old-cross-binutils/gdb/mi/mi-interp.c
Joel Brobecker 28e7fd6234 Update years in copyright notice for the GDB files.
Two modifications:
  1. The addition of 2013 to the copyright year range for every file;
  2. The use of a single year range, instead of potentially multiple
     year ranges, as approved by the FSF.
2013-01-01 06:33:28 +00:00

982 lines
27 KiB
C

/* MI Interpreter Definitions and Commands for GDB, the GNU debugger.
Copyright (C) 2002-2013 Free Software Foundation, Inc.
This file is part of GDB.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>. */
#include "defs.h"
#include "gdb_string.h"
#include "interps.h"
#include "event-top.h"
#include "event-loop.h"
#include "inferior.h"
#include "ui-out.h"
#include "top.h"
#include "exceptions.h"
#include "mi-main.h"
#include "mi-cmds.h"
#include "mi-out.h"
#include "mi-console.h"
#include "mi-common.h"
#include "observer.h"
#include "gdbthread.h"
#include "solist.h"
#include "gdb.h"
#include "objfiles.h"
/* These are the interpreter setup, etc. functions for the MI
interpreter. */
static void mi_execute_command_wrapper (char *cmd);
static void mi_execute_command_input_handler (char *cmd);
static void mi_command_loop (int mi_version);
/* These are hooks that we put in place while doing interpreter_exec
so we can report interesting things that happened "behind the MI's
back" in this command. */
static int mi_interp_query_hook (const char *ctlstr, va_list ap)
ATTRIBUTE_PRINTF (1, 0);
static void mi3_command_loop (void);
static void mi2_command_loop (void);
static void mi1_command_loop (void);
static void mi_insert_notify_hooks (void);
static void mi_remove_notify_hooks (void);
static void mi_on_normal_stop (struct bpstats *bs, int print_frame);
static void mi_new_thread (struct thread_info *t);
static void mi_thread_exit (struct thread_info *t, int silent);
static void mi_record_changed (struct inferior*, int);
static void mi_inferior_added (struct inferior *inf);
static void mi_inferior_appeared (struct inferior *inf);
static void mi_inferior_exit (struct inferior *inf);
static void mi_inferior_removed (struct inferior *inf);
static void mi_on_resume (ptid_t ptid);
static void mi_solib_loaded (struct so_list *solib);
static void mi_solib_unloaded (struct so_list *solib);
static void mi_about_to_proceed (void);
static void mi_traceframe_changed (int tfnum, int tpnum);
static void mi_tsv_created (const char *name, LONGEST value);
static void mi_tsv_deleted (const char *name);
static void mi_breakpoint_created (struct breakpoint *b);
static void mi_breakpoint_deleted (struct breakpoint *b);
static void mi_breakpoint_modified (struct breakpoint *b);
static void mi_command_param_changed (const char *param, const char *value);
static void mi_memory_changed (struct inferior *inf, CORE_ADDR memaddr,
ssize_t len, const bfd_byte *myaddr);
static int report_initial_inferior (struct inferior *inf, void *closure);
static void *
mi_interpreter_init (struct interp *interp, int top_level)
{
struct mi_interp *mi = XMALLOC (struct mi_interp);
const char *name;
int mi_version;
/* Assign the output channel created at startup to its own global,
so that we can create a console channel that encapsulates and
prefixes all gdb_output-type bits coming from the rest of the
debugger. */
raw_stdout = gdb_stdout;
/* Create MI console channels, each with a different prefix so they
can be distinguished. */
mi->out = mi_console_file_new (raw_stdout, "~", '"');
mi->err = mi_console_file_new (raw_stdout, "&", '"');
mi->log = mi->err;
mi->targ = mi_console_file_new (raw_stdout, "@", '"');
mi->event_channel = mi_console_file_new (raw_stdout, "=", 0);
name = interp_name (interp);
/* INTERP_MI selects the most recent released version. "mi2" was
released as part of GDB 6.0. */
