old-cross-binutils/sim/v850/interp.c
1997-09-03 07:30:17 +00:00

913 lines
18 KiB
C

#include <signal.h>
#include "sim-main.h"
#include "sim-options.h"
#include "v850_sim.h"
#ifdef HAVE_STDLIB_H
#include <stdlib.h>
#endif
#ifdef HAVE_STRING_H
#include <string.h>
#else
#ifdef HAVE_STRINGS_H
#include <strings.h>
#endif
#endif
#include "bfd.h"
/* For compatibility */
SIM_DESC simulator;
enum interrupt_type
{
int_none,
int_reset,
int_nmi,
int_intov1,
int_intp10,
int_intp11,
int_intp12,
int_intp13,
int_intcm4,
num_int_types
};
enum interrupt_cond_type
{
int_cond_none,
int_cond_pc,
int_cond_time
};
struct interrupt_generator
{
enum interrupt_type type;
enum interrupt_cond_type cond_type;
int number;
SIM_ADDR address;
unsigned long time;
int enabled;
struct interrupt_generator *next;
};
char *interrupt_names[] = {
"",
"reset",
"nmi",
"intov1",
"intp10",
"intp11",
"intp12",
"intp13",
"intcm4",
NULL
};
struct interrupt_generator *intgen_list;
/* True if a non-maskable (such as NMI or reset) interrupt generator
is present. */
static int have_nm_generator;
#ifndef INLINE
#ifdef __GNUC__
#define INLINE inline
#else
#define INLINE
#endif
#endif
/* These default values correspond to expected usage for the chip. */
int v850_debug;
uint32 OP[4];
static struct hash_entry *lookup_hash PARAMS ((SIM_DESC sd, uint32 ins));
static long hash PARAMS ((long));
#if 0
static void do_format_1_2 PARAMS ((uint32));
static void do_format_3 PARAMS ((uint32));
static void do_format_4 PARAMS ((uint32));
static void do_format_5 PARAMS ((uint32));
static void do_format_6 PARAMS ((uint32));
static void do_format_7 PARAMS ((uint32));
static void do_format_8 PARAMS ((uint32));
static void do_format_9_10 PARAMS ((uint32));
#endif
#define MAX_HASH 63
struct hash_entry
{
struct hash_entry *next;
unsigned long opcode;
unsigned long mask;
struct simops *ops;
};
struct hash_entry hash_table[MAX_HASH+1];
static INLINE long
hash(insn)
long insn;
{
if ( (insn & 0x0600) == 0
|| (insn & 0x0700) == 0x0200
|| (insn & 0x0700) == 0x0600
|| (insn & 0x0780) == 0x0700)
return (insn & 0x07e0) >> 5;
if ((insn & 0x0700) == 0x0300
|| (insn & 0x0700) == 0x0400
|| (insn & 0x0700) == 0x0500)
return (insn & 0x0780) >> 7;
if ((insn & 0x07c0) == 0x0780)
return (insn & 0x07c0) >> 6;
return (insn & 0x07e0) >> 5;
}
static struct hash_entry *
lookup_hash (sd, ins)
SIM_DESC sd;
uint32 ins;
{
struct hash_entry *h;
h = &hash_table[hash(ins)];
while ((ins & h->mask) != h->opcode)
{
if (h->next == NULL)
{
sim_io_error (sd, "ERROR looking up hash for 0x%lx, PC=0x%lx",
(long) ins, (long) PC);
}
h = h->next;
}
return (h);
}
/* FIXME These would more efficient to use than load_mem/store_mem,
but need to be changed to use the memory map. */
uint8
get_byte (x)
uint8 *x;
{
return *x;
}
uint16
get_half (x)
uint8 *x;
{
uint8 *a = x;
return (a[1] << 8) + (a[0]);
}
uint32
get_word (x)
uint8 *x;
{
uint8 *a = x;
return (a[3]<<24) + (a[2]<<16) + (a[1]<<8) + (a[0]);
}
void
put_byte (addr, data)
uint8 *addr;
uint8 data;
{
uint8 *a = addr;
a[0] = data;
}
void
put_half (addr, data)
uint8 *addr;
uint16 data;
{
uint8 *a = addr;
a[0] = data & 0xff;
a[1] = (data >> 8) & 0xff;
}
void
put_word (addr, data)
uint8 *addr;
uint32 data;
{
uint8 *a = addr;
a[0] = data & 0xff;
a[1] = (data >> 8) & 0xff;
a[2] = (data >> 16) & 0xff;
a[3] = (data >> 24) & 0xff;
}
uint8 *
map (addr)
SIM_ADDR addr;
{
/* Mask down to 24 bits. */
addr &= 0xffffff;
if (addr < 0x100000)
{
/* "Mirror" the addresses below 1MB. */
addr = addr & (simulator->rom_size - 1);
return (uint8 *) (simulator->mem) + addr;
}
else if (addr < simulator->low_end)
{
/* chunk is just after the rom */
