7ee7dc27b0
definitions. (TARGET_BYTE_ORDER): Moved here from tm-i386v.h. (IEEE_FLOAT): Moved here from tm-i386v.h. (START_INFERIOR_TRAPS_EXPECTED): Define default as 2. (FUNCTION_START_OFFSET): Moved here from tm-i386v.h. (SKIP_PROLOGUE): Moved here from tm-i386v.h. (SAVED_PC_AFTER_CALL): Moved here from tm-i386v.h. (INNER_THAN): Moved here from tm-i386v.h. (BREAKPOINT): Moved here from tm-i386v.h. (DECR_PC_AFTER_BREAK): Moved here from tm-i386v.h. (ABOUT_TO_RETURN): Moved here from tm-i386v.h. (REGISTER_SIZE): Moved here from tm-i386v.h. (NUM_REGS): Moved here from tm-i386v.h. (REGISTER_NAMES): Moved here from tm-i386v.h. (EXTRACT_STRUCT_VALUE_ADDRESS): Moved here from tm-i386v.h. (FP_REGNUM): Moved here from tm-i386v.h. (SP_REGNUM): Moved here from tm-i386v.h. (PC_REGNUM): Moved here from tm-i386v.h. (PS_REGNUM): Moved here from tm-i386v.h. (FP0_REGNUM): Moved here from tm-i386aix.h. (FPC_REGNUM): Moved here from tm-sun386.h. (REGISTER_BYTES): Moved here from tm-i386aix.h. (REGISTER_BYTE): Moved here from tm-i386aix.h. (REGISTER_RAW_SIZE): Moved here from tm-i386aix.h. (MAX_REGISTER_RAW_SIZE): Moved here from tm-i386aix.h. (REGISTER_VIRTUAL_SIZE): Moved here from tm-i386aix.h. (MAX_REGISTER_VIRTUAL_SIZE): Moved here from tm-i386aix.h. (EXTRACT_RETURN_VALUE): Moved here from tm-i386aix.h. (STORE_RETURN_VALUE): Moved here from tm-i386aix.h. (REGISTER_VIRTUAL_TYPE): Moved here from tm-i386v.h. (STORE_STRUCT_RETURN): Moved here from tm-i386v.h. (FRAME_CHAIN): Moved here from tm-i386v4.h. (FRAMELESS_FUNCTION_INVOCATION): Moved here from tm-i386v4.h. (FRAME_SAVED_PC): Moved here from tm-i386os9k.h (FRAME_ARGS_ADDRESS): Moved here from tm-i386v.h. (FRAME_LOCALS_ADDRESS): Moved here from tm-i386v.h. (FRAME_NUM_ARGS): Moved here from tm-i386sun.h. (FRAME_ARGS_SKIP): Moved here from tm-i386v.h. (FRAME_FIND_SAVED_REGS): Moved here from tm-i386v.h. (PUSH_DUMMY_FRAME): Moved here from tm-i386v.h. (POP_FRAME): Moved here from tm-i386v.h. (CALL_DUMMY, CALL_DUMMY_LENGTH, CALL_DUMMY_START_OFFSET, CALL_DUMMY_BREAKPOINT_OFFSET, FIX_CALL_DUMMY): Moved here from tm-i386v.h (print_387_control_word, print_387_status_word): Declare prototypes. (struct frame_info, struct frame_saved_regs): Forward decls for prototypes. (SP_ARG0): Moved here from tm-i386v.h. * config/i386/tm-i386v.h: (i386/tm-i386.h): Include. (TARGET_BYTE_ORDER): Remove. (IEEE_FLOAT): Remove. (START_INFERIOR_TRAPS_EXPECTED): Undef before redefine to 4. (FUNCTION_START_OFFSET): Remove. (SKIP_PROLOGUE): Remove. (i386_skip_prologue): Remove prototype. (SAVED_PC_AFTER_CALL): Remove. (INNER_THAN): Remove. (BREAKPOINT): Remove. (DECR_PC_AFTER_BREAK): Remove. (ABOUT_TO_RETURN): Remove. (REGISTER_SIZE): Remove. (NUM_REGS): Undef before redefine to 16 (no FP support). (REGISTER_NAMES): Undef before