old-cross-binutils/bfd/aoutx.h
Ian Lance Taylor f42fe1599a * reloc.c (struct reloc_howto_struct): Remove special_function1.
It's the wrong way to do things.
	(HOWTO): Change accordingly.
	(HOWTO2): Remove.
	(_bfd_final_link_relocate): Remove references to
	special_function1.
	* bfd-in2.h: Rebuilt.
	* aoutx.h (aout_link_input_section_std): Remove references to
	special_function1.
	(aout_link_reloc_link_order): Likewise.
1994-07-21 16:34:59 +00:00

4994 lines
143 KiB
C
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/* BFD semi-generic back-end for a.out binaries.
Copyright 1990, 1991, 1992, 1993, 1994 Free Software Foundation, Inc.
Written by Cygnus Support.
This file is part of BFD, the Binary File Descriptor library.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
/*
SECTION
a.out backends
DESCRIPTION
BFD supports a number of different flavours of a.out format,
though the major differences are only the sizes of the
structures on disk, and the shape of the relocation
information.
The support is split into a basic support file @file{aoutx.h}
and other files which derive functions from the base. One
derivation file is @file{aoutf1.h} (for a.out flavour 1), and
adds to the basic a.out functions support for sun3, sun4, 386
and 29k a.out files, to create a target jump vector for a
specific target.
This information is further split out into more specific files
for each machine, including @file{sunos.c} for sun3 and sun4,
@file{newsos3.c} for the Sony NEWS, and @file{demo64.c} for a
demonstration of a 64 bit a.out format.
The base file @file{aoutx.h} defines general mechanisms for
reading and writing records to and from disk and various
other methods which BFD requires. It is included by
@file{aout32.c} and @file{aout64.c} to form the names
<<aout_32_swap_exec_header_in>>, <<aout_64_swap_exec_header_in>>, etc.
As an example, this is what goes on to make the back end for a
sun4, from @file{aout32.c}:
| #define ARCH_SIZE 32
| #include "aoutx.h"
Which exports names:
| ...
| aout_32_canonicalize_reloc
| aout_32_find_nearest_line
| aout_32_get_lineno
| aout_32_get_reloc_upper_bound
| ...
from @file{sunos.c}:
| #define TARGET_NAME "a.out-sunos-big"
| #define VECNAME sunos_big_vec
| #include "aoutf1.h"
requires all the names from @file{aout32.c}, and produces the jump vector
| sunos_big_vec
The file @file{host-aout.c} is a special case. It is for a large set
of hosts that use ``more or less standard'' a.out files, and
for which cross-debugging is not interesting. It uses the
standard 32-bit a.out support routines, but determines the
file offsets and addresses of the text, data, and BSS
sections, the machine architecture and machine type, and the
entry point address, in a host-dependent manner. Once these
values have been determined, generic code is used to handle
the object file.
When porting it to run on a new system, you must supply:
| HOST_PAGE_SIZE
| HOST_SEGMENT_SIZE
| HOST_MACHINE_ARCH (optional)
| HOST_MACHINE_MACHINE (optional)
| HOST_TEXT_START_ADDR
| HOST_STACK_END_ADDR
in the file @file{../include/sys/h-@var{XXX}.h} (for your host). These
values, plus the structures and macros defined in @file{a.out.h} on
your host system, will produce a BFD target that will access
ordinary a.out files on your host. To configure a new machine
to use @file{host-aout.c}, specify:
| TDEFAULTS = -DDEFAULT_VECTOR=host_aout_big_vec
| TDEPFILES= host-aout.o trad-core.o
in the @file{config/@var{XXX}.mt} file, and modify @file{configure.in}
to use the
@file{@var{XXX}.mt} file (by setting "<<bfd_target=XXX>>") when your
configuration is selected.
*/
/* Some assumptions:
* Any BFD with D_PAGED set is ZMAGIC, and vice versa.
Doesn't matter what the setting of WP_TEXT is on output, but it'll
get set on input.
* Any BFD with D_PAGED clear and WP_TEXT set is NMAGIC.
* Any BFD with both flags clear is OMAGIC.
(Just want to make these explicit, so the conditions tested in this
file make sense if you're more familiar with a.out than with BFD.) */
#define KEEPIT flags
#define KEEPITTYPE int
#include <string.h> /* For strchr and friends */
#include "bfd.h"
#include <sysdep.h>
#include "bfdlink.h"
#include "libaout.h"
#include "libbfd.h"
#include "aout/aout64.h"
#include "aout/stab_gnu.h"
#include "aout/ar.h"
static boolean aout_get_external_symbols PARAMS ((bfd *));
static boolean translate_from_native_sym_flags
PARAMS ((bfd *, aout_symbol_type *));
static boolean translate_to_native_sym_flags
PARAMS ((bfd *, asymbol *, struct external_nlist *));
/*
SUBSECTION
Relocations
DESCRIPTION
The file @file{aoutx.h} provides for both the @emph{standard}
and @emph{extended} forms of a.out relocation records.
The standard records contain only an
address, a symbol index, and a type field. The extended records
(used on 29ks and sparcs) also have a full integer for an
addend.
*/
#ifndef CTOR_TABLE_RELOC_HOWTO
#define CTOR_TABLE_RELOC_IDX 2
#define CTOR_TABLE_RELOC_HOWTO(BFD) ((obj_reloc_entry_size(BFD) == RELOC_EXT_SIZE \
? howto_table_ext : howto_table_std) \
+ CTOR_TABLE_RELOC_IDX)
#endif
#ifndef MY_swap_std_reloc_in
#define MY_swap_std_reloc_in NAME(aout,swap_std_reloc_in)
#endif
#ifndef MY_swap_std_reloc_out
#define MY_swap_std_reloc_out NAME(aout,swap_std_reloc_out)
#endif
#define howto_table_ext NAME(aout,ext_howto_table)
#define howto_table_std NAME(aout,std_howto_table)
reloc_howto_type howto_table_ext[] =
{
/* type rs size bsz pcrel bitpos ovrf sf name part_inpl readmask setmask pcdone */
HOWTO(RELOC_8, 0, 0, 8, false, 0, complain_overflow_bitfield,0,"8", false, 0,0x000000ff, false),
HOWTO(RELOC_16, 0, 1, 16, false, 0, complain_overflow_bitfield,0,"16", false, 0,0x0000ffff, false),
HOWTO(RELOC_32, 0, 2, 32, false, 0, complain_overflow_bitfield,0,"32", false, 0,0xffffffff, false),
HOWTO(RELOC_DISP8, 0, 0, 8, true, 0, complain_overflow_signed,0,"DISP8", false, 0,0x000000ff, false),
HOWTO(RELOC_DISP16, 0, 1, 16, true, 0, complain_overflow_signed,0,"DISP16", false, 0,0x0000ffff, false),
HOWTO(RELOC_DISP32, 0, 2, 32, true, 0, complain_overflow_signed,0,"DISP32", false, 0,0xffffffff, false),
HOWTO(RELOC_WDISP30,2, 2, 30, true, 0, complain_overflow_signed,0,"WDISP30", false, 0,0x3fffffff, false),
HOWTO(RELOC_WDISP22,2, 2, 22, true, 0, complain_overflow_signed,0,"WDISP22", false, 0,0x003fffff, false),
HOWTO(RELOC_HI22, 10, 2, 22, false, 0, complain_overflow_bitfield,0,"HI22", false, 0,0x003fffff, false),
HOWTO(RELOC_22, 0, 2, 22, false, 0, complain_overflow_bitfield,0,"22", false, 0,0x003fffff, false),
HOWTO(RELOC_13, 0, 2, 13, false, 0, complain_overflow_bitfield,0,"13", false, 0,0x00001fff, false),
HOWTO(RELOC_LO10, 0, 2, 10, false, 0, complain_overflow_dont,0,"LO10", false, 0,0x000003ff, false),
HOWTO(RELOC_SFA_BASE,0, 2, 32, false, 0, complain_overflow_bitfield,0,"SFA_BASE", false, 0,0xffffffff, false),
HOWTO(RELOC_SFA_OFF13,0,2, 32, false, 0, complain_overflow_bitfield,0,"SFA_OFF13",false, 0,0xffffffff, false),
HOWTO(RELOC_BASE10, 0, 2, 16, false, 0, complain_overflow_bitfield,0,"BASE10", false, 0,0x0000ffff, false),
HOWTO(RELOC_BASE13, 0, 2, 13, false, 0, complain_overflow_bitfield,0,"BASE13", false, 0,0x00001fff, false),
HOWTO(RELOC_BASE22, 0, 2, 0, false, 0, complain_overflow_bitfield,0,"BASE22", false, 0,0x00000000, false),
HOWTO(RELOC_PC10, 0, 2, 10, false, 0, complain_overflow_bitfield,0,"PC10", false, 0,0x000003ff, false),
HOWTO(RELOC_PC22, 0, 2, 22, false, 0, complain_overflow_bitfield,0,"PC22", false, 0,0x003fffff, false),
HOWTO(RELOC_JMP_TBL,0, 2, 32, false, 0, complain_overflow_bitfield,0,"JMP_TBL", false, 0,0xffffffff, false),
HOWTO(RELOC_SEGOFF16,0, 2, 0, false, 0, complain_overflow_bitfield,0,"SEGOFF16", false, 0,0x00000000, false),
HOWTO(RELOC_GLOB_DAT,0, 2, 0, false, 0, complain_overflow_bitfield,0,"GLOB_DAT", false, 0,0x00000000, false),
HOWTO(RELOC_JMP_SLOT,0, 2, 0, false, 0, complain_overflow_bitfield,0,"JMP_SLOT", false, 0,0x00000000, false),
HOWTO(RELOC_RELATIVE,0, 2, 0, false, 0, complain_overflow_bitfield,0,"RELATIVE", false, 0,0x00000000, false),
};
/* Convert standard reloc records to "arelent" format (incl byte swap). */
reloc_howto_type howto_table_std[] = {
/* type rs size bsz pcrel bitpos ovrf sf name part_inpl readmask setmask pcdone */
HOWTO( 0, 0, 0, 8, false, 0, complain_overflow_bitfield,0,"8", true, 0x000000ff,0x000000ff, false),
HOWTO( 1, 0, 1, 16, false, 0, complain_overflow_bitfield,0,"16", true, 0x0000ffff,0x0000ffff, false),
HOWTO( 2, 0, 2, 32, false, 0, complain_overflow_bitfield,0,"32", true, 0xffffffff,0xffffffff, false),
HOWTO( 3, 0, 4, 64, false, 0, complain_overflow_bitfield,0,"64", true, 0xdeaddead,0xdeaddead, false),
HOWTO( 4, 0, 0, 8, true, 0, complain_overflow_signed, 0,"DISP8", true, 0x000000ff,0x000000ff, false),
HOWTO( 5, 0, 1, 16, true, 0, complain_overflow_signed, 0,"DISP16", true, 0x0000ffff,0x0000ffff, false),
HOWTO( 6, 0, 2, 32, true, 0, complain_overflow_signed, 0,"DISP32", true, 0xffffffff,0xffffffff, false),
HOWTO( 7, 0, 4, 64, true, 0, complain_overflow_signed, 0,"DISP64", true, 0xfeedface,0xfeedface, false),
HOWTO( 8, 0, 2, 0, false, 0, complain_overflow_bitfield,0,"GOT_REL", false, 0,0x00000000, false),
HOWTO( 9, 0, 1, 16, false, 0, complain_overflow_bitfield,0,"BASE16", false,0xffffffff,0xffffffff, false),
HOWTO(10, 0, 2, 32, false, 0, complain_overflow_bitfield,0,"BASE32", false,0xffffffff,0xffffffff, false),
{ -1 },
{ -1 },
{ -1 },
{ -1 },
{ -1 },
HOWTO(16, 0, 2, 0, false, 0, complain_overflow_bitfield,0,"JMP_TABLE", false, 0,0x00000000, false),
{ -1 },
{ -1 },
{ -1 },
{ -1 },
{ -1 },
{ -1 },
{ -1 },
{ -1 }, { -1 }, { -1 }, { -1 }, { -1 }, { -1 }, { -1 }, { -1 },
HOWTO(32, 0, 2, 0, false, 0, complain_overflow_bitfield,0,"RELATIVE", false, 0,0x00000000, false),
{ -1 },
{ -1 },
{ -1 },
{ -1 },
{ -1 },
{ -1 },
{ -1 },
HOWTO(40, 0, 2, 0, false, 0, complain_overflow_bitfield,0,"BASEREL", false, 0,0x00000000, false),
};
#define TABLE_SIZE(TABLE) (sizeof(TABLE)/sizeof(TABLE[0]))
CONST struct reloc_howto_struct *
NAME(aout,reloc_type_lookup) (abfd,code)
bfd *abfd;
bfd_reloc_code_real_type code;
{
#define EXT(i,j) case i: return &howto_table_ext[j]
#define STD(i,j) case i: return &howto_table_std[j]
int ext = obj_reloc_entry_size (abfd) == RELOC_EXT_SIZE;
if (code == BFD_RELOC_CTOR)
switch (bfd_get_arch_info (abfd)->bits_per_address)
{
case 32:
code = BFD_RELOC_32;
break;
case 64:
code = BFD_RELOC_64;
break;
}
if (ext)
switch (code)
{
EXT (BFD_RELOC_32, 2);
EXT (BFD_RELOC_HI22, 8);
EXT (BFD_RELOC_LO10, 11);
EXT (BFD_RELOC_32_PCREL_S2, 6);
EXT (BFD_RELOC_SPARC_WDISP22, 7);
EXT (BFD_RELOC_SPARC13, 10);
EXT (BFD_RELOC_SPARC_BASE13, 15);
default: return (CONST struct reloc_howto_struct *) 0;
}
else
/* std relocs */
switch (code)
{
STD (BFD_RELOC_16, 1);
STD (BFD_RELOC_32, 2);
STD (BFD_RELOC_8_PCREL, 4);
STD (BFD_RELOC_16_PCREL, 5);
STD (BFD_RELOC_32_PCREL, 6);
STD (BFD_RELOC_16_BASEREL, 9);
STD (BFD_RELOC_32_BASEREL, 10);
default: return (CONST struct reloc_howto_struct *) 0;
}
}
/*
SUBSECTION
Internal entry points
DESCRIPTION
@file{aoutx.h} exports several routines for accessing the
contents of an a.out file, which are gathered and exported in
turn by various format specific files (eg sunos.c).
*/
/*
FUNCTION
aout_@var{size}_swap_exec_header_in
SYNOPSIS
void aout_@var{size}_swap_exec_header_in,
(bfd *abfd,
struct external_exec *raw_bytes,
struct internal_exec *execp);
DESCRIPTION
Swap the information in an executable header @var{raw_bytes} taken
from a raw byte stream memory image into the internal exec header
structure @var{execp}.
*/
#ifndef NAME_swap_exec_header_in
void
NAME(aout,swap_exec_header_in) (abfd, raw_bytes, execp)
bfd *abfd;
struct external_exec *raw_bytes;
struct internal_exec *execp;
{
struct external_exec *bytes = (struct external_exec *)raw_bytes;
/* The internal_exec structure has some fields that are unused in this
configuration (IE for i960), so ensure that all such uninitialized
fields are zero'd out. There are places where two of these structs
are memcmp'd, and thus the contents do matter. */
memset ((PTR) execp, 0, sizeof (struct internal_exec));
/* Now fill in fields in the execp, from the bytes in the raw data. */
execp->a_info = bfd_h_get_32 (abfd, bytes->e_info);
execp->a_text = GET_WORD (abfd, bytes->e_text);
execp->a_data = GET_WORD (abfd, bytes->e_data);
execp->a_bss = GET_WORD (abfd, bytes->e_bss);
execp->a_syms = GET_WORD (abfd, bytes->e_syms);
execp->a_entry = GET_WORD (abfd, bytes->e_entry);
execp->a_trsize = GET_WORD (abfd, bytes->e_trsize);
execp->a_drsize = GET_WORD (abfd, bytes->e_drsize);
}
#define NAME_swap_exec_header_in NAME(aout,swap_exec_header_in)
#endif
/*
FUNCTION
aout_@var{size}_swap_exec_header_out
SYNOPSIS
void aout_@var{size}_swap_exec_header_out
(bfd *abfd,
struct internal_exec *execp,
struct external_exec *raw_bytes);
DESCRIPTION
Swap the information in an internal exec header structure
@var{execp} into the buffer @var{raw_bytes} ready for writing to disk.
*/
void
NAME(aout,swap_exec_header_out) (abfd, execp, raw_bytes)
bfd *abfd;
struct internal_exec *execp;
struct external_exec *raw_bytes;
{
struct external_exec *bytes = (struct external_exec *)raw_bytes;
/* Now fill in fields in the raw data, from the fields in the exec struct. */
bfd_h_put_32 (abfd, execp->a_info , bytes->e_info);
PUT_WORD (abfd, execp->a_text , bytes->e_text);
PUT_WORD (abfd, execp->a_data , bytes->e_data);
PUT_WORD (abfd, execp->a_bss , bytes->e_bss);
PUT_WORD (abfd, execp->a_syms , bytes->e_syms);
PUT_WORD (abfd, execp->a_entry , bytes->e_entry);
PUT_WORD (abfd, execp->a_trsize, bytes->e_trsize);
PUT_WORD (abfd, execp->a_drsize, bytes->e_drsize);
}
/* Make all the section for an a.out file. */
boolean
NAME(aout,make_sections) (abfd)
bfd *abfd;
{
if (obj_textsec (abfd) == (asection *) NULL
&& bfd_make_section (abfd, ".text") == (asection *) NULL)
return false;
if (obj_datasec (abfd) == (asection *) NULL
&& bfd_make_section (abfd, ".data") == (asection *) NULL)
return false;
if (obj_bsssec (abfd) == (asection *) NULL
&& bfd_make_section (abfd, ".bss") == (asection *) NULL)
return false;
return true;
}
/*
FUNCTION
aout_@var{size}_some_aout_object_p
SYNOPSIS
const bfd_target *aout_@var{size}_some_aout_object_p
(bfd *abfd,
const bfd_target *(*callback_to_real_object_p)());
DESCRIPTION
Some a.out variant thinks that the file open in @var{abfd}
checking is an a.out file. Do some more checking, and set up
for access if it really is. Call back to the calling
environment's "finish up" function just before returning, to
handle any last-minute setup.
*/
const bfd_target *
NAME(aout,some_aout_object_p) (abfd, execp, callback_to_real_object_p)
bfd *abfd;
struct internal_exec *execp;
const bfd_target *(*callback_to_real_object_p) PARAMS ((bfd *));
{
struct aout_data_struct *rawptr, *oldrawptr;
const bfd_target *result;
rawptr = (struct aout_data_struct *) bfd_zalloc (abfd, sizeof (struct aout_data_struct ));
if (rawptr == NULL) {
bfd_set_error (bfd_error_no_memory);
return 0;
}
oldrawptr = abfd->tdata.aout_data;
abfd->tdata.aout_data = rawptr;
/* Copy the contents of the old tdata struct.