addr = addr - 0x100000 + simulator->rom_size;
return (uint8 *) (simulator->mem) + addr;
}
else if (addr >= simulator->high_start)
{
/* If in the peripheral I/O region, mirror 1K region across 4K,
and similarly if in the internal RAM region. */
if (addr >= 0xfff000)
addr &= 0xfff3ff;
else if (addr >= 0xffe000)
addr &= 0xffe3ff;
addr = addr - simulator->high_start + simulator->high_base;
return (uint8 *) (simulator->mem) + addr;
}
else
{
sim_io_eprintf (simulator, "segmentation fault: access address: %lx not below %lx or above %lx [ep = %lx]\n",
(long) addr,
(long) simulator->low_end,
(long) simulator->high_start,
State.regs[30]);
/* Signal a memory error. */
State.exception = SIGSEGV;
/* Point to a location not in main memory - renders invalid
addresses harmless until we get back to main insn loop. */
return (uint8 *) &(State.dummy_mem);
}
}
uint32
load_mem (addr, len)
SIM_ADDR addr;
int len;
{
uint8 *p = map (addr);
switch (len)
{
case 1:
return p[0];
case 2:
return p[1] << 8 | p[0];
case 4:
return p[3] << 24 | p[2] << 16 | p[1] << 8 | p[0];
default:
abort ();
}
}
void
store_mem (addr, len, data)
SIM_ADDR addr;
int len;
uint32 data;
{
uint8 *p = map (addr);
switch (len)
{
case 1:
p[0] = data;
return;
case 2:
p[0] = data;
p[1] = data >> 8;
return;
case 4:
p[0] = data;
p[1] = data >> 8;
p[2] = data >> 16;
p[3] = data >> 24;
return;
default:
abort ();
}
}
static void
sim_memory_init (SIM_DESC sd)
{
int totsize;
if (sd->mem)
zfree (sd->mem);
totsize = (simulator->rom_size
+ (sd->low_end - 0x100000)
+ (0x1000000 - sd->high_start));
sd->high_base = sd->rom_size + (sd->low_end - 0x100000);
sd->mem = zalloc (totsize);
if (!sd->mem)
{
sim_io_error (sd, "Allocation of main memory failed.");
}
}
static int
sim_parse_number (str, rest)
char *str, **rest;
{
if (str[0] == '0' && str[1] == 'x')
return strtoul (str, rest, 16);
else if (str[0] == '0')
return strtoul (str, rest, 16);
else
return strtoul (str, rest, 10);
}
static void
sim_set_memory_map (sd, spec)
SIM_DESC sd;
char *spec;
{
char *reststr, *nreststr;
SIM_ADDR new_low_end, new_high_start;
new_low_end = sd->low_end;
new_high_start = sd->high_start;
if (! strncmp (spec, "hole=", 5))
{
new_low_end = sim_parse_number (spec + 5, &reststr);
if (new_low_end < 0x100000)
{
sim_io_printf (sd, "Low end must be at least 0x100000\n");
return;
}
if (*reststr == ',')
{
++reststr;
new_high_start = sim_parse_number (reststr, &nreststr);
/* FIXME Check high_start also */
}
sim_io_printf (sd, "Hole goes from 0x%x to 0x%x\n",
new_low_end, new_high_start);
}
else
{
sim_io_printf (sd, "Invalid specification for memory map, must be `hole=<m>[,<n>]'\n");
}
if (new_low_end != sd->low_end || new_high_start != sd->high_start)
{
sd->low_end = new_low_end;
sd->high_start = new_high_start;
sim_io_printf (sd, "Reconfiguring memory (old contents will be lost)\n");
sim_memory_init (sd);
}
}
/* Parse a number in hex, octal, or decimal form. */
int
sim_write (sd, addr, buffer, size)
SIM_DESC sd;
SIM_ADDR addr;
unsigned char *buffer;
int size;
{
int i;
for (i = 0; i < size; i++)
store_mem (addr + i, 1, buffer[i]);
return size;
}
SIM_DESC
sim_open (kind, cb, abfd, argv)
SIM_OPEN_KIND kind;
host_callback *cb;
struct _bfd *abfd;
char **argv;
{
SIM_DESC sd = sim_state_alloc (kind, cb);
struct simops *s;
struct hash_entry *h;
/* for compatibility */
simulator = sd;
sd->rom_size = V850_ROM_SIZE;
sd->low_end = V850_LOW_END;
sd->high_start = V850_HIGH_START;
/* Allocate memory */
sim_memory_init (sd);
if (sim_pre_argv_init (sd, argv[0]) != SIM_RC_OK)
return 0;
/* getopt will print the error message so we just have to exit if this fails.