redefine. (FP_REGNUM, SP_REGNUM, PC_REGNUM, PS_REGNUM): Remove. (REGISTER_BYTES): Undef before redefine. (REGISTER_BYTE): Undef before redefine. (REGISTER_RAW_SIZE): Undef before redefine. (REGISTER_VIRTUAL_SIZE): Undef before redefine. (MAX_REGISTER_RAW_SIZE): Undef before redefine. (MAX_REGISTER_VIRTUAL_SIZE): Undef before redefine. (REGISTER_VIRTUAL_TYPE): Undef before redefine. (STORE_STRUCT_RETURN): Undef before redefine. (EXTRACT_RETURN_VALUE): Undef before redefine. (STORE_RETURN_VALUE): Undef before redefine. (EXTRACT_STRUCT_VALUE_ADDRESS): Remove. (FRAME_CHAIN): Undef before redefine. (FRAMELESS_FUNCTION_INVOCATION): Undef before redefine. (FRAME_SAVED_PC): Undef before redefine. (FRAME_ARGS_ADDRESS): Remove. (FRAME_LOCALS_ADDRESS): Remove. (FRAME_NUM_ARGS): Undef before redefine. (FRAME_ARGS_SKIP): Remove. (FRAME_FIND_SAVED_REGS): Remove. (PUSH_DUMMY_FRAME): Remove. (POP_FRAME): Remove. (CALL_DUMMY): Remove. (CALL_DUMMY_LENGTH): Remove. (CALL_DUMMY_START_OFFSET): Remove. (CALL_DUMMY_BREAKPOINT_OFFSET): Remove (FIX_CALL_DUMMY): Remove. (print_387_control_word): Remove. (print_387_status_word): Remove. (SP_ARG0): Remove. * config/i386/tm-symmetry.h: (TM_SYMMETRY_H): Enclose file in test for define & define if needed. (START_INFERIOR_TRAPS_EXPECTED): Move to after inclusion of tm-i386v4.h or tm-i386v.h, #undef, and #define back to 2. (DECR_PC_AFTER_BREAK): Move to after inclusion of tm-i386v4.h or tm-i386v.h, #undef, and #define to 0. (MAX_REGISTER_RAW_SIZE): Remove. (FRAME_CHAIN): Remove. (FRAMELESS_FUNCTION_INVOCATION): Remove. (FRAME_SAVED_PC): Remove. (print_387_control_word, print_387_status_word): Remove prototypes. * config/i386/tm-ptx.h: (TM_PTX_H): Enclose file in test for define & define if needed. (START_INFERIOR_TRAPS_EXPECTED): Move to after inclusion of tm-i386v4.h or tm-i386v.h, #undef, and #define back to 2. (DECR_PC_AFTER_BREAK): Move to after inclusion of tm-i386v4.h or tm-i386v.h, #undef, and #define to 0. (SDB_REG_TO_REGNUM): Remove obsolete commented out define. (print_387_control_word, print_387_status_word): Remove prototypes. * config/i386/tm-linux.h: (TM_LINUX_H): Enclose file in test for define & define if needed. (i386/tm-i386.h): Include instead of tm-i386v.h. (START_INFERIOR_TRAPS_EXPECTED): Remove. * config/i386/tm-i386v4.h: (TM_I386V4_H): Enclose file in test for define & define if needed. (i386/tm-i386.h): Include instead of tm-i386v.h. (START_INFERIOR_TRAPS_EXPECTED): Remove. (FRAME_CHAIN): Moved to tm-i386.h. (FRAMELESS_FUNCTION_INVOCATION): Moved to tm-i386.h. (FRAME_SAVED_PC): Remove. (sigtramp_saved_pc): Define as i386v4_sigtramp_saved_pc. (FRAME_NUM_ARGS): Remove. * config/i386/tm-i386os9k.h: (TM_I386OS9K_H): Enclose file in test for define & define if needed. (i386/tm-i386.h): Include instead