if (strcmp (name, INTERP_MI) == 0)
mi_version = 2;
else if (strcmp (name, INTERP_MI1) == 0)
mi_version = 1;
else if (strcmp (name, INTERP_MI2) == 0)
mi_version = 2;
else if (strcmp (name, INTERP_MI3) == 0)
mi_version = 3;
else
gdb_assert_not_reached ("unhandled MI version");
mi->uiout = mi_out_new (mi_version);
if (top_level)
{
observer_attach_new_thread (mi_new_thread);
observer_attach_thread_exit (mi_thread_exit);
observer_attach_inferior_added (mi_inferior_added);
observer_attach_inferior_appeared (mi_inferior_appeared);
observer_attach_inferior_exit (mi_inferior_exit);
observer_attach_inferior_removed (mi_inferior_removed);
observer_attach_record_changed (mi_record_changed);
observer_attach_normal_stop (mi_on_normal_stop);
observer_attach_target_resumed (mi_on_resume);
observer_attach_solib_loaded (mi_solib_loaded);
observer_attach_solib_unloaded (mi_solib_unloaded);
observer_attach_about_to_proceed (mi_about_to_proceed);
observer_attach_traceframe_changed (mi_traceframe_changed);
observer_attach_tsv_created (mi_tsv_created);
observer_attach_tsv_deleted (mi_tsv_deleted);
observer_attach_breakpoint_created (mi_breakpoint_created);
observer_attach_breakpoint_deleted (mi_breakpoint_deleted);
observer_attach_breakpoint_modified (mi_breakpoint_modified);
observer_attach_command_param_changed (mi_command_param_changed);
observer_attach_memory_changed (mi_memory_changed);
/* The initial inferior is created before this function is
called, so we need to report it explicitly. Use iteration in
case future version of GDB creates more than one inferior
up-front. */
iterate_over_inferiors (report_initial_inferior, mi);
}
return mi;
}
static int
mi_interpreter_resume (void *data)
{
struct mi_interp *mi = data;
/* As per hack note in mi_interpreter_init, swap in the output
channels... */
gdb_setup_readline ();
/* These overwrite some of the initialization done in
_intialize_event_loop. */
call_readline = gdb_readline2;
input_handler = mi_execute_command_input_handler;
add_file_handler (input_fd, stdin_event_handler, 0);
async_command_editing_p = 0;
/* FIXME: This is a total hack for now. PB's use of the MI
implicitly relies on a bug in the async support which allows
asynchronous commands to leak through the commmand loop. The bug
involves (but is not limited to) the fact that sync_execution was
erroneously initialized to 0. Duplicate by initializing it thus
here... */
sync_execution = 0;
gdb_stdout = mi->out;
/* Route error and log output through the MI. */
gdb_stderr = mi->err;
gdb_stdlog = mi->log;
/* Route target output through the MI. */
gdb_stdtarg = mi->targ;
/* Route target error through the MI as well. */
gdb_stdtargerr = mi->targ;
/* Replace all the hooks that we know about. There really needs to
be a better way of doing this... */
clear_interpreter_hooks ();
deprecated_show_load_progress = mi_load_progress;
/* If we're _the_ interpreter, take control. */
if (current_interp_named_p (INTERP_MI1))
deprecated_command_loop_hook = mi1_command_loop;
else if (current_interp_named_p (INTERP_MI2))
deprecated_command_loop_hook = mi2_command_loop;
else if (current_interp_named_p (INTERP_MI3))
deprecated_command_loop_hook = mi3_command_loop;
else
deprecated_command_loop_hook = mi2_command_loop;
return 1;
}
static int
mi_interpreter_suspend (void *data)
{
gdb_disable_readline ();
return 1;
}
static struct gdb_exception
mi_interpreter_exec (void *data, const char *command)
{
char *tmp = alloca (strlen (command) + 1);
strcpy (tmp, command);
mi_execute_command_wrapper (tmp);
return exception_none;
}
/* Never display the default GDB prompt in MI case. */
static int
mi_interpreter_prompt_p (void *data)
{
return 0;
}
void
mi_cmd_interpreter_exec (char *command, char **argv, int argc)
{
struct interp *interp_to_use;
int i;
