me, enum pke_check_target what)
{
int any_stall = 0;
unsigned_4 cop2_stat, gpuif_stat;
/* read status words */
ASSERT(sizeof(unsigned_4) == 4);
PKE_MEM_READ(me, (GIF_REG_STAT),
& gpuif_stat,
4);
PKE_MEM_READ(me, (COP2_REG_STAT_ADDR),
& cop2_stat,
4);
/* perform checks */
if(what == chk_vu)
{
if(me->pke_number == 0)
any_stall = BIT_MASK_GET(cop2_stat, COP2_REG_STAT_VBS0_B, COP2_REG_STAT_VBS0_E);
else /* if(me->pke_number == 1) */
any_stall = BIT_MASK_GET(cop2_stat, COP2_REG_STAT_VBS1_B, COP2_REG_STAT_VBS1_E);
}
else if(what == chk_path1) /* VU -> GPUIF */
{
ASSERT(me->pke_number == 1);
if(BIT_MASK_GET(gpuif_stat, GPUIF_REG_STAT_APATH_B, GPUIF_REG_STAT_APATH_E) == 1)
any_stall = 1;
}
else if(what == chk_path2) /* PKE -> GPUIF */
{
ASSERT(me->pke_number == 1);
if(BIT_MASK_GET(gpuif_stat, GPUIF_REG_STAT_APATH_B, GPUIF_REG_STAT_APATH_E) == 2)
any_stall = 1;
}
else if(what == chk_path3) /* DMA -> GPUIF */
{
ASSERT(me->pke_number == 1);
if(BIT_MASK_GET(gpuif_stat, GPUIF_REG_STAT_APATH_B, GPUIF_REG_STAT_APATH_E) == 3)
any_stall = 1;
}
else
{
/* invalid what */
ASSERT(0);
}
/* any stall reasons? */
return any_stall;
}
/* PKE1 only: flip the DBF bit; recompute TOPS, TOP */
void
pke_flip_dbf(struct pke_device* me)
{
int newdf;
/* compute new TOP */
PKE_REG_MASK_SET(me, TOP, TOP,
PKE_REG_MASK_GET(me, TOPS, TOPS));
/* flip DBF */
newdf = PKE_REG_MASK_GET(me, DBF, DF) ? 0 : 1;
PKE_REG_MASK_SET(me, DBF, DF, newdf);
PKE_REG_MASK_SET(me, STAT, DBF, newdf);
/* compute new TOPS */
PKE_REG_MASK_SET(me, TOPS, TOPS,
(PKE_REG_MASK_GET(me, BASE, BASE) +
newdf * PKE_REG_MASK_GET(me, OFST, OFFSET)));
/* this is equivalent to last word from okadaa (98-02-25):
1) TOP=TOPS;
2) TOPS=BASE + !DBF*OFFSET
3) DBF=!DBF */
}
/* set the STAT:PIS bit and send an interrupt to the 5900 */
void
pke_begin_interrupt_stall(struct pke_device* me)
{
/* set PIS */
PKE_REG_MASK_SET(me, STAT, PIS, 1);
sky_signal_interrupt();
}
/* PKEcode handler functions -- responsible for checking and
confirming old stall conditions, executing pkecode, updating PC and
status registers -- may assume being run on correct PKE unit */
void
pke_code_nop(struct pke_device* me, unsigned_4 pkecode)
{
/* done */
if(me->trace_file != NULL)
{
fprintf(me->trace_file,
"\n; %s PC %d/%d\n"
"\tDmaCnt *\n"
"\tVIFNOP%s\n"
"\t.EndDmaData\n",
me->dev.name, me->fifo_pc, me->qw_pc,
(BIT_MASK_GET(pkecode, PKE_OPCODE_I_B, PKE_OPCODE_I_E) ? "[i]" : ""));
}
pke_pc_advance(me, 1);
PKE_REG_MASK_SET(me, STAT, PPS, PKE_REG_STAT_PPS_IDLE);
}
void
pke_code_stcycl(struct pke_device* me, unsigned_4 pkecode)
{
int imm = BIT_MASK_GET(pkecode, PKE_OPCODE_IMM_B, PKE_OPCODE_IMM_E);
/* copy immediate value into CYCLE reg */
PKE_REG_MASK_SET(me, CYCLE, WL, BIT_MASK_GET(imm, 8, 15));
PKE_REG_MASK_SET(me, CYCLE, CL, BIT_MASK_GET(imm, 0, 7));
/* done */
if(me->trace_file != NULL)
{
fprintf(me->trace_file,
"\n; %s PC %d/%d\n"
"\tDmaCnt *\n"
"\tSTCYCL%s %d,%d\n"
"\t.EndDmaData\n",
me->dev.name, me->fifo_pc, me->qw_pc,
(BIT_MASK_GET(pkecode, PKE_OPCODE_I_B, PKE_OPCODE_I_E) ? "[i]" : ""),
BIT_MASK_GET(imm, 8, 15), BIT_MASK_GET(imm, 0, 7));
}
pke_pc_advance(me, 1);
PKE_REG_MASK_SET(me, STAT, PPS, PKE_REG_STAT_PPS_IDLE);
}
void
pke_code_offset(struct pke_device* me, unsigned_4 pkecode)
{
int imm = BIT_MASK_GET(pkecode, PKE_OPCODE_IMM_B, PKE_OPCODE_IMM_E);
/* copy 10 bits to OFFSET field */
PKE_REG_MASK_SET(me, OFST, OFFSET, BIT_MASK_GET(imm, 0, 9));
/* clear DBF bit */
PKE_REG_MASK_SET(me, DBF, DF, 0);
/* clear other DBF bit */
PKE_REG_MASK_SET(me, STAT, DBF, 0);
/* set TOPS = BASE */
PKE_REG_MASK_SET(me, TOPS, TOPS, PKE_REG_MASK_GET(me, BASE, BASE));
/* done */
if(me->trace_file != NULL)
{
fprintf(me->trace_file,