of tm-i386v.h. (START_INFERIOR_TRAPS_EXPECTED): Remove. (NUM_REGS): Undefine before redefining. (FRAME_CHAIN): Remove. (FRAMELESS_FUNCTION_INVOCATION): Remove. (FRAME_SAVED_PC): Move to tm-i386.h. * config/i386/tm-i386nw.h: (TM_I386NW_H): Enclose file in test for define & define if needed. (i386/tm-i386.h): Include instead of tm-i386v.h. (START_INFERIOR_TRAPS_EXPECTED): Remove. * config/i386/tm-i386bsd.h: (TM_I386BSD_H): Enclose file in test for define & define if needed. (i386/tm-i386.h): Include instead of tm-i386v.h. (START_INFERIOR_TRAPS_EXPECTED): Remove. (FRAMELESS_FUNCTION_INVOCATION): Remove. (FRAME_SAVED_PC): Remove. * config/i386/tm-i386aix.h: (i386/tm-i386.h): Include instead of tm-i386v.h. (START_INFERIOR_TRAPS_EXPECTED): Remove. (FP_REGNUM): Remove. (SP_REGNUM): Remove. (PC_REGNUM): Remove. (PS_REGNUM): Remove. (FP0_REGNUM): Moved to tm-i386.h. (NUM_REGS): Remove. (REGISTER_NAMES): Remove. (REGISTER_BYTES): Moved to tm-i386.h. (REGISTER_BYTE): Moved to tm-i386.h. (REGISTER_RAW_SIZE): Moved to tm-i386.h. (MAX_REGISTER_RAW_SIZE): Moved to tm-i386.h. (REGISTER_VIRTUAL_SIZE): Moved to tm-i386.h. (REGISTER_VIRTUAL_TYPE): Removed. (EXTRACT_RETURN_VALUE): Moved to tm-i386.h. (STORE_RETURN_VALUE): Moved to tm-i386.h. * config/i386/tm-sun386.h: (TM_SUN386_H): Enclose file in test for define & define if needed. (i386/tm-i386.h): Include. (TARGET_BYTE_ORDER): Remove. (FUNCTION_START_OFFSET): Remove. (SKIP_PROLOGUE): Remove. (SAVED_PC_AFTER_CALL): Remove. (INNER_THAN): Remove. (BREAKPOINT): Remove. (DECR_PC_AFTER_BREAK): Remove. (ABOUT_TO_RETURN): Remove. (REGISTER_SIZE): Remove. (NUM_REGS): Undefine before defining. (REGISTER_NAMES): Undefine before redefining. (REGISTER_BYTES): Undefine before redefining. (REGISTER_BYTE): Undefine before defining. (FP_REGNUM): Undefine before defining. (PC_REGNUM): Undefine before defining. (FPC_REGNUM): Undefine before defining. (REGISTER_RAW_SIZE): Undefine before defining. (FRAME_CHAIN): Undefine before defining. (FRAMELESS_FUNCTION_INVOCATION): Undefine before defining. (FRAME_SAVED_PC): Undefine before defining. (FRAME_NUM_ARGS): Moved to tm-i386.h. (MAX_REGISTER_RAW_SIZE): Remove. (MAX_REGISTER_VIRTUAL_SIZE): Remove. (STORE_STRUCT_RETURN): Remove. (EXTRACT_STRUCT_VALUE_ADDRESS): Remove. (FRAME_ARGS_ADDRESS): Remove. (FRAME_LOCALS_ADDRESS): Remove. (FRAME_NUM_ARGS): Undefine before defining. (FRAME_ARGS_SKIP): Remove. (FRAME_FIND_SAVED_REGS): Remove. (PUSH_DUMMY_FRAME): Remove. (POP_FRAME): Remove. (CALL_DUMMY, CALL_DUMMY_LENGTH, CALL_DUMMY_START_OFFSET): Remove. (struct frame_info, struct frame_saved_regs): Remove forward decls for prototypes. * config/i386/tm-i386lynx.h (i386/tm-i386.h): Include instead of tm-i386v.h. * config/i386/tm-i386m3.h (i386/tm-i386.h): Include instead of tm-i386v.h.
