a1624e3f1b
* config/tc-i386.c (tc_i386_force_relocation): New. (tc_i386_fix_adjustable): Don't fix vtable relocs. (md_apply_fix3): Likewise. (tc_gen_reloc): Handle them. * config/tc-i386.h (TC_FORCE_RELOCATION): Always define, calling tc_i386_force_relocation.
3613 lines
96 KiB
C
3613 lines
96 KiB
C
/* i386.c -- Assemble code for the Intel 80386
|
||
Copyright (C) 1989, 91, 92, 93, 94, 95, 96, 97, 1998
|
||
Free Software Foundation.
|
||
|
||
This file is part of GAS, the GNU Assembler.
|
||
|
||
GAS is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 2, or (at your option)
|
||
any later version.
|
||
|
||
GAS is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with GAS; see the file COPYING. If not, write to the Free
|
||
Software Foundation, 59 Temple Place - Suite 330, Boston, MA
|
||
02111-1307, USA. */
|
||
|
||
/*
|
||
Intel 80386 machine specific gas.
|
||
Written by Eliot Dresselhaus (eliot@mgm.mit.edu).
|
||
Bugs & suggestions are completely welcome. This is free software.
|
||
Please help us make it better.
|
||
*/
|
||
|
||
#include <ctype.h>
|
||
|
||
#include "as.h"
|
||
#include "subsegs.h"
|
||
#include "opcode/i386.h"
|
||
|
||
#ifndef TC_RELOC
|
||
#define TC_RELOC(X,Y) (Y)
|
||
#endif
|
||
|
||
#ifndef REGISTER_WARNINGS
|
||
#define REGISTER_WARNINGS 1
|
||
#endif
|
||
|
||
#ifndef SCALE1_WHEN_NO_INDEX
|
||
/* Specifying a scale factor besides 1 when there is no index is
|
||
futile. eg. `mov (%ebx,2),%al' does exactly the same as
|
||
`mov (%ebx),%al'. To slavishly follow what the programmer
|
||
specified, set SCALE1_WHEN_NO_INDEX to 0. */
|
||
#define SCALE1_WHEN_NO_INDEX 1
|
||
#endif
|
||
|
||
static unsigned int mode_from_disp_size PARAMS ((unsigned int));
|
||
static int fits_in_signed_byte PARAMS ((long));
|
||
static int fits_in_unsigned_byte PARAMS ((long));
|
||
static int fits_in_unsigned_word PARAMS ((long));
|
||
static int fits_in_signed_word PARAMS ((long));
|
||
static int smallest_imm_type PARAMS ((long));
|
||
static int add_prefix PARAMS ((unsigned int));
|
||
static void set_16bit_code_flag PARAMS ((int));
|
||
#ifdef BFD_ASSEMBLER
|
||
static bfd_reloc_code_real_type reloc
|
||
PARAMS ((int, int, bfd_reloc_code_real_type));
|
||
#endif
|
||
|
||
/* 'md_assemble ()' gathers together information and puts it into a
|
||
i386_insn. */
|
||
|
||
struct _i386_insn
|
||
{
|
||
/* TM holds the template for the insn were currently assembling. */
|
||
template tm;
|
||
|
||
/* SUFFIX holds the opcode suffix (e.g. 'l' for 'movl') if given. */
|
||
char suffix;
|
||
|
||
/* Operands are coded with OPERANDS, TYPES, DISPS, IMMS, and REGS. */
|
||
|
||
/* OPERANDS gives the number of given operands. */
|
||
unsigned int operands;
|
||
|
||
/* REG_OPERANDS, DISP_OPERANDS, MEM_OPERANDS, IMM_OPERANDS give the number
|
||
of given register, displacement, memory operands and immediate
|
||
operands. */
|
||
unsigned int reg_operands, disp_operands, mem_operands, imm_operands;
|
||
|
||
/* TYPES [i] is the type (see above #defines) which tells us how to
|
||
search through DISPS [i] & IMMS [i] & REGS [i] for the required
|
||
operand. */
|
||
unsigned int types[MAX_OPERANDS];
|
||
|
||
/* Displacements (if given) for each operand. */
|
||
expressionS *disps[MAX_OPERANDS];
|
||
|
||
/* Relocation type for operand */
|
||
#ifdef BFD_ASSEMBLER
|
||
enum bfd_reloc_code_real disp_reloc[MAX_OPERANDS];
|
||
#else
|
||
int disp_reloc[MAX_OPERANDS];
|
||
#endif
|
||
|
||
/* Immediate operands (if given) for each operand. */
|
||
expressionS *imms[MAX_OPERANDS];
|
||
|
||
/* Register operands (if given) for each operand. */
|
||
const reg_entry *regs[MAX_OPERANDS];
|
||
|
||
/* BASE_REG, INDEX_REG, and LOG2_SCALE_FACTOR are used to encode
|
||
the base index byte below. */
|
||
const reg_entry *base_reg;
|
||
const reg_entry *index_reg;
|
||
unsigned int log2_scale_factor;
|
||
|
||
/* SEG gives the seg_entries of this insn. They are zero unless
|
||
explicit segment overrides are given. */
|
||
const seg_entry *seg[2]; /* segments for memory operands (if given) */
|
||
|
||
/* PREFIX holds all the given prefix opcodes (usually null).