FIXME: Hmmm... in the case of gdb we need getopt to call
print_filtered. */
if (sim_parse_args (sd, argv) != SIM_RC_OK)
{
/* Uninstall the modules to avoid memory leaks,
file descriptor leaks, etc. */
sim_module_uninstall (sd);
return 0;
}
/* check for/establish the a reference program image */
if (sim_analyze_program (sd,
(STATE_PROG_ARGV (sd) != NULL
? *STATE_PROG_ARGV (sd)
: NULL),
abfd) != SIM_RC_OK)
{
sim_module_uninstall (sd);
return 0;
}
/* establish any remaining configuration options */
if (sim_config (sd) != SIM_RC_OK)
{
sim_module_uninstall (sd);
return 0;
}
if (sim_post_argv_init (sd) != SIM_RC_OK)
{
/* Uninstall the modules to avoid memory leaks,
file descriptor leaks, etc. */
sim_module_uninstall (sd);
return 0;
}
/* put all the opcodes in the hash table */
for (s = Simops; s->func; s++)
{
h = &hash_table[hash(s->opcode)];
/* go to the last entry in the chain */
while (h->next)
h = h->next;
if (h->ops)
{
h->next = (struct hash_entry *) calloc(1,sizeof(struct hash_entry));
h = h->next;
}
h->ops = s;
h->mask = s->mask;
h->opcode = s->opcode;
}
return sd;
}
void
sim_close (sd, quitting)
SIM_DESC sd;
int quitting;
{
sim_module_uninstall (sd);
}
static void do_interrupt PARAMS ((SIM_DESC sd, enum interrupt_type));
int
sim_stop (sd)
SIM_DESC sd;
{
return 0;
}
void
sim_resume (sd, step, siggnal)
SIM_DESC sd;
int step, siggnal;
{
SIM_ELAPSED_TIME start_time;
uint32 inst;
SIM_ADDR oldpc;
struct interrupt_generator *intgen;
if (step)
State.exception = SIGTRAP;
else
State.exception = 0;
start_time = sim_elapsed_time_get ();
do
{
struct hash_entry * h;
/* Fetch the current instruction. */
inst = RLW (PC);
oldpc = PC;
h = lookup_hash (sd, inst);
OP[0] = inst & 0x1f;
OP[1] = (inst >> 11) & 0x1f;
OP[2] = (inst >> 16) & 0xffff;
OP[3] = inst;
/* fprintf (stderr, "PC = %x, SP = %x\n", PC, SP ); */
if (inst == 0)
{
fprintf (stderr, "NOP encountered!\n");
break;
}
PC += h->ops->func ();
if (oldpc == PC)
{
sim_io_eprintf (sd, "simulator loop at %lx\n", (long) PC );
break;
}
/* Check for and handle pending interrupts. */
if (intgen_list && (have_nm_generator || !(PSW & PSW_ID)))
{
intgen = NULL;
for (intgen = intgen_list; intgen != NULL; intgen = intgen->next)
{
if (intgen->cond_type == int_cond_pc
&& oldpc == intgen->address
&& intgen->enabled)
{
break;
}
else if (intgen->cond_type == int_cond_time
&& intgen->enabled)
{
SIM_ELAPSED_TIME delta;
delta = sim_elapsed_time_since (start_time);
if (delta > intgen->time)
{
intgen->enabled = 0;
break;
}
}
}
if (intgen)
do_interrupt (sd, intgen->type);
}
else if (State.pending_nmi)
{
State.pending_nmi = 0;
do_interrupt (sd, int_nmi);
}
}
while (!State.exception);
}
static void
do_interrupt (sd, inttype)
SIM_DESC sd;
enum interrupt_type inttype;
{
/* Disable further interrupts. */
PSW |= PSW_ID;
/* Indicate that we're doing interrupt not exception processing. */
PSW &= ~PSW_EP;
if (inttype == int_reset)
{
PC = 0;
PSW = 0x20;
ECR = 0;
/* (Might be useful to init other regs with random values.) */
}