321 lines
10 KiB
C
321 lines
10 KiB
C
/* Target machine definitions for GDB on a Sequent Symmetry under dynix 3.0,
|
|
with Weitek 1167 and i387 support.
|
|
Copyright 1986, 1987, 1989, 1991, 1992, 1993, 1994
|
|
Free Software Foundation, Inc.
|
|
Symmetry version by Jay Vosburgh (fubar@sequent.com).
|
|
|
|
This file is part of GDB.
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 2 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program; if not, write to the Free Software
|
|
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
|
|
|
|
#ifndef TM_SYMMETRY_H
|
|
#define TM_SYMMETRY_H 1
|
|
|
|
/* I don't know if this will work for cross-debugging, even if you do get
|
|
a copy of the right include file. */
|
|
#include <machine/reg.h>
|
|
|
|
#include "i386/tm-i386v.h"
|
|
|
|
#undef START_INFERIOR_TRAPS_EXPECTED
|
|
#define START_INFERIOR_TRAPS_EXPECTED 2
|
|
|
|
/* Amount PC must be decremented by after a breakpoint. This is often the
|
|
number of bytes in BREAKPOINT but not always (such as now). */
|
|
|
|
#undef DECR_PC_AFTER_BREAK
|
|
#define DECR_PC_AFTER_BREAK 0
|
|
|
|
#if 0
|
|
/* --- this code can't be used unless we know we are running native,
|
|
since it uses host specific ptrace calls. */
|
|
/* code for 80387 fpu. Functions are from i386-dep.c, copied into
|
|
* symm-dep.c.
|
|
*/
|
|
#define FLOAT_INFO { i386_float_info(); }
|
|
#endif
|
|
|
|
/* Number of machine registers */
|
|
|
|
#undef NUM_REGS
|
|
#define NUM_REGS 49
|
|
|
|
/* Initializer for an array of names of registers.
|
|
There should be NUM_REGS strings in this initializer. */
|
|
|
|
/* Initializer for an array of names of registers. There should be at least
|
|
NUM_REGS strings in this initializer. Any excess ones are simply ignored.
|
|
Symmetry registers are in this weird order to match the register numbers
|
|
in the symbol table entries. If you change the order, things will probably
|
|
break mysteriously for no apparent reason. Also note that the st(0)...
|
|
st(7) 387 registers are represented as st0...st7. */
|
|
|
|
#undef REGISTER_NAMES
|
|
#define REGISTER_NAMES { "eax", "edx", "ecx", "st0", "st1", \
|
|
"ebx", "esi", "edi", "st2", "st3", \
|
|
"st4", "st5", "st6", "st7", "esp", \
|
|
"ebp", "eip", "eflags","fp1", "fp2", \
|
|
"fp3", "fp4", "fp5", "fp6", "fp7", \
|
|
"fp8", "fp9", "fp10", "fp11", "fp12", \
|
|
"fp13", "fp14", "fp15", "fp16", "fp17", \
|
|
"fp18", "fp19", "fp20", "fp21", "fp22", \
|
|
"fp23", "fp24", "fp25", "fp26", "fp27", \
|
|
"fp28", "fp29", "fp30", "fp31" }
|
|
|
|
/* Register numbers of various important registers.