|
||
PREFIXES is the number of prefix opcodes. */
|
||
unsigned int prefixes;
|
||
unsigned char prefix[MAX_PREFIXES];
|
||
|
||
/* RM and SIB are the modrm byte and the sib byte where the
|
||
addressing modes of this insn are encoded. */
|
||
|
||
modrm_byte rm;
|
||
sib_byte sib;
|
||
};
|
||
|
||
typedef struct _i386_insn i386_insn;
|
||
|
||
/* List of chars besides those in app.c:symbol_chars that can start an
|
||
operand. Used to prevent the scrubber eating vital white-space. */
|
||
#ifdef LEX_AT
|
||
const char extra_symbol_chars[] = "*%-(@";
|
||
#else
|
||
const char extra_symbol_chars[] = "*%-(";
|
||
#endif
|
||
|
||
/* This array holds the chars that always start a comment. If the
|
||
pre-processor is disabled, these aren't very useful */
|
||
#if defined (TE_I386AIX) || ((defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)) && ! defined (TE_LINUX))
|
||
/* Putting '/' here makes it impossible to use the divide operator.
|
||
However, we need it for compatibility with SVR4 systems. */
|
||
const char comment_chars[] = "#/";
|
||
#define PREFIX_SEPARATOR '\\'
|
||
#else
|
||
const char comment_chars[] = "#";
|
||
#define PREFIX_SEPARATOR '/'
|
||
#endif
|
||
|
||
/* This array holds the chars that only start a comment at the beginning of
|
||
a line. If the line seems to have the form '# 123 filename'
|
||
.line and .file directives will appear in the pre-processed output */
|
||
/* Note that input_file.c hand checks for '#' at the beginning of the
|
||
first line of the input file. This is because the compiler outputs
|
||
#NO_APP at the beginning of its output. */
|
||
/* Also note that comments started like this one will always work if
|
||
'/' isn't otherwise defined. */
|
||
#if defined (TE_I386AIX) || ((defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)) && ! defined (TE_LINUX))
|
||
const char line_comment_chars[] = "";
|
||
#else
|
||
const char line_comment_chars[] = "/";
|
||
#endif
|
||
|
||
const char line_separator_chars[] = "";
|
||
|
||
/* Chars that can be used to separate mant from exp in floating point nums */
|
||
const char EXP_CHARS[] = "eE";
|
||
|
||
/* Chars that mean this number is a floating point constant */
|
||
/* As in 0f12.456 */
|
||
/* or 0d1.2345e12 */
|
||
const char FLT_CHARS[] = "fFdDxX";
|
||
|
||
/* tables for lexical analysis */
|
||
static char opcode_chars[256];
|
||
static char register_chars[256];
|
||
static char operand_chars[256];
|
||
static char identifier_chars[256];
|
||
static char digit_chars[256];
|
||
|
||
/* lexical macros */
|
||
#define is_opcode_char(x) (opcode_chars[(unsigned char) x])
|
||
#define is_operand_char(x) (operand_chars[(unsigned char) x])
|
||
#define is_register_char(x) (register_chars[(unsigned char) x])
|
||
#define is_space_char(x) ((x) == ' ')
|
||
#define is_identifier_char(x) (identifier_chars[(unsigned char) x])
|
||
#define is_digit_char(x) (digit_chars[(unsigned char) x])
|
||
|
||
/* put here all non-digit non-letter charcters that may occur in an operand */
|
||
static char operand_special_chars[] = "%$-+(,)*._~/<>|&^!:[@]";
|
||
|
||
/* md_assemble() always leaves the strings it's passed unaltered. To
|
||
effect this we maintain a stack of saved characters that we've smashed
|
||
with '\0's (indicating end of strings for various sub-fields of the
|
||
assembler instruction). */
|
||
static char save_stack[32];
|
||
static char *save_stack_p; /* stack pointer */
|
||
#define END_STRING_AND_SAVE(s) \
|
||
do { *save_stack_p++ = *(s); *(s) = '\0'; } while (0)
|
||
#define RESTORE_END_STRING(s) \
|
||
do { *(s) = *--save_stack_p; } while (0)
|
||
|
||
/* The instruction we're assembling. */
|
||
static i386_insn i;
|
||
|
||
/* Possible templates for current insn. */
|
||
static const templates *current_templates;
|
||
|
||
/* Per instruction expressionS buffers: 2 displacements & 2 immediate max. */
|
||
static expressionS disp_expressions[2], im_expressions[2];
|
||
|
||
static int this_operand; /* current operand we are working on */
|
||
|
||
static int flag_do_long_jump; /* FIXME what does this do? */
|
||
|
||
static int flag_16bit_code; /* 1 if we're writing 16-bit code, 0 if 32-bit */
|
||
|
||
/* Interface to relax_segment.