"\n; %s PC %d/%d\n"
"\tDmaCnt *\n"
"\tOFFSET%s 0x%x\n"
"\t.EndDmaData\n",
me->dev.name, me->fifo_pc, me->qw_pc,
(BIT_MASK_GET(pkecode, PKE_OPCODE_I_B, PKE_OPCODE_I_E) ? "[i]" : ""),
imm);
}
pke_pc_advance(me, 1);
PKE_REG_MASK_SET(me, STAT, PPS, PKE_REG_STAT_PPS_IDLE);
}
void
pke_code_base(struct pke_device* me, unsigned_4 pkecode)
{
int imm = BIT_MASK_GET(pkecode, PKE_OPCODE_IMM_B, PKE_OPCODE_IMM_E);
/* copy 10 bits to BASE field */
PKE_REG_MASK_SET(me, BASE, BASE, BIT_MASK_GET(imm, 0, 9));
/* done */
if(me->trace_file != NULL)
{
fprintf(me->trace_file,
"\n; %s PC %d/%d\n"
"\tDmaCnt *\n"
"\tBASE%s 0x%x\n"
"\t.EndDmaData\n",
me->dev.name, me->fifo_pc, me->qw_pc,
(BIT_MASK_GET(pkecode, PKE_OPCODE_I_B, PKE_OPCODE_I_E) ? "[i]" : ""),
imm);
}
pke_pc_advance(me, 1);
PKE_REG_MASK_SET(me, STAT, PPS, PKE_REG_STAT_PPS_IDLE);
}
void
pke_code_itop(struct pke_device* me, unsigned_4 pkecode)
{
int imm = BIT_MASK_GET(pkecode, PKE_OPCODE_IMM_B, PKE_OPCODE_IMM_E);
/* copy 10 bits to ITOPS field */
PKE_REG_MASK_SET(me, ITOPS, ITOPS, BIT_MASK_GET(imm, 0, 9));
/* done */
if(me->trace_file != NULL)
{
fprintf(me->trace_file,
"\n; %s PC %d/%d\n"
"\tDmaCnt *\n"
"\tITOP%s 0x%x\n"
"\t.EndDmaData\n",
me->dev.name, me->fifo_pc, me->qw_pc,
(BIT_MASK_GET(pkecode, PKE_OPCODE_I_B, PKE_OPCODE_I_E) ? "[i]" : ""),
imm);
}
pke_pc_advance(me, 1);
PKE_REG_MASK_SET(me, STAT, PPS, PKE_REG_STAT_PPS_IDLE);
}
void
pke_code_stmod(struct pke_device* me, unsigned_4 pkecode)
{
int imm = BIT_MASK_GET(pkecode, PKE_OPCODE_IMM_B, PKE_OPCODE_IMM_E);
/* copy 2 bits to MODE register */
PKE_REG_MASK_SET(me, MODE, MDE, BIT_MASK_GET(imm, 0, 1));
/* done */
if(me->trace_file != NULL)
{
char* mode;
if(BIT_MASK_GET(imm, 0, 1) == 0) mode = "direct";
else if(BIT_MASK_GET(imm, 0, 1) == 1) mode = "add";
else if(BIT_MASK_GET(imm, 0, 1) == 2) mode = "addrow";
else mode = "3"; /* invalid mode */
fprintf(me->trace_file,
"\n; %s PC %d/%d\n"
"\tDmaCnt *\n"
"\tSTMOD%s %s\n"
"\t.EndDmaData\n",
me->dev.name, me->fifo_pc, me->qw_pc,
(BIT_MASK_GET(pkecode, PKE_OPCODE_I_B, PKE_OPCODE_I_E) ? "[i]" : ""),
mode);
}
pke_pc_advance(me, 1);
PKE_REG_MASK_SET(me, STAT, PPS, PKE_REG_STAT_PPS_IDLE);
}
void
pke_code_mskpath3(struct pke_device* me, unsigned_4 pkecode)
{
int imm = BIT_MASK_GET(pkecode, PKE_OPCODE_IMM_B, PKE_OPCODE_IMM_E);
unsigned_4 gif_mode;
/* set appropriate bit */
if(BIT_MASK_GET(imm, PKE_REG_MSKPATH3_B, PKE_REG_MSKPATH3_E) != 0)
gif_mode = GIF_REG_STAT_M3P;
else
gif_mode = 0;
/* write register to "read-only" register; gpuif code will look at M3P bit only */
PKE_MEM_WRITE(me, GIF_REG_VIF_M3P, & gif_mode, 4);
/* done */
if(me->trace_file != NULL)
{
fprintf(me->trace_file,
"\n; %s PC %d/%d\n"
"\tDmaCnt *\n"
"\tMSKPATH3%s %s\n"
"\t.EndDmaData\n",
me->dev.name, me->fifo_pc, me->qw_pc,
(BIT_MASK_GET(pkecode, PKE_OPCODE_I_B, PKE_OPCODE_I_E) ? "[i]" : ""),
(gif_mode ? "disable" : "enable"));
}
pke_pc_advance(me, 1);
PKE_REG_MASK_SET(me, STAT, PPS, PKE_REG_STAT_PPS_IDLE);
}
void
pke_code_pkemark(struct pke_device* me, unsigned_4 pkecode)
{
int imm = BIT_MASK_GET(pkecode, PKE_OPCODE_IMM_B, PKE_OPCODE_IMM_E);
/* copy 16 bits to MARK register */
PKE_REG_MASK_SET(me, MARK, MARK, BIT_MASK_GET(imm, 0, 15));
/* set MRK bit in STAT register - CPU2 v2.1 docs incorrect */
PKE_REG_MASK_SET(me, STAT, MRK, 1);
/* done */
if(me->trace_file != NULL)
{
fprintf(me->trace_file,
"\n; %s PC %d/%d\n"
"\tDmaCnt *\n"
"\tMARK%s 0x%x\n"
"\t.EndDmaData\n",
me->dev.name, me->fifo_pc, me->qw_pc,
(BIT_MASK_GET(pkecode, PKE_OPCODE_I_B, PKE_OPCODE_I_E) ? "[i]" : ""),
imm);
}
pke_pc_advance(me, 1);
PKE_REG_MASK_SET(me, STAT, PPS, PKE_REG_STAT_PPS_IDLE);
}
void
pke_code_flushe(struct pke_device* me, unsigned_4 pkecode)