|
|
Note that some of these values are "real" register numbers,
|
|
and correspond to the general registers of the machine,
|
|
and some are "phony" register numbers which are too large
|
|
to be actual register numbers as far as the user is concerned
|
|
but do serve to get the desired values when passed to read_register. */
|
|
|
|
#define EAX_REGNUM 0
|
|
#define EDX_REGNUM 1
|
|
#define ECX_REGNUM 2
|
|
#define ST0_REGNUM 3
|
|
#define ST1_REGNUM 4
|
|
#define EBX_REGNUM 5
|
|
#define ESI_REGNUM 6
|
|
#define EDI_REGNUM 7
|
|
#define ST2_REGNUM 8
|
|
#define ST3_REGNUM 9
|
|
|
|
#define ST4_REGNUM 10
|
|
#define ST5_REGNUM 11
|
|
#define ST6_REGNUM 12
|
|
#define ST7_REGNUM 13
|
|
|
|
#define FP1_REGNUM 18 /* first 1167 register */
|
|
/* Get %fp2 - %fp31 by addition, since they are contiguous */
|
|
|
|
#undef SP_REGNUM
|
|
#define SP_REGNUM 14 /* (usp) Contains address of top of stack */
|
|
#define ESP_REGNUM 14
|
|
#undef FP_REGNUM
|
|
#define FP_REGNUM 15 /* (ebp) Contains address of executing stack frame */
|
|
#define EBP_REGNUM 15
|
|
#undef PC_REGNUM
|
|
#define PC_REGNUM 16 /* (eip) Contains program counter */
|
|
#define EIP_REGNUM 16
|
|
#undef PS_REGNUM
|
|
#define PS_REGNUM 17 /* (ps) Contains processor status */
|
|
#define EFLAGS_REGNUM 17
|
|
|
|
/*
|
|
* Following macro translates i386 opcode register numbers to Symmetry
|
|
* register numbers. This is used by i386_frame_find_saved_regs.
|
|
*
|
|
* %eax %ecx %edx %ebx %esp %ebp %esi %edi
|
|
* i386 0 1 2 3 4 5 6 7
|
|
* Symmetry 0 2 1 5 14 15 6 7
|
|
*
|
|
*/
|
|
#define I386_REGNO_TO_SYMMETRY(n) \
|
|
((n)==0?0 :(n)==1?2 :(n)==2?1 :(n)==3?5 :(n)==4?14 :(n)==5?15 :(n))
|
|
|
|
/* The magic numbers below are offsets into u_ar0 in the user struct.
|
|
* They live in <machine/reg.h>. Gdb calls this macro with blockend
|
|
* holding u.u_ar0 - KERNEL_U_ADDR. Only the registers listed are
|
|
* saved in the u area (along with a few others that aren't useful
|
|
* here. See <machine/reg.h>).
|
|
*/
|
|
|
|
#define REGISTER_U_ADDR(addr, blockend, regno) \
|
|
{ struct user foo; /* needed for finding fpu regs */ \
|
|
switch (regno) { \
|
|
case 0: \
|
|
addr = blockend + EAX * sizeof(int); break; \
|
|
case 1: \
|
|
addr = blockend + EDX * sizeof(int); break; \
|
|
case 2: \
|
|
addr = blockend + ECX * sizeof(int); break; \
|
|
case 3: /* st(0) */ \
|
|
addr = ((int)&foo.u_fpusave.fpu_stack[0][0] - (int)&foo); \
|
|
break; \
|
|
case 4: /* st(1) */ \
|
|
addr = ((int) &foo.u_fpusave.fpu_stack[1][0] - (int)&foo); \
|
|
break; \
|
|
case 5: \
|
|
addr = blockend + EBX * sizeof(int); break; \
|
|
case 6: \
|
|
addr = blockend + ESI * sizeof(int); break; \