else if (inttype == int_nmi)
{
if (PSW & PSW_NP)
{
/* We're already working on an NMI, so this one must wait
around until the previous one is done. The processor
ignores subsequent NMIs, so we don't need to count them. */
State.pending_nmi = 1;
}
else
{
FEPC = PC;
FEPSW = PSW;
/* Set the FECC part of the ECR. */
ECR &= 0x0000ffff;
ECR |= 0x10;
PSW |= PSW_NP;
PC = 0x10;
}
}
else
{
EIPC = PC;
EIPSW = PSW;
/* Clear the EICC part of the ECR, will set below. */
ECR &= 0xffff0000;
switch (inttype)
{
case int_intov1:
PC = 0x80;
ECR |= 0x80;
break;
case int_intp10:
PC = 0x90;
ECR |= 0x90;
break;
case int_intp11:
PC = 0xa0;
ECR |= 0xa0;
break;
case int_intp12:
PC = 0xb0;
ECR |= 0xb0;
break;
case int_intp13:
PC = 0xc0;
ECR |= 0xc0;
break;
case int_intcm4:
PC = 0xd0;
ECR |= 0xd0;
break;
default:
/* Should never be possible. */
abort ();
break;
}
}
}
int
sim_trace (sd)
SIM_DESC sd;
{
#ifdef DEBUG
v850_debug = DEBUG;
#endif
sim_resume (sd, 0, 0);
return 1;
}
void
sim_info (sd, verbose)
SIM_DESC sd;
int verbose;
{
sim_io_printf (sd, "sim_info\n");
}
SIM_RC
sim_create_inferior (sd, prog_bfd, argv, env)
SIM_DESC sd;
struct _bfd *prog_bfd;
char **argv;
char **env;
{
memset (&State, 0, sizeof (State));
if (prog_bfd != NULL)
PC = bfd_get_start_address (prog_bfd);
return SIM_RC_OK;
}
/* All the code for exiting, signals, etc needs to be revamped.
This is enough to get c-torture limping though. */
void
sim_stop_reason (sd, reason, sigrc)
SIM_DESC sd;
enum sim_stop *reason;
int *sigrc;
{
if (State.exception == SIG_V850_EXIT)
{
*reason = sim_exited;
*sigrc = State.regs[7];
}
else
{
*reason = sim_stopped;
*sigrc = State.exception;
}
}
void
sim_fetch_register (sd, rn, memory)
SIM_DESC sd;
int rn;
unsigned char *memory;
{
put_word (memory, State.regs[rn]);
}
void
sim_store_register (sd, rn, memory)
SIM_DESC sd;
int rn;
unsigned char *memory;
{
State.regs[rn] = get_word (memory);
}
int
sim_read (sd, addr, buffer, size)
SIM_DESC sd;
SIM_ADDR addr;
unsigned char *buffer;
int size;
{
int i;
for (i = 0; i < size; i++)
buffer[i] = load_mem (addr + i, 1);
return size;
}
int current_intgen_number = 1;
static void
sim_set_interrupt (sd, spec)
SIM_DESC sd;
char *spec;
{
int i, num;
char **argv;
struct interrupt_generator *intgen, *tmpgen;
extern char **buildargv ();
argv = buildargv (spec);
if (*argv && ! strcmp (*argv, "add"))
{
/* Create a new interrupt generator object. */
intgen = (struct interrupt_generator *)
malloc (sizeof(struct interrupt_generator));
intgen->type = int_none;
intgen->cond_type = int_cond_none;
intgen->address = 0;
intgen->time = 0;
intgen->enabled = 0;
++argv;
/* Match on interrupt type name. */
for (i = 0; i < num_int_types; ++i)
{
if (*argv && ! strcmp (*argv, interrupt_names[i]))
{
intgen->type = i;
break;
}
}
if (intgen->type == int_none)
{
sim_io_printf (sd, "Interrupt type unknown; known types are\n");
for (i = 0; i < num_int_types; ++i)
{
sim_io_printf (sd, " %s", interrupt_names[i]);
}
sim_io_printf (sd, "\n");
free (intgen);
return;
}
++argv;