|
||
There are 2 relax states for 386 jump insns: one for conditional &
|
||
one for unconditional jumps. This is because the these two types
|
||
of jumps add different sizes to frags when we're figuring out what
|
||
sort of jump to choose to reach a given label. */
|
||
|
||
/* types */
|
||
#define COND_JUMP 1 /* conditional jump */
|
||
#define UNCOND_JUMP 2 /* unconditional jump */
|
||
/* sizes */
|
||
#define CODE16 1
|
||
#define SMALL 0
|
||
#define SMALL16 (SMALL|CODE16)
|
||
#define BIG 2
|
||
#define BIG16 (BIG|CODE16)
|
||
|
||
#ifndef INLINE
|
||
#ifdef __GNUC__
|
||
#define INLINE __inline__
|
||
#else
|
||
#define INLINE
|
||
#endif
|
||
#endif
|
||
|
||
#define ENCODE_RELAX_STATE(type,size) \
|
||
((relax_substateT)((type<<2) | (size)))
|
||
#define SIZE_FROM_RELAX_STATE(s) \
|
||
( (((s) & 0x3) == BIG ? 4 : (((s) & 0x3) == BIG16 ? 2 : 1)) )
|
||
|
||
/* This table is used by relax_frag to promote short jumps to long
|
||
ones where necessary. SMALL (short) jumps may be promoted to BIG
|
||
(32 bit long) ones, and SMALL16 jumps to BIG16 (16 bit long). We
|
||
don't allow a short jump in a 32 bit code segment to be promoted to
|
||
a 16 bit offset jump because it's slower (requires data size
|
||
prefix), and doesn't work, unless the destination is in the bottom
|
||
64k of the code segment (The top 16 bits of eip are zeroed). */
|
||
|
||
const relax_typeS md_relax_table[] =
|
||
{
|
||
/* The fields are:
|
||
1) most positive reach of this state,
|
||
2) most negative reach of this state,
|
||
3) how many bytes this mode will add to the size of the current frag
|
||
4) which index into the table to try if we can't fit into this one.
|
||
*/
|
||
{1, 1, 0, 0},
|
||
{1, 1, 0, 0},
|
||
{1, 1, 0, 0},
|
||
{1, 1, 0, 0},
|
||
|
||
{127 + 1, -128 + 1, 0, ENCODE_RELAX_STATE (COND_JUMP, BIG)},
|
||
{127 + 1, -128 + 1, 0, ENCODE_RELAX_STATE (COND_JUMP, BIG16)},
|
||
/* dword conditionals adds 4 bytes to frag:
|
||
1 extra opcode byte, 3 extra displacement bytes. */
|
||
{0, 0, 4, 0},
|
||
/* word conditionals add 2 bytes to frag:
|
||
1 extra opcode byte, 1 extra displacement byte. */
|
||
{0, 0, 2, 0},
|
||
|
||
{127 + 1, -128 + 1, 0, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG)},
|
||
{127 + 1, -128 + 1, 0, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16)},
|
||
/* dword jmp adds 3 bytes to frag:
|
||
0 extra opcode bytes, 3 extra displacement bytes. */
|
||
{0, 0, 3, 0},
|
||
/* word jmp adds 1 byte to frag:
|
||
0 extra opcode bytes, 1 extra displacement byte. */
|
||
{0, 0, 1, 0}
|
||
|
||
};
|
||
|
||
|
||
void
|
||
i386_align_code (fragP, count)
|
||
fragS *fragP;
|
||
int count;
|
||
{
|
||
/* Various efficient no-op patterns for aligning code labels. */
|
||
/* Note: Don't try to assemble the instructions in the comments. */
|
||
/* 0L and 0w are not legal */
|
||
static const char f32_1[] =
|
||
{0x90}; /* nop */
|
||
static const char f32_2[] =
|
||
{0x89,0xf6}; /* movl %esi,%esi */
|
||
static const char f32_3[] =
|
||
{0x8d,0x76,0x00}; /* leal 0(%esi),%esi */
|
||
static const char f32_4[] =
|
||
{0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
|
||
static const char f32_5[] =
|
||
{0x90, /* nop */
|
||
0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
|
||
static const char f32_6[] =
|
||
{0x8d,0xb6,0x00,0x00,0x00,0x00}; /* leal 0L(%esi),%esi */
|
||
static const char f32_7[] =
|
||
{0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
|
||
static const char f32_8[] =
|
||
{0x90, /* nop */
|
||
0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