{
/* compute next PEW bit */
if(pke_check_stall(me, chk_vu))
{
/* VU busy */
PKE_REG_MASK_SET(me, STAT, PEW, 1);
PKE_REG_MASK_SET(me, STAT, PPS, PKE_REG_STAT_PPS_STALL);
/* try again next cycle */
}
else
{
/* VU idle */
PKE_REG_MASK_SET(me, STAT, PEW, 0);
PKE_REG_MASK_SET(me, STAT, PPS, PKE_REG_STAT_PPS_IDLE);
if(me->trace_file != NULL)
{
fprintf(me->trace_file,
"\n; %s PC %d/%d\n"
"\tDmaCnt *\n"
"\tFLUSHE%s\n"
"\t.EndDmaData\n",
me->dev.name, me->fifo_pc, me->qw_pc,
(BIT_MASK_GET(pkecode, PKE_OPCODE_I_B, PKE_OPCODE_I_E) ? "[i]" : ""));
}
pke_pc_advance(me, 1);
}
}
void
pke_code_flush(struct pke_device* me, unsigned_4 pkecode)
{
int something_busy = 0;
/* compute next PEW, PGW bits */
if(pke_check_stall(me, chk_vu))
{
something_busy = 1;
PKE_REG_MASK_SET(me, STAT, PEW, 1);
}
else
PKE_REG_MASK_SET(me, STAT, PEW, 0);
if(pke_check_stall(me, chk_path1) ||
pke_check_stall(me, chk_path2))
{
something_busy = 1;
PKE_REG_MASK_SET(me, STAT, PGW, 1);
}
else
PKE_REG_MASK_SET(me, STAT, PGW, 0);
/* go or no go */
if(something_busy)
{
PKE_REG_MASK_SET(me, STAT, PPS, PKE_REG_STAT_PPS_WAIT);
/* try again next cycle */
}
else
{
/* all idle */
PKE_REG_MASK_SET(me, STAT, PPS, PKE_REG_STAT_PPS_IDLE);
if(me->trace_file != NULL)
{
fprintf(me->trace_file,
"\n; %s PC %d/%d\n"
"\tDmaCnt *\n"
"\tFLUSH%s\n"
"\t.EndDmaData\n",
me->dev.name, me->fifo_pc, me->qw_pc,
(BIT_MASK_GET(pkecode, PKE_OPCODE_I_B, PKE_OPCODE_I_E) ? "[i]" : ""));
}
pke_pc_advance(me, 1);
}
}
void
pke_code_flusha(struct pke_device* me, unsigned_4 pkecode)
{
int something_busy = 0;
/* compute next PEW, PGW bits */
if(pke_check_stall(me, chk_vu))
{
something_busy = 1;
PKE_REG_MASK_SET(me, STAT, PEW, 1);
}
else
PKE_REG_MASK_SET(me, STAT, PEW, 0);
if(pke_check_stall(me, chk_path1) ||
pke_check_stall(me, chk_path2) ||
pke_check_stall(me, chk_path3))
{
something_busy = 1;
PKE_REG_MASK_SET(me, STAT, PGW, 1);
}
else
PKE_REG_MASK_SET(me, STAT, PGW, 0);
if(something_busy)
{
PKE_REG_MASK_SET(me, STAT, PPS, PKE_REG_STAT_PPS_WAIT);
/* try again next cycle */
}
else
{
/* all idle */
PKE_REG_MASK_SET(me, STAT, PPS, PKE_REG_STAT_PPS_IDLE);
if(me->trace_file != NULL)
{
fprintf(me->trace_file,
"\n; %s PC %d/%d\n"
"\tDmaCnt *\n"
"\tFLUSHA%s\n"
"\t.EndDmaData\n",
me->dev.name, me->fifo_pc, me->qw_pc,
(BIT_MASK_GET(pkecode, PKE_OPCODE_I_B, PKE_OPCODE_I_E) ? "[i]" : ""));
}
pke_pc_advance(me, 1);
}
}
void
pke_code_pkemscal(struct pke_device* me, unsigned_4 pkecode)
{
/* compute next PEW bit */
if(pke_check_stall(me, chk_vu))
{
/* VU busy */
PKE_REG_MASK_SET(me, STAT, PEW, 1);
PKE_REG_MASK_SET(me, STAT, PPS, PKE_REG_STAT_PPS_STALL);
/* try again next cycle */
}
else
{
unsigned_4 vu_pc;
int imm = BIT_MASK_GET(pkecode, PKE_OPCODE_IMM_B, PKE_OPCODE_IMM_E);
/* VU idle */
PKE_REG_MASK_SET(me, STAT, PEW, 0);
/* flip DBF on PKE1 */
if(me->pke_number == 1)
pke_flip_dbf(me);
/* compute new PC for VU (host byte-order) */
vu_pc = BIT_MASK_GET(imm, 0, 15);
vu_pc = T2H_4(vu_pc);
/* write new PC; callback function gets VU running */
ASSERT(sizeof(unsigned_4) == 4);
PKE_MEM_WRITE(me, (me->pke_number == 0 ? VU0_CIA : VU1_CIA),
& vu_pc,
4);
/* copy ITOPS field to ITOP */
PKE_REG_MASK_SET(me, ITOP, ITOP, PKE_REG_MASK_GET(me, ITOPS, ITOPS));
/* done */
PKE_REG_MASK_SET(me, STAT, PPS, PKE_REG_STAT_PPS_IDLE);
if(me->trace_file != NULL)
{
fprintf(me->trace_file,
"\n; %s PC %d/%d\n"
"\tDmaCnt *\n"
"\tMSCAL%s 0x%x\n"
"\t.EndDmaData\n",
me->dev.name, me->fifo_pc, me->qw_pc,
(BIT_MASK_GET(pkecode, PKE_OPCODE_I_B, PKE_OPCODE_I_E) ? "[i]" : ""),
imm);
}
pke_pc_advance(me, 1);
}
}
void
pke_code_pkemscnt(struct pke_device* me, unsigned_4 pkecode)
{
/* compute next PEW bit */