char *mi_error_message = NULL;
struct cleanup *old_chain;
if (argc < 2)
error (_("-interpreter-exec: "
"Usage: -interpreter-exec interp command"));
interp_to_use = interp_lookup (argv[0]);
if (interp_to_use == NULL)
error (_("-interpreter-exec: could not find interpreter \"%s\""),
argv[0]);
if (!interp_exec_p (interp_to_use))
error (_("-interpreter-exec: interpreter \"%s\" "
"does not support command execution"),
argv[0]);
/* Insert the MI out hooks, making sure to also call the
interpreter's hooks if it has any. */
/* KRS: We shouldn't need this... Events should be installed and
they should just ALWAYS fire something out down the MI
channel. */
mi_insert_notify_hooks ();
/* Now run the code. */
old_chain = make_cleanup (null_cleanup, 0);
for (i = 1; i < argc; i++)
{
struct gdb_exception e = interp_exec (interp_to_use, argv[i]);
if (e.reason < 0)
{
mi_error_message = xstrdup (e.message);
make_cleanup (xfree, mi_error_message);
break;
}
}
mi_remove_notify_hooks ();
if (mi_error_message != NULL)
error ("%s", mi_error_message);
do_cleanups (old_chain);
}
/* This inserts a number of hooks that are meant to produce
async-notify ("=") MI messages while running commands in another
interpreter using mi_interpreter_exec. The canonical use for this
is to allow access to the gdb CLI interpreter from within the MI,
while still producing MI style output when actions in the CLI
command change GDB's state. */
static void
mi_insert_notify_hooks (void)
{
deprecated_query_hook = mi_interp_query_hook;
}
static void
mi_remove_notify_hooks (void)
{
deprecated_query_hook = NULL;
}
static int
mi_interp_query_hook (const char *ctlstr, va_list ap)
{
return 1;
}
static void
mi_execute_command_wrapper (char *cmd)
{
mi_execute_command (cmd, stdin == instream);
}
/* mi_execute_command_wrapper wrapper suitable for INPUT_HANDLER. */
static void
mi_execute_command_input_handler (char *cmd)
{
mi_execute_command_wrapper (cmd);
fputs_unfiltered ("(gdb) \n", raw_stdout);
gdb_flush (raw_stdout);
}
static void
mi1_command_loop (void)
{
mi_command_loop (1);
}
static void
mi2_command_loop (void)
{
mi_command_loop (2);
}
static void
mi3_command_loop (void)
{
mi_command_loop (3);
}
static void
mi_command_loop (int mi_version)
{
/* Turn off 8 bit strings in quoted output. Any character with the
high bit set is printed using C's octal format. */
sevenbit_strings = 1;
/* Tell the world that we're alive. */
fputs_unfiltered ("(gdb) \n", raw_stdout);
gdb_flush (raw_stdout);
start_event_loop ();
}
static void
mi_new_thread (struct thread_info *t)
{
struct mi_interp *mi = top_level_interpreter_data ();
struct inferior *inf = find_inferior_pid (ptid_get_pid (t->ptid));
gdb_assert (inf);
fprintf_unfiltered (mi->event_channel,
"thread-created,id=\"%d\",group-id=\"i%d\"",
t->num, inf->num);
gdb_flush (mi->event_channel);
}
static void
mi_thread_exit (struct thread_info *t, int silent)
{
struct mi_interp *mi;
struct inferior *inf;
if (silent)
return;
inf = find_inferior_pid (ptid_get_pid (t->ptid));
mi = top_level_interpreter_data ();
target_terminal_ours ();
fprintf_unfiltered (mi->event_channel,
"thread-exited,id=\"%d\",group-id=\"i%d\"",
t->num, inf->num);
gdb_flush (mi->event_channel);
}
/* Emit notification on changing the state of record. */
static void
mi_record_changed (struct inferior *inferior, int started)
{
struct mi_interp *mi = top_level_interpreter_data ();
fprintf_unfiltered (mi->event_channel, "record-%s,thread-group=\"i%d\"",
started ? "started" : "stopped", inferior->num);
gdb_flush (mi->event_channel);
}
static void
mi_inferior_added (struct inferior *inf)
{
struct mi_interp *mi = top_level_interpreter_data ();
target_terminal_ours ();
fprintf_unfiltered (mi->event_channel,
"thread-group-added,id=\"i%d\"",
inf->num);
gdb_flush (mi->event_channel);