|
||
static const char f32_9[] =
|
||
{0x89,0xf6, /* movl %esi,%esi */
|
||
0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
|
||
static const char f32_10[] =
|
||
{0x8d,0x76,0x00, /* leal 0(%esi),%esi */
|
||
0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
|
||
static const char f32_11[] =
|
||
{0x8d,0x74,0x26,0x00, /* leal 0(%esi,1),%esi */
|
||
0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
|
||
static const char f32_12[] =
|
||
{0x8d,0xb6,0x00,0x00,0x00,0x00, /* leal 0L(%esi),%esi */
|
||
0x8d,0xbf,0x00,0x00,0x00,0x00}; /* leal 0L(%edi),%edi */
|
||
static const char f32_13[] =
|
||
{0x8d,0xb6,0x00,0x00,0x00,0x00, /* leal 0L(%esi),%esi */
|
||
0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
|
||
static const char f32_14[] =
|
||
{0x8d,0xb4,0x26,0x00,0x00,0x00,0x00, /* leal 0L(%esi,1),%esi */
|
||
0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
|
||
static const char f32_15[] =
|
||
{0xeb,0x0d,0x90,0x90,0x90,0x90,0x90, /* jmp .+15; lotsa nops */
|
||
0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90};
|
||
static const char f16_4[] =
|
||
{0x8d,0xb4,0x00,0x00}; /* lea 0w(%si),%si */
|
||
static const char f16_5[] =
|
||
{0x90, /* nop */
|
||
0x8d,0xb4,0x00,0x00}; /* lea 0w(%si),%si */
|
||
static const char f16_6[] =
|
||
{0x89,0xf6, /* mov %si,%si */
|
||
0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
|
||
static const char f16_7[] =
|
||
{0x8d,0x74,0x00, /* lea 0(%si),%si */
|
||
0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
|
||
static const char f16_8[] =
|
||
{0x8d,0xb4,0x00,0x00, /* lea 0w(%si),%si */
|
||
0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
|
||
static const char *const f32_patt[] = {
|
||
f32_1, f32_2, f32_3, f32_4, f32_5, f32_6, f32_7, f32_8,
|
||
f32_9, f32_10, f32_11, f32_12, f32_13, f32_14, f32_15
|
||
};
|
||
static const char *const f16_patt[] = {
|
||
f32_1, f32_2, f32_3, f16_4, f16_5, f16_6, f16_7, f16_8,
|
||
f32_15, f32_15, f32_15, f32_15, f32_15, f32_15, f32_15
|
||
};
|
||
|
||
if (count > 0 && count <= 15)
|
||
{
|
||
if (flag_16bit_code)
|
||
{
|
||
memcpy(fragP->fr_literal + fragP->fr_fix,
|
||
f16_patt[count - 1], count);
|
||
if (count > 8) /* adjust jump offset */
|
||
fragP->fr_literal[fragP->fr_fix + 1] = count - 2;
|
||
}
|
||
else
|
||
memcpy(fragP->fr_literal + fragP->fr_fix,
|
||
f32_patt[count - 1], count);
|
||
fragP->fr_var = count;
|
||
}
|
||
}
|
||
|
||
static char *output_invalid PARAMS ((int c));
|
||
static int i386_operand PARAMS ((char *operand_string));
|
||
static const reg_entry *parse_register PARAMS ((char *reg_string,
|
||
char **end_op));
|
||
#ifndef I386COFF
|
||
static void s_bss PARAMS ((int));
|
||
#endif
|
||
|
||
symbolS *GOT_symbol; /* Pre-defined "_GLOBAL_OFFSET_TABLE_" */
|
||
|
||
static INLINE unsigned int
|
||
mode_from_disp_size (t)
|
||
unsigned int t;
|
||
{
|
||
return (t & Disp8) ? 1 : (t & (Disp16|Disp32)) ? 2 : 0;
|
||
}
|
||
|
||
static INLINE int
|
||
fits_in_signed_byte (num)
|
||
long num;
|
||
{
|
||
return (num >= -128) && (num <= 127);
|
||
} /* fits_in_signed_byte() */
|
||
|
||
static INLINE int
|
||
fits_in_unsigned_byte (num)
|
||
long num;
|
||
{
|
||
return (num & 0xff) == num;
|
||
} /* fits_in_unsigned_byte() */
|
||
|
||
static INLINE int
|
||
fits_in_unsigned_word (num)
|
||
long num;
|
||
{
|
||
return (num & 0xffff) == num;
|
||
} /* fits_in_unsigned_word() */
|
||
|
||
static INLINE int
|
||
fits_in_signed_word (num)
|
||
long num;
|
||
{
|
||
return (-32768 <= num) && (num <= 32767);
|
||
} /* fits_in_signed_word() */