if(pke_check_stall(me, chk_vu))
{
/* VU busy */
PKE_REG_MASK_SET(me, STAT, PEW, 1);
PKE_REG_MASK_SET(me, STAT, PPS, PKE_REG_STAT_PPS_STALL);
/* try again next cycle */
}
else
{
unsigned_4 vu_pc;
/* VU idle */
PKE_REG_MASK_SET(me, STAT, PEW, 0);
/* flip DBF on PKE1 */
if(me->pke_number == 1)
pke_flip_dbf(me);
/* read old PC */
ASSERT(sizeof(unsigned_4) == 4);
PKE_MEM_READ(me, (me->pke_number == 0 ? VU0_CIA : VU1_CIA),
& vu_pc,
4);
/* rewrite new PC; callback function gets VU running */
ASSERT(sizeof(unsigned_4) == 4);
PKE_MEM_WRITE(me, (me->pke_number == 0 ? VU0_CIA : VU1_CIA),
& vu_pc,
4);
/* copy ITOPS field to ITOP */
PKE_REG_MASK_SET(me, ITOP, ITOP, PKE_REG_MASK_GET(me, ITOPS, ITOPS));
/* done */
PKE_REG_MASK_SET(me, STAT, PPS, PKE_REG_STAT_PPS_IDLE);
if(me->trace_file != NULL)
{
fprintf(me->trace_file,
"\n; %s PC %d/%d\n"
"\tDmaCnt *\n"
"\tMSCNT\n"
"\t.EndDmaData\n",
me->dev.name, me->fifo_pc, me->qw_pc);
}
pke_pc_advance(me, 1);
}
}
void
pke_code_pkemscalf(struct pke_device* me, unsigned_4 pkecode)
{
int something_busy = 0;
/* compute next PEW, PGW bits */
if(pke_check_stall(me, chk_vu))
{
something_busy = 1;
PKE_REG_MASK_SET(me, STAT, PEW, 1);
}
else
PKE_REG_MASK_SET(me, STAT, PEW, 0);
if(pke_check_stall(me, chk_path1) ||
pke_check_stall(me, chk_path2) ||
pke_check_stall(me, chk_path3))
{
something_busy = 1;
PKE_REG_MASK_SET(me, STAT, PGW, 1);
}
else
PKE_REG_MASK_SET(me, STAT, PGW, 0);
/* go or no go */
if(something_busy)
{
PKE_REG_MASK_SET(me, STAT, PPS, PKE_REG_STAT_PPS_WAIT);
/* try again next cycle */
}
else
{
unsigned_4 vu_pc;
int imm = BIT_MASK_GET(pkecode, PKE_OPCODE_IMM_B, PKE_OPCODE_IMM_E);
/* flip DBF on PKE1 */
if(me->pke_number == 1)
pke_flip_dbf(me);
/* compute new PC for VU (host byte-order) */
vu_pc = BIT_MASK_GET(imm, 0, 15);
vu_pc = T2H_4(vu_pc);
/* rewrite new PC; callback function gets VU running */
ASSERT(sizeof(unsigned_4) == 4);
PKE_MEM_WRITE(me, (me->pke_number == 0 ? VU0_CIA : VU1_CIA),
& vu_pc,
4);
/* copy ITOPS field to ITOP */
PKE_REG_MASK_SET(me, ITOP, ITOP, PKE_REG_MASK_GET(me, ITOPS, ITOPS));
/* done */
PKE_REG_MASK_SET(me, STAT, PPS, PKE_REG_STAT_PPS_IDLE);
if(me->trace_file != NULL)
{
fprintf(me->trace_file,
"\n; %s PC %d/%d\n"
"\tDmaCnt *\n"
"\tMSCALF 0x%x\n"
"\t.EndDmaData\n",
me->dev.name, me->fifo_pc, me->qw_pc,
imm);
}
pke_pc_advance(me, 1);
}
}
void
pke_code_stmask(struct pke_device* me, unsigned_4 pkecode)
{
unsigned_4* mask;
/* check that FIFO has one more word for STMASK operand */
mask = pke_pcrel_operand(me, 1);
if(mask != NULL)
{
/* "transferring" operand */
PKE_REG_MASK_SET(me, STAT, PPS, PKE_REG_STAT_PPS_XFER);
/* set NUM */
PKE_REG_MASK_SET(me, NUM, NUM, 1);
/* fill the register */
PKE_REG_MASK_SET(me, MASK, MASK, *mask);
/* set NUM */
PKE_REG_MASK_SET(me, NUM, NUM, 0);
/* done */
PKE_REG_MASK_SET(me, STAT, PPS, PKE_REG_STAT_PPS_IDLE);
if(me->trace_file != NULL)
{
fprintf(me->trace_file,
"\n; %s PC %d/%d\n"
"\tDmaCnt *\n"
"\tSTMASK 0x%x\n"
"\t.EndDmaData\n",
me->dev.name, me->fifo_pc, me->qw_pc,
*mask);
}
pke_pc_advance(me, 2);
}
else
{
/* need to wait for another word */
PKE_REG_MASK_SET(me, STAT, PPS, PKE_REG_STAT_PPS_WAIT);
/* try again next cycle */
}
}
void
pke_code_strow(struct pke_device* me, unsigned_4 pkecode)
{
/* check that FIFO has four more words for STROW operand */
unsigned_4* last_op;
last_op = pke_pcrel_operand(me, 4);
if(last_op != NULL)
{
/* "transferring" operand */
PKE_REG_MASK_SET(me, STAT, PPS, PKE_REG_STAT_PPS_XFER);
/* set NUM */
PKE_REG_MASK_SET(me, NUM, NUM, 1);
/* copy ROW registers: must all exist if 4th operand exists */
me->regs[PKE_REG_R0][0] = * pke_pcrel_operand(me, 1);
me->regs[PKE_REG_R1][0] = * pke_pcrel_operand(me, 2);