}
static void
mi_inferior_appeared (struct inferior *inf)
{
struct mi_interp *mi = top_level_interpreter_data ();
target_terminal_ours ();
fprintf_unfiltered (mi->event_channel,
"thread-group-started,id=\"i%d\",pid=\"%d\"",
inf->num, inf->pid);
gdb_flush (mi->event_channel);
}
static void
mi_inferior_exit (struct inferior *inf)
{
struct mi_interp *mi = top_level_interpreter_data ();
target_terminal_ours ();
if (inf->has_exit_code)
fprintf_unfiltered (mi->event_channel,
"thread-group-exited,id=\"i%d\",exit-code=\"%s\"",
inf->num, int_string (inf->exit_code, 8, 0, 0, 1));
else
fprintf_unfiltered (mi->event_channel,
"thread-group-exited,id=\"i%d\"", inf->num);
gdb_flush (mi->event_channel);
}
static void
mi_inferior_removed (struct inferior *inf)
{
struct mi_interp *mi = top_level_interpreter_data ();
target_terminal_ours ();
fprintf_unfiltered (mi->event_channel,
"thread-group-removed,id=\"i%d\"",
inf->num);
gdb_flush (mi->event_channel);
}
static void
mi_on_normal_stop (struct bpstats *bs, int print_frame)
{
/* Since this can be called when CLI command is executing,
using cli interpreter, be sure to use MI uiout for output,
not the current one. */
struct ui_out *mi_uiout = interp_ui_out (top_level_interpreter ());
if (print_frame)
{
int core;
if (current_uiout != mi_uiout)
{
/* The normal_stop function has printed frame information
into CLI uiout, or some other non-MI uiout. There's no
way we can extract proper fields from random uiout
object, so we print the frame again. In practice, this
can only happen when running a CLI command in MI. */
struct ui_out *saved_uiout = current_uiout;
struct target_waitstatus last;
ptid_t last_ptid;
current_uiout = mi_uiout;
get_last_target_status (&last_ptid, &last);
bpstat_print (bs, last.kind);
print_stack_frame (get_selected_frame (NULL), 0, SRC_AND_LOC);
current_uiout = saved_uiout;
}
ui_out_field_int (mi_uiout, "thread-id",
pid_to_thread_id (inferior_ptid));
if (non_stop)
{
struct cleanup *back_to = make_cleanup_ui_out_list_begin_end
(mi_uiout, "stopped-threads");
ui_out_field_int (mi_uiout, NULL,
pid_to_thread_id (inferior_ptid));
do_cleanups (back_to);
}
else
ui_out_field_string (mi_uiout, "stopped-threads", "all");
core = target_core_of_thread (inferior_ptid);
if (core != -1)
ui_out_field_int (mi_uiout, "core", core);
}
fputs_unfiltered ("*stopped", raw_stdout);
mi_out_put (mi_uiout, raw_stdout);
mi_out_rewind (mi_uiout);
mi_print_timing_maybe ();
fputs_unfiltered ("\n", raw_stdout);
gdb_flush (raw_stdout);
}
static void
mi_about_to_proceed (void)
{
/* Suppress output while calling an inferior function. */
if (!ptid_equal (inferior_ptid, null_ptid))
{
struct thread_info *tp = inferior_thread ();
if (tp->control.in_infcall)
return;
}
mi_proceeded = 1;
}
/* When the element is non-zero, no MI notifications will be emitted in
response to the corresponding observers. */
struct mi_suppress_notification mi_suppress_notification =
{
0,
0,
0,
};
/* Emit notification on changing a traceframe. */
static void
mi_traceframe_changed (int tfnum, int tpnum)
{
struct mi_interp *mi = top_level_interpreter_data ();
if (mi_suppress_notification.traceframe)
return;
target_terminal_ours ();
if (tfnum >= 0)
fprintf_unfiltered (mi->event_channel, "traceframe-changed,"
"num=\"%d\",tracepoint=\"%d\"\n",
tfnum, tpnum);
else
fprintf_unfiltered (mi->event_channel, "traceframe-changed,end");
gdb_flush (mi->event_channel);
}
/* Emit notification on creating a trace state variable. */
static void
mi_tsv_created (const char *name, LONGEST value)
{
struct mi_interp *mi = top_level_interpreter_data ();
target_terminal_ours ();
fprintf_unfiltered (mi->event_channel, "tsv-created,"
"name=\"%s\",value=\"%s\"\n",
name, plongest (value));
gdb_flush (mi->event_channel);
}