In particular, we want the subformat, since for hpux it was set in
hp300hpux.c:swap_exec_header_in and will be used in
hp300hpux.c:callback. */
if (oldrawptr != NULL)
*abfd->tdata.aout_data = *oldrawptr;
abfd->tdata.aout_data->a.hdr = &rawptr->e;
*(abfd->tdata.aout_data->a.hdr) = *execp; /* Copy in the internal_exec struct */
execp = abfd->tdata.aout_data->a.hdr;
/* Set the file flags */
abfd->flags = NO_FLAGS;
if (execp->a_drsize || execp->a_trsize)
abfd->flags |= HAS_RELOC;
/* Setting of EXEC_P has been deferred to the bottom of this function */
if (execp->a_syms)
abfd->flags |= HAS_LINENO | HAS_DEBUG | HAS_SYMS | HAS_LOCALS;
if (N_DYNAMIC(*execp))
abfd->flags |= DYNAMIC;
if (N_MAGIC (*execp) == ZMAGIC)
{
abfd->flags |= D_PAGED | WP_TEXT;
adata (abfd).magic = z_magic;
}
else if (N_MAGIC (*execp) == QMAGIC)
{
abfd->flags |= D_PAGED | WP_TEXT;
adata (abfd).magic = z_magic;
adata (abfd).subformat = q_magic_format;
}
else if (N_MAGIC (*execp) == NMAGIC)
{
abfd->flags |= WP_TEXT;
adata (abfd).magic = n_magic;
}
else if (N_MAGIC (*execp) == OMAGIC
|| N_MAGIC (*execp) == BMAGIC)
adata (abfd).magic = o_magic;
else
{
/* Should have been checked with N_BADMAG before this routine
was called. */
abort ();
}
bfd_get_start_address (abfd) = execp->a_entry;
obj_aout_symbols (abfd) = (aout_symbol_type *)NULL;
bfd_get_symcount (abfd) = execp->a_syms / sizeof (struct external_nlist);
/* The default relocation entry size is that of traditional V7 Unix. */
obj_reloc_entry_size (abfd) = RELOC_STD_SIZE;
/* The default symbol entry size is that of traditional Unix. */
obj_symbol_entry_size (abfd) = EXTERNAL_NLIST_SIZE;
obj_aout_external_syms (abfd) = NULL;
obj_aout_external_strings (abfd) = NULL;
obj_aout_sym_hashes (abfd) = NULL;
if (! NAME(aout,make_sections) (abfd))
return NULL;
obj_datasec (abfd)->_raw_size = execp->a_data;
obj_bsssec (abfd)->_raw_size = execp->a_bss;
obj_textsec (abfd)->flags =
(execp->a_trsize != 0
? (SEC_ALLOC | SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS | SEC_RELOC)
: (SEC_ALLOC | SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS));
obj_datasec (abfd)->flags =
(execp->a_drsize != 0
? (SEC_ALLOC | SEC_LOAD | SEC_DATA | SEC_HAS_CONTENTS | SEC_RELOC)
: (SEC_ALLOC | SEC_LOAD | SEC_DATA | SEC_HAS_CONTENTS));
obj_bsssec (abfd)->flags = SEC_ALLOC;
#ifdef THIS_IS_ONLY_DOCUMENTATION
/* The common code can't fill in these things because they depend
on either the start address of the text segment, the rounding
up of virtual addresses between segments, or the starting file
position of the text segment -- all of which varies among different
versions of a.out. */
/* Call back to the format-dependent code to fill in the rest of the
fields and do any further cleanup. Things that should be filled
in by the callback: */
struct exec *execp = exec_hdr (abfd);
obj_textsec (abfd)->size = N_TXTSIZE(*execp);
obj_textsec (abfd)->raw_size = N_TXTSIZE(*execp);
/* data and bss are already filled in since they're so standard */
/* The virtual memory addresses of the sections */
obj_textsec (abfd)->vma = N_TXTADDR(*execp);
obj_datasec (abfd)->vma = N_DATADDR(*execp);
obj_bsssec (abfd)->vma = N_BSSADDR(*execp);
/* The file offsets of the sections */
obj_textsec (abfd)->filepos = N_TXTOFF(*execp);
obj_datasec (abfd)->filepos = N_DATOFF(*execp);
/* The file offsets of the relocation info */
obj_textsec (abfd)->rel_filepos = N_TRELOFF(*execp);
obj_datasec (abfd)->rel_filepos = N_DRELOFF(*execp);
/* The file offsets of the string table and symbol table. */
obj_str_filepos (abfd) = N_STROFF (*execp);
obj_sym_filepos (abfd) = N_SYMOFF (*execp);
/* Determine the architecture and machine type of the object file. */
switch (N_MACHTYPE (*exec_hdr (abfd))) {
default:
abfd->obj_arch = bfd_arch_obscure;
break;
}
adata(abfd)->page_size = PAGE_SIZE;
adata(abfd)->segment_size = SEGMENT_SIZE;
adata(abfd)->exec_bytes_size = EXEC_BYTES_SIZE;
return abfd->xvec;
/* The architecture is encoded in various ways in various a.out variants,
or is not encoded at all in some of them. The relocation size depends
on the architecture and the a.out variant. Finally, the return value
is the bfd_target vector in use. If an error occurs, return zero and
set bfd_error to the appropriate error code.
Formats such as b.out, which have additional fields in the a.out
header, should cope with them in this callback as well. */
#endif /* DOCUMENTATION */
result = (*callback_to_real_object_p)(abfd);
#if defined(MACH) || defined(STAT_FOR_EXEC)
/* The original heuristic doesn't work in some important cases. The
* a.out file has no information about the text start address. For
* files (like kernels) linked to non-standard addresses (ld -Ttext
* nnn) the entry point may not be between the default text start
* (obj_textsec(abfd)->vma) and (obj_textsec(abfd)->vma) + text size
* This is not just a mach issue. Many kernels are loaded at non
* standard addresses.
*/
{
struct stat stat_buf;
if (abfd->iostream
&& (fstat(fileno((FILE *) (abfd->iostream)), &stat_buf) == 0)
&& ((stat_buf.st_mode & 0111) != 0))
abfd->flags |= EXEC_P;
}
#else /* ! MACH */
/* Now that the segment addresses have been worked out, take a better
guess at whether the file is executable. If the entry point
is within the text segment, assume it is. (This makes files
executable even if their entry point address is 0, as long as
their text starts at zero.)
At some point we should probably break down and stat the file and
declare it executable if (one of) its 'x' bits are on... */
if ((execp->a_entry >= obj_textsec(abfd)->vma) &&
(execp->a_entry < obj_textsec(abfd)->vma + obj_textsec(abfd)->_raw_size))
abfd->flags |= EXEC_P;
#endif /* MACH */
if (result)
{
#if 0 /* These should be set correctly anyways. */
abfd->sections = obj_textsec (abfd);
obj_textsec (abfd)->next = obj_datasec (abfd);
obj_datasec (abfd)->next = obj_bsssec (abfd);
#endif
}
else
{
free (rawptr);
abfd->tdata.aout_data = oldrawptr;
}
return result;
}
/*
FUNCTION
aout_@var{size}_mkobject
SYNOPSIS
boolean aout_@var{size}_mkobject, (bfd *abfd);
DESCRIPTION
Initialize BFD @var{abfd} for use with a.out files.
*/
boolean
NAME(aout,mkobject) (abfd)
bfd *abfd;
{
struct aout_data_struct *rawptr;
bfd_set_error (bfd_error_system_call);
/* Use an intermediate variable for clarity */
rawptr = (struct aout_data_struct *)bfd_zalloc (abfd, sizeof (struct aout_data_struct ));
if (rawptr == NULL) {
bfd_set_error (bfd_error_no_memory);
return false;
}
abfd->tdata.aout_data = rawptr;
exec_hdr (abfd) = &(rawptr->e);
obj_textsec (abfd) = (asection *)NULL;
obj_datasec (abfd) = (asection *)NULL;
obj_bsssec (abfd) = (asection *)NULL;
return true;
}
/*
FUNCTION
aout_@var{size}_machine_type
SYNOPSIS
enum machine_type aout_@var{size}_machine_type
(enum bfd_architecture arch,
unsigned long machine));
DESCRIPTION
Keep track of machine architecture and machine type for
a.out's. Return the <<machine_type>> for a particular
architecture and machine, or <<M_UNKNOWN>> if that exact architecture
and machine can't be represented in a.out format.
If the architecture is understood, machine type 0 (default)
is always understood.
*/
enum machine_type
NAME(aout,machine_type) (arch, machine, unknown)
enum bfd_architecture arch;
unsigned long machine;
boolean *unknown;
{
enum machine_type arch_flags;
arch_flags = M_UNKNOWN;
*unknown = true;
switch (arch) {
case bfd_arch_sparc:
if (machine == 0) arch_flags = M_SPARC;
break;
case bfd_arch_m68k:
switch (machine) {
case 0: arch_flags = M_68010; break;
case 68000: arch_flags = M_UNKNOWN; *unknown = false; break;
case 68010: arch_flags = M_68010; break;
case 68020: arch_flags = M_68020; break;
default: arch_flags = M_UNKNOWN; break;
}
break;
case bfd_arch_i386:
if (machine == 0) arch_flags = M_386;
break;
case bfd_arch_a29k:
if (machine == 0) arch_flags = M_29K;
break;
case bfd_arch_mips:
switch (machine) {
case 0:
case 2000:
case 3000: arch_flags = M_MIPS1; break;
case 4000:
case 4400:
case 6000: arch_flags = M_MIPS2; break;
default: arch_flags = M_UNKNOWN; break;
}
break;
case bfd_arch_ns32k:
switch (machine) {
case 0: arch_flags = M_NS32532; break;
case 32032: arch_flags = M_NS32032; break;
case 32532: arch_flags = M_NS32532; break;
default: arch_flags = M_UNKNOWN; break;
}
break;
default:
arch_flags = M_UNKNOWN;
}
if (arch_flags != M_UNKNOWN)
*unknown = false;
return arch_flags;
}
/*
FUNCTION
aout_@var{size}_set_arch_mach
SYNOPSIS
boolean aout_@var{size}_set_arch_mach,
(bfd *,
enum bfd_architecture arch,
unsigned long machine));
DESCRIPTION
Set the architecture and the machine of the BFD @var{abfd} to the
values @var{arch} and @var{machine}. Verify that @var{abfd}'s format
can support the architecture required.
*/
boolean
NAME(aout,set_arch_mach) (abfd, arch, machine)
bfd *abfd;
enum bfd_architecture arch;
unsigned long machine;
{
if (! bfd_default_set_arch_mach (abfd, arch, machine))
return false;
if (arch != bfd_arch_unknown)
{
boolean unknown;
NAME(aout,machine_type) (arch, machine, &unknown);
if (unknown)
return false;
}
/* Determine the size of a relocation entry */
switch (arch) {
case bfd_arch_sparc:
case bfd_arch_a29k:
case bfd_arch_mips:
obj_reloc_entry_size (abfd) = RELOC_EXT_SIZE;
break;
default:
obj_reloc_entry_size (abfd) = RELOC_STD_SIZE;
break;
}
return (*aout_backend_info(abfd)->set_sizes) (abfd);
}
static void
adjust_o_magic (abfd, execp)
bfd *abfd;
struct internal_exec *execp;
{
file_ptr pos = adata (abfd).exec_bytes_size;
bfd_vma vma = 0;
int pad = 0;
/* Text. */
obj_textsec(abfd)->filepos = pos;
pos += obj_textsec(abfd)->_raw_size;
vma += obj_textsec(abfd)->_raw_size;
/* Data. */
if (!obj_datasec(abfd)->user_set_vma)
{
#if 0 /* ?? Does alignment in the file image really matter? */
pad = align_power (vma, obj_datasec(abfd)->alignment_power) - vma;
#endif
obj_textsec(abfd)->_raw_size += pad;
pos += pad;
vma += pad;
obj_datasec(abfd)->vma = vma;
}
obj_datasec(abfd)->filepos = pos;
pos += obj_datasec(abfd)->_raw_size;
vma += obj_datasec(abfd)->_raw_size;
/* BSS. */
if (!obj_bsssec(abfd)->user_set_vma)
{
#if 0
pad = align_power (vma, obj_bsssec(abfd)->alignment_power) - vma;
#endif
obj_datasec(abfd)->_raw_size += pad;
pos += pad;
vma += pad;
obj_bsssec(abfd)->vma = vma;
}
obj_bsssec(abfd)->filepos = pos;
/* Fix up the exec header. */
execp->a_text = obj_textsec(abfd)->_raw_size;
execp->a_data = obj_datasec(abfd)->_raw_size;
execp->a_bss = obj_bsssec(abfd)->_raw_size;
N_SET_MAGIC (*execp, OMAGIC);
}
static void
adjust_z_magic (abfd, execp)
bfd *abfd;
struct internal_exec *execp;
{
bfd_size_type data_pad, text_pad;
file_ptr text_end;
CONST struct aout_backend_data *abdp;
int ztih; /* Nonzero if text includes exec header. */
abdp = aout_backend_info (abfd);
/* Text. */
ztih = (abdp != NULL
&& (abdp->text_includes_header
|| obj_aout_subformat (abfd) == q_magic_format));
obj_textsec(abfd)->filepos = (ztih
? adata(abfd).exec_bytes_size
: adata(abfd).zmagic_disk_block_size);
if (! obj_textsec(abfd)->user_set_vma)
/* ?? Do we really need to check for relocs here? */
obj_textsec(abfd)->vma = ((abfd->flags & HAS_RELOC)
? 0
: (ztih
? (abdp->default_text_vma
+ adata(abfd).exec_bytes_size)
: abdp->default_text_vma));
/* Could take strange alignment of text section into account here? */
/* Find start of data. */
if (ztih)
{
text_end = obj_textsec (abfd)->filepos + obj_textsec (abfd)->_raw_size;
text_pad = BFD_ALIGN (text_end, adata (abfd).page_size) - text_end;
}
else
{
/* Note that if page_size == zmagic_disk_block_size, then
filepos == page_size, and this case is the same as the ztih
case. */
text_end = obj_textsec (abfd)->_raw_size;
text_pad = BFD_ALIGN (text_end, adata (abfd).page_size) - text_end;
text_end += obj_textsec (abfd)->filepos;
}
obj_textsec(abfd)->_raw_size += text_pad;
text_end += text_pad;
/* Data. */
if (!obj_datasec(abfd)->user_set_vma)
{
bfd_vma vma;
vma = obj_textsec(abfd)->vma + obj_textsec(abfd)->_raw_size;
obj_datasec(abfd)->vma = BFD_ALIGN (vma, adata(abfd).segment_size);
}
if (abdp && abdp->zmagic_mapped_contiguous)
{
text_pad = (obj_datasec(abfd)->vma
- obj_textsec(abfd)->vma
- obj_textsec(abfd)->_raw_size);
obj_textsec(abfd)->_raw_size += text_pad;
}
obj_datasec(abfd)->filepos = (obj_textsec(abfd)->filepos
+ obj_textsec(abfd)->_raw_size);
/* Fix up exec header while we're at it. */
execp->a_text = obj_textsec(abfd)->_raw_size;
if (ztih && (!abdp || (abdp && !abdp->exec_header_not_counted)))
execp->a_text += adata(abfd).exec_bytes_size;
if (obj_aout_subformat (abfd) == q_magic_format)
N_SET_MAGIC (*execp, QMAGIC);
else
N_SET_MAGIC (*execp, ZMAGIC);
/* Spec says data section should be rounded up to page boundary. */
obj_datasec(abfd)->_raw_size
= align_power (obj_datasec(abfd)->_raw_size,
obj_bsssec(abfd)->alignment_power);
execp->a_data = BFD_ALIGN (obj_datasec(abfd)->_raw_size,
adata(abfd).page_size);
data_pad = execp->a_data - obj_datasec(abfd)->_raw_size;
/* BSS. */
if (!obj_bsssec(abfd)->user_set_vma)
obj_bsssec(abfd)->vma = (obj_datasec(abfd)->vma
+ obj_datasec(abfd)->_raw_size);
/* If the BSS immediately follows the data section and extra space
in the page is left after the data section, fudge data
in the header so that the bss section looks smaller by that
amount. We'll start the bss section there, and lie to the OS.
(Note that a linker script, as well as the above assignment,
could have explicitly set the BSS vma to immediately follow
the data section.) */
if (align_power (obj_bsssec(abfd)->vma, obj_bsssec(abfd)->alignment_power)
== obj_datasec(abfd)->vma + obj_datasec(abfd)->_raw_size)
execp->a_bss = (data_pad > obj_bsssec(abfd)->_raw_size) ? 0 :
obj_bsssec(abfd)->_raw_size - data_pad;
else
execp->a_bss = obj_bsssec(abfd)->_raw_size;
}
static void
adjust_n_magic (abfd, execp)
bfd *abfd;
struct internal_exec *execp;
{
file_ptr pos = adata(abfd).exec_bytes_size;
bfd_vma vma = 0;
int pad;
/* Text. */
obj_textsec(abfd)->filepos = pos;
if (!obj_textsec(abfd)->user_set_vma)
obj_textsec(abfd)->vma = vma;
else
vma = obj_textsec(abfd)->vma;
pos += obj_textsec(abfd)->_raw_size;
vma += obj_textsec(abfd)->_raw_size;
/* Data. */
obj_datasec(abfd)->filepos = pos;
if (!obj_datasec(abfd)->user_set_vma)
obj_datasec(abfd)->vma = BFD_ALIGN (vma, adata(abfd).segment_size);
vma = obj_datasec(abfd)->vma;
/* Since BSS follows data immediately, see if it needs alignment. */
vma += obj_datasec(abfd)->_raw_size;
pad = align_power (vma, obj_bsssec(abfd)->alignment_power) - vma;
obj_datasec(abfd)->_raw_size += pad;
pos += obj_datasec(abfd)->_raw_size;
/* BSS. */
if (!obj_bsssec(abfd)->user_set_vma)
obj_bsssec(abfd)->vma = vma;
else
vma = obj_bsssec(abfd)->vma;
/* Fix up exec header. */
execp->a_text = obj_textsec(abfd)->_raw_size;
execp->a_data = obj_datasec(abfd)->_raw_size;
execp->a_bss = obj_bsssec(abfd)->_raw_size;
N_SET_MAGIC (*execp, NMAGIC);
}
boolean
NAME(aout,adjust_sizes_and_vmas) (abfd, text_size, text_end)
bfd *abfd;
bfd_size_type *text_size;
file_ptr *text_end;
{
struct internal_exec *execp = exec_hdr (abfd);
if (! NAME(aout,make_sections) (abfd))
return false;
if (adata(abfd).magic != undecided_magic)
return true;
obj_textsec(abfd)->_raw_size =
align_power(obj_textsec(abfd)->_raw_size,
obj_textsec(abfd)->alignment_power);
*text_size = obj_textsec (abfd)->_raw_size;
/* Rule (heuristic) for when to pad to a new page. Note that there
are (at least) two ways demand-paged (ZMAGIC) files have been
handled. Most Berkeley-based systems start the text segment at
(PAGE_SIZE). However, newer versions of SUNOS start the text
segment right after the exec header; the latter is counted in the
text segment size, and is paged in by the kernel with the rest of
the text. */
/* This perhaps isn't the right way to do this, but made it simpler for me
to understand enough to implement it. Better would probably be to go
right from BFD flags to alignment/positioning characteristics. But the
old code was sloppy enough about handling the flags, and had enough
other magic, that it was a little hard for me to understand. I think
I understand it better now, but I haven't time to do the cleanup this
minute. */
if (abfd->flags & D_PAGED)
/* Whether or not WP_TEXT is set -- let D_PAGED override. */
adata(abfd).magic = z_magic;
else if (abfd->flags & WP_TEXT)
adata(abfd).magic = n_magic;
else
adata(abfd).magic = o_magic;
#ifdef BFD_AOUT_DEBUG /* requires gcc2 */
#if __GNUC__ >= 2
fprintf (stderr, "%s text=<%x,%x,%x> data=<%x,%x,%x> bss=<%x,%x,%x>\n",
({ char *str;
switch (adata(abfd).magic) {
case n_magic: str = "NMAGIC"; break;
case o_magic: str = "OMAGIC"; break;
case z_magic: str = "ZMAGIC"; break;
default: abort ();
}
str;
}),
obj_textsec(abfd)->vma, obj_textsec(abfd)->_raw_size,
obj_textsec(abfd)->alignment_power,
obj_datasec(abfd)->vma, obj_datasec(abfd)->_raw_size,
obj_datasec(abfd)->alignment_power,
obj_bsssec(abfd)->vma, obj_bsssec(abfd)->_raw_size,
obj_bsssec(abfd)->alignment_power);
#endif
#endif
switch (adata(abfd).magic)
{
case o_magic:
adjust_o_magic (abfd, execp);
break;
case z_magic:
adjust_z_magic (abfd, execp);
break;
case n_magic:
adjust_n_magic (abfd, execp);
break;
default:
abort ();
}
#ifdef BFD_AOUT_DEBUG
fprintf (stderr, " text=<%x,%x,%x> data=<%x,%x,%x> bss=<%x,%x>\n",
obj_textsec(abfd)->vma, obj_textsec(abfd)->_raw_size,
obj_textsec(abfd)->filepos,
obj_datasec(abfd)->vma, obj_datasec(abfd)->_raw_size,
obj_datasec(abfd)->filepos,
obj_bsssec(abfd)->vma, obj_bsssec(abfd)->_raw_size);
#endif
return true;
}
/*
FUNCTION
aout_@var{size}_new_section_hook
SYNOPSIS
boolean aout_@var{size}_new_section_hook,
(bfd *abfd,
asection *newsect));
DESCRIPTION
Called by the BFD in response to a @code{bfd_make_section}
request.