me->regs[PKE_REG_R2][0] = * pke_pcrel_operand(me, 3);
me->regs[PKE_REG_R3][0] = * pke_pcrel_operand(me, 4);
/* set NUM */
PKE_REG_MASK_SET(me, NUM, NUM, 0);
/* done */
PKE_REG_MASK_SET(me, STAT, PPS, PKE_REG_STAT_PPS_IDLE);
if(me->trace_file != NULL)
{
fprintf(me->trace_file,
"\n; %s PC %d/%d\n"
"\tDmaCnt *\n"
"\tSTROW 0x%x,0x%x,0x%x,0x%x\n"
"\t.EndDmaData\n",
me->dev.name, me->fifo_pc, me->qw_pc,
* pke_pcrel_operand(me, 1),
* pke_pcrel_operand(me, 2),
* pke_pcrel_operand(me, 3),
* pke_pcrel_operand(me, 4));
}
pke_pc_advance(me, 5);
}
else
{
/* need to wait for another word */
PKE_REG_MASK_SET(me, STAT, PPS, PKE_REG_STAT_PPS_WAIT);
/* try again next cycle */
}
}
void
pke_code_stcol(struct pke_device* me, unsigned_4 pkecode)
{
/* check that FIFO has four more words for STCOL operand */
unsigned_4* last_op;
last_op = pke_pcrel_operand(me, 4);
if(last_op != NULL)
{
/* "transferring" operand */
PKE_REG_MASK_SET(me, STAT, PPS, PKE_REG_STAT_PPS_XFER);
/* set NUM */
PKE_REG_MASK_SET(me, NUM, NUM, 1);
/* copy COL registers: must all exist if 4th operand exists */
me->regs[PKE_REG_C0][0] = * pke_pcrel_operand(me, 1);
me->regs[PKE_REG_C1][0] = * pke_pcrel_operand(me, 2);
me->regs[PKE_REG_C2][0] = * pke_pcrel_operand(me, 3);
me->regs[PKE_REG_C3][0] = * pke_pcrel_operand(me, 4);
/* set NUM */
PKE_REG_MASK_SET(me, NUM, NUM, 0);
/* done */
PKE_REG_MASK_SET(me, STAT, PPS, PKE_REG_STAT_PPS_IDLE);
if(me->trace_file != NULL)
{
fprintf(me->trace_file,
"\n; %s PC %d/%d\n"
"\tDmaCnt *\n"
"\tSTCOL 0x%x,0x%x,0x%x,0x%x\n"
"\t.EndDmaData\n",
me->dev.name, me->fifo_pc, me->qw_pc,
* pke_pcrel_operand(me, 1),
* pke_pcrel_operand(me, 2),
* pke_pcrel_operand(me, 3),
* pke_pcrel_operand(me, 4));
}
pke_pc_advance(me, 5);
}
else
{
/* need to wait for another word */
PKE_REG_MASK_SET(me, STAT, PPS, PKE_REG_STAT_PPS_WAIT);
/* try again next cycle */
}
}
void
pke_code_mpg(struct pke_device* me, unsigned_4 pkecode)
{
unsigned_4* last_mpg_word;
int num = BIT_MASK_GET(pkecode, PKE_OPCODE_NUM_B, PKE_OPCODE_NUM_E);
int imm = BIT_MASK_GET(pkecode, PKE_OPCODE_IMM_B, PKE_OPCODE_IMM_E);
/* assert 64-bit alignment of MPG operand */
if(me->qw_pc != 3 && me->qw_pc != 1)
return pke_code_error(me, pkecode);
/* map zero to max+1 */
if(num==0) num=0x100;
/* check that FIFO has a few more words for MPG operand */
last_mpg_word = pke_pcrel_operand(me, num*2); /* num: number of 64-bit words */
if(last_mpg_word != NULL)
{
/* perform implied FLUSHE */
if(pke_check_stall(me, chk_vu))
{
/* VU busy */
PKE_REG_MASK_SET(me, STAT, PPS, PKE_REG_STAT_PPS_STALL);
/* retry this instruction next clock */
}
else
{
/* VU idle */
int i;
/* "transferring" operand */
PKE_REG_MASK_SET(me, STAT, PPS, PKE_REG_STAT_PPS_XFER);
/* set NUM */
PKE_REG_MASK_SET(me, NUM, NUM, num);
/* disassembly */
if(me->trace_file != NULL)
{
fprintf(me->trace_file,
"\n; %s PC %d/%d\n"
"\tDmaCnt *\n"
"\tMPG 0x%x,0x%x\n",
me->dev.name, me->fifo_pc, me->qw_pc,
imm, num);
}
/* transfer VU instructions, one word-pair per iteration */
for(i=0; i<num; i++)
{
address_word vu_addr_base, vu_addr;
address_word vutrack_addr_base, vutrack_addr;
address_word vu_addr_max_size;
unsigned_4 vu_lower_opcode, vu_upper_opcode;
unsigned_4* operand;
unsigned_4 source_addr;
struct fifo_quadword* fq;
int next_num;
int j;
/* decrement NUM */
next_num = PKE_REG_MASK_GET(me, NUM, NUM) - 1;
PKE_REG_MASK_SET(me, NUM, NUM, next_num);
/* imm: in 64-bit units for MPG instruction */
/* VU*_MEM0 : instruction memory */
vu_addr_base = (me->pke_number == 0) ?
VU0_MEM0_WINDOW_START : VU1_MEM0_WINDOW_START;
vu_addr_max_size = (me->pke_number == 0) ?
VU0_MEM0_SIZE : VU1_MEM0_SIZE;
vutrack_addr_base = (me->pke_number == 0) ?