|
||
|
||
static int
|
||
smallest_imm_type (num)
|
||
long num;
|
||
{
|
||
#if 0
|
||
/* This code is disabled because all the Imm1 forms in the opcode table
|
||
are slower on the i486, and they're the versions with the implicitly
|
||
specified single-position displacement, which has another syntax if
|
||
you really want to use that form. If you really prefer to have the
|
||
one-byte-shorter Imm1 form despite these problems, re-enable this
|
||
code. */
|
||
if (num == 1)
|
||
return Imm1 | Imm8 | Imm8S | Imm16 | Imm32;
|
||
#endif
|
||
return (fits_in_signed_byte (num)
|
||
? (Imm8S | Imm8 | Imm16 | Imm32)
|
||
: fits_in_unsigned_byte (num)
|
||
? (Imm8 | Imm16 | Imm32)
|
||
: (fits_in_signed_word (num) || fits_in_unsigned_word (num))
|
||
? (Imm16 | Imm32)
|
||
: (Imm32));
|
||
} /* smallest_imm_type() */
|
||
|
||
/* Returns 0 if attempting to add a prefix where one from the same
|
||
class already exists, 1 if non rep/repne added, 2 if rep/repne
|
||
added. */
|
||
static int
|
||
add_prefix (prefix)
|
||
unsigned int prefix;
|
||
{
|
||
int ret = 1;
|
||
int q;
|
||
|
||
switch (prefix)
|
||
{
|
||
default:
|
||
abort ();
|
||
|
||
case CS_PREFIX_OPCODE:
|
||
case DS_PREFIX_OPCODE:
|
||
case ES_PREFIX_OPCODE:
|
||
case FS_PREFIX_OPCODE:
|
||
case GS_PREFIX_OPCODE:
|
||
case SS_PREFIX_OPCODE:
|
||
q = SEG_PREFIX;
|
||
break;
|
||
|
||
case REPNE_PREFIX_OPCODE:
|
||
case REPE_PREFIX_OPCODE:
|
||
ret = 2;
|
||
/* fall thru */
|
||
case LOCK_PREFIX_OPCODE:
|
||
q = LOCKREP_PREFIX;
|
||
break;
|
||
|
||
case FWAIT_OPCODE:
|
||
q = WAIT_PREFIX;
|
||
break;
|
||
|
||
case ADDR_PREFIX_OPCODE:
|
||
q = ADDR_PREFIX;
|
||
break;
|
||
|
||
case DATA_PREFIX_OPCODE:
|
||
q = DATA_PREFIX;
|
||
break;
|
||
}
|
||
|
||
if (i.prefix[q])
|
||
{
|
||
as_bad (_("same type of prefix used twice"));
|
||
return 0;
|
||
}
|
||
|
||
i.prefixes += 1;
|
||
i.prefix[q] = prefix;
|
||
return ret;
|
||
}
|
||
|
||
static void
|
||
set_16bit_code_flag (new_16bit_code_flag)
|
||
int new_16bit_code_flag;
|
||
{
|
||
flag_16bit_code = new_16bit_code_flag;
|
||
}
|
||
|
||
const pseudo_typeS md_pseudo_table[] =
|
||
{
|
||
#ifndef I386COFF
|
||
{"bss", s_bss, 0},
|
||
#endif
|
||
#if !defined(OBJ_AOUT) && !defined(USE_ALIGN_PTWO)
|
||
{"align", s_align_bytes, 0},
|
||
#else
|
||
{"align", s_align_ptwo, 0},
|
||
#endif
|
||
{"ffloat", float_cons, 'f'},
|
||
{"dfloat", float_cons, 'd'},
|
||
{"tfloat", float_cons, 'x'},
|
||
{"value", cons, 2},
|
||
{"noopt", s_ignore, 0},
|
||
{"optim", s_ignore, 0},
|
||
{"code16", set_16bit_code_flag, 1},
|
||
{"code32", set_16bit_code_flag, 0},
|
||
{0, 0, 0}
|
||
};
|
||
|
||
/* for interface with expression () */
|
||
extern char *input_line_pointer;
|
||
|
||
/* hash table for opcode lookup */
|
||
static struct hash_control *op_hash;
|
||
/* hash table for register lookup */
|
||
static struct hash_control *reg_hash;
|
||
|
||
|
||
void
|
||
md_begin ()
|
||
{
|
||
const char *hash_err;
|
||
|
||
/* initialize op_hash hash table */
|
||
op_hash = hash_new ();
|
||
|
||
{
|
||
register const template *optab;
|
||
register templates *core_optab;
|
||
|
||
optab = i386_optab; /* setup for loop */
|
||
core_optab = (templates *) xmalloc (sizeof (templates));
|
||
core_optab->start = optab;
|
||
|
||
while (1)
|
||
{
|
||
++optab;
|
||
if (optab->name == NULL
|
||
|| strcmp (optab->name, (optab - 1)->name) != 0)
|
||
{
|
||
/* different name --> ship out current template list;
|
||
add to hash table; & begin anew */
|
||
core_optab->end = optab;
|
||
hash_err = hash_insert (op_hash,