*/
boolean
NAME(aout,new_section_hook) (abfd, newsect)
bfd *abfd;
asection *newsect;
{
/* align to double at least */
newsect->alignment_power = bfd_get_arch_info(abfd)->section_align_power;
if (bfd_get_format (abfd) == bfd_object)
{
if (obj_textsec(abfd) == NULL && !strcmp(newsect->name, ".text")) {
obj_textsec(abfd)= newsect;
newsect->target_index = N_TEXT;
return true;
}
if (obj_datasec(abfd) == NULL && !strcmp(newsect->name, ".data")) {
obj_datasec(abfd) = newsect;
newsect->target_index = N_DATA;
return true;
}
if (obj_bsssec(abfd) == NULL && !strcmp(newsect->name, ".bss")) {
obj_bsssec(abfd) = newsect;
newsect->target_index = N_BSS;
return true;
}
}
/* We allow more than three sections internally */
return true;
}
boolean
NAME(aout,set_section_contents) (abfd, section, location, offset, count)
bfd *abfd;
sec_ptr section;
PTR location;
file_ptr offset;
bfd_size_type count;
{
file_ptr text_end;
bfd_size_type text_size;
if (abfd->output_has_begun == false)
{
if (NAME(aout,adjust_sizes_and_vmas) (abfd,
&text_size,
&text_end) == false)
return false;
}
/* regardless, once we know what we're doing, we might as well get going */
if (section != obj_bsssec(abfd))
{
if (bfd_seek (abfd, section->filepos + offset, SEEK_SET) != 0)
return false;
if (count) {
return (bfd_write ((PTR)location, 1, count, abfd) == count) ?
true : false;
}
return true;
}
return true;
}
/* Read the external symbols from an a.out file. */
static boolean
aout_get_external_symbols (abfd)
bfd *abfd;
{
if (obj_aout_external_syms (abfd) == (struct external_nlist *) NULL)
{
bfd_size_type count;
struct external_nlist *syms;
count = exec_hdr (abfd)->a_syms / EXTERNAL_NLIST_SIZE;
/* We allocate using malloc to make the values easy to free
later on. If we put them on the obstack it might not be
possible to free them. */
syms = ((struct external_nlist *)
malloc ((size_t) count * EXTERNAL_NLIST_SIZE));
if (syms == (struct external_nlist *) NULL && count != 0)
{
bfd_set_error (bfd_error_no_memory);
return false;
}
if (bfd_seek (abfd, obj_sym_filepos (abfd), SEEK_SET) != 0
|| (bfd_read (syms, 1, exec_hdr (abfd)->a_syms, abfd)
!= exec_hdr (abfd)->a_syms))
{
free (syms);
return false;
}
obj_aout_external_syms (abfd) = syms;
obj_aout_external_sym_count (abfd) = count;
}
if (obj_aout_external_strings (abfd) == NULL
&& exec_hdr (abfd)->a_syms != 0)
{
unsigned char string_chars[BYTES_IN_WORD];
bfd_size_type stringsize;
char *strings;
/* Get the size of the strings. */
if (bfd_seek (abfd, obj_str_filepos (abfd), SEEK_SET) != 0
|| (bfd_read ((PTR) string_chars, BYTES_IN_WORD, 1, abfd)
!= BYTES_IN_WORD))
return false;
stringsize = GET_WORD (abfd, string_chars);
strings = (char *) malloc ((size_t) stringsize + 1);
if (strings == NULL)
{
bfd_set_error (bfd_error_no_memory);
return false;
}
/* Skip space for the string count in the buffer for convenience
when using indexes. */
if (bfd_read (strings + BYTES_IN_WORD, 1, stringsize - BYTES_IN_WORD,
abfd)
!= stringsize - BYTES_IN_WORD)
{
free (strings);
return false;
}
/* Sanity preservation. */
strings[stringsize] = '\0';
obj_aout_external_strings (abfd) = strings;
obj_aout_external_string_size (abfd) = stringsize;
}
return true;
}
/* Translate an a.out symbol into a BFD symbol. The desc, other, type
and symbol->value fields of CACHE_PTR will be set from the a.out
nlist structure. This function is responsible for setting
symbol->flags and symbol->section, and adjusting symbol->value. */
static boolean
translate_from_native_sym_flags (abfd, cache_ptr)
bfd *abfd;
aout_symbol_type *cache_ptr;
{
flagword visible;
if ((cache_ptr->type & N_STAB) != 0
|| cache_ptr->type == N_FN)
{
asection *sec;
/* This is a debugging symbol. */
cache_ptr->symbol.flags = BSF_DEBUGGING;
/* Work out the symbol section. */
switch (cache_ptr->type & N_TYPE)
{
case N_TEXT:
case N_FN:
sec = obj_textsec (abfd);
break;
case N_DATA:
sec = obj_datasec (abfd);
break;
case N_BSS:
sec = obj_bsssec (abfd);
break;
default:
case N_ABS:
sec = bfd_abs_section_ptr;
break;
}
cache_ptr->symbol.section = sec;
cache_ptr->symbol.value -= sec->vma;
return true;
}
/* Get the default visibility. This does not apply to all types, so
we just hold it in a local variable to use if wanted. */
if ((cache_ptr->type & N_EXT) == 0)
visible = BSF_LOCAL;
else
visible = BSF_GLOBAL;
switch (cache_ptr->type)
{
default:
case N_ABS: case N_ABS | N_EXT:
cache_ptr->symbol.section = bfd_abs_section_ptr;
cache_ptr->symbol.flags = visible;
break;
case N_UNDF | N_EXT:
if (cache_ptr->symbol.value != 0)
{
/* This is a common symbol. */
cache_ptr->symbol.flags = BSF_GLOBAL;
cache_ptr->symbol.section = bfd_com_section_ptr;
}
else
{
cache_ptr->symbol.flags = 0;
cache_ptr->symbol.section = bfd_und_section_ptr;
}
break;
case N_TEXT: case N_TEXT | N_EXT:
cache_ptr->symbol.section = obj_textsec (abfd);
cache_ptr->symbol.value -= cache_ptr->symbol.section->vma;
cache_ptr->symbol.flags = visible;
break;
/* N_SETV symbols used to represent set vectors placed in the
data section. They are no longer generated. Theoretically,
it was possible to extract the entries and combine them with
new ones, although I don't know if that was ever actually
done. Unless that feature is restored, treat them as data
symbols. */
case N_SETV: case N_SETV | N_EXT:
case N_DATA: case N_DATA | N_EXT:
cache_ptr->symbol.section = obj_datasec (abfd);
cache_ptr->symbol.value -= cache_ptr->symbol.section->vma;
cache_ptr->symbol.flags = visible;
break;
case N_BSS: case N_BSS | N_EXT:
cache_ptr->symbol.section = obj_bsssec (abfd);
cache_ptr->symbol.value -= cache_ptr->symbol.section->vma;
cache_ptr->symbol.flags = visible;
break;
case N_SETA: case N_SETA | N_EXT:
case N_SETT: case N_SETT | N_EXT:
case N_SETD: case N_SETD | N_EXT:
case N_SETB: case N_SETB | N_EXT:
{
asection *section;
arelent_chain *reloc;
asection *into_section;
/* This is a set symbol. The name of the symbol is the name
of the set (e.g., __CTOR_LIST__). The value of the symbol
is the value to add to the set. We create a section with
the same name as the symbol, and add a reloc to insert the
appropriate value into the section.
This action is actually obsolete; it used to make the
linker do the right thing, but the linker no longer uses
this function. */
section = bfd_get_section_by_name (abfd, cache_ptr->symbol.name);
if (section == NULL)
{
char *copy;
copy = bfd_alloc (abfd, strlen (cache_ptr->symbol.name) + 1);
if (copy == NULL)
{
bfd_set_error (bfd_error_no_memory);
return false;
}
strcpy (copy, cache_ptr->symbol.name);
section = bfd_make_section (abfd, copy);
if (section == NULL)
return false;
}
reloc = (arelent_chain *) bfd_alloc (abfd, sizeof (arelent_chain));
if (reloc == NULL)
{
bfd_set_error (bfd_error_no_memory);
return false;
}
/* Build a relocation entry for the constructor. */
switch (cache_ptr->type & N_TYPE)
{
case N_SETA:
into_section = bfd_abs_section_ptr;
cache_ptr->type = N_ABS;
break;
case N_SETT:
into_section = obj_textsec (abfd);
cache_ptr->type = N_TEXT;
break;
case N_SETD:
into_section = obj_datasec (abfd);
cache_ptr->type = N_DATA;
break;
case N_SETB:
into_section = obj_bsssec (abfd);
cache_ptr->type = N_BSS;
break;
}
/* Build a relocation pointing into the constructor section
pointing at the symbol in the set vector specified. */
reloc->relent.addend = cache_ptr->symbol.value;
cache_ptr->symbol.section = into_section;
reloc->relent.sym_ptr_ptr = into_section->symbol_ptr_ptr;
/* We modify the symbol to belong to a section depending upon
the name of the symbol, and add to the size of the section
to contain a pointer to the symbol. Build a reloc entry to
relocate to this symbol attached to this section. */
section->flags = SEC_CONSTRUCTOR | SEC_RELOC;
section->reloc_count++;
section->alignment_power = 2;
reloc->next = section->constructor_chain;
section->constructor_chain = reloc;
reloc->relent.address = section->_raw_size;
section->_raw_size += BYTES_IN_WORD;
reloc->relent.howto = CTOR_TABLE_RELOC_HOWTO(abfd);
cache_ptr->symbol.flags |= BSF_CONSTRUCTOR;
}
break;
case N_WARNING:
/* This symbol is the text of a warning message. The next
symbol is the symbol to associate the warning with. If a
reference is made to that symbol, a warning is issued. */
cache_ptr->symbol.flags = BSF_DEBUGGING | BSF_WARNING;
/* @@ Stuffing pointers into integers is a no-no. We can
usually get away with it if the integer is large enough
though. */
if (sizeof (cache_ptr + 1) > sizeof (bfd_vma))
abort ();
cache_ptr->symbol.value = (bfd_vma) (cache_ptr + 1);
cache_ptr->symbol.section = bfd_abs_section_ptr;
break;
case N_INDR: case N_INDR | N_EXT:
/* An indirect symbol. This consists of two symbols in a row.
The first symbol is the name of the indirection. The second
symbol is the name of the target. A reference to the first
symbol becomes a reference to the second. */
cache_ptr->symbol.flags = BSF_DEBUGGING | BSF_INDIRECT | visible;
/* @@ Stuffing pointers into integers is a no-no. We can
usually get away with it if the integer is large enough
though. */
if (sizeof (cache_ptr + 1) > sizeof (bfd_vma))
abort ();
cache_ptr->symbol.value = (bfd_vma) (cache_ptr + 1);
cache_ptr->symbol.section = bfd_ind_section_ptr;
break;
case N_WEAKU:
cache_ptr->symbol.section = bfd_und_section_ptr;
cache_ptr->symbol.flags = BSF_WEAK;
break;
case N_WEAKA:
cache_ptr->symbol.section = bfd_abs_section_ptr;
cache_ptr->symbol.flags = BSF_WEAK;
break;
case N_WEAKT:
cache_ptr->symbol.section = obj_textsec (abfd);
cache_ptr->symbol.value -= cache_ptr->symbol.section->vma;
cache_ptr->symbol.flags = BSF_WEAK;
break;
case N_WEAKD:
cache_ptr->symbol.section = obj_datasec (abfd);
cache_ptr->symbol.value -= cache_ptr->symbol.section->vma;
cache_ptr->symbol.flags = BSF_WEAK;
break;
case N_WEAKB:
cache_ptr->symbol.section = obj_bsssec (abfd);
cache_ptr->symbol.value -= cache_ptr->symbol.section->vma;
cache_ptr->symbol.flags = BSF_WEAK;
break;
}
return true;
}
/* Set the fields of SYM_POINTER according to CACHE_PTR. */
static boolean
translate_to_native_sym_flags (abfd, cache_ptr, sym_pointer)
bfd *abfd;
asymbol *cache_ptr;
struct external_nlist *sym_pointer;
{
bfd_vma value = cache_ptr->value;
/* Mask out any existing type bits in case copying from one section
to another. */
sym_pointer->e_type[0] &= ~N_TYPE;
if (bfd_is_abs_section (bfd_get_section (cache_ptr)))
sym_pointer->e_type[0] |= N_ABS;
else if (bfd_get_section (cache_ptr) == obj_textsec (abfd)
|| (bfd_get_section (cache_ptr)->output_section
== obj_textsec (abfd)))
sym_pointer->e_type[0] |= N_TEXT;
else if (bfd_get_section (cache_ptr) == obj_datasec (abfd)
|| (bfd_get_section (cache_ptr)->output_section
== obj_datasec (abfd)))
sym_pointer->e_type[0] |= N_DATA;
else if (bfd_get_section (cache_ptr) == obj_bsssec (abfd)
|| (bfd_get_section (cache_ptr)->output_section
== obj_bsssec (abfd)))
sym_pointer->e_type[0] |= N_BSS;
else if (bfd_get_section (cache_ptr) == NULL)
{
/* Protect the bfd_is_com_section call. This case occurs, e.g.,
for the *DEBUG* section of a COFF file. */
bfd_set_error (bfd_error_nonrepresentable_section);
return false;
}
else if (bfd_is_und_section (bfd_get_section (cache_ptr)))
sym_pointer->e_type[0] = N_UNDF | N_EXT;
else if (bfd_is_ind_section (bfd_get_section (cache_ptr)))
sym_pointer->e_type[0] = N_INDR;
else if (bfd_is_com_section (bfd_get_section (cache_ptr)))
sym_pointer->e_type[0] = N_UNDF | N_EXT;
else
{
bfd_set_error (bfd_error_nonrepresentable_section);
return false;
}
/* Turn the symbol from section relative to absolute again */
value += cache_ptr->section->vma;
if ((cache_ptr->flags & BSF_WARNING) != 0)
sym_pointer->e_type[0] = N_WARNING;
if ((cache_ptr->flags & BSF_DEBUGGING) != 0)
sym_pointer->e_type[0] = ((aout_symbol_type *) cache_ptr)->type;
else if ((cache_ptr->flags & BSF_GLOBAL) != 0)
sym_pointer->e_type[0] |= N_EXT;
if ((cache_ptr->flags & BSF_CONSTRUCTOR) != 0)
{
int type = ((aout_symbol_type *) cache_ptr)->type;
switch (type)
{
case N_ABS: type = N_SETA; break;
case N_TEXT: type = N_SETT; break;
case N_DATA: type = N_SETD; break;
case N_BSS: type = N_SETB; break;
}
sym_pointer->e_type[0] = type;
}
if ((cache_ptr->flags & BSF_WEAK) != 0)
{
int type;
switch (sym_pointer->e_type[0] & N_TYPE)
{
default:
case N_ABS: type = N_WEAKA; break;
case N_TEXT: type = N_WEAKT; break;
case N_DATA: type = N_WEAKD; break;
case N_BSS: type = N_WEAKB; break;
case N_UNDF: type = N_WEAKU; break;
}
sym_pointer->e_type[0] = type;
}
PUT_WORD(abfd, value, sym_pointer->e_value);
return true;
}
/* Native-level interface to symbols. */
asymbol *
NAME(aout,make_empty_symbol) (abfd)
bfd *abfd;
{
aout_symbol_type *new =
(aout_symbol_type *)bfd_zalloc (abfd, sizeof (aout_symbol_type));
if (!new)
{
bfd_set_error (bfd_error_no_memory);
return NULL;
}
new->symbol.the_bfd = abfd;
return &new->symbol;
}
/* Translate a set of internal symbols into external symbols. */
boolean
NAME(aout,translate_symbol_table) (abfd, in, ext, count, str, strsize, dynamic)
bfd *abfd;
aout_symbol_type *in;
struct external_nlist *ext;
bfd_size_type count;
char *str;
bfd_size_type strsize;
boolean dynamic;
{
struct external_nlist *ext_end;
ext_end = ext + count;
for (; ext < ext_end; ext++, in++)
{
bfd_vma x;
x = GET_WORD (abfd, ext->e_strx);
in->symbol.the_bfd = abfd;
/* For the normal symbols, the zero index points at the number
of bytes in the string table but is to be interpreted as the
null string. For the dynamic symbols, the number of bytes in
the string table is stored in the __DYNAMIC structure and the
zero index points at an actual string. */
if (x == 0 && ! dynamic)
in->symbol.name = "";
else if (x < strsize)
in->symbol.name = str + x;
else
return false;
in->symbol.value = GET_SWORD (abfd, ext->e_value);
in->desc = bfd_h_get_16 (abfd, ext->e_desc);
in->other = bfd_h_get_8 (abfd, ext->e_other);
in->type = bfd_h_get_8 (abfd, ext->e_type);
in->symbol.udata = 0;
if (! translate_from_native_sym_flags (abfd, in))
return false;
if (dynamic)
in->symbol.flags |= BSF_DYNAMIC;
}
return true;
}
/* We read the symbols into a buffer, which is discarded when this
function exits. We read the strings into a buffer large enough to
hold them all plus all the cached symbol entries. */
boolean
NAME(aout,slurp_symbol_table) (abfd)
bfd *abfd;
{
struct external_nlist *old_external_syms;
aout_symbol_type *cached;
size_t cached_size;
/* If there's no work to be done, don't do any */
if (obj_aout_symbols (abfd) != (aout_symbol_type *) NULL)
return true;
old_external_syms = obj_aout_external_syms (abfd);
if (! aout_get_external_symbols (abfd))
return false;
if (obj_aout_external_sym_count (abfd) == 0)
{
bfd_set_error (bfd_error_no_symbols);
return false;
}
cached_size = (obj_aout_external_sym_count (abfd)
* sizeof (aout_symbol_type));
cached = (aout_symbol_type *) malloc (cached_size);
if (cached == NULL)
{
bfd_set_error (bfd_error_no_memory);
return false;
}
memset (cached, 0, cached_size);
/* Convert from external symbol information to internal. */
if (! (NAME(aout,translate_symbol_table)
(abfd, cached,
obj_aout_external_syms (abfd),
obj_aout_external_sym_count (abfd),
obj_aout_external_strings (abfd),
obj_aout_external_string_size (abfd),
false)))
{
free (cached);
return false;
}
bfd_get_symcount (abfd) = obj_aout_external_sym_count (abfd);
obj_aout_symbols (abfd) = cached;
/* It is very likely that anybody who calls this function will not
want the external symbol information, so if it was allocated
because of our call to aout_get_external_symbols, we free it up
right away to save space. */
if (old_external_syms == (struct external_nlist *) NULL
&& obj_aout_external_syms (abfd) != (struct external_nlist *) NULL)
{
free (obj_aout_external_syms (abfd));
obj_aout_external_syms (abfd) = NULL;
}
return true;
}
/* We use a hash table when writing out symbols so that we only write
out a particular string once. This helps particularly when the
linker writes out stabs debugging entries, because each different
contributing object file tends to have many duplicate stabs
strings.