VU0_MEM0_SRCADDR_START : VU1_MEM0_SRCADDR_START;
/* compute VU address for this word-pair */
vu_addr = vu_addr_base + (imm + i) * 8;
/* check for vu_addr overflow */
while(vu_addr >= vu_addr_base + vu_addr_max_size)
vu_addr -= vu_addr_max_size;
/* compute VU tracking address */
vutrack_addr = vutrack_addr_base + ((signed_8)vu_addr - (signed_8)vu_addr_base) / 2;
/* Fetch operand words; assume they are already little-endian for VU imem */
fq = pke_pcrel_fifo(me, i*2 + 1, & operand);
vu_lower_opcode = *operand;
source_addr = fq->source_address;
/* add word offset */
for(j=0; j<3; j++)
if(operand == & fq->data[j])
source_addr += sizeof(unsigned_4) * j;
fq = pke_pcrel_fifo(me, i*2 + 2, & operand);
vu_upper_opcode = *operand;
/* write data into VU memory */
/* lower (scalar) opcode comes in first word ; macro performs H2T! */
PKE_MEM_WRITE(me, vu_addr,
& vu_lower_opcode,
4);
/* upper (vector) opcode comes in second word ; H2T */
ASSERT(sizeof(unsigned_4) == 4);
PKE_MEM_WRITE(me, vu_addr + 4,
& vu_upper_opcode,
4);
/* write tracking address in target byte-order */
ASSERT(sizeof(unsigned_4) == 4);
PKE_MEM_WRITE(me, vutrack_addr,
& source_addr,
4);
/* disassembly */
if(me->trace_file != NULL)
{
unsigned long opcodes[2] = { vu_upper_opcode, vu_lower_opcode };
fprintf(me->trace_file, "\t");
opcode_analyze(me->trace_file, opcodes);
fprintf(me->trace_file, "\n");
}
} /* VU xfer loop */
/* check NUM */
ASSERT(PKE_REG_MASK_GET(me, NUM, NUM) == 0);
/* done */
PKE_REG_MASK_SET(me, STAT, PPS, PKE_REG_STAT_PPS_IDLE);
if(me->trace_file != NULL)
{
fprintf(me->trace_file,
"\t.EndMpg\n"
"\t.EndDmaData\n");
}
pke_pc_advance(me, 1 + num*2);
}
} /* if FIFO full enough */
else
{
/* need to wait for another word */
PKE_REG_MASK_SET(me, STAT, PPS, PKE_REG_STAT_PPS_WAIT);
/* retry this instruction next clock */
}
}
void
pke_code_direct(struct pke_device* me, unsigned_4 pkecode)
{
/* check that FIFO has a few more words for DIRECT operand */
unsigned_4* last_direct_word;
int imm = BIT_MASK_GET(pkecode, PKE_OPCODE_IMM_B, PKE_OPCODE_IMM_E);
/* assert 128-bit alignment of DIRECT operand */
if(me->qw_pc != 3)
return pke_code_error(me, pkecode);
/* map zero to max+1 */
if(imm==0) imm=0x10000;
last_direct_word = pke_pcrel_operand(me, imm*4); /* imm: number of 128-bit words */
if(last_direct_word != NULL)
{
/* VU idle */
int i;
unsigned_16 fifo_data;
/* "transferring" operand */
PKE_REG_MASK_SET(me, STAT, PPS, PKE_REG_STAT_PPS_XFER);
/* disassembly */
if(me->trace_file != NULL)
{
fprintf(me->trace_file,
"\n; %s PC %d/%d\n"
"\tDmaCnt *\n"
"\t%s 0x%x\n",
me->dev.name, me->fifo_pc, me->qw_pc,
(IS_PKE_CMD(pkecode, DIRECT) ? "DIRECT" : "DIRECTHL"),
imm);
}
/* transfer GPUIF quadwords, one word per iteration */
for(i=0; i<imm*4; i++)
{
unsigned_4* operand = pke_pcrel_operand(me, 1+i);
/* collect word into quadword */
*A4_16(&fifo_data, 3 - (i % 4)) = *operand;
/* write to GPUIF FIFO only with full quadword */
if(i % 4 == 3)
{
ASSERT(sizeof(fifo_data) == 16);
PKE_MEM_WRITE(me, GIF_PATH2_FIFO_ADDR,
& fifo_data,
16);
/* disassembly */
if(me->trace_file != NULL)
{
char buffer[200]; /* one line of disassembly */
gif_disassemble_pke_data(buffer, (quadword*) &fifo_data);
fprintf(me->trace_file, "\t%s\n", buffer);
}
} /* write collected quadword */
} /* GPUIF xfer loop */
/* done */
PKE_REG_MASK_SET(me, STAT, PPS, PKE_REG_STAT_PPS_IDLE);
if(me->trace_file != NULL)
{
fprintf(me->trace_file,
"\t.EndDirect\n"
"\t.EndDmaData\n");
}
pke_pc_advance(me, 1 + imm*4);
} /* if FIFO full enough */
else
{
/* need to wait for another word */
PKE_REG_MASK_SET(me, STAT, PPS, PKE_REG_STAT_PPS_WAIT);
/* retry this instruction next clock */
}
}
void
pke_code_directhl(struct pke_device* me, unsigned_4 pkecode)
{
/* treat the same as DIRECT */
pke_code_direct(me, pkecode);
/* dissassembly code handles DIRECT/DIRECTHL overloading */
}
void
pke_code_unpack(struct pke_device* me, unsigned_4 pkecode)
{
int imm = BIT_MASK_GET(pkecode, PKE_OPCODE_IMM_B, PKE_OPCODE_IMM_E);
int cmd = BIT_MASK_GET(pkecode, PKE_OPCODE_CMD_B, PKE_OPCODE_CMD_E);
int num = BIT_MASK_GET(pkecode, PKE_OPCODE_NUM_B, PKE_OPCODE_NUM_E);
int nummx = (num == 0) ? 0x0100 : num;
short vn = BIT_MASK_GET(cmd, 2, 3); /* unpack shape controls */
short vl = BIT_MASK_GET(cmd, 0, 1);
int m = BIT_MASK_GET(cmd, 4, 4);
short cl = PKE_REG_MASK_GET(me, CYCLE, CL); /* cycle controls */
short wl = PKE_REG_MASK_GET(me, CYCLE, WL);
short addrwl = (wl == 0) ? 0x0100 : wl;
int r = BIT_MASK_GET(imm, 15, 15); /* indicator bits in imm value */
int usn = BIT_MASK_GET(imm, 14, 14);
int n, num_operands;
unsigned_4* last_operand_word = NULL;
/* catch all illegal UNPACK variants */
if(vl == 3 && vn < 3)
{
pke_code_error(me, pkecode);
return;
}
/* compute PKEcode length, as given in CPU2 spec, v2.1 pg. 11 */
if(cl >= addrwl)
n = num;
else
n = cl * (nummx / addrwl) + PKE_LIMIT(nummx % addrwl, cl);