/* Emit notification on deleting a trace state variable. */
static void
mi_tsv_deleted (const char *name)
{
struct mi_interp *mi = top_level_interpreter_data ();
target_terminal_ours ();
if (name != NULL)
fprintf_unfiltered (mi->event_channel, "tsv-deleted,"
"name=\"%s\"\n", name);
else
fprintf_unfiltered (mi->event_channel, "tsv-deleted\n");
gdb_flush (mi->event_channel);
}
/* Emit notification about a created breakpoint. */
static void
mi_breakpoint_created (struct breakpoint *b)
{
struct mi_interp *mi = top_level_interpreter_data ();
struct ui_out *mi_uiout = interp_ui_out (top_level_interpreter ());
volatile struct gdb_exception e;
if (mi_suppress_notification.breakpoint)
return;
if (b->number <= 0)
return;
target_terminal_ours ();
fprintf_unfiltered (mi->event_channel,
"breakpoint-created");
/* We want the output from gdb_breakpoint_query to go to
mi->event_channel. One approach would be to just call
gdb_breakpoint_query, and then use mi_out_put to send the current
content of mi_outout into mi->event_channel. However, that will
break if anything is output to mi_uiout prior to calling the
breakpoint_created notifications. So, we use
ui_out_redirect. */
ui_out_redirect (mi_uiout, mi->event_channel);
TRY_CATCH (e, RETURN_MASK_ERROR)
gdb_breakpoint_query (mi_uiout, b->number, NULL);
ui_out_redirect (mi_uiout, NULL);
gdb_flush (mi->event_channel);
}
/* Emit notification about deleted breakpoint. */
static void
mi_breakpoint_deleted (struct breakpoint *b)
{
struct mi_interp *mi = top_level_interpreter_data ();
if (mi_suppress_notification.breakpoint)
return;
if (b->number <= 0)
return;
target_terminal_ours ();
fprintf_unfiltered (mi->event_channel, "breakpoint-deleted,id=\"%d\"",
b->number);
gdb_flush (mi->event_channel);
}
/* Emit notification about modified breakpoint. */
static void
mi_breakpoint_modified (struct breakpoint *b)
{
struct mi_interp *mi = top_level_interpreter_data ();
struct ui_out *mi_uiout = interp_ui_out (top_level_interpreter ());
volatile struct gdb_exception e;
if (mi_suppress_notification.breakpoint)
return;
if (b->number <= 0)
return;
target_terminal_ours ();
fprintf_unfiltered (mi->event_channel,
"breakpoint-modified");
/* We want the output from gdb_breakpoint_query to go to
mi->event_channel. One approach would be to just call
gdb_breakpoint_query, and then use mi_out_put to send the current
content of mi_outout into mi->event_channel. However, that will
break if anything is output to mi_uiout prior to calling the
breakpoint_created notifications. So, we use
ui_out_redirect. */
ui_out_redirect (mi_uiout, mi->event_channel);
TRY_CATCH (e, RETURN_MASK_ERROR)
gdb_breakpoint_query (mi_uiout, b->number, NULL);
ui_out_redirect (mi_uiout, NULL);
gdb_flush (mi->event_channel);
}
static int
mi_output_running_pid (struct thread_info *info, void *arg)
{
ptid_t *ptid = arg;
if (ptid_get_pid (*ptid) == ptid_get_pid (info->ptid))
fprintf_unfiltered (raw_stdout,
"*running,thread-id=\"%d\"\n",
info->num);
return 0;
}
static int
mi_inferior_count (struct inferior *inf, void *arg)
{
if (inf->pid != 0)
{
int *count_p = arg;
(*count_p)++;
}
return 0;
}
static void
mi_on_resume (ptid_t ptid)
{
struct thread_info *tp = NULL;
if (ptid_equal (ptid, minus_one_ptid) || ptid_is_pid (ptid))
tp = inferior_thread ();
else
tp = find_thread_ptid (ptid);
/* Suppress output while calling an inferior function. */
if (tp->control.in_infcall)
return;
/* To cater for older frontends, emit ^running, but do it only once
per each command. We do it here, since at this point we know
that the target was successfully resumed, and in non-async mode,
we won't return back to MI interpreter code until the target
is done running, so delaying the output of "^running" until then
will make it impossible for frontend to know what's going on.