Possible improvements:
+ look for strings matching trailing substrings of other strings
+ better data structures? balanced trees?
+ look at reducing memory use elsewhere -- maybe if we didn't have
to construct the entire symbol table at once, we could get by
with smaller amounts of VM? (What effect does that have on the
string table reductions?)
This hash table code breaks dbx on SunOS 4.1.3, so we don't do it
if BFD_TRADITIONAL_FORMAT is set. */
/* An entry in the strtab hash table. */
struct strtab_hash_entry
{
struct bfd_hash_entry root;
/* Index in string table. */
bfd_size_type index;
/* Next string in strtab. */
struct strtab_hash_entry *next;
};
/* The strtab hash table. */
struct strtab_hash
{
struct bfd_hash_table table;
/* Size of strtab--also next available index. */
bfd_size_type size;
/* First string in strtab. */
struct strtab_hash_entry *first;
/* Last string in strtab. */
struct strtab_hash_entry *last;
};
static struct bfd_hash_entry *strtab_hash_newfunc
PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *));
static boolean stringtab_init PARAMS ((struct strtab_hash *));
static bfd_size_type add_to_stringtab
PARAMS ((bfd *, struct strtab_hash *, const char *, boolean));
static boolean emit_stringtab PARAMS ((bfd *, struct strtab_hash *));
/* Routine to create an entry in a strtab. */
static struct bfd_hash_entry *
strtab_hash_newfunc (entry, table, string)
struct bfd_hash_entry *entry;
struct bfd_hash_table *table;
const char *string;
{
struct strtab_hash_entry *ret = (struct strtab_hash_entry *) entry;
/* Allocate the structure if it has not already been allocated by a
subclass. */
if (ret == (struct strtab_hash_entry *) NULL)
ret = ((struct strtab_hash_entry *)
bfd_hash_allocate (table, sizeof (struct strtab_hash_entry)));
if (ret == (struct strtab_hash_entry *) NULL)
{
bfd_set_error (bfd_error_no_memory);
return NULL;
}
/* Call the allocation method of the superclass. */
ret = ((struct strtab_hash_entry *)
bfd_hash_newfunc ((struct bfd_hash_entry *) ret, table, string));
if (ret)
{
/* Initialize the local fields. */
ret->index = (bfd_size_type) -1;
ret->next = NULL;
}
return (struct bfd_hash_entry *) ret;
}
/* Look up an entry in an strtab. */
#define strtab_hash_lookup(t, string, create, copy) \
((struct strtab_hash_entry *) \
bfd_hash_lookup (&(t)->table, (string), (create), (copy)))
/* Create a new strtab. */
static boolean
stringtab_init (table)
struct strtab_hash *table;
{
if (! bfd_hash_table_init (&table->table, strtab_hash_newfunc))
return false;
/* Leave space for the size of the string table. */
table->size = BYTES_IN_WORD;
table->first = NULL;
table->last = NULL;
return true;
}
/* Free a strtab. */
#define stringtab_free(tab) bfd_hash_table_free (&(tab)->table)
/* Get the index of a string in a strtab, adding it if it is not
already present. If HASH is false, we don't really use the hash
table, and we don't eliminate duplicate strings. */
static INLINE bfd_size_type
add_to_stringtab (abfd, tab, str, copy)
bfd *abfd;
struct strtab_hash *tab;
const char *str;
boolean copy;
{
register struct strtab_hash_entry *entry;
/* An index of 0 always means the empty string. */
if (*str == '\0')
return 0;
if ((abfd->flags & BFD_TRADITIONAL_FORMAT) == 0)
{
entry = strtab_hash_lookup (tab, str, true, copy);
if (entry == NULL)
return (bfd_size_type) -1;
}
else
{
entry = ((struct strtab_hash_entry *)
bfd_hash_allocate (&tab->table,
sizeof (struct strtab_hash_entry)));
if (entry == NULL)
return (bfd_size_type) -1;
if (! copy)
entry->root.string = str;
else
{
char *n;
n = (char *) bfd_hash_allocate (&tab->table, strlen (str) + 1);
if (n == NULL)
return (bfd_size_type) -1;
entry->root.string = n;
}
entry->index = (bfd_size_type) -1;
entry->next = NULL;
}
if (entry->index == (bfd_size_type) -1)
{
entry->index = tab->size;
tab->size += strlen (str) + 1;
if (tab->first == NULL)
tab->first = entry;
else
tab->last->next = entry;
tab->last = entry;
}
return entry->index;
}
/* Write out a strtab. ABFD is already at the right location in the
file. */
static boolean
emit_stringtab (abfd, tab)
register bfd *abfd;
struct strtab_hash *tab;
{
bfd_byte buffer[BYTES_IN_WORD];
register struct strtab_hash_entry *entry;
PUT_WORD (abfd, tab->size, buffer);
if (bfd_write ((PTR) buffer, 1, BYTES_IN_WORD, abfd) != BYTES_IN_WORD)
return false;
for (entry = tab->first; entry != NULL; entry = entry->next)
{
register const char *str;
register size_t len;
str = entry->root.string;
len = strlen (str) + 1;
if (bfd_write ((PTR) str, 1, len, abfd) != len)
return false;
}
return true;
}
boolean
NAME(aout,write_syms) (abfd)
bfd *abfd;
{
unsigned int count ;
asymbol **generic = bfd_get_outsymbols (abfd);
struct strtab_hash strtab;
if (! stringtab_init (&strtab))
return false;
for (count = 0; count < bfd_get_symcount (abfd); count++)
{
asymbol *g = generic[count];
bfd_size_type indx;
struct external_nlist nsp;
indx = add_to_stringtab (abfd, &strtab, g->name, false);
if (indx == (bfd_size_type) -1)
goto error_return;
PUT_WORD (abfd, indx, (bfd_byte *) nsp.e_strx);
if (bfd_asymbol_flavour(g) == abfd->xvec->flavour)
{
bfd_h_put_16(abfd, aout_symbol(g)->desc, nsp.e_desc);
bfd_h_put_8(abfd, aout_symbol(g)->other, nsp.e_other);
bfd_h_put_8(abfd, aout_symbol(g)->type, nsp.e_type);
}
else
{
bfd_h_put_16(abfd,0, nsp.e_desc);
bfd_h_put_8(abfd, 0, nsp.e_other);
bfd_h_put_8(abfd, 0, nsp.e_type);
}
if (! translate_to_native_sym_flags (abfd, g, &nsp))
goto error_return;
if (bfd_write((PTR)&nsp,1,EXTERNAL_NLIST_SIZE, abfd)
!= EXTERNAL_NLIST_SIZE)
goto error_return;
/* NB: `KEEPIT' currently overlays `flags', so set this only
here, at the end. */
g->KEEPIT = count;
}
if (! emit_stringtab (abfd, &strtab))
goto error_return;
stringtab_free (&strtab);
return true;
error_return:
stringtab_free (&strtab);
return false;
}
long
NAME(aout,get_symtab) (abfd, location)
bfd *abfd;
asymbol **location;
{
unsigned int counter = 0;
aout_symbol_type *symbase;
if (!NAME(aout,slurp_symbol_table)(abfd))
return -1;
for (symbase = obj_aout_symbols(abfd); counter++ < bfd_get_symcount (abfd);)
*(location++) = (asymbol *)( symbase++);
*location++ =0;
return bfd_get_symcount (abfd);
}
/* Standard reloc stuff */
/* Output standard relocation information to a file in target byte order. */
void
NAME(aout,swap_std_reloc_out) (abfd, g, natptr)
bfd *abfd;
arelent *g;
struct reloc_std_external *natptr;
{
int r_index;
asymbol *sym = *(g->sym_ptr_ptr);
int r_extern;
unsigned int r_length;
int r_pcrel;
int r_baserel, r_jmptable, r_relative;
asection *output_section = sym->section->output_section;
PUT_WORD(abfd, g->address, natptr->r_address);
r_length = g->howto->size ; /* Size as a power of two */
r_pcrel = (int) g->howto->pc_relative; /* Relative to PC? */
/* XXX This relies on relocs coming from a.out files. */
r_baserel = (g->howto->type & 8) != 0;
r_jmptable = (g->howto->type & 16) != 0;
r_relative = (g->howto->type & 32) != 0;
#if 0
/* For a standard reloc, the addend is in the object file. */
r_addend = g->addend + (*(g->sym_ptr_ptr))->section->output_section->vma;
#endif
/* name was clobbered by aout_write_syms to be symbol index */
/* If this relocation is relative to a symbol then set the
r_index to the symbols index, and the r_extern bit.
Absolute symbols can come in in two ways, either as an offset
from the abs section, or as a symbol which has an abs value.
check for that here
*/
if (bfd_is_com_section (output_section)
|| bfd_is_abs_section (output_section)
|| bfd_is_und_section (output_section))
{
if (bfd_abs_section_ptr->symbol == sym)
{
/* Whoops, looked like an abs symbol, but is really an offset
from the abs section */
r_index = 0;
r_extern = 0;
}
else
{
/* Fill in symbol */
r_extern = 1;
r_index = stoi((*(g->sym_ptr_ptr))->KEEPIT);
}
}
else
{
/* Just an ordinary section */
r_extern = 0;
r_index = output_section->target_index;
}
/* now the fun stuff */
if (abfd->xvec->header_byteorder_big_p != false) {
natptr->r_index[0] = r_index >> 16;
natptr->r_index[1] = r_index >> 8;
natptr->r_index[2] = r_index;
natptr->r_type[0] =
(r_extern? RELOC_STD_BITS_EXTERN_BIG: 0)
| (r_pcrel? RELOC_STD_BITS_PCREL_BIG: 0)
| (r_baserel? RELOC_STD_BITS_BASEREL_BIG: 0)
| (r_jmptable? RELOC_STD_BITS_JMPTABLE_BIG: 0)
| (r_relative? RELOC_STD_BITS_RELATIVE_BIG: 0)
| (r_length << RELOC_STD_BITS_LENGTH_SH_BIG);
} else {
natptr->r_index[2] = r_index >> 16;
natptr->r_index[1] = r_index >> 8;
natptr->r_index[0] = r_index;
natptr->r_type[0] =
(r_extern? RELOC_STD_BITS_EXTERN_LITTLE: 0)
| (r_pcrel? RELOC_STD_BITS_PCREL_LITTLE: 0)
| (r_baserel? RELOC_STD_BITS_BASEREL_LITTLE: 0)
| (r_jmptable? RELOC_STD_BITS_JMPTABLE_LITTLE: 0)
| (r_relative? RELOC_STD_BITS_RELATIVE_LITTLE: 0)
| (r_length << RELOC_STD_BITS_LENGTH_SH_LITTLE);
}
}
/* Extended stuff */
/* Output extended relocation information to a file in target byte order. */
void
NAME(aout,swap_ext_reloc_out) (abfd, g, natptr)
bfd *abfd;
arelent *g;
register struct reloc_ext_external *natptr;
{
int r_index;
int r_extern;
unsigned int r_type;
unsigned int r_addend;
asymbol *sym = *(g->sym_ptr_ptr);
asection *output_section = sym->section->output_section;
PUT_WORD (abfd, g->address, natptr->r_address);
r_type = (unsigned int) g->howto->type;
r_addend = g->addend + (*(g->sym_ptr_ptr))->section->output_section->vma;
/* If this relocation is relative to a symbol then set the
r_index to the symbols index, and the r_extern bit.
Absolute symbols can come in in two ways, either as an offset
from the abs section, or as a symbol which has an abs value.
check for that here. */
if (bfd_is_com_section (output_section)
|| bfd_is_abs_section (output_section)
|| bfd_is_und_section (output_section))
{
if (bfd_abs_section_ptr->symbol == sym)
{
/* Whoops, looked like an abs symbol, but is really an offset
from the abs section */
r_index = 0;
r_extern = 0;
}
else
{
r_extern = 1;
r_index = stoi((*(g->sym_ptr_ptr))->KEEPIT);
}
}
else
{
/* Just an ordinary section */
r_extern = 0;
r_index = output_section->target_index;
}
/* now the fun stuff */
if (abfd->xvec->header_byteorder_big_p != false) {
natptr->r_index[0] = r_index >> 16;
natptr->r_index[1] = r_index >> 8;
natptr->r_index[2] = r_index;
natptr->r_type[0] =
((r_extern? RELOC_EXT_BITS_EXTERN_BIG: 0)
| (r_type << RELOC_EXT_BITS_TYPE_SH_BIG));
} else {
natptr->r_index[2] = r_index >> 16;
natptr->r_index[1] = r_index >> 8;
natptr->r_index[0] = r_index;
natptr->r_type[0] =
(r_extern? RELOC_EXT_BITS_EXTERN_LITTLE: 0)
| (r_type << RELOC_EXT_BITS_TYPE_SH_LITTLE);
}
PUT_WORD (abfd, r_addend, natptr->r_addend);
}
/* BFD deals internally with all things based from the section they're
in. so, something in 10 bytes into a text section with a base of
50 would have a symbol (.text+10) and know .text vma was 50.