num_operands = (31 + (32 >> vl) * (vn+1) * n)/32; /* round up to next word */
/* confirm that FIFO has enough words in it */
if(num_operands > 0)
last_operand_word = pke_pcrel_operand(me, num_operands);
if(last_operand_word != NULL || num_operands == 0)
{
address_word vu_addr_base, vutrack_addr_base;
address_word vu_addr_max_size;
int vector_num_out, vector_num_in;
/* "transferring" operand */
PKE_REG_MASK_SET(me, STAT, PPS, PKE_REG_STAT_PPS_XFER);
/* disassembly */
if(me->trace_file != NULL)
{
char unpack_type[8];
char flags[8];
sprintf(flags,"[%s%s%s%s]",
(m ? "m" : ""),
(usn ? "u" : ""),
(r ? "r" : ""),
(BIT_MASK_GET(pkecode, PKE_OPCODE_I_B, PKE_OPCODE_I_E) ? "i" : ""));
if(vn > 0)
sprintf(unpack_type, "V%d_%d",
(vn + 1),
(vl == 3 ? 5 : (32 >> vl)));
else
sprintf(unpack_type, "S_%d",
(vl == 3 ? 5 : (32 >> vl)));
fprintf(me->trace_file,
"\n; %s PC %d/%d\n"
"\tDmaCnt *\n"
"\tUNPACK%s %s,0x%x,0x%x\n",
me->dev.name, me->fifo_pc, me->qw_pc,
flags, unpack_type, imm, num);
}
/* don't check whether VU is idle */
/* compute VU address base */
if(me->pke_number == 0)
{
vu_addr_base = VU0_MEM1_WINDOW_START;
vu_addr_max_size = VU0_MEM1_SIZE;
vutrack_addr_base = VU0_MEM1_SRCADDR_START;
r = 0;
}
else
{
vu_addr_base = VU1_MEM1_WINDOW_START;
vu_addr_max_size = VU1_MEM1_SIZE;
vutrack_addr_base = VU1_MEM1_SRCADDR_START;
}
/* set NUM */
PKE_REG_MASK_SET(me, NUM, NUM, nummx);
/* transfer given number of vectors */
vector_num_out = 0; /* output vector number being processed */
vector_num_in = 0; /* argument vector number being processed */
do
{
quadword vu_old_data;
quadword vu_new_data;
quadword unpacked_data;
address_word vu_addr;
address_word vutrack_addr;
unsigned_4 source_addr = 0;
int i;
int next_num;
/* decrement NUM */
next_num = PKE_REG_MASK_GET(me, NUM, NUM) - 1;
PKE_REG_MASK_SET(me, NUM, NUM, next_num);
/* compute VU destination address, as bytes in R5900 memory */
if(cl >= wl)
{
/* map zero to max+1 */
vu_addr = vu_addr_base + 16 * (BIT_MASK_GET(imm, 0, 9) +
(vector_num_out / addrwl) * cl +
(vector_num_out % addrwl));
}
else
vu_addr = vu_addr_base + 16 * (BIT_MASK_GET(imm, 0, 9) +
vector_num_out);
/* handle "R" double-buffering bit */
if(r)
vu_addr += 16 * PKE_REG_MASK_GET(me, TOPS, TOPS);
/* check for vu_addr overflow */
while(vu_addr >= vu_addr_base + vu_addr_max_size)
vu_addr -= vu_addr_max_size;
/* compute address of tracking table entry */
vutrack_addr = vutrack_addr_base + ((signed_8)vu_addr - (signed_8)vu_addr_base) / 4;
/* read old VU data word at address; reverse words if needed */
{
unsigned_16 vu_old_badwords;
ASSERT(sizeof(vu_old_badwords) == 16);
PKE_MEM_READ(me, vu_addr,
&vu_old_badwords, 16);
vu_old_data[0] = * A4_16(& vu_old_badwords, 3);
vu_old_data[1] = * A4_16(& vu_old_badwords, 2);
vu_old_data[2] = * A4_16(& vu_old_badwords, 1);
vu_old_data[3] = * A4_16(& vu_old_badwords, 0);
}
/* For cyclic unpack, next operand quadword may come from instruction stream
or be zero. */
if((cl < addrwl) &&
(vector_num_out % addrwl) >= cl)
{
/* clear operand - used only in a "indeterminate" state */
for(i = 0; i < 4; i++)
unpacked_data[i] = 0;
}
else
{
/* compute packed vector dimensions */
int vectorbits = 0, unitbits = 0;
/* disassembly */
if(me->trace_file != NULL)
{
fprintf(me->trace_file, "\t; unpack input row %d\n", vector_num_in);
}
if(vl < 3) /* PKE_UNPACK_*_{32,16,8} */
{
unitbits = (32 >> vl);
vectorbits = unitbits * (vn+1);
}
else if(vl == 3 && vn == 3) /* PKE_UNPACK_V4_5 */
{
unitbits = 5;
vectorbits = 16;
}
else /* illegal unpack variant */
{
/* should have been caught at top of function */
ASSERT(0);
}
/* loop over columns */
for(i=0; i<=vn; i++)
{
unsigned_4 operand;
/* offset in bits in current operand word */
int bitoffset =
(vector_num_in * vectorbits) + (i * unitbits); /* # of bits from PKEcode */
/* last unit of V4_5 is only one bit wide */
if(vl == 3 && vn == 3 && i == 3) /* PKE_UNPACK_V4_5 */
unitbits = 1;
/* confirm we're not reading more than we said we needed */
if(vector_num_in * vectorbits >= num_operands * 32)
{
/* this condition may be triggered by illegal
PKEcode / CYCLE combinations. */
pke_code_error(me, pkecode);
/* XXX: this case needs to be better understood,
and detected at a better time. */
return;
}
/* fetch bitfield operand */
operand = pke_pcrel_operand_bits(me, bitoffset, unitbits, & source_addr);
/* disassemble */
if(me->trace_file != NULL && vl < 3) /* not for V4_5 */
{
char* data_size;
if(vl == 0) data_size=".word";
else if(vl == 1) data_size=".short";
else if(vl == 2) data_size=".byte";
else data_size = "<invalid>";
fprintf(me->trace_file, "\t%s 0x%x\n", data_size, operand);
}
/* selectively sign-extend; not for V4_5 1-bit value */
if(usn || unitbits == 1)
unpacked_data[i] = operand;
else
unpacked_data[i] = SEXT32(operand, unitbits-1);
}
/* disassemble */
if(me->trace_file != NULL && vl == 3) /* only for V4_5 */
{
unsigned short operand =