|
||
(optab - 1)->name,
|
||
(PTR) core_optab);
|
||
if (hash_err)
|
||
{
|
||
hash_error:
|
||
as_fatal (_("Internal Error: Can't hash %s: %s"),
|
||
(optab - 1)->name,
|
||
hash_err);
|
||
}
|
||
if (optab->name == NULL)
|
||
break;
|
||
core_optab = (templates *) xmalloc (sizeof (templates));
|
||
core_optab->start = optab;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* initialize reg_hash hash table */
|
||
reg_hash = hash_new ();
|
||
{
|
||
register const reg_entry *regtab;
|
||
|
||
for (regtab = i386_regtab;
|
||
regtab < i386_regtab + sizeof (i386_regtab) / sizeof (i386_regtab[0]);
|
||
regtab++)
|
||
{
|
||
hash_err = hash_insert (reg_hash, regtab->reg_name, (PTR) regtab);
|
||
if (hash_err)
|
||
goto hash_error;
|
||
}
|
||
}
|
||
|
||
/* fill in lexical tables: opcode_chars, operand_chars. */
|
||
{
|
||
register int c;
|
||
register char *p;
|
||
|
||
for (c = 0; c < 256; c++)
|
||
{
|
||
if (isdigit (c))
|
||
{
|
||
digit_chars[c] = c;
|
||
opcode_chars[c] = c;
|
||
register_chars[c] = c;
|
||
operand_chars[c] = c;
|
||
}
|
||
else if (islower (c))
|
||
{
|
||
opcode_chars[c] = c;
|
||
register_chars[c] = c;
|
||
operand_chars[c] = c;
|
||
}
|
||
else if (isupper (c))
|
||
{
|
||
opcode_chars[c] = tolower (c);
|
||
register_chars[c] = opcode_chars[c];
|
||
operand_chars[c] = c;
|
||
}
|
||
|
||
if (isalpha (c) || isdigit (c))
|
||
identifier_chars[c] = c;
|
||
}
|
||
|
||
#ifdef LEX_AT
|
||
identifier_chars['@'] = '@';
|
||
#endif
|
||
register_chars[')'] = ')';
|
||
register_chars['('] = '(';
|
||
digit_chars['-'] = '-';
|
||
identifier_chars['_'] = '_';
|
||
identifier_chars['.'] = '.';
|
||
|
||
for (p = operand_special_chars; *p != '\0'; p++)
|
||
operand_chars[(unsigned char) *p] = *p;
|
||
}
|
||
|
||
#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
|
||
if (OUTPUT_FLAVOR == bfd_target_elf_flavour)
|
||
{
|
||
record_alignment (text_section, 2);
|
||
record_alignment (data_section, 2);
|
||
record_alignment (bss_section, 2);
|
||
}
|
||
#endif
|
||
}
|
||
|
||
void
|
||
i386_print_statistics (file)
|
||
FILE *file;
|
||
{
|
||
hash_print_statistics (file, "i386 opcode", op_hash);
|
||
hash_print_statistics (file, "i386 register", reg_hash);
|
||
}
|
||
|
||
|
||
#ifdef DEBUG386
|
||
|
||
/* debugging routines for md_assemble */
|
||
static void pi PARAMS ((char *, i386_insn *));
|
||
static void pte PARAMS ((template *));
|
||
static void pt PARAMS ((unsigned int));
|
||
static void pe PARAMS ((expressionS *));
|
||
static void ps PARAMS ((symbolS *));
|
||
|
||
static void
|
||
pi (line, x)
|
||
char *line;
|
||
i386_insn *x;
|
||
{
|
||
register template *p;
|
||
int i;
|
||
|
||
fprintf (stdout, "%s: template ", line);
|
||
pte (&x->tm);
|
||
fprintf (stdout, " modrm: mode %x reg %x reg/mem %x",
|
||
x->rm.mode, x->rm.reg, x->rm.regmem);
|
||
fprintf (stdout, " base %x index %x scale %x\n",
|
||
x->bi.base, x->bi.index, x->bi.scale);
|
||
for (i = 0; i < x->operands; i++)
|
||
{
|
||
fprintf (stdout, " #%d: ", i + 1);
|
||
pt (x->types[i]);
|
||
fprintf (stdout, "\n");
|
||
if (x->types[i]
|
||
& (Reg | SReg2 | SReg3 | Control | Debug | Test | RegMMX))
|
||
fprintf (stdout, "%s\n", x->regs[i]->reg_name);
|
||
if (x->types[i] & Imm)
|
||
pe (x->imms[i]);
|
||
if (x->types[i] & Disp)
|
||
pe (x->disps[i]);
|
||
}
|
||
}
|
||
|
||
static void
|
||
pte (t)
|
||
template *t;
|
||
{
|
||
int i;
|
||
fprintf (stdout, " %d operands ", t->operands);
|
||
fprintf (stdout, "opcode %x ",
|
||
t->base_opcode);
|
||
if (t->extension_opcode != None)
|
||