Aout keeps all it's symbols based from zero, so the symbol would
contain 60. This macro subs the base of each section from the value
to give the true offset from the section */
#define MOVE_ADDRESS(ad) \
if (r_extern) { \
/* undefined symbol */ \
cache_ptr->sym_ptr_ptr = symbols + r_index; \
cache_ptr->addend = ad; \
} else { \
/* defined, section relative. replace symbol with pointer to \
symbol which points to section */ \
switch (r_index) { \
case N_TEXT: \
case N_TEXT | N_EXT: \
cache_ptr->sym_ptr_ptr = obj_textsec(abfd)->symbol_ptr_ptr; \
cache_ptr->addend = ad - su->textsec->vma; \
break; \
case N_DATA: \
case N_DATA | N_EXT: \
cache_ptr->sym_ptr_ptr = obj_datasec(abfd)->symbol_ptr_ptr; \
cache_ptr->addend = ad - su->datasec->vma; \
break; \
case N_BSS: \
case N_BSS | N_EXT: \
cache_ptr->sym_ptr_ptr = obj_bsssec(abfd)->symbol_ptr_ptr; \
cache_ptr->addend = ad - su->bsssec->vma; \
break; \
default: \
case N_ABS: \
case N_ABS | N_EXT: \
cache_ptr->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr; \
cache_ptr->addend = ad; \
break; \
} \
} \
void
NAME(aout,swap_ext_reloc_in) (abfd, bytes, cache_ptr, symbols)
bfd *abfd;
struct reloc_ext_external *bytes;
arelent *cache_ptr;
asymbol **symbols;
{
int r_index;
int r_extern;
unsigned int r_type;
struct aoutdata *su = &(abfd->tdata.aout_data->a);
cache_ptr->address = (GET_SWORD (abfd, bytes->r_address));
/* now the fun stuff */
if (abfd->xvec->header_byteorder_big_p != false) {
r_index = (bytes->r_index[0] << 16)
| (bytes->r_index[1] << 8)
| bytes->r_index[2];
r_extern = (0 != (bytes->r_type[0] & RELOC_EXT_BITS_EXTERN_BIG));
r_type = (bytes->r_type[0] & RELOC_EXT_BITS_TYPE_BIG)
>> RELOC_EXT_BITS_TYPE_SH_BIG;
} else {
r_index = (bytes->r_index[2] << 16)
| (bytes->r_index[1] << 8)
| bytes->r_index[0];
r_extern = (0 != (bytes->r_type[0] & RELOC_EXT_BITS_EXTERN_LITTLE));
r_type = (bytes->r_type[0] & RELOC_EXT_BITS_TYPE_LITTLE)
>> RELOC_EXT_BITS_TYPE_SH_LITTLE;
}
cache_ptr->howto = howto_table_ext + r_type;
MOVE_ADDRESS(GET_SWORD(abfd, bytes->r_addend));
}
void
NAME(aout,swap_std_reloc_in) (abfd, bytes, cache_ptr, symbols)
bfd *abfd;
struct reloc_std_external *bytes;
arelent *cache_ptr;
asymbol **symbols;
{
int r_index;
int r_extern;
unsigned int r_length;
int r_pcrel;
int r_baserel, r_jmptable, r_relative;
struct aoutdata *su = &(abfd->tdata.aout_data->a);
int howto_idx;
cache_ptr->address = bfd_h_get_32 (abfd, bytes->r_address);
/* now the fun stuff */
if (abfd->xvec->header_byteorder_big_p != false) {
r_index = (bytes->r_index[0] << 16)
| (bytes->r_index[1] << 8)
| bytes->r_index[2];
r_extern = (0 != (bytes->r_type[0] & RELOC_STD_BITS_EXTERN_BIG));
r_pcrel = (0 != (bytes->r_type[0] & RELOC_STD_BITS_PCREL_BIG));
r_baserel = (0 != (bytes->r_type[0] & RELOC_STD_BITS_BASEREL_BIG));
r_jmptable= (0 != (bytes->r_type[0] & RELOC_STD_BITS_JMPTABLE_BIG));
r_relative= (0 != (bytes->r_type[0] & RELOC_STD_BITS_RELATIVE_BIG));
r_length = (bytes->r_type[0] & RELOC_STD_BITS_LENGTH_BIG)
>> RELOC_STD_BITS_LENGTH_SH_BIG;
} else {
r_index = (bytes->r_index[2] << 16)
| (bytes->r_index[1] << 8)
| bytes->r_index[0];
r_extern = (0 != (bytes->r_type[0] & RELOC_STD_BITS_EXTERN_LITTLE));
r_pcrel = (0 != (bytes->r_type[0] & RELOC_STD_BITS_PCREL_LITTLE));
r_baserel = (0 != (bytes->r_type[0] & RELOC_STD_BITS_BASEREL_LITTLE));
r_jmptable= (0 != (bytes->r_type[0] & RELOC_STD_BITS_JMPTABLE_LITTLE));
r_relative= (0 != (bytes->r_type[0] & RELOC_STD_BITS_RELATIVE_LITTLE));
r_length = (bytes->r_type[0] & RELOC_STD_BITS_LENGTH_LITTLE)
>> RELOC_STD_BITS_LENGTH_SH_LITTLE;
}
howto_idx = r_length + 4 * r_pcrel + 8 * r_baserel
+ 16 * r_jmptable + 32 * r_relative;
BFD_ASSERT (howto_idx < TABLE_SIZE (howto_table_std));
cache_ptr->howto = howto_table_std + howto_idx;
BFD_ASSERT (cache_ptr->howto->type != -1);
MOVE_ADDRESS(0);
}
/* Read and swap the relocs for a section. */
boolean
NAME(aout,slurp_reloc_table) (abfd, asect, symbols)
bfd *abfd;
sec_ptr asect;
asymbol **symbols;
{
unsigned int count;
bfd_size_type reloc_size;
PTR relocs;
arelent *reloc_cache;
size_t each_size;
unsigned int counter = 0;
arelent *cache_ptr;
if (asect->relocation)
return true;
if (asect->flags & SEC_CONSTRUCTOR)
return true;
if (asect == obj_datasec (abfd))
reloc_size = exec_hdr(abfd)->a_drsize;
else if (asect == obj_textsec (abfd))
reloc_size = exec_hdr(abfd)->a_trsize;
else if (asect == obj_bsssec (abfd))
reloc_size = 0;
else
{
bfd_set_error (bfd_error_invalid_operation);
return false;
}
if (bfd_seek (abfd, asect->rel_filepos, SEEK_SET) != 0)
return false;
each_size = obj_reloc_entry_size (abfd);
count = reloc_size / each_size;
reloc_cache = (arelent *) malloc ((size_t) (count * sizeof (arelent)));
if (reloc_cache == NULL && count != 0)
{
bfd_set_error (bfd_error_no_memory);
return false;
}
memset (reloc_cache, 0, count * sizeof (arelent));
relocs = malloc (reloc_size);
if (relocs == NULL && reloc_size != 0)
{
free (reloc_cache);
bfd_set_error (bfd_error_no_memory);
return false;
}
if (bfd_read (relocs, 1, reloc_size, abfd) != reloc_size)
{
free (relocs);
free (reloc_cache);
return false;
}
cache_ptr = reloc_cache;
if (each_size == RELOC_EXT_SIZE)
{
register struct reloc_ext_external *rptr =
(struct reloc_ext_external *) relocs;
for (; counter < count; counter++, rptr++, cache_ptr++)
NAME(aout,swap_ext_reloc_in) (abfd, rptr, cache_ptr, symbols);
}
else
{
register struct reloc_std_external *rptr =
(struct reloc_std_external *) relocs;
for (; counter < count; counter++, rptr++, cache_ptr++)
MY_swap_std_reloc_in(abfd, rptr, cache_ptr, symbols);
}
free (relocs);
asect->relocation = reloc_cache;
asect->reloc_count = cache_ptr - reloc_cache;
return true;
}
/* Write out a relocation section into an object file. */
boolean
NAME(aout,squirt_out_relocs) (abfd, section)
bfd *abfd;
asection *section;
{
arelent **generic;
unsigned char *native, *natptr;
size_t each_size;
unsigned int count = section->reloc_count;
size_t natsize;
if (count == 0) return true;
each_size = obj_reloc_entry_size (abfd);
natsize = each_size * count;
native = (unsigned char *) bfd_zalloc (abfd, natsize);
if (!native) {
bfd_set_error (bfd_error_no_memory);
return false;
}
generic = section->orelocation;
if (each_size == RELOC_EXT_SIZE)
{
for (natptr = native;
count != 0;
--count, natptr += each_size, ++generic)
NAME(aout,swap_ext_reloc_out) (abfd, *generic, (struct reloc_ext_external *)natptr);
}
else
{
for (natptr = native;
count != 0;
--count, natptr += each_size, ++generic)
MY_swap_std_reloc_out(abfd, *generic, (struct reloc_std_external *)natptr);
}
if ( bfd_write ((PTR) native, 1, natsize, abfd) != natsize) {
bfd_release(abfd, native);
return false;
}
bfd_release (abfd, native);
return true;
}
/* This is stupid. This function should be a boolean predicate */
long
NAME(aout,canonicalize_reloc) (abfd, section, relptr, symbols)
bfd *abfd;
sec_ptr section;
arelent **relptr;
asymbol **symbols;
{
arelent *tblptr = section->relocation;
unsigned int count;
if (section == obj_bsssec (abfd))
{
*relptr = NULL;
return 0;
}
if (!(tblptr || NAME(aout,slurp_reloc_table)(abfd, section, symbols)))
return -1;
if (section->flags & SEC_CONSTRUCTOR) {
arelent_chain *chain = section->constructor_chain;
for (count = 0; count < section->reloc_count; count ++) {
*relptr ++ = &chain->relent;
chain = chain->next;
}
}
else {
tblptr = section->relocation;
for (count = 0; count++ < section->reloc_count;)
{
*relptr++ = tblptr++;
}
}
*relptr = 0;
return section->reloc_count;
}
long
NAME(aout,get_reloc_upper_bound) (abfd, asect)
bfd *abfd;
sec_ptr asect;
{
if (bfd_get_format (abfd) != bfd_object) {
bfd_set_error (bfd_error_invalid_operation);
return -1;
}
if (asect->flags & SEC_CONSTRUCTOR) {
return (sizeof (arelent *) * (asect->reloc_count+1));
}
if (asect == obj_datasec (abfd))
return (sizeof (arelent *)
* ((exec_hdr(abfd)->a_drsize / obj_reloc_entry_size (abfd))
+ 1));
if (asect == obj_textsec (abfd))
return (sizeof (arelent *)
* ((exec_hdr(abfd)->a_trsize / obj_reloc_entry_size (abfd))
+ 1));
if (asect == obj_bsssec (abfd))
return sizeof (arelent *);
if (asect == obj_bsssec (abfd))
return 0;
bfd_set_error (bfd_error_invalid_operation);
return -1;
}
long
NAME(aout,get_symtab_upper_bound) (abfd)
bfd *abfd;
{
if (!NAME(aout,slurp_symbol_table)(abfd))
return -1;
return (bfd_get_symcount (abfd)+1) * (sizeof (aout_symbol_type *));
}
/*ARGSUSED*/
alent *
NAME(aout,get_lineno) (ignore_abfd, ignore_symbol)
bfd *ignore_abfd;
asymbol *ignore_symbol;
{
return (alent *)NULL;
}
/*ARGSUSED*/
void
NAME(aout,get_symbol_info) (ignore_abfd, symbol, ret)
bfd *ignore_abfd;
asymbol *symbol;
symbol_info *ret;
{
bfd_symbol_info (symbol, ret);
if (ret->type == '?')
{
int type_code = aout_symbol(symbol)->type & 0xff;
CONST char *stab_name = aout_stab_name(type_code);
static char buf[10];
if (stab_name == NULL)
{
sprintf(buf, "(%d)", type_code);
stab_name = buf;
}
ret->type = '-';
ret->stab_other = (unsigned)(aout_symbol(symbol)->other & 0xff);
ret->stab_desc = (unsigned)(aout_symbol(symbol)->desc & 0xffff);
ret->stab_name = stab_name;
}
}
/*ARGSUSED*/
void
NAME(aout,print_symbol) (ignore_abfd, afile, symbol, how)
bfd *ignore_abfd;
PTR afile;
asymbol *symbol;
bfd_print_symbol_type how;
{
FILE *file = (FILE *)afile;
switch (how) {
case bfd_print_symbol_name:
if (symbol->name)
fprintf(file,"%s", symbol->name);
break;
case bfd_print_symbol_more:
fprintf(file,"%4x %2x %2x",(unsigned)(aout_symbol(symbol)->desc & 0xffff),
(unsigned)(aout_symbol(symbol)->other & 0xff),
(unsigned)(aout_symbol(symbol)->type));
break;
case bfd_print_symbol_all:
{
CONST char *section_name = symbol->section->name;
bfd_print_symbol_vandf((PTR)file,symbol);
fprintf(file," %-5s %04x %02x %02x",
section_name,
(unsigned)(aout_symbol(symbol)->desc & 0xffff),
(unsigned)(aout_symbol(symbol)->other & 0xff),
(unsigned)(aout_symbol(symbol)->type & 0xff));
if (symbol->name)
fprintf(file," %s", symbol->name);
}
break;
}
}
/*
provided a BFD, a section and an offset into the section, calculate
and return the name of the source file and the line nearest to the
wanted location.
*/
boolean
NAME(aout,find_nearest_line)
(abfd, section, symbols, offset, filename_ptr, functionname_ptr, line_ptr)
bfd *abfd;
asection *section;
asymbol **symbols;
bfd_vma offset;
CONST char **filename_ptr;
CONST char **functionname_ptr;
unsigned int *line_ptr;
{
/* Run down the file looking for the filename, function and linenumber */
asymbol **p;
static char buffer[100];
static char filename_buffer[200];
CONST char *directory_name = NULL;
CONST char *main_file_name = NULL;
CONST char *current_file_name = NULL;
CONST char *line_file_name = NULL; /* Value of current_file_name at line number. */
bfd_vma high_line_vma = ~0;
bfd_vma low_func_vma = 0;
asymbol *func = 0;
*filename_ptr = abfd->filename;
*functionname_ptr = 0;
*line_ptr = 0;
if (symbols != (asymbol **)NULL) {
for (p = symbols; *p; p++) {
aout_symbol_type *q = (aout_symbol_type *)(*p);
next:
switch (q->type){
case N_SO:
main_file_name = current_file_name = q->symbol.name;
/* Look ahead to next symbol to check if that too is an N_SO. */
p++;
if (*p == NULL)
break;
q = (aout_symbol_type *)(*p);
if (q->type != (int)N_SO)
goto next;
/* Found a second N_SO First is directory; second is filename. */
directory_name = current_file_name;
main_file_name = current_file_name = q->symbol.name;
if (obj_textsec(abfd) != section)
goto done;
break;
case N_SOL:
current_file_name = q->symbol.name;
break;
case N_SLINE:
case N_DSLINE:
case N_BSLINE:
/* We'll keep this if it resolves nearer than the one we have already */
if (q->symbol.value >= offset &&
q->symbol.value < high_line_vma) {
*line_ptr = q->desc;
high_line_vma = q->symbol.value;
line_file_name = current_file_name;
}
break;
case N_FUN:
{
/* We'll keep this if it is nearer than the one we have already */
if (q->symbol.value >= low_func_vma &&
q->symbol.value <= offset) {
low_func_vma = q->symbol.value;
func = (asymbol *)q;
}
if (*line_ptr && func) {
CONST char *function = func->name;
char *p;
/* The caller expects a symbol name. We actually have a
function name, without the leading underscore. Put the
underscore back in, so that the caller gets a symbol
name. */
if (bfd_get_symbol_leading_char (abfd) == '\0')
strncpy (buffer, function, sizeof (buffer) - 1);
else
{
buffer[0] = bfd_get_symbol_leading_char (abfd);
strncpy (buffer + 1, function, sizeof (buffer) - 2);
}
buffer[sizeof(buffer)-1] = 0;
/* Have to remove : stuff */
p = strchr(buffer,':');
if (p != NULL) { *p = '\0'; }
*functionname_ptr = buffer;
goto done;
}
}
break;
}
}
}
done:
if (*line_ptr)
main_file_name = line_file_name;
if (main_file_name) {
if (main_file_name[0] == '/' || directory_name == NULL)
*filename_ptr = main_file_name;
else {
sprintf(filename_buffer, "%.140s%.50s",
directory_name, main_file_name);
*filename_ptr = filename_buffer;
}
}
return true;
}
/*ARGSUSED*/
int
NAME(aout,sizeof_headers) (abfd, execable)
bfd *abfd;
boolean execable;
{
return adata(abfd).exec_bytes_size;
}
/* Free all information we have cached for this BFD. We can always
read it again later if we need it. */
boolean
NAME(aout,bfd_free_cached_info) (abfd)
bfd *abfd;
{
asection *o;
if (bfd_get_format (abfd) != bfd_object)
return true;
#define BFCI_FREE(x) if (x != NULL) { free (x); x = NULL; }
BFCI_FREE (obj_aout_symbols (abfd));
BFCI_FREE (obj_aout_external_syms (abfd));
BFCI_FREE (obj_aout_external_strings (abfd));
for (o = abfd->sections; o != (asection *) NULL; o = o->next)
BFCI_FREE (o->relocation);
#undef BFCI_FREE
return true;
}
/* a.out link code. */
static boolean aout_link_add_object_symbols
PARAMS ((bfd *, struct bfd_link_info *));
static boolean aout_link_check_archive_element
PARAMS ((bfd *, struct bfd_link_info *, boolean *));
static boolean aout_link_free_symbols PARAMS ((bfd *));
static boolean aout_link_check_ar_symbols
PARAMS ((bfd *, struct bfd_link_info *, boolean *pneeded));
static boolean aout_link_add_symbols
PARAMS ((bfd *, struct bfd_link_info *));
/* Routine to create an entry in an a.out link hash table. */
struct bfd_hash_entry *
NAME(aout,link_hash_newfunc) (entry, table, string)
struct bfd_hash_entry *entry;
struct bfd_hash_table *table;
const char *string;
{
struct aout_link_hash_entry *ret = (struct aout_link_hash_entry *) entry;
/* Allocate the structure if it has not already been allocated by a
subclass. */
if (ret == (struct aout_link_hash_entry *) NULL)
ret = ((struct aout_link_hash_entry *)
bfd_hash_allocate (table, sizeof (struct aout_link_hash_entry)));
if (ret == (struct aout_link_hash_entry *) NULL)
{
bfd_set_error (bfd_error_no_memory);
return (struct bfd_hash_entry *) ret;
}
/* Call the allocation method of the superclass. */
ret = ((struct aout_link_hash_entry *)
_bfd_link_hash_newfunc ((struct bfd_hash_entry *) ret,
table, string));
if (ret)
{
/* Set local fields. */
ret->written = false;
ret->indx = -1;
}
return (struct bfd_hash_entry *) ret;
}
/* Initialize an a.out link hash table. */
boolean
NAME(aout,link_hash_table_init) (table, abfd, newfunc)
struct aout_link_hash_table *table;
bfd *abfd;
struct bfd_hash_entry *(*newfunc) PARAMS ((struct bfd_hash_entry *,
struct bfd_hash_table *,
const char *));
{
return _bfd_link_hash_table_init (&table->root, abfd, newfunc);
}
/* Create an a.out link hash table. */
struct bfd_link_hash_table *
NAME(aout,link_hash_table_create) (abfd)
bfd *abfd;
{
struct aout_link_hash_table *ret;
ret = ((struct aout_link_hash_table *)
malloc (sizeof (struct aout_link_hash_table)));
if (ret == (struct aout_link_hash_table *) NULL)
{
bfd_set_error (bfd_error_no_memory);
return (struct bfd_link_hash_table *) NULL;
}
if (! NAME(aout,link_hash_table_init) (ret, abfd,
NAME(aout,link_hash_newfunc)))
{
free (ret);
return (struct bfd_link_hash_table *) NULL;
}
return &ret->root;
}
/* Given an a.out BFD, add symbols to the global hash table as
appropriate. */
boolean
NAME(aout,link_add_symbols) (abfd, info)
bfd *abfd;
struct bfd_link_info *info;
{
switch (bfd_get_format (abfd))
{
case bfd_object:
return aout_link_add_object_symbols (abfd, info);
case bfd_archive:
return _bfd_generic_link_add_archive_symbols
(abfd, info, aout_link_check_archive_element);
default:
bfd_set_error (bfd_error_wrong_format);
return false;
}
}
/* Add symbols from an a.out object file. */
static boolean
aout_link_add_object_symbols (abfd, info)
bfd *abfd;
struct bfd_link_info *info;
{
if (! aout_get_external_symbols (abfd))
return false;
if (! aout_link_add_symbols (abfd, info))
return false;
if (! info->keep_memory)
{
if (! aout_link_free_symbols (abfd))
return false;
}
return true;
}
/* Check a single archive element to see if we need to include it in
the link. *PNEEDED is set according to whether this element is
needed in the link or not. This is called from
_bfd_generic_link_add_archive_symbols. */
static boolean
aout_link_check_archive_element (abfd, info, pneeded)
bfd *abfd;
struct bfd_link_info *info;
boolean *pneeded;
{
if (! aout_get_external_symbols (abfd))
return false;
if (! aout_link_check_ar_symbols (abfd, info, pneeded))
return false;
if (*pneeded)
{
if (! aout_link_add_symbols (abfd, info))
return false;
}
/* We keep around the symbols even if we aren't going to use this
object file, because we may want to reread it. This doesn't
waste too much memory, because it isn't all that common to read
an archive element but not need it. */
if (! info->keep_memory)
{
if (! aout_link_free_symbols (abfd))
return false;
}
return true;
}
/* Free up the internal symbols read from an a.out file. */
static boolean
aout_link_free_symbols (abfd)
bfd *abfd;
{
if (obj_aout_external_syms (abfd) != (struct external_nlist *) NULL)
{
free ((PTR) obj_aout_external_syms (abfd));
obj_aout_external_syms (abfd) = (struct external_nlist *) NULL;
}
if (obj_aout_external_strings (abfd) != (char *) NULL)
{
free ((PTR) obj_aout_external_strings (abfd));
obj_aout_external_strings (abfd) = (char *) NULL;
}
return true;
}
/* Look through the internal symbols to see if this object file should
be included in the link. We should include this object file if it
defines any symbols which are currently undefined. If this object
file defines a common symbol, then we may adjust the size of the
known symbol but we do not include the object file in the link
(unless there is some other reason to include it). */
static boolean
aout_link_check_ar_symbols (abfd, info, pneeded)
bfd *abfd;
struct bfd_link_info *info;
boolean *pneeded;
{
register struct external_nlist *p;
struct external_nlist *pend;
char *strings;
*pneeded = false;
/* Look through all the symbols. */
p = obj_aout_external_syms (abfd);
pend = p + obj_aout_external_sym_count (abfd);
strings = obj_aout_external_strings (abfd);
for (; p < pend; p++)
{
int type = bfd_h_get_8 (abfd, p->e_type);
const char *name;
struct bfd_link_hash_entry *h;
/* Ignore symbols that are not externally visible. This is an
optimization only, as we check the type more thoroughly
below. */
if (((type & N_EXT) == 0
|| (type & N_STAB) != 0
|| type == N_FN)
&& type != N_WEAKA
&& type != N_WEAKT
&& type != N_WEAKD
&& type != N_WEAKB)
{
if (type == N_WARNING
|| type == N_INDR)
++p;
continue;
}
name = strings + GET_WORD (abfd, p->e_strx);
h = bfd_link_hash_lookup (info->hash, name, false, false, true);
/* We are only interested in symbols that are currently
undefined or common. */
if (h == (struct bfd_link_hash_entry *) NULL
|| (h->type != bfd_link_hash_undefined
&& h->type != bfd_link_hash_common))
{
if (type == (N_INDR | N_EXT))
++p;
continue;
}
if (type == (N_TEXT | N_EXT)
|| type == (N_DATA | N_EXT)
|| type == (N_BSS | N_EXT)
|| type == (N_ABS | N_EXT)
|| type == (N_INDR | N_EXT))
{
/* This object file defines this symbol. We must link it
in. This is true regardless of whether the current
definition of the symbol is undefined or common. If the
current definition is common, we have a case in which we
have already seen an object file including
int a;
and this object file from the archive includes
int a = 5;
In such a case we must include this object file.
FIXME: The SunOS 4.1.3 linker will pull in the archive
element if the symbol is defined in the .data section,
but not if it is defined in the .text section. That
seems a bit crazy to me, and I haven't implemented it.