intgen->address = 0;
intgen->time = 0;
if (*argv && ! strcmp (*argv, "pc"))
{
intgen->cond_type = int_cond_pc;
++argv;
intgen->address = sim_parse_number (*argv, NULL);
}
else if (*argv && ! strcmp (*argv, "time"))
{
intgen->cond_type = int_cond_time;
++argv;
intgen->time = sim_parse_number (*argv, NULL);
}
else
{
sim_io_printf (sd, "Condition type must be `pc' or `time'.\n");
free (intgen);
return;
}
/* We now have a valid interrupt generator. Number it and add
to the list of generators. */
intgen->number = current_intgen_number++;
intgen->enabled = 1;
intgen->next = intgen_list;
intgen_list = intgen;
sim_io_printf (sd, "Interrupt generator %d (NMI) at pc=0x%x, time=%ld.\n", intgen_list->number, intgen_list->address, intgen_list->time);
}
else if (*argv && !strcmp (*argv, "remove"))
{
++argv;
num = sim_parse_number (*argv, NULL);
tmpgen = NULL;
if (intgen_list)
{
if (intgen_list->number == num)
{
tmpgen = intgen_list;
intgen_list = intgen_list->next;
}
else
{
for (intgen = intgen_list; intgen != NULL; intgen = intgen->next)
{
if (intgen->next != NULL && intgen->next->number == num)
{
tmpgen = intgen->next;
intgen->next = intgen->next->next;
break;
}
}
}
if (tmpgen)
free (tmpgen);
else
sim_io_printf (sd, "No interrupt generator numbered %d, ignoring.\n", num);
}
}
else if (*argv && !strcmp (*argv, "info"))
{
if (intgen_list)
{
for (intgen = intgen_list; intgen != NULL; intgen = intgen->next)
sim_io_printf (sd, "Interrupt generator %d (%s) at pc=0x%lx/time=%ld%s.\n",
intgen->number,
interrupt_names[intgen->type],
(long) intgen->address,
intgen->time,
(intgen->enabled ? "" : " (disabled)"));
}
else
{
sim_io_printf (sd, "No interrupt generators defined.\n");
}
}
else
{
sim_io_printf (sd, "Invalid interrupt command, must be one of `add', `remove', or `info'.\n");
}
/* Cache the presence of a non-maskable generator. */
have_nm_generator = 0;
for (intgen = intgen_list; intgen != NULL; intgen = intgen->next)
{
if (intgen->type == int_nmi || intgen->type == int_reset)
{
have_nm_generator = 1;
break;
}
}
}
void
sim_do_command (sd, cmd)
SIM_DESC sd;
char *cmd;
{
char *mm_cmd = "memory-map";
char *int_cmd = "interrupt";
if (! strncmp (cmd, mm_cmd, strlen (mm_cmd))
&& strchr (" ", cmd[strlen(mm_cmd)]))
sim_set_memory_map (sd, cmd + strlen(mm_cmd) + 1);
else if (! strncmp (cmd, int_cmd, strlen (int_cmd))
&& strchr (" ", cmd[strlen(int_cmd)]))
sim_set_interrupt (sd, cmd + strlen(int_cmd) + 1);
else if (! strcmp (cmd, "help"))
{
sim_io_printf (sd, "V850 simulator commands:\n\n");
sim_io_printf (sd, "interrupt add <inttype> { pc | time } <value> -- Set up an interrupt generator\n");
sim_io_printf (sd, "interrupt remove <n> -- Remove an existing interrupt generator\n");
sim_io_printf (sd, "interrupt info -- List all the interrupt generators\n");
sim_io_printf (sd, "memory-map hole=<m>,<n> -- Set the memory map to have a hole between <m> and <n>\n");
sim_io_printf (sd, "\n");
}
else
sim_io_printf (sd, "\"%s\" is not a valid V850 simulator command.\n",
cmd);
}