In future (MI3), we'll be outputting "^done" here. */
if (!running_result_record_printed && mi_proceeded)
{
fprintf_unfiltered (raw_stdout, "%s^running\n",
current_token ? current_token : "");
}
if (PIDGET (ptid) == -1)
fprintf_unfiltered (raw_stdout, "*running,thread-id=\"all\"\n");
else if (ptid_is_pid (ptid))
{
int count = 0;
/* Backwards compatibility. If there's only one inferior,
output "all", otherwise, output each resumed thread
individually. */
iterate_over_inferiors (mi_inferior_count, &count);
if (count == 1)
fprintf_unfiltered (raw_stdout, "*running,thread-id=\"all\"\n");
else
iterate_over_threads (mi_output_running_pid, &ptid);
}
else
{
struct thread_info *ti = find_thread_ptid (ptid);
gdb_assert (ti);
fprintf_unfiltered (raw_stdout, "*running,thread-id=\"%d\"\n", ti->num);
}
if (!running_result_record_printed && mi_proceeded)
{
running_result_record_printed = 1;
/* This is what gdb used to do historically -- printing prompt even if
it cannot actually accept any input. This will be surely removed
for MI3, and may be removed even earler. */
/* FIXME: review the use of target_is_async_p here -- is that
what we want? */
if (!target_is_async_p ())
fputs_unfiltered ("(gdb) \n", raw_stdout);
}
gdb_flush (raw_stdout);
}
static void
mi_solib_loaded (struct so_list *solib)
{
struct mi_interp *mi = top_level_interpreter_data ();
target_terminal_ours ();
if (gdbarch_has_global_solist (target_gdbarch ()))
fprintf_unfiltered (mi->event_channel,
"library-loaded,id=\"%s\",target-name=\"%s\","
"host-name=\"%s\",symbols-loaded=\"%d\"",
solib->so_original_name, solib->so_original_name,
solib->so_name, solib->symbols_loaded);
else
fprintf_unfiltered (mi->event_channel,
"library-loaded,id=\"%s\",target-name=\"%s\","
"host-name=\"%s\",symbols-loaded=\"%d\","
"thread-group=\"i%d\"",
solib->so_original_name, solib->so_original_name,
solib->so_name, solib->symbols_loaded,
current_inferior ()->num);
gdb_flush (mi->event_channel);
}
static void
mi_solib_unloaded (struct so_list *solib)
{
struct mi_interp *mi = top_level_interpreter_data ();
target_terminal_ours ();
if (gdbarch_has_global_solist (target_gdbarch ()))
fprintf_unfiltered (mi->event_channel,
"library-unloaded,id=\"%s\",target-name=\"%s\","
"host-name=\"%s\"",
solib->so_original_name, solib->so_original_name,
solib->so_name);
else
fprintf_unfiltered (mi->event_channel,
"library-unloaded,id=\"%s\",target-name=\"%s\","
"host-name=\"%s\",thread-group=\"i%d\"",
solib->so_original_name, solib->so_original_name,
solib->so_name, current_inferior ()->num);
gdb_flush (mi->event_channel);
}
/* Emit notification about the command parameter change. */
static void
mi_command_param_changed (const char *param, const char *value)
{
struct mi_interp *mi = top_level_interpreter_data ();
struct ui_out *mi_uiout = interp_ui_out (top_level_interpreter ());
if (mi_suppress_notification.cmd_param_changed)
return;
target_terminal_ours ();
fprintf_unfiltered (mi->event_channel,
"cmd-param-changed");
ui_out_redirect (mi_uiout, mi->event_channel);
ui_out_field_string (mi_uiout, "param", param);
ui_out_field_string (mi_uiout, "value", value);
ui_out_redirect (mi_uiout, NULL);
gdb_flush (mi->event_channel);
}
/* Emit notification about the target memory change. */
static void
mi_memory_changed (struct inferior *inferior, CORE_ADDR memaddr,