However, it might be correct. */
if (! (*info->callbacks->add_archive_element) (info, abfd, name))
return false;
*pneeded = true;
return true;
}
if (type == (N_UNDF | N_EXT))
{
bfd_vma value;
value = GET_WORD (abfd, p->e_value);
if (value != 0)
{
/* This symbol is common in the object from the archive
file. */
if (h->type == bfd_link_hash_undefined)
{
bfd *symbfd;
symbfd = h->u.undef.abfd;
if (symbfd == (bfd *) NULL)
{
/* This symbol was created as undefined from
outside BFD. We assume that we should link
in the object file. This is done for the -u
option in the linker. */
if (! (*info->callbacks->add_archive_element) (info,
abfd,
name))
return false;
*pneeded = true;
return true;
}
/* Turn the current link symbol into a common
symbol. It is already on the undefs list. */
h->type = bfd_link_hash_common;
h->u.c.size = value;
h->u.c.section = bfd_make_section_old_way (symbfd,
"COMMON");
}
else
{
/* Adjust the size of the common symbol if
necessary. */
if (value > h->u.c.size)
h->u.c.size = value;
}
}
}
if (type == N_WEAKA
|| type == N_WEAKT
|| type == N_WEAKD
|| type == N_WEAKB)
{
/* This symbol is weak but defined. We must pull it in if
the current link symbol is undefined, but we don't want
it if the current link symbol is common. */
if (h->type == bfd_link_hash_undefined)
{
if (! (*info->callbacks->add_archive_element) (info, abfd, name))
return false;
*pneeded = true;
return true;
}
}
}
/* We do not need this object file. */
return true;
}
/* Add all symbols from an object file to the hash table. */
static boolean
aout_link_add_symbols (abfd, info)
bfd *abfd;
struct bfd_link_info *info;
{
boolean (*add_one_symbol) PARAMS ((struct bfd_link_info *, bfd *,
const char *, flagword, asection *,
bfd_vma, const char *, boolean,
boolean,
struct bfd_link_hash_entry **));
bfd_size_type sym_count;
char *strings;
boolean copy;
struct aout_link_hash_entry **sym_hash;
register struct external_nlist *p;
struct external_nlist *pend;
sym_count = obj_aout_external_sym_count (abfd);
strings = obj_aout_external_strings (abfd);
if (info->keep_memory)
copy = false;
else
copy = true;
/* We keep a list of the linker hash table entries that correspond
to particular symbols. We could just look them up in the hash
table, but keeping the list is more efficient. Perhaps this
should be conditional on info->keep_memory. */
sym_hash = ((struct aout_link_hash_entry **)
bfd_alloc (abfd,
((size_t) sym_count
* sizeof (struct aout_link_hash_entry *))));
if (sym_hash == NULL && sym_count != 0)
{
bfd_set_error (bfd_error_no_memory);
return false;
}
obj_aout_sym_hashes (abfd) = sym_hash;
if ((abfd->flags & DYNAMIC) != 0
&& aout_backend_info (abfd)->add_dynamic_symbols != NULL)
{
if (! (*aout_backend_info (abfd)->add_dynamic_symbols) (abfd, info))
return false;
}
add_one_symbol = aout_backend_info (abfd)->add_one_symbol;
if (add_one_symbol == NULL)
add_one_symbol = _bfd_generic_link_add_one_symbol;
p = obj_aout_external_syms (abfd);
pend = p + sym_count;
for (; p < pend; p++, sym_hash++)
{
int type;
const char *name;
bfd_vma value;
asection *section;
flagword flags;
const char *string;
*sym_hash = NULL;
type = bfd_h_get_8 (abfd, p->e_type);
/* Ignore debugging symbols. */
if ((type & N_STAB) != 0)
continue;
name = strings + GET_WORD (abfd, p->e_strx);
value = GET_WORD (abfd, p->e_value);
flags = BSF_GLOBAL;
string = NULL;
switch (type)
{
default:
abort ();
case N_UNDF:
case N_ABS:
case N_TEXT:
case N_DATA:
case N_BSS:
case N_FN_SEQ:
case N_COMM:
case N_SETV:
case N_FN:
/* Ignore symbols that are not externally visible. */
continue;
case N_INDR:
/* Ignore local indirect symbol. */
++p;
++sym_hash;
continue;
case N_UNDF | N_EXT:
if (value == 0)
{
section = bfd_und_section_ptr;
flags = 0;
}
else
section = bfd_com_section_ptr;
break;
case N_ABS | N_EXT:
section = bfd_abs_section_ptr;
break;
case N_TEXT | N_EXT:
section = obj_textsec (abfd);
value -= bfd_get_section_vma (abfd, section);
break;
case N_DATA | N_EXT:
case N_SETV | N_EXT:
/* Treat N_SETV symbols as N_DATA symbol; see comment in
translate_from_native_sym_flags. */
section = obj_datasec (abfd);
value -= bfd_get_section_vma (abfd, section);
break;
case N_BSS | N_EXT:
section = obj_bsssec (abfd);
value -= bfd_get_section_vma (abfd, section);
break;
case N_INDR | N_EXT:
/* An indirect symbol. The next symbol is the symbol
which this one really is. */
BFD_ASSERT (p + 1 < pend);
++p;
string = strings + GET_WORD (abfd, p->e_strx);
section = bfd_ind_section_ptr;
flags |= BSF_INDIRECT;
break;
case N_COMM | N_EXT:
section = bfd_com_section_ptr;
break;
case N_SETA: case N_SETA | N_EXT:
section = bfd_abs_section_ptr;
flags |= BSF_CONSTRUCTOR;
break;
case N_SETT: case N_SETT | N_EXT:
section = obj_textsec (abfd);
flags |= BSF_CONSTRUCTOR;
value -= bfd_get_section_vma (abfd, section);
break;
case N_SETD: case N_SETD | N_EXT:
section = obj_datasec (abfd);
flags |= BSF_CONSTRUCTOR;
value -= bfd_get_section_vma (abfd, section);
break;
case N_SETB: case N_SETB | N_EXT:
section = obj_bsssec (abfd);
flags |= BSF_CONSTRUCTOR;
value -= bfd_get_section_vma (abfd, section);
break;
case N_WARNING:
/* A warning symbol. The next symbol is the one to warn
about. */
BFD_ASSERT (p + 1 < pend);
++p;
string = name;
name = strings + GET_WORD (abfd, p->e_strx);
section = bfd_und_section_ptr;
flags |= BSF_WARNING;
break;
case N_WEAKU:
section = bfd_und_section_ptr;
flags = BSF_WEAK;
break;
case N_WEAKA:
section = bfd_abs_section_ptr;
flags = BSF_WEAK;
break;
case N_WEAKT:
section = obj_textsec (abfd);
value -= bfd_get_section_vma (abfd, section);
flags = BSF_WEAK;
break;
case N_WEAKD:
section = obj_datasec (abfd);
value -= bfd_get_section_vma (abfd, section);
flags = BSF_WEAK;
break;
case N_WEAKB:
section = obj_bsssec (abfd);
value -= bfd_get_section_vma (abfd, section);
flags = BSF_WEAK;
break;
}
if (! ((*add_one_symbol)
(info, abfd, name, flags, section, value, string, copy, false,
(struct bfd_link_hash_entry **) sym_hash)))
return false;
if (type == (N_INDR | N_EXT) || type == N_WARNING)
++sym_hash;
}
return true;
}
/* During the final link step we need to pass around a bunch of
information, so we do it in an instance of this structure. */
struct aout_final_link_info
{
/* General link information. */
struct bfd_link_info *info;
/* Output bfd. */
bfd *output_bfd;
/* Reloc file positions. */
file_ptr treloff, dreloff;
/* File position of symbols. */
file_ptr symoff;
/* String table. */
struct strtab_hash strtab;
};
static boolean aout_link_input_bfd
PARAMS ((struct aout_final_link_info *, bfd *input_bfd));
static boolean aout_link_write_symbols
PARAMS ((struct aout_final_link_info *, bfd *input_bfd, int *symbol_map));
static boolean aout_link_write_other_symbol
PARAMS ((struct aout_link_hash_entry *, PTR));
static boolean aout_link_input_section
PARAMS ((struct aout_final_link_info *, bfd *input_bfd,
asection *input_section, file_ptr *reloff_ptr,
bfd_size_type rel_size, int *symbol_map));
static boolean aout_link_input_section_std
PARAMS ((struct aout_final_link_info *, bfd *input_bfd,
asection *input_section, struct reloc_std_external *,
bfd_size_type rel_size, bfd_byte *contents, int *symbol_map));
static boolean aout_link_input_section_ext
PARAMS ((struct aout_final_link_info *, bfd *input_bfd,
asection *input_section, struct reloc_ext_external *,
bfd_size_type rel_size, bfd_byte *contents, int *symbol_map));
static INLINE asection *aout_reloc_index_to_section
PARAMS ((bfd *, int));
static boolean aout_link_reloc_link_order
PARAMS ((struct aout_final_link_info *, asection *,
struct bfd_link_order *));
/* Do the final link step. This is called on the output BFD. The
INFO structure should point to a list of BFDs linked through the
link_next field which can be used to find each BFD which takes part
in the output. Also, each section in ABFD should point to a list
of bfd_link_order structures which list all the input sections for
the output section. */
boolean
NAME(aout,final_link) (abfd, info, callback)
bfd *abfd;
struct bfd_link_info *info;
void (*callback) PARAMS ((bfd *, file_ptr *, file_ptr *, file_ptr *));
{
struct aout_final_link_info aout_info;
register bfd *sub;
bfd_size_type text_size;
file_ptr text_end;
register struct bfd_link_order *p;
asection *o;
boolean have_link_order_relocs;
aout_info.info = info;
aout_info.output_bfd = abfd;
if (! info->relocateable)
{
exec_hdr (abfd)->a_trsize = 0;
exec_hdr (abfd)->a_drsize = 0;
}
else
{
bfd_size_type trsize, drsize;
/* Count up the relocation sizes. */
trsize = 0;
drsize = 0;
for (sub = info->input_bfds; sub != (bfd *) NULL; sub = sub->link_next)
{
if (bfd_get_flavour (sub) == bfd_target_aout_flavour)
{
trsize += exec_hdr (sub)->a_trsize;
drsize += exec_hdr (sub)->a_drsize;
}
else
{
/* FIXME: We need to identify the .text and .data sections
and call get_reloc_upper_bound and canonicalize_reloc to
work out the number of relocs needed, and then multiply
by the reloc size. */
abort ();
}
}
if (obj_textsec (abfd) != (asection *) NULL)
trsize += (_bfd_count_link_order_relocs (obj_textsec (abfd)
->link_order_head)
* obj_reloc_entry_size (abfd));
exec_hdr (abfd)->a_trsize = trsize;
if (obj_datasec (abfd) != (asection *) NULL)
drsize += (_bfd_count_link_order_relocs (obj_datasec (abfd)
->link_order_head)
* obj_reloc_entry_size (abfd));
exec_hdr (abfd)->a_drsize = drsize;
}
exec_hdr (abfd)->a_entry = bfd_get_start_address (abfd);
/* Adjust the section sizes and vmas according to the magic number.
This sets a_text, a_data and a_bss in the exec_hdr and sets the
filepos for each section. */
if (! NAME(aout,adjust_sizes_and_vmas) (abfd, &text_size, &text_end))
return false;
/* The relocation and symbol file positions differ among a.out
targets. We are passed a callback routine from the backend
specific code to handle this.
FIXME: At this point we do not know how much space the symbol
table will require. This will not work for any (nonstandard)
a.out target that needs to know the symbol table size before it
can compute the relocation file positions. This may or may not
be the case for the hp300hpux target, for example. */
(*callback) (abfd, &aout_info.treloff, &aout_info.dreloff,
&aout_info.symoff);
obj_textsec (abfd)->rel_filepos = aout_info.treloff;
obj_datasec (abfd)->rel_filepos = aout_info.dreloff;
obj_sym_filepos (abfd) = aout_info.symoff;
/* We keep a count of the symbols as we output them. */
obj_aout_external_sym_count (abfd) = 0;
/* We accumulate the string table as we write out the symbols. */
if (! stringtab_init (&aout_info.strtab))
return false;
/* The most time efficient way to do the link would be to read all
the input object files into memory and then sort out the
information into the output file. Unfortunately, that will
probably use too much memory. Another method would be to step
through everything that composes the text section and write it
out, and then everything that composes the data section and write
it out, and then write out the relocs, and then write out the
symbols. Unfortunately, that requires reading stuff from each
input file several times, and we will not be able to keep all the
input files open simultaneously, and reopening them will be slow.
What we do is basically process one input file at a time. We do
everything we need to do with an input file once--copy over the
section contents, handle the relocation information, and write
out the symbols--and then we throw away the information we read
from it. This approach requires a lot of lseeks of the output
file, which is unfortunate but still faster than reopening a lot
of files.
We use the output_has_begun field of the input BFDs to see
whether we have already handled it. */
for (sub = info->input_bfds; sub != (bfd *) NULL; sub = sub->link_next)
sub->output_has_begun = false;
have_link_order_relocs = false;
for (o = abfd->sections; o != (asection *) NULL; o = o->next)
{
for (p = o->link_order_head;
p != (struct bfd_link_order *) NULL;
p = p->next)
{
if (p->type == bfd_indirect_link_order
&& (bfd_get_flavour (p->u.indirect.section->owner)
== bfd_target_aout_flavour))
{
bfd *input_bfd;
input_bfd = p->u.indirect.section->owner;
if (! input_bfd->output_has_begun)
{
if (! aout_link_input_bfd (&aout_info, input_bfd))
return false;
input_bfd->output_has_begun = true;
}
}
else if (p->type == bfd_section_reloc_link_order
|| p->type == bfd_symbol_reloc_link_order)
{
/* These are handled below. */
have_link_order_relocs = true;
}
else
{
if (! _bfd_default_link_order (abfd, info, o, p))
return false;
}
}
}
/* Write out any symbols that we have not already written out. */
aout_link_hash_traverse (aout_hash_table (info),
aout_link_write_other_symbol,
(PTR) &aout_info);
/* Now handle any relocs we were asked to create by the linker.
These did not come from any input file. We must do these after
we have written out all the symbols, so that we know the symbol
indices to use. */
if (have_link_order_relocs)
{
for (o = abfd->sections; o != (asection *) NULL; o = o->next)
{
for (p = o->link_order_head;
p != (struct bfd_link_order *) NULL;
p = p->next)
{
if (p->type == bfd_section_reloc_link_order
|| p->type == bfd_symbol_reloc_link_order)
{
if (! aout_link_reloc_link_order (&aout_info, o, p))
return false;
}
}
}
}
/* Finish up any dynamic linking we may be doing. */
if (aout_backend_info (abfd)->finish_dynamic_link != NULL)
{
if (! (*aout_backend_info (abfd)->finish_dynamic_link) (abfd, info))
return false;
}
/* Update the header information. */
abfd->symcount = obj_aout_external_sym_count (abfd);
exec_hdr (abfd)->a_syms = abfd->symcount * EXTERNAL_NLIST_SIZE;
obj_str_filepos (abfd) = obj_sym_filepos (abfd) + exec_hdr (abfd)->a_syms;
obj_textsec (abfd)->reloc_count =
exec_hdr (abfd)->a_trsize / obj_reloc_entry_size (abfd);
obj_datasec (abfd)->reloc_count =
exec_hdr (abfd)->a_drsize / obj_reloc_entry_size (abfd);
/* Write out the string table. */
if (bfd_seek (abfd, obj_str_filepos (abfd), SEEK_SET) != 0)
return false;
return emit_stringtab (abfd, &aout_info.strtab);
}
/* Link an a.out input BFD into the output file. */
static boolean
aout_link_input_bfd (finfo, input_bfd)
struct aout_final_link_info *finfo;
bfd *input_bfd;
{
bfd_size_type sym_count;
int *symbol_map = NULL;
BFD_ASSERT (bfd_get_format (input_bfd) == bfd_object);
/* If this is a dynamic object, it may need special handling. */
if ((input_bfd->flags & DYNAMIC) != 0
&& aout_backend_info (input_bfd)->link_dynamic_object != NULL)
{
return ((*aout_backend_info (input_bfd)->link_dynamic_object)
(finfo->info, input_bfd));
}
/* Get the symbols. We probably have them already, unless
finfo->info->keep_memory is false. */
if (! aout_get_external_symbols (input_bfd))
return false;
sym_count = obj_aout_external_sym_count (input_bfd);
symbol_map = (int *) malloc ((size_t) sym_count * sizeof (int));
if (symbol_map == NULL && sym_count != 0)
{
bfd_set_error (bfd_error_no_memory);
return false;
}
/* Write out the symbols and get a map of the new indices. */
if (! aout_link_write_symbols (finfo, input_bfd, symbol_map))
goto error_return;
/* Relocate and write out the sections. */
if (! aout_link_input_section (finfo, input_bfd,
obj_textsec (input_bfd),
&finfo->treloff,
exec_hdr (input_bfd)->a_trsize,
symbol_map)
|| ! aout_link_input_section (finfo, input_bfd,
obj_datasec (input_bfd),
&finfo->dreloff,
exec_hdr (input_bfd)->a_drsize,
symbol_map))
goto error_return;
/* If we are not keeping memory, we don't need the symbols any
longer. We still need them if we are keeping memory, because the
strings in the hash table point into them. */
if (! finfo->info->keep_memory)
{
if (! aout_link_free_symbols (input_bfd))
goto error_return;
}
if (symbol_map != NULL)
free (symbol_map);
return true;
error_return:
if (symbol_map != NULL)
free (symbol_map);
return false;
}
/* Adjust and write out the symbols for an a.out file. Set the new
symbol indices into a symbol_map. */
static boolean
aout_link_write_symbols (finfo, input_bfd, symbol_map)
struct aout_final_link_info *finfo;
bfd *input_bfd;
int *symbol_map;
{
bfd *output_bfd;
bfd_size_type sym_count;
char *strings;
enum bfd_link_strip strip;
enum bfd_link_discard discard;
struct external_nlist *output_syms = NULL;
struct external_nlist *outsym;
bfd_size_type strtab_index;
register struct external_nlist *sym;
struct external_nlist *sym_end;
struct aout_link_hash_entry **sym_hash;
boolean pass;
boolean skip_indirect;
output_bfd = finfo->output_bfd;
sym_count = obj_aout_external_sym_count (input_bfd);
strings = obj_aout_external_strings (input_bfd);
strip = finfo->info->strip;
discard = finfo->info->discard;
output_syms = ((struct external_nlist *)
malloc ((size_t) (sym_count + 1) * EXTERNAL_NLIST_SIZE));
if (output_syms == NULL)
{
bfd_set_error (bfd_error_no_memory);
goto error_return;
}
outsym = output_syms;
/* First write out a symbol for this object file, unless we are