|
|
case 7: \
|
|
addr = blockend + EDI * sizeof(int); break; \
|
|
case 8: /* st(2) */ \
|
|
addr = ((int) &foo.u_fpusave.fpu_stack[2][0] - (int)&foo); \
|
|
break; \
|
|
case 9: /* st(3) */ \
|
|
addr = ((int) &foo.u_fpusave.fpu_stack[3][0] - (int)&foo); \
|
|
break; \
|
|
case 10: /* st(4) */ \
|
|
addr = ((int) &foo.u_fpusave.fpu_stack[4][0] - (int)&foo); \
|
|
break; \
|
|
case 11: /* st(5) */ \
|
|
addr = ((int) &foo.u_fpusave.fpu_stack[5][0] - (int)&foo); \
|
|
break; \
|
|
case 12: /* st(6) */ \
|
|
addr = ((int) &foo.u_fpusave.fpu_stack[6][0] - (int)&foo); \
|
|
break; \
|
|
case 13: /* st(7) */ \
|
|
addr = ((int) &foo.u_fpusave.fpu_stack[7][0] - (int)&foo); \
|
|
break; \
|
|
case 14: \
|
|
addr = blockend + ESP * sizeof(int); break; \
|
|
case 15: \
|
|
addr = blockend + EBP * sizeof(int); break; \
|
|
case 16: \
|
|
addr = blockend + EIP * sizeof(int); break; \
|
|
case 17: \
|
|
addr = blockend + FLAGS * sizeof(int); break; \
|
|
case 18: /* fp1 */ \
|
|
case 19: /* fp2 */ \
|
|
case 20: /* fp3 */ \
|
|
case 21: /* fp4 */ \
|
|
case 22: /* fp5 */ \
|
|
case 23: /* fp6 */ \
|
|
case 24: /* fp7 */ \
|
|
case 25: /* fp8 */ \
|
|
case 26: /* fp9 */ \
|
|
case 27: /* fp10 */ \
|
|
case 28: /* fp11 */ \
|
|
case 29: /* fp12 */ \
|
|
case 30: /* fp13 */ \
|
|
case 31: /* fp14 */ \
|
|
case 32: /* fp15 */ \
|
|
case 33: /* fp16 */ \
|
|
case 34: /* fp17 */ \
|
|
case 35: /* fp18 */ \
|
|
case 36: /* fp19 */ \
|
|
case 37: /* fp20 */ \
|
|
case 38: /* fp21 */ \
|
|
case 39: /* fp22 */ \
|
|
case 40: /* fp23 */ \
|
|
case 41: /* fp24 */ \
|
|
case 42: /* fp25 */ \
|
|
case 43: /* fp26 */ \
|
|
case 44: /* fp27 */ \
|
|
case 45: /* fp28 */ \
|
|
case 46: /* fp29 */ \
|
|
case 47: /* fp30 */ \
|
|
case 48: /* fp31 */ \
|
|
addr = ((int) &foo.u_fpasave.fpa_regs[(regno)-18] - (int)&foo); \
|
|
} \
|
|
}
|
|
|
|
/* Total amount of space needed to store our copies of the machine's
|
|
register state, the array `registers'. 10 i*86 registers, 8 i387
|
|
registers, and 31 Weitek 1167 registers */
|
|
|
|
#undef REGISTER_BYTES
|
|
#define REGISTER_BYTES ((10 * 4) + (8 * 10) + (31 * 4))
|
|
|
|
/* Index within `registers' of the first byte of the space for
|
|
register N. */
|
|
|
|
#undef REGISTER_BYTE
|
|
#define REGISTER_BYTE(N) \
|
|
(((N) < 3) ? ((N) * 4) : \
|
|
((N) < 5) ? ((((N) - 2) * 10) + 2) : \
|
|
((N) < 8) ? ((((N) - 5) * 4) + 32) : \
|
|
((N) < 14) ? ((((N) - 8) * 10) + 44) : \
|
|
((((N) - 14) * 4) + 104))
|
|
|
|
/* Number of bytes of storage in the actual machine representation
|
|
* for register N. All registers are 4 bytes, except 387 st(0) - st(7),
|
|
* which are 80 bits each.