fprintf (stdout, "ext %x ", t->extension_opcode);
|
||
if (t->opcode_modifier & D)
|
||
fprintf (stdout, "D");
|
||
if (t->opcode_modifier & W)
|
||
fprintf (stdout, "W");
|
||
fprintf (stdout, "\n");
|
||
for (i = 0; i < t->operands; i++)
|
||
{
|
||
fprintf (stdout, " #%d type ", i + 1);
|
||
pt (t->operand_types[i]);
|
||
fprintf (stdout, "\n");
|
||
}
|
||
}
|
||
|
||
static void
|
||
pe (e)
|
||
expressionS *e;
|
||
{
|
||
fprintf (stdout, " operation %d\n", e->X_op);
|
||
fprintf (stdout, " add_number %d (%x)\n",
|
||
e->X_add_number, e->X_add_number);
|
||
if (e->X_add_symbol)
|
||
{
|
||
fprintf (stdout, " add_symbol ");
|
||
ps (e->X_add_symbol);
|
||
fprintf (stdout, "\n");
|
||
}
|
||
if (e->X_op_symbol)
|
||
{
|
||
fprintf (stdout, " op_symbol ");
|
||
ps (e->X_op_symbol);
|
||
fprintf (stdout, "\n");
|
||
}
|
||
}
|
||
|
||
static void
|
||
ps (s)
|
||
symbolS *s;
|
||
{
|
||
fprintf (stdout, "%s type %s%s",
|
||
S_GET_NAME (s),
|
||
S_IS_EXTERNAL (s) ? "EXTERNAL " : "",
|
||
segment_name (S_GET_SEGMENT (s)));
|
||
}
|
||
|
||
struct type_name
|
||
{
|
||
unsigned int mask;
|
||
char *tname;
|
||
}
|
||
|
||
type_names[] =
|
||
{
|
||
{ Reg8, "r8" },
|
||
{ Reg16, "r16" },
|
||
{ Reg32, "r32" },
|
||
{ Imm8, "i8" },
|
||
{ Imm8S, "i8s" },
|
||
{ Imm16, "i16" },
|
||
{ Imm32, "i32" },
|
||
{ Imm1, "i1" },
|
||
{ BaseIndex, "BaseIndex" },
|
||
{ Disp8, "d8" },
|
||
{ Disp16, "d16" },
|
||
{ Disp32, "d32" },
|
||
{ InOutPortReg, "InOutPortReg" },
|
||
{ ShiftCount, "ShiftCount" },
|
||
{ Control, "control reg" },
|
||
{ Test, "test reg" },
|
||
{ Debug, "debug reg" },
|
||
{ FloatReg, "FReg" },
|
||
{ FloatAcc, "FAcc" },
|
||
{ SReg2, "SReg2" },
|
||
{ SReg3, "SReg3" },
|
||
{ Acc, "Acc" },
|
||
{ JumpAbsolute, "Jump Absolute" },
|
||
{ RegMMX, "rMMX" },
|
||
{ EsSeg, "es" },
|
||
{ 0, "" }
|
||
};
|
||
|
||
static void
|
||
pt (t)
|
||
unsigned int t;
|
||
{
|
||
register struct type_name *ty;
|
||
|
||
if (t == Unknown)
|
||
{
|
||
fprintf (stdout, _("Unknown"));
|
||
}
|
||
else
|
||
{
|
||
for (ty = type_names; ty->mask; ty++)
|
||
if (t & ty->mask)
|
||
fprintf (stdout, "%s, ", ty->tname);
|
||
}
|
||
fflush (stdout);
|
||
}
|
||
|
||
#endif /* DEBUG386 */
|
||
|
||
int
|
||
tc_i386_force_relocation (fixp)
|
||
struct fix *fixp;
|
||
{
|
||
#ifdef BFD_ASSEMBLER
|
||
if (fixp->fx_r_type == BFD_RELOC_VTABLE_INHERIT
|
||
|| fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
|
||
return 1;
|
||
return 0;
|
||
#else
|
||
/* For COFF */
|
||
return fixp->fx_r_type==7;
|
||
#endif
|
||
}
|
||
|
||
#ifdef BFD_ASSEMBLER
|
||
static bfd_reloc_code_real_type
|
||
reloc (size, pcrel, other)
|
||
int size;
|
||
int pcrel;
|
||
bfd_reloc_code_real_type other;
|
||
{
|
||
if (other != NO_RELOC) return other;
|
||
|
||
if (pcrel)
|
||
{
|
||
switch (size)
|
||
{
|
||
case 1: return BFD_RELOC_8_PCREL;
|
||
case 2: return BFD_RELOC_16_PCREL;
|
||
case 4: return BFD_RELOC_32_PCREL;
|
||
}
|
||
as_bad (_("Can not do %d byte pc-relative relocation"), size);
|
||
}
|
||
else
|
||
{
|
||
switch (size)
|
||
{
|
||
case 1: return BFD_RELOC_8;
|
||
case 2: return BFD_RELOC_16;
|
||
case 4: return BFD_RELOC_32;
|
||
}
|
||
as_bad (_("Can not do %d byte relocation"), size);
|
||
}
|
||
|
||
return BFD_RELOC_NONE;
|
||
}
|
||
|
||
/*
|
||
* Here we decide which fixups can be adjusted to make them relative to
|
||
* the beginning of the section instead of the symbol. Basically we need
|
||
* to make sure that the dynamic relocations are done correctly, so in
|
||
* some cases we force the original symbol to be used.