discarding such symbols. */
if (strip != strip_all
&& (strip != strip_some
|| bfd_hash_lookup (finfo->info->keep_hash, input_bfd->filename,
false, false) != NULL)
&& discard != discard_all)
{
bfd_h_put_8 (output_bfd, N_TEXT, outsym->e_type);
bfd_h_put_8 (output_bfd, 0, outsym->e_other);
bfd_h_put_16 (output_bfd, (bfd_vma) 0, outsym->e_desc);
strtab_index = add_to_stringtab (output_bfd, &finfo->strtab,
input_bfd->filename, false);
if (strtab_index == (bfd_size_type) -1)
goto error_return;
PUT_WORD (output_bfd, strtab_index, outsym->e_strx);
PUT_WORD (output_bfd,
(bfd_get_section_vma (output_bfd,
obj_textsec (input_bfd)->output_section)
+ obj_textsec (input_bfd)->output_offset),
outsym->e_value);
++obj_aout_external_sym_count (output_bfd);
++outsym;
}
pass = false;
skip_indirect = false;
sym = obj_aout_external_syms (input_bfd);
sym_end = sym + sym_count;
sym_hash = obj_aout_sym_hashes (input_bfd);
for (; sym < sym_end; sym++, sym_hash++, symbol_map++)
{
const char *name;
int type;
struct aout_link_hash_entry *h;
boolean skip;
asection *symsec;
bfd_vma val = 0;
boolean copy;
*symbol_map = -1;
type = bfd_h_get_8 (input_bfd, sym->e_type);
name = strings + GET_WORD (input_bfd, sym->e_strx);
h = NULL;
if (pass)
{
/* Pass this symbol through. It is the target of an
indirect or warning symbol. */
val = GET_WORD (input_bfd, sym->e_value);
pass = false;
}
else if (skip_indirect)
{
/* Skip this symbol, which is the target of an indirect
symbol that we have changed to no longer be an indirect
symbol. */
skip_indirect = false;
continue;
}
else
{
struct aout_link_hash_entry *hresolve;
/* We have saved the hash table entry for this symbol, if
there is one. Note that we could just look it up again
in the hash table, provided we first check that it is an
external symbol. */
h = *sym_hash;
/* If this is an indirect or warning symbol, then change
hresolve to the base symbol. We also change *sym_hash so
that the relocation routines relocate against the real
symbol. */
hresolve = h;
if (h != (struct aout_link_hash_entry *) NULL
&& (h->root.type == bfd_link_hash_indirect
|| h->root.type == bfd_link_hash_warning))
{
hresolve = (struct aout_link_hash_entry *) h->root.u.i.link;
while (hresolve->root.type == bfd_link_hash_indirect
|| hresolve->root.type == bfd_link_hash_warning)
hresolve = ((struct aout_link_hash_entry *)
hresolve->root.u.i.link);
*sym_hash = hresolve;
}
/* If the symbol has already been written out, skip it. */
if (h != (struct aout_link_hash_entry *) NULL
&& h->root.type != bfd_link_hash_warning
&& h->written)
{
if ((type & N_TYPE) == N_INDR)
skip_indirect = true;
*symbol_map = h->indx;
continue;
}
/* See if we are stripping this symbol. */
skip = false;
switch (strip)
{
case strip_none:
break;
case strip_debugger:
if ((type & N_STAB) != 0)
skip = true;
break;
case strip_some:
if (bfd_hash_lookup (finfo->info->keep_hash, name, false, false)
== NULL)
skip = true;
break;
case strip_all:
skip = true;
break;
}
if (skip)
{
if (h != (struct aout_link_hash_entry *) NULL)
h->written = true;
continue;
}
/* Get the value of the symbol. */
if ((type & N_TYPE) == N_TEXT
|| type == N_WEAKT)
symsec = obj_textsec (input_bfd);
else if ((type & N_TYPE) == N_DATA
|| type == N_WEAKD)
symsec = obj_datasec (input_bfd);
else if ((type & N_TYPE) == N_BSS
|| type == N_WEAKB)
symsec = obj_bsssec (input_bfd);
else if ((type & N_TYPE) == N_ABS
|| type == N_WEAKA)
symsec = bfd_abs_section_ptr;
else if (((type & N_TYPE) == N_INDR
&& (hresolve == (struct aout_link_hash_entry *) NULL
|| (hresolve->root.type != bfd_link_hash_defined
&& hresolve->root.type != bfd_link_hash_common)))
|| type == N_WARNING)
{
/* Pass the next symbol through unchanged. The
condition above for indirect symbols is so that if
the indirect symbol was defined, we output it with
the correct definition so the debugger will
understand it. */
pass = true;
val = GET_WORD (input_bfd, sym->e_value);
symsec = NULL;
}
else if ((type & N_STAB) != 0)
{
val = GET_WORD (input_bfd, sym->e_value);
symsec = NULL;
}
else
{
/* If we get here with an indirect symbol, it means that
we are outputting it with a real definition. In such
a case we do not want to output the next symbol,
which is the target of the indirection. */
if ((type & N_TYPE) == N_INDR)
skip_indirect = true;
/* We need to get the value from the hash table. We use
hresolve so that if we have defined an indirect
symbol we output the final definition. */
if (h == (struct aout_link_hash_entry *) NULL)
val = 0;
else if (hresolve->root.type == bfd_link_hash_defined)
{
asection *input_section;
asection *output_section;
/* This case means a common symbol which was turned
into a defined symbol. */
input_section = hresolve->root.u.def.section;
output_section = input_section->output_section;
BFD_ASSERT (bfd_is_abs_section (output_section)
|| output_section->owner == output_bfd);
val = (hresolve->root.u.def.value
+ bfd_get_section_vma (output_bfd, output_section)
+ input_section->output_offset);
/* Get the correct type based on the section. If
this is a constructed set, force it to be
globally visible. */
if (type == N_SETT
|| type == N_SETD
|| type == N_SETB
|| type == N_SETA)
type |= N_EXT;
type &=~ N_TYPE;
if (output_section == obj_textsec (output_bfd))
type |= N_TEXT;
else if (output_section == obj_datasec (output_bfd))
type |= N_DATA;
else if (output_section == obj_bsssec (output_bfd))
type |= N_BSS;
else
type |= N_ABS;
}
else if (hresolve->root.type == bfd_link_hash_common)
val = hresolve->root.u.c.size;
else if (hresolve->root.type == bfd_link_hash_weak)
{
val = 0;
type = N_WEAKU;
}
else
val = 0;
symsec = NULL;
}
if (symsec != (asection *) NULL)
val = (symsec->output_section->vma
+ symsec->output_offset
+ (GET_WORD (input_bfd, sym->e_value)
- symsec->vma));
/* If this is a global symbol set the written flag, and if
it is a local symbol see if we should discard it. */
if (h != (struct aout_link_hash_entry *) NULL)
{
h->written = true;
h->indx = obj_aout_external_sym_count (output_bfd);
}
else
{
switch (discard)
{
case discard_none:
break;
case discard_l:
if (*name == *finfo->info->lprefix
&& (finfo->info->lprefix_len == 1
|| strncmp (name, finfo->info->lprefix,
finfo->info->lprefix_len) == 0))
skip = true;
break;
case discard_all:
skip = true;
break;
}
if (skip)
{
pass = false;
continue;
}
}
}
/* Copy this symbol into the list of symbols we are going to
write out. */
bfd_h_put_8 (output_bfd, type, outsym->e_type);
bfd_h_put_8 (output_bfd, bfd_h_get_8 (input_bfd, sym->e_other),
outsym->e_other);
bfd_h_put_16 (output_bfd, bfd_h_get_16 (input_bfd, sym->e_desc),
outsym->e_desc);
copy = false;
if (! finfo->info->keep_memory)
{
/* name points into a string table which we are going to
free. If there is a hash table entry, use that string.
Otherwise, copy name into memory. */
if (h != (struct aout_link_hash_entry *) NULL)
name = (*sym_hash)->root.root.string;
else
copy = true;
}
strtab_index = add_to_stringtab (output_bfd, &finfo->strtab,
name, copy);
if (strtab_index == (bfd_size_type) -1)
goto error_return;
PUT_WORD (output_bfd, strtab_index, outsym->e_strx);
PUT_WORD (output_bfd, val, outsym->e_value);
*symbol_map = obj_aout_external_sym_count (output_bfd);
++obj_aout_external_sym_count (output_bfd);
++outsym;
}
/* Write out the output symbols we have just constructed. */
if (outsym > output_syms)
{
bfd_size_type outsym_count;
if (bfd_seek (output_bfd, finfo->symoff, SEEK_SET) != 0)
goto error_return;
outsym_count = outsym - output_syms;
if (bfd_write ((PTR) output_syms, (bfd_size_type) EXTERNAL_NLIST_SIZE,
(bfd_size_type) outsym_count, output_bfd)
!= outsym_count * EXTERNAL_NLIST_SIZE)
goto error_return;
finfo->symoff += outsym_count * EXTERNAL_NLIST_SIZE;
}
if (output_syms != NULL)
free (output_syms);
return true;
error_return:
if (output_syms != NULL)
free (output_syms);
return false;
}
/* Write out a symbol that was not associated with an a.out input
object. */
static boolean
aout_link_write_other_symbol (h, data)
struct aout_link_hash_entry *h;
PTR data;
{
struct aout_final_link_info *finfo = (struct aout_final_link_info *) data;
bfd *output_bfd;
int type;
bfd_vma val;
struct external_nlist outsym;
bfd_size_type indx;
output_bfd = finfo->output_bfd;
if (aout_backend_info (output_bfd)->write_dynamic_symbol != NULL)
{
if (! ((*aout_backend_info (output_bfd)->write_dynamic_symbol)
(output_bfd, finfo->info, h)))
{
/* FIXME: No way to handle errors. */
abort ();
}
}
if (h->written)
return true;
h->written = true;
if (finfo->info->strip == strip_all
|| (finfo->info->strip == strip_some
&& bfd_hash_lookup (finfo->info->keep_hash, h->root.root.string,
false, false) == NULL))
return true;
switch (h->root.type)
{
default:
case bfd_link_hash_new:
abort ();
/* Avoid variable not initialized warnings. */
return true;
case bfd_link_hash_undefined:
type = N_UNDF | N_EXT;
val = 0;
break;
case bfd_link_hash_defined:
{
asection *sec;
sec = h->root.u.def.section->output_section;
BFD_ASSERT (bfd_is_abs_section (sec)
|| sec->owner == output_bfd);
if (sec == obj_textsec (output_bfd))
type = N_TEXT | N_EXT;
else if (sec == obj_datasec (output_bfd))
type = N_DATA | N_EXT;
else if (sec == obj_bsssec (output_bfd))
type = N_BSS | N_EXT;
else
type = N_ABS | N_EXT;
val = (h->root.u.def.value
+ sec->vma
+ h->root.u.def.section->output_offset);
}
break;
case bfd_link_hash_common:
type = N_UNDF | N_EXT;
val = h->root.u.c.size;
break;
case bfd_link_hash_weak:
type = N_WEAKU;
val = 0;
case bfd_link_hash_indirect:
case bfd_link_hash_warning:
/* FIXME: Ignore these for now. The circumstances under which
they should be written out are not clear to me. */
return true;
}
bfd_h_put_8 (output_bfd, type, outsym.e_type);
bfd_h_put_8 (output_bfd, 0, outsym.e_other);
bfd_h_put_16 (output_bfd, 0, outsym.e_desc);
indx = add_to_stringtab (output_bfd, &finfo->strtab, h->root.root.string,
false);
if (indx == (bfd_size_type) -1)
{
/* FIXME: No way to handle errors. */
abort ();
}
PUT_WORD (output_bfd, indx, outsym.e_strx);
PUT_WORD (output_bfd, val, outsym.e_value);
if (bfd_seek (output_bfd, finfo->symoff, SEEK_SET) != 0
|| bfd_write ((PTR) &outsym, (bfd_size_type) EXTERNAL_NLIST_SIZE,
(bfd_size_type) 1, output_bfd) != EXTERNAL_NLIST_SIZE)
{
/* FIXME: No way to handle errors. */
abort ();
}
finfo->symoff += EXTERNAL_NLIST_SIZE;
h->indx = obj_aout_external_sym_count (output_bfd);
++obj_aout_external_sym_count (output_bfd);
return true;
}
/* Link an a.out section into the output file. */
static boolean
aout_link_input_section (finfo, input_bfd, input_section, reloff_ptr,
rel_size, symbol_map)
struct aout_final_link_info *finfo;
bfd *input_bfd;
asection *input_section;
file_ptr *reloff_ptr;
bfd_size_type rel_size;
int *symbol_map;
{
bfd_size_type input_size;
bfd_byte *contents = NULL;
PTR relocs;
PTR free_relocs = NULL;
/* Get the section contents. */
input_size = bfd_section_size (input_bfd, input_section);
contents = (bfd_byte *) malloc (input_size);
if (contents == NULL && input_size != 0)
{
bfd_set_error (bfd_error_no_memory);
goto error_return;
}
if (! bfd_get_section_contents (input_bfd, input_section, (PTR) contents,
(file_ptr) 0, input_size))
goto error_return;
/* Read in the relocs if we haven't already done it. */
if (aout_section_data (input_section) != NULL
&& aout_section_data (input_section)->relocs != NULL)
relocs = aout_section_data (input_section)->relocs;
else
{
relocs = free_relocs = (PTR) malloc (rel_size);
if (relocs == NULL && rel_size != 0)
{
bfd_set_error (bfd_error_no_memory);
goto error_return;
}
if (bfd_seek (input_bfd, input_section->rel_filepos, SEEK_SET) != 0
|| bfd_read (relocs, 1, rel_size, input_bfd) != rel_size)
goto error_return;
}
/* Relocate the section contents. */
if (obj_reloc_entry_size (input_bfd) == RELOC_STD_SIZE)
{
if (! aout_link_input_section_std (finfo, input_bfd, input_section,
(struct reloc_std_external *) relocs,
rel_size, contents, symbol_map))
goto error_return;
}
else
{
if (! aout_link_input_section_ext (finfo, input_bfd, input_section,
(struct reloc_ext_external *) relocs,
rel_size, contents, symbol_map))
goto error_return;
}
/* Write out the section contents. */
if (! bfd_set_section_contents (finfo->output_bfd,
input_section->output_section,
(PTR) contents,
input_section->output_offset,
input_size))
goto error_return;
/* If we are producing relocateable output, the relocs were
modified, and we now write them out. */
if (finfo->info->relocateable)
{
if (bfd_seek (finfo->output_bfd, *reloff_ptr, SEEK_SET) != 0)
goto error_return;
if (bfd_write (relocs, (bfd_size_type) 1, rel_size, finfo->output_bfd)
!= rel_size)
goto error_return;
*reloff_ptr += rel_size;
/* Assert that the relocs have not run into the symbols, and
that if these are the text relocs they have not run into the
data relocs. */
BFD_ASSERT (*reloff_ptr <= obj_sym_filepos (finfo->output_bfd)
&& (reloff_ptr != &finfo->treloff
|| (*reloff_ptr
<= obj_datasec (finfo->output_bfd)->rel_filepos)));
}
if (free_relocs != NULL)
free (free_relocs);
if (contents != NULL)
free (contents);
return true;
error_return:
if (free_relocs != NULL)
free (free_relocs);
if (contents != NULL)
free (contents);
return false;
}
/* Get the section corresponding to a reloc index. */
static INLINE asection *
aout_reloc_index_to_section (abfd, indx)
bfd *abfd;
int indx;
{
switch (indx & N_TYPE)
{
case N_TEXT:
return obj_textsec (abfd);
case N_DATA:
return obj_datasec (abfd);
case N_BSS:
return obj_bsssec (abfd);
case N_ABS:
case N_UNDF:
return bfd_abs_section_ptr;
default:
abort ();
}
}
/* Relocate an a.out section using standard a.out relocs. */
static boolean
aout_link_input_section_std (finfo, input_bfd, input_section, relocs,
rel_size, contents, symbol_map)
struct aout_final_link_info *finfo;
bfd *input_bfd;
asection *input_section;
struct reloc_std_external *relocs;
bfd_size_type rel_size;
bfd_byte *contents;
int *symbol_map;
{
boolean (*check_dynamic_reloc) PARAMS ((struct bfd_link_info *,
bfd *, asection *,
struct aout_link_hash_entry *,
PTR, boolean *));
bfd *output_bfd;
boolean relocateable;
struct external_nlist *syms;
char *strings;
struct aout_link_hash_entry **sym_hashes;
bfd_size_type reloc_count;
register struct reloc_std_external *rel;
struct reloc_std_external *rel_end;
output_bfd = finfo->output_bfd;
check_dynamic_reloc = aout_backend_info (output_bfd)->check_dynamic_reloc;
BFD_ASSERT (obj_reloc_entry_size (input_bfd) == RELOC_STD_SIZE);
BFD_ASSERT (input_bfd->xvec->header_byteorder_big_p
== output_bfd->xvec->header_byteorder_big_p);
relocateable = finfo->info->relocateable;
syms = obj_aout_external_syms (input_bfd);
strings = obj_aout_external_strings (input_bfd);
sym_hashes = obj_aout_sym_hashes (input_bfd);
reloc_count = rel_size / RELOC_STD_SIZE;
rel = relocs;
rel_end = rel + reloc_count;
for (; rel < rel_end; rel++)
{
bfd_vma r_addr;
int r_index;
int r_extern;
int r_pcrel;
int r_baserel;
int r_jmptable;
int r_relative;
int r_length;
int howto_idx;
reloc_howto_type *howto;
bfd_vma relocation;
bfd_reloc_status_type r;
r_addr = GET_SWORD (input_bfd, rel->r_address);
#ifdef MY_reloc_howto
howto = MY_reloc_howto(input_bfd, rel, r_index, r_extern, r_pcrel);
#else
if (input_bfd->xvec->header_byteorder_big_p)
{
r_index = ((rel->r_index[0] << 16)
| (rel->r_index[1] << 8)
| rel->r_index[2]);
r_extern = (0 != (rel->r_type[0] & RELOC_STD_BITS_EXTERN_BIG));
r_pcrel = (0 != (rel->r_type[0] & RELOC_STD_BITS_PCREL_BIG));
r_baserel = (0 != (rel->r_type[0] & RELOC_STD_BITS_BASEREL_BIG));
r_jmptable= (0 != (rel->r_type[0] & RELOC_STD_BITS_JMPTABLE_BIG));
r_relative= (0 != (rel->r_type[0] & RELOC_STD_BITS_RELATIVE_BIG));
r_length = ((rel->r_type[0] & RELOC_STD_BITS_LENGTH_BIG)
>> RELOC_STD_BITS_LENGTH_SH_BIG);
}
else
{
r_index = ((rel->r_index[2] << 16)
| (rel->r_index[1] << 8)
| rel->r_index[0]);
r_extern = (0 != (rel->r_type[0] & RELOC_STD_BITS_EXTERN_LITTLE));
r_pcrel = (0 != (rel->r_type[0] & RELOC_STD_BITS_PCREL_LITTLE));
r_baserel = (0 != (rel->r_type[0] & RELOC_STD_BITS_BASEREL_LITTLE));
r_jmptable= (0 != (rel->r_type[0] & RELOC_STD_BITS_JMPTABLE_LITTLE));
r_relative= (0 != (rel->r_type[0] & RELOC_STD_BITS_RELATIVE_LITTLE));
r_length = ((rel->r_type[0] & RELOC_STD_BITS_LENGTH_LITTLE)
>> RELOC_STD_BITS_LENGTH_SH_LITTLE);
}
howto_idx = r_length + 4 * r_pcrel + 8 * r_baserel
+ 16 * r_jmptable + 32 * r_relative;
BFD_ASSERT (howto_idx < TABLE_SIZE (howto_table_std));
howto = howto_table_std + howto_idx;
#endif
if (relocateable)
{
/* We are generating a relocateable output file, and must
modify the reloc accordingly. */
if (r_extern)
{
struct aout_link_hash_entry *h;
/* If we know the symbol this relocation is against,
convert it into a relocation against a section. This
is what the native linker does. */
h = sym_hashes[r_index];
if (h != (struct aout_link_hash_entry *) NULL
&& h->root.type == bfd_link_hash_defined)
{
asection *output_section;