((unpacked_data[0] & 0x1f) << 0) |
((unpacked_data[1] & 0x1f) << 5) |
((unpacked_data[2] & 0x1f) << 10) |
((unpacked_data[3] & 0x1) << 15);
fprintf(me->trace_file, "\t.short 0x%x\n", operand);
}
/* set remaining top words in vector */
for(i=vn+1; i<4; i++)
{
if(vn == 0) /* S_{32,16,8}: copy lowest element */
unpacked_data[i] = unpacked_data[0];
else
unpacked_data[i] = 0;
}
/* consumed a vector from the PKE instruction stream */
vector_num_in ++;
} /* unpack word from instruction operand */
/* process STMOD register for accumulation operations */
switch(PKE_REG_MASK_GET(me, MODE, MDE))
{
case PKE_MODE_ADDROW: /* add row registers to output data */
case PKE_MODE_ACCROW: /* same .. later conditionally accumulate */
for(i=0; i<4; i++)
/* exploit R0..R3 contiguity */
unpacked_data[i] += me->regs[PKE_REG_R0 + i][0];
break;
case PKE_MODE_INPUT: /* pass data through */
default: /* specified as undefined */
;
}
/* compute replacement word */
if(m) /* use mask register? */
{
/* compute index into mask register for this word */
int mask_index = PKE_LIMIT(vector_num_out % addrwl, 3);
for(i=0; i<4; i++) /* loop over columns */
{
int mask_op = PKE_MASKREG_GET(me, mask_index, i);
unsigned_4* masked_value = NULL;
switch(mask_op)
{
case PKE_MASKREG_INPUT:
masked_value = & unpacked_data[i];
/* conditionally accumulate */
if(PKE_REG_MASK_GET(me, MODE, MDE) == PKE_MODE_ACCROW)
me->regs[PKE_REG_R0 + i][0] = unpacked_data[i];
break;
case PKE_MASKREG_ROW: /* exploit R0..R3 contiguity */
masked_value = & me->regs[PKE_REG_R0 + i][0];
break;
case PKE_MASKREG_COLUMN: /* exploit C0..C3 contiguity */
masked_value = & me->regs[PKE_REG_C0 + mask_index][0];
break;
case PKE_MASKREG_NOTHING:
/* "write inhibit" by re-copying old data */
masked_value = & vu_old_data[i];
break;
default:
ASSERT(0);
/* no other cases possible */
}
/* copy masked value for column */
vu_new_data[i] = *masked_value;
} /* loop over columns */
} /* mask */
else
{
/* no mask - just copy over entire unpacked quadword */
memcpy(vu_new_data, unpacked_data, sizeof(unpacked_data));
/* conditionally store accumulated row results */
if(PKE_REG_MASK_GET(me, MODE, MDE) == PKE_MODE_ACCROW)
for(i=0; i<4; i++)
me->regs[PKE_REG_R0 + i][0] = unpacked_data[i];
}
/* write new VU data word at address; reverse words if needed */
{
unsigned_16 vu_new_badwords;
* A4_16(& vu_new_badwords, 3) = vu_new_data[0];
* A4_16(& vu_new_badwords, 2) = vu_new_data[1];
* A4_16(& vu_new_badwords, 1) = vu_new_data[2];
* A4_16(& vu_new_badwords, 0) = vu_new_data[3];
ASSERT(sizeof(vu_new_badwords) == 16);
PKE_MEM_WRITE(me, vu_addr,
&vu_new_badwords, 16);
}
/* write tracking address */
ASSERT(sizeof(unsigned_4) == 4);
PKE_MEM_WRITE(me, vutrack_addr,
& source_addr,
4);
/* next vector please */
vector_num_out ++;
} /* vector transfer loop */
while(PKE_REG_MASK_GET(me, NUM, NUM) > 0);
/* confirm we've written as many vectors as told */
ASSERT(nummx == vector_num_out);
/* done */
PKE_REG_MASK_SET(me, STAT, PPS, PKE_REG_STAT_PPS_IDLE);
if(me->trace_file != NULL)
{
fprintf(me->trace_file,
"\t.EndUnpack\n"
"\t.EndDmaData\n");
}
pke_pc_advance(me, 1 + num_operands);
} /* PKE FIFO full enough */
else
{
/* need to wait for another word */
PKE_REG_MASK_SET(me, STAT, PPS, PKE_REG_STAT_PPS_WAIT);
/* retry this instruction next clock */
}
}
void
pke_code_error(struct pke_device* me, unsigned_4 pkecode)
{
/* set ER1 flag in STAT register */
PKE_REG_MASK_SET(me, STAT, ER1, 1);
if(! PKE_REG_MASK_GET(me, ERR, ME1))
{
pke_begin_interrupt_stall(me);
PKE_REG_MASK_SET(me, STAT, PPS, PKE_REG_STAT_PPS_STALL);
}
else
{
PKE_REG_MASK_SET(me, STAT, PPS, PKE_REG_STAT_PPS_IDLE);
}
if(me->trace_file != NULL)
{
fprintf(me->trace_file,
"\n; %s PC %d/%d\n"
"\tDmaCnt *\n"
"\t.word 0x%x\n"
"\t.EndDmaData\n",
me->dev.name, me->fifo_pc, me->qw_pc,
(long) pkecode);
}
/* advance over faulty word */
pke_pc_advance(me, 1);
}
void
pke_options(struct pke_device *me, unsigned_4 option, char *option_string)
{
switch (option)
{
case SKY_OPT_DEBUG_NAME:
if ( me->fifo_trace_file != NULL )
{
fclose (me->fifo_trace_file);
me->fifo_trace_file = NULL;
}
sky_store_file_name (&me->fifo_trace_file_name, option_string);
break;
case SKY_OPT_TRACE_ON:
me->flags |= PKE_FLAG_TRACE_ON;
break;
case SKY_OPT_TRACE_OFF:
case SKY_OPT_TRACE_NAME:
if ( me->trace_file != NULL )
{
fprintf(me->trace_file,
"\n\n\tDmaEnd 0\n"
"\t.EndDmaData\n");
fclose (me->trace_file);
me->trace_file = NULL;
}
if ( option == SKY_OPT_TRACE_OFF )
me->flags &= ~PKE_FLAG_TRACE_ON;
else
sky_store_file_name (&me->trace_file_name, option_string);
break;
case SKY_OPT_CLOSE:
if (me->trace_file != NULL)
{
fprintf(me->trace_file,
"\n\n\tDmaEnd 0\n"
"\t.EndDmaData\n");
fclose(me->trace_file);
me->trace_file = NULL;
}
if (me->fifo_trace_file != NULL )
fclose (me->fifo_trace_file);
me->fifo_trace_file = NULL;
break;
default:
ASSERT (0);
break;
}
return;
}