|
|
*/
|
|
|
|
#undef REGISTER_RAW_SIZE
|
|
#define REGISTER_RAW_SIZE(N) \
|
|
(((N) < 3) ? 4 : \
|
|
((N) < 5) ? 10 : \
|
|
((N) < 8) ? 4 : \
|
|
((N) < 14) ? 10 : \
|
|
4)
|
|
|
|
/* Nonzero if register N requires conversion
|
|
from raw format to virtual format. */
|
|
|
|
#undef REGISTER_CONVERTIBLE
|
|
#define REGISTER_CONVERTIBLE(N) \
|
|
(((N) < 3) ? 0 : \
|
|
((N) < 5) ? 1 : \
|
|
((N) < 8) ? 0 : \
|
|
((N) < 14) ? 1 : \
|
|
0)
|
|
|
|
#include "floatformat.h"
|
|
|
|
/* Convert data from raw format for register REGNUM in buffer FROM
|
|
to virtual format with type TYPE in buffer TO. */
|
|
|
|
#undef REGISTER_CONVERT_TO_VIRTUAL
|
|
#define REGISTER_CONVERT_TO_VIRTUAL(REGNUM,TYPE,FROM,TO) \
|
|
{ \
|
|
double val; \
|
|
floatformat_to_double (&floatformat_i387_ext, (FROM), &val); \
|
|
store_floating ((TO), TYPE_LENGTH (TYPE), val); \
|
|
}
|
|
|
|
/* Convert data from virtual format with type TYPE in buffer FROM
|
|
to raw format for register REGNUM in buffer TO. */
|
|
|
|
#undef REGISTER_CONVERT_TO_RAW
|
|
#define REGISTER_CONVERT_TO_RAW(TYPE,REGNUM,FROM,TO) \
|
|
{ \
|
|
double val = extract_floating ((FROM), TYPE_LENGTH (TYPE)); \
|
|
floatformat_from_double (&floatformat_i387_ext, &val, (TO)); \
|
|
}
|
|
|
|
/* Return the GDB type object for the "standard" data type
|
|
of data in register N. */
|
|
|
|
#undef REGISTER_VIRTUAL_TYPE
|
|
#define REGISTER_VIRTUAL_TYPE(N) \
|
|
((N < 3) ? builtin_type_int : \
|
|
(N < 5) ? builtin_type_double : \
|
|
(N < 8) ? builtin_type_int : \
|
|
(N < 14) ? builtin_type_double : \
|
|
builtin_type_int)
|
|
|
|
/* Store the address of the place in which to copy the structure the
|
|
subroutine will return. This is called from call_function.
|
|
Native cc passes the address in eax, gcc (up to version 2.5.8)
|
|
passes it on the stack. gcc should be fixed in future versions to
|
|
adopt native cc conventions. */
|
|
|
|
#undef STORE_STRUCT_RETURN
|
|
#define STORE_STRUCT_RETURN(ADDR, SP) write_register(0, (ADDR))
|
|
|
|
/* Extract from an array REGBUF containing the (raw) register state
|
|
a function return value of type TYPE, and copy that, in virtual format,
|
|
into VALBUF. */
|
|
|
|
#undef EXTRACT_RETURN_VALUE
|
|
#define EXTRACT_RETURN_VALUE(TYPE,REGBUF,VALBUF) \
|
|
symmetry_extract_return_value(TYPE, REGBUF, VALBUF)
|
|
|
|
/* The following redefines make backtracing through sigtramp work.
|
|
They manufacture a fake sigtramp frame and obtain the saved pc in sigtramp
|
|
from the sigcontext structure which is pushed by the kernel on the
|
|
user stack, along with a pointer to it. */
|
|
|
|
#define IN_SIGTRAMP(pc, name) ((name) && STREQ ("_sigcode", name))
|
|
|
|
/* Offset to saved PC in sigcontext, from <signal.h>. */
|
|
#define SIGCONTEXT_PC_OFFSET 16
|
|
|
|
#endif /* ifndef TM_SYMMETRY_H */
|
|
|