/* Change the r_extern value. */
if (output_bfd->xvec->header_byteorder_big_p)
rel->r_type[0] &=~ RELOC_STD_BITS_EXTERN_BIG;
else
rel->r_type[0] &=~ RELOC_STD_BITS_EXTERN_LITTLE;
/* Compute a new r_index. */
output_section = h->root.u.def.section->output_section;
if (output_section == obj_textsec (output_bfd))
r_index = N_TEXT;
else if (output_section == obj_datasec (output_bfd))
r_index = N_DATA;
else if (output_section == obj_bsssec (output_bfd))
r_index = N_BSS;
else
r_index = N_ABS;
/* Add the symbol value and the section VMA to the
addend stored in the contents. */
relocation = (h->root.u.def.value
+ output_section->vma
+ h->root.u.def.section->output_offset);
}
else
{
/* We must change r_index according to the symbol
map. */
r_index = symbol_map[r_index];
if (r_index == -1)
{
const char *name;
name = strings + GET_WORD (input_bfd,
syms[r_index].e_strx);
if (! ((*finfo->info->callbacks->unattached_reloc)
(finfo->info, name, input_bfd, input_section,
r_addr)))
return false;
r_index = 0;
}
relocation = 0;
}
/* Write out the new r_index value. */
if (output_bfd->xvec->header_byteorder_big_p)
{
rel->r_index[0] = r_index >> 16;
rel->r_index[1] = r_index >> 8;
rel->r_index[2] = r_index;
}
else
{
rel->r_index[2] = r_index >> 16;
rel->r_index[1] = r_index >> 8;
rel->r_index[0] = r_index;
}
}
else
{
asection *section;
/* This is a relocation against a section. We must
adjust by the amount that the section moved. */
section = aout_reloc_index_to_section (input_bfd, r_index);
relocation = (section->output_section->vma
+ section->output_offset
- section->vma);
}
/* Change the address of the relocation. */
PUT_WORD (output_bfd,
r_addr + input_section->output_offset,
rel->r_address);
/* Adjust a PC relative relocation by removing the reference
to the original address in the section and including the
reference to the new address. */
if (r_pcrel)
relocation -= (input_section->output_section->vma
+ input_section->output_offset
- input_section->vma);
if (relocation == 0)
r = bfd_reloc_ok;
else
r = _bfd_relocate_contents (howto,
input_bfd, relocation,
contents + r_addr);
}
else
{
/* We are generating an executable, and must do a full
relocation. */
if (r_extern)
{
struct aout_link_hash_entry *h;
h = sym_hashes[r_index];
if (check_dynamic_reloc != NULL)
{
boolean skip;
if (! ((*check_dynamic_reloc)
(finfo->info, input_bfd, input_section, h,
(PTR) rel, &skip)))
return false;
if (skip)
continue;
}
if (h != (struct aout_link_hash_entry *) NULL
&& h->root.type == bfd_link_hash_defined)
{
relocation = (h->root.u.def.value
+ h->root.u.def.section->output_section->vma
+ h->root.u.def.section->output_offset);
}
else if (h != (struct aout_link_hash_entry *) NULL
&& h->root.type == bfd_link_hash_weak)
relocation = 0;
else
{
const char *name;
name = strings + GET_WORD (input_bfd, syms[r_index].e_strx);
if (! ((*finfo->info->callbacks->undefined_symbol)
(finfo->info, name, input_bfd, input_section,
r_addr)))
return false;
relocation = 0;
}
}
else
{
asection *section;
section = aout_reloc_index_to_section (input_bfd, r_index);
relocation = (section->output_section->vma
+ section->output_offset
- section->vma);
if (r_pcrel)
relocation += input_section->vma;
}
r = _bfd_final_link_relocate (howto,
input_bfd, input_section,
contents, r_addr, relocation,
(bfd_vma) 0);
}
if (r != bfd_reloc_ok)
{
switch (r)
{
default:
case bfd_reloc_outofrange:
abort ();
case bfd_reloc_overflow:
{
const char *name;
if (r_extern)
name = strings + GET_WORD (input_bfd,
syms[r_index].e_strx);
else
{
asection *s;
s = aout_reloc_index_to_section (input_bfd, r_index);
name = bfd_section_name (input_bfd, s);
}
if (! ((*finfo->info->callbacks->reloc_overflow)
(finfo->info, name, howto->name,
(bfd_vma) 0, input_bfd, input_section, r_addr)))
return false;
}
break;
}
}
}
return true;
}
/* Relocate an a.out section using extended a.out relocs. */
static boolean
aout_link_input_section_ext (finfo, input_bfd, input_section, relocs,
rel_size, contents, symbol_map)
struct aout_final_link_info *finfo;
bfd *input_bfd;
asection *input_section;
struct reloc_ext_external *relocs;
bfd_size_type rel_size;
bfd_byte *contents;
int *symbol_map;
{
boolean (*check_dynamic_reloc) PARAMS ((struct bfd_link_info *,
bfd *, asection *,
struct aout_link_hash_entry *,
PTR, boolean *));
bfd *output_bfd;
boolean relocateable;
struct external_nlist *syms;
char *strings;
struct aout_link_hash_entry **sym_hashes;
bfd_size_type reloc_count;
register struct reloc_ext_external *rel;
struct reloc_ext_external *rel_end;
output_bfd = finfo->output_bfd;
check_dynamic_reloc = aout_backend_info (output_bfd)->check_dynamic_reloc;
BFD_ASSERT (obj_reloc_entry_size (input_bfd) == RELOC_EXT_SIZE);
BFD_ASSERT (input_bfd->xvec->header_byteorder_big_p
== output_bfd->xvec->header_byteorder_big_p);
relocateable = finfo->info->relocateable;
syms = obj_aout_external_syms (input_bfd);
strings = obj_aout_external_strings (input_bfd);
sym_hashes = obj_aout_sym_hashes (input_bfd);
reloc_count = rel_size / RELOC_EXT_SIZE;
rel = relocs;
rel_end = rel + reloc_count;
for (; rel < rel_end; rel++)
{
bfd_vma r_addr;
int r_index;
int r_extern;
int r_type;
bfd_vma r_addend;
bfd_vma relocation;
r_addr = GET_SWORD (input_bfd, rel->r_address);
if (input_bfd->xvec->header_byteorder_big_p)
{
r_index = ((rel->r_index[0] << 16)
| (rel->r_index[1] << 8)
| rel->r_index[2]);
r_extern = (0 != (rel->r_type[0] & RELOC_EXT_BITS_EXTERN_BIG));
r_type = ((rel->r_type[0] & RELOC_EXT_BITS_TYPE_BIG)
>> RELOC_EXT_BITS_TYPE_SH_BIG);
}
else
{
r_index = ((rel->r_index[2] << 16)
| (rel->r_index[1] << 8)
| rel->r_index[0]);
r_extern = (0 != (rel->r_type[0] & RELOC_EXT_BITS_EXTERN_LITTLE));
r_type = ((rel->r_type[0] & RELOC_EXT_BITS_TYPE_LITTLE)
>> RELOC_EXT_BITS_TYPE_SH_LITTLE);
}
r_addend = GET_SWORD (input_bfd, rel->r_addend);
BFD_ASSERT (r_type >= 0
&& r_type < TABLE_SIZE (howto_table_ext));
if (relocateable)
{
/* We are generating a relocateable output file, and must
modify the reloc accordingly. */
if (r_extern)
{
struct aout_link_hash_entry *h;
/* If we know the symbol this relocation is against,
convert it into a relocation against a section. This
is what the native linker does. */
h = sym_hashes[r_index];
if (h != (struct aout_link_hash_entry *) NULL
&& h->root.type == bfd_link_hash_defined)
{
asection *output_section;
/* Change the r_extern value. */
if (output_bfd->xvec->header_byteorder_big_p)
rel->r_type[0] &=~ RELOC_EXT_BITS_EXTERN_BIG;
else
rel->r_type[0] &=~ RELOC_EXT_BITS_EXTERN_LITTLE;
/* Compute a new r_index. */
output_section = h->root.u.def.section->output_section;
if (output_section == obj_textsec (output_bfd))
r_index = N_TEXT;
else if (output_section == obj_datasec (output_bfd))
r_index = N_DATA;
else if (output_section == obj_bsssec (output_bfd))
r_index = N_BSS;
else
r_index = N_ABS;
/* Add the symbol value and the section VMA to the
addend. */
relocation = (h->root.u.def.value
+ output_section->vma
+ h->root.u.def.section->output_offset);
/* Now RELOCATION is the VMA of the final
destination. If this is a PC relative reloc,
then ADDEND is the negative of the source VMA.
We want to set ADDEND to the difference between
the destination VMA and the source VMA, which
means we must adjust RELOCATION by the change in
the source VMA. This is done below. */
}
else
{
/* We must change r_index according to the symbol
map. */
r_index = symbol_map[r_index];
if (r_index == -1)
{
const char *name;
name = (strings
+ GET_WORD (input_bfd, syms[r_index].e_strx));
if (! ((*finfo->info->callbacks->unattached_reloc)
(finfo->info, name, input_bfd, input_section,
r_addr)))
return false;
r_index = 0;
}
relocation = 0;
/* If this is a PC relative reloc, then the addend
is the negative of the source VMA. We must
adjust it by the change in the source VMA. This
is done below. */
}
/* Write out the new r_index value. */
if (output_bfd->xvec->header_byteorder_big_p)
{
rel->r_index[0] = r_index >> 16;
rel->r_index[1] = r_index >> 8;
rel->r_index[2] = r_index;
}
else
{
rel->r_index[2] = r_index >> 16;
rel->r_index[1] = r_index >> 8;
rel->r_index[0] = r_index;
}
}
else
{
asection *section;
/* This is a relocation against a section. We must
adjust by the amount that the section moved. */
section = aout_reloc_index_to_section (input_bfd, r_index);
relocation = (section->output_section->vma
+ section->output_offset
- section->vma);
/* If this is a PC relative reloc, then the addend is
the difference in VMA between the destination and the
source. We have just adjusted for the change in VMA
of the destination, so we must also adjust by the
change in VMA of the source. This is done below. */
}
/* As described above, we must always adjust a PC relative
reloc by the change in VMA of the source. */
if (howto_table_ext[r_type].pc_relative)
relocation -= (input_section->output_section->vma
+ input_section->output_offset
- input_section->vma);
/* Change the addend if necessary. */
if (relocation != 0)
PUT_WORD (output_bfd, r_addend + relocation, rel->r_addend);
/* Change the address of the relocation. */
PUT_WORD (output_bfd,
r_addr + input_section->output_offset,
rel->r_address);
}
else
{
bfd_reloc_status_type r;
/* We are generating an executable, and must do a full
relocation. */
if (r_extern)
{
struct aout_link_hash_entry *h;
h = sym_hashes[r_index];
if (check_dynamic_reloc != NULL)
{
boolean skip;
if (! ((*check_dynamic_reloc)
(finfo->info, input_bfd, input_section, h,
(PTR) rel, &skip)))
return false;
if (skip)
continue;
}
if (h != (struct aout_link_hash_entry *) NULL
&& h->root.type == bfd_link_hash_defined)
{
relocation = (h->root.u.def.value
+ h->root.u.def.section->output_section->vma
+ h->root.u.def.section->output_offset);
}
else if (h != (struct aout_link_hash_entry *) NULL
&& h->root.type == bfd_link_hash_weak)
relocation = 0;
else
{
const char *name;
name = strings + GET_WORD (input_bfd, syms[r_index].e_strx);
if (! ((*finfo->info->callbacks->undefined_symbol)
(finfo->info, name, input_bfd, input_section,
r_addr)))
return false;
relocation = 0;
}
}
else
{
asection *section;
section = aout_reloc_index_to_section (input_bfd, r_index);
/* If this is a PC relative reloc, then R_ADDEND is the
difference between the two vmas, or
old_dest_sec + old_dest_off - (old_src_sec + old_src_off)
where
old_dest_sec == section->vma
and
old_src_sec == input_section->vma
and
old_src_off == r_addr
_bfd_final_link_relocate expects RELOCATION +
R_ADDEND to be the VMA of the destination minus
r_addr (the minus r_addr is because this relocation
is not pcrel_offset, which is a bit confusing and
should, perhaps, be changed), or
new_dest_sec
where
new_dest_sec == output_section->vma + output_offset
We arrange for this to happen by setting RELOCATION to
new_dest_sec + old_src_sec - old_dest_sec
If this is not a PC relative reloc, then R_ADDEND is
simply the VMA of the destination, so we set
RELOCATION to the change in the destination VMA, or
new_dest_sec - old_dest_sec
*/
relocation = (section->output_section->vma
+ section->output_offset
- section->vma);
if (howto_table_ext[r_type].pc_relative)
relocation += input_section->vma;
}
r = _bfd_final_link_relocate (howto_table_ext + r_type,
input_bfd, input_section,
contents, r_addr, relocation,
r_addend);
if (r != bfd_reloc_ok)
{
switch (r)
{
default:
case bfd_reloc_outofrange:
abort ();
case bfd_reloc_overflow:
{
const char *name;
if (r_extern)
name = strings + GET_WORD (input_bfd,
syms[r_index].e_strx);
else
{
asection *s;
s = aout_reloc_index_to_section (input_bfd, r_index);
name = bfd_section_name (input_bfd, s);
}
if (! ((*finfo->info->callbacks->reloc_overflow)
(finfo->info, name, howto_table_ext[r_type].name,
r_addend, input_bfd, input_section, r_addr)))
return false;
}
break;
}
}
}
}
return true;
}
/* Handle a link order which is supposed to generate a reloc. */
static boolean
aout_link_reloc_link_order (finfo, o, p)
struct aout_final_link_info *finfo;
asection *o;
struct bfd_link_order *p;
{
struct bfd_link_order_reloc *pr;
int r_index;
int r_extern;
const reloc_howto_type *howto;
file_ptr *reloff_ptr;
struct reloc_std_external srel;
struct reloc_ext_external erel;
PTR rel_ptr;
pr = p->u.reloc.p;
if (p->type == bfd_section_reloc_link_order)
{
r_extern = 0;
if (bfd_is_abs_section (pr->u.section))
r_index = N_ABS | N_EXT;
else
{
BFD_ASSERT (pr->u.section->owner == finfo->output_bfd);
r_index = pr->u.section->target_index;
}
}
else
{
struct aout_link_hash_entry *h;
BFD_ASSERT (p->type == bfd_symbol_reloc_link_order);
r_extern = 1;
h = aout_link_hash_lookup (aout_hash_table (finfo->info),
pr->u.name, false, false, true);
if (h != (struct aout_link_hash_entry *) NULL
&& h->indx == -1)
r_index = h->indx;
else
{
if (! ((*finfo->info->callbacks->unattached_reloc)
(finfo->info, pr->u.name, (bfd *) NULL,
(asection *) NULL, (bfd_vma) 0)))
return false;
r_index = 0;
}
}
howto = bfd_reloc_type_lookup (finfo->output_bfd, pr->reloc);
if (howto == (const reloc_howto_type *) NULL)
{
bfd_set_error (bfd_error_bad_value);
return false;
}
if (o == obj_textsec (finfo->output_bfd))
reloff_ptr = &finfo->treloff;
else if (o == obj_datasec (finfo->output_bfd))
reloff_ptr = &finfo->dreloff;
else
abort ();
if (obj_reloc_entry_size (finfo->output_bfd) == RELOC_STD_SIZE)
{
int r_pcrel;
int r_baserel;
int r_jmptable;
int r_relative;
int r_length;
#ifdef MY_put_reloc
MY_put_reloc(finfo->output_bfd, r_extern, r_index, p->offset, howto, &srel);
#else
r_pcrel = howto->pc_relative;
r_baserel = (howto->type & 8) != 0;
r_jmptable = (howto->type & 16) != 0;
r_relative = (howto->type & 32) != 0;
r_length = howto->size;
PUT_WORD (finfo->output_bfd, p->offset, srel.r_address);
if (finfo->output_bfd->xvec->header_byteorder_big_p)
{
srel.r_index[0] = r_index >> 16;
srel.r_index[1] = r_index >> 8;
srel.r_index[2] = r_index;
srel.r_type[0] =
((r_extern ? RELOC_STD_BITS_EXTERN_BIG : 0)
| (r_pcrel ? RELOC_STD_BITS_PCREL_BIG : 0)
| (r_baserel ? RELOC_STD_BITS_BASEREL_BIG : 0)
| (r_jmptable ? RELOC_STD_BITS_JMPTABLE_BIG : 0)
| (r_relative ? RELOC_STD_BITS_RELATIVE_BIG : 0)
| (r_length << RELOC_STD_BITS_LENGTH_SH_BIG));
}
else
{
srel.r_index[2] = r_index >> 16;
srel.r_index[1] = r_index >> 8;
srel.r_index[0] = r_index;
srel.r_type[0] =
((r_extern ? RELOC_STD_BITS_EXTERN_LITTLE : 0)
| (r_pcrel ? RELOC_STD_BITS_PCREL_LITTLE : 0)
| (r_baserel ? RELOC_STD_BITS_BASEREL_LITTLE : 0)
| (r_jmptable ? RELOC_STD_BITS_JMPTABLE_LITTLE : 0)
| (r_relative ? RELOC_STD_BITS_RELATIVE_LITTLE : 0)
| (r_length << RELOC_STD_BITS_LENGTH_SH_LITTLE));
}
#endif
rel_ptr = (PTR) &srel;
/* We have to write the addend into the object file, since
standard a.out relocs are in place. It would be more
reliable if we had the current contents of the file here,
rather than assuming zeroes, but we can't read the file since
it was opened using bfd_openw. */
if (pr->addend != 0)
{
bfd_size_type size;
bfd_reloc_status_type r;
bfd_byte *buf;
boolean ok;
size = bfd_get_reloc_size (howto);
buf = (bfd_byte *) bfd_zmalloc (size);
if (buf == (bfd_byte *) NULL)
{
bfd_set_error (bfd_error_no_memory);
return false;
}
r = _bfd_relocate_contents (howto, finfo->output_bfd,
pr->addend, buf);
switch (r)
{
case bfd_reloc_ok:
break;
default:
case bfd_reloc_outofrange:
abort ();
case bfd_reloc_overflow:
if (! ((*finfo->info->callbacks->reloc_overflow)
(finfo->info,
(p->type == bfd_section_reloc_link_order
? bfd_section_name (finfo->output_bfd,
pr->u.section)
: pr->u.name),
howto->name, pr->addend, (bfd *) NULL,
(asection *) NULL, (bfd_vma) 0)))
{
free (buf);
return false;
}
break;
}
ok = bfd_set_section_contents (finfo->output_bfd, o,
(PTR) buf,
(file_ptr) p->offset,
size);
free (buf);
if (! ok)
return false;
}
}
else
{
PUT_WORD (finfo->output_bfd, p->offset, erel.r_address);
if (finfo->output_bfd->xvec->header_byteorder_big_p)
{
erel.r_index[0] = r_index >> 16;
erel.r_index[1] = r_index >> 8;
erel.r_index[2] = r_index;
erel.r_type[0] =
((r_extern ? RELOC_EXT_BITS_EXTERN_BIG : 0)
| (howto->type << RELOC_EXT_BITS_TYPE_SH_BIG));
}
else
{
erel.r_index[2] = r_index >> 16;
erel.r_index[1] = r_index >> 8;
erel.r_index[0] = r_index;
erel.r_type[0] =
(r_extern ? RELOC_EXT_BITS_EXTERN_LITTLE : 0)
| (howto->type << RELOC_EXT_BITS_TYPE_SH_LITTLE);
}
PUT_WORD (finfo->output_bfd, pr->addend, erel.r_addend);
rel_ptr = (PTR) &erel;
}
if (bfd_seek (finfo->output_bfd, *reloff_ptr, SEEK_SET) != 0
|| (bfd_write (rel_ptr, (bfd_size_type) 1,
obj_reloc_entry_size (finfo->output_bfd),
finfo->output_bfd)
!= obj_reloc_entry_size (finfo->output_bfd)))
return false;
*reloff_ptr += obj_reloc_entry_size (finfo->output_bfd);
/* Assert that the relocs have not run into the symbols, and that n
the text relocs have not run into the data relocs. */
BFD_ASSERT (*reloff_ptr <= obj_sym_filepos (finfo->output_bfd)
&& (reloff_ptr != &finfo->treloff
|| (*reloff_ptr
<= obj_datasec (finfo->output_bfd)->rel_filepos)));
return true;
}