ssize_t len, const bfd_byte *myaddr)
{
struct mi_interp *mi = top_level_interpreter_data ();
struct ui_out *mi_uiout = interp_ui_out (top_level_interpreter ());
struct obj_section *sec;
if (mi_suppress_notification.memory)
return;
target_terminal_ours ();
fprintf_unfiltered (mi->event_channel,
"memory-changed");
ui_out_redirect (mi_uiout, mi->event_channel);
ui_out_field_fmt (mi_uiout, "thread-group", "i%d", inferior->num);
ui_out_field_core_addr (mi_uiout, "addr", target_gdbarch (), memaddr);
ui_out_field_fmt (mi_uiout, "len", "0x%zx", len);
/* Append 'type=code' into notification if MEMADDR falls in the range of
sections contain code. */
sec = find_pc_section (memaddr);
if (sec != NULL && sec->objfile != NULL)
{
flagword flags = bfd_get_section_flags (sec->objfile->obfd,
sec->the_bfd_section);
if (flags & SEC_CODE)
ui_out_field_string (mi_uiout, "type", "code");
}
ui_out_redirect (mi_uiout, NULL);
gdb_flush (mi->event_channel);
}
static int
report_initial_inferior (struct inferior *inf, void *closure)
{
/* This function is called from mi_intepreter_init, and since
mi_inferior_added assumes that inferior is fully initialized
and top_level_interpreter_data is set, we cannot call
it here. */
struct mi_interp *mi = closure;
target_terminal_ours ();
fprintf_unfiltered (mi->event_channel,
"thread-group-added,id=\"i%d\"",
inf->num);
gdb_flush (mi->event_channel);
return 0;
}
static struct ui_out *
mi_ui_out (struct interp *interp)
{
struct mi_interp *mi = interp_data (interp);
return mi->uiout;
}
/* Save the original value of raw_stdout here when logging, so we can
restore correctly when done. */
static struct ui_file *saved_raw_stdout;
/* Do MI-specific logging actions; save raw_stdout, and change all
the consoles to use the supplied ui-file(s). */
static int
mi_set_logging (struct interp *interp, int start_log,
struct ui_file *out, struct ui_file *logfile)
{
struct mi_interp *mi = interp_data (interp);
if (!mi)
return 0;
if (start_log)
{
/* The tee created already is based on gdb_stdout, which for MI
is a console and so we end up in an infinite loop of console
writing to ui_file writing to console etc. So discard the
existing tee (it hasn't been used yet, and MI won't ever use
it), and create one based on raw_stdout instead. */
if (logfile)
{
ui_file_delete (out);
out = tee_file_new (raw_stdout, 0, logfile, 0);
}
saved_raw_stdout = raw_stdout;
raw_stdout = out;
}
else
{
raw_stdout = saved_raw_stdout;
saved_raw_stdout = NULL;
}
mi_console_set_raw (mi->out, raw_stdout);
mi_console_set_raw (mi->err, raw_stdout);
mi_console_set_raw (mi->log, raw_stdout);
mi_console_set_raw (mi->targ, raw_stdout);
mi_console_set_raw (mi->event_channel, raw_stdout);
return 1;
}
extern initialize_file_ftype _initialize_mi_interp; /* -Wmissing-prototypes */
void
_initialize_mi_interp (void)
{
static const struct interp_procs procs =
{
mi_interpreter_init, /* init_proc */
mi_interpreter_resume, /* resume_proc */
mi_interpreter_suspend, /* suspend_proc */
mi_interpreter_exec, /* exec_proc */
mi_interpreter_prompt_p, /* prompt_proc_p */
mi_ui_out, /* ui_out_proc */
mi_set_logging /* set_logging_proc */
};
/* The various interpreter levels. */
interp_add (interp_new (INTERP_MI1, &procs));
interp_add (interp_new (INTERP_MI2, &procs));
interp_add (interp_new (INTERP_MI3, &procs));
interp_add (interp_new (INTERP_MI, &procs));
}