|
||
*/
|
||
int
|
||
tc_i386_fix_adjustable(fixP)
|
||
fixS * fixP;
|
||
{
|
||
#ifdef OBJ_ELF
|
||
/* Prevent all adjustments to global symbols. */
|
||
if (S_IS_EXTERN (fixP->fx_addsy))
|
||
return 0;
|
||
if (S_IS_WEAK (fixP->fx_addsy))
|
||
return 0;
|
||
#endif
|
||
/* adjust_reloc_syms doesn't know about the GOT */
|
||
if (fixP->fx_r_type == BFD_RELOC_386_GOTOFF
|
||
|| fixP->fx_r_type == BFD_RELOC_386_PLT32
|
||
|| fixP->fx_r_type == BFD_RELOC_386_GOT32
|
||
|| fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
|
||
|| fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
|
||
return 0;
|
||
return 1;
|
||
}
|
||
#else
|
||
#define reloc(SIZE,PCREL,OTHER) 0
|
||
#define BFD_RELOC_16 0
|
||
#define BFD_RELOC_32 0
|
||
#define BFD_RELOC_16_PCREL 0
|
||
#define BFD_RELOC_32_PCREL 0
|
||
#define BFD_RELOC_386_PLT32 0
|
||
#define BFD_RELOC_386_GOT32 0
|
||
#define BFD_RELOC_386_GOTOFF 0
|
||
#endif
|
||
|
||
/* This is the guts of the machine-dependent assembler. LINE points to a
|
||
machine dependent instruction. This function is supposed to emit
|
||
the frags/bytes it assembles to. */
|
||
|
||
void
|
||
md_assemble (line)
|
||
char *line;
|
||
{
|
||
/* Points to template once we've found it. */
|
||
const template *t;
|
||
|
||
/* Count the size of the instruction generated. */
|
||
int insn_size = 0;
|
||
|
||
int j;
|
||
|
||
/* Initialize globals. */
|
||
memset (&i, '\0', sizeof (i));
|
||
for (j = 0; j < MAX_OPERANDS; j++)
|
||
i.disp_reloc[j] = NO_RELOC;
|
||
memset (disp_expressions, '\0', sizeof (disp_expressions));
|
||
memset (im_expressions, '\0', sizeof (im_expressions));
|
||
save_stack_p = save_stack; /* reset stack pointer */
|
||
|
||
/* First parse an opcode & call i386_operand for the operands.
|
||
We assume that the scrubber has arranged it so that line[0] is the valid
|
||
start of a (possibly prefixed) opcode. */
|
||
{
|
||
char opcode[MAX_OPCODE_SIZE];
|
||
char *l = line;
|
||
char *token_start = l;
|
||
char *opp;
|
||
|
||
/* Non-zero if we found a prefix only acceptable with string insns. */
|
||
const char *expecting_string_instruction = NULL;
|
||
|
||
while (1)
|
||
{
|
||
opp = opcode;
|
||
while ((*opp = opcode_chars[(unsigned char) *l]) != 0)
|
||
{
|
||
opp++;
|
||
if (opp >= opcode + sizeof (opcode))
|
||
{
|
||
as_bad (_("no such 386 instruction: `%s'"), token_start);
|
||
return;
|
||
}
|
||
l++;
|
||
}
|
||
if (!is_space_char (*l)
|
||
&& *l != END_OF_INSN
|
||
&& *l != PREFIX_SEPARATOR)
|
||
{
|
||
as_bad (_("invalid character %s in opcode"),
|
||
output_invalid (*l));
|
||
return;
|
||
}
|
||
if (token_start == l)
|
||
{
|
||
if (*l == PREFIX_SEPARATOR)
|
||
as_bad (_("expecting prefix; got nothing"));
|
||
else
|
||
as_bad (_("expecting opcode; got nothing"));
|
||
return;
|
||
}
|
||
|
||
/* Look up instruction (or prefix) via hash table. */
|
||
current_templates = hash_find (op_hash, opcode);
|
||
|
||
if (*l != END_OF_INSN
|
||
&& (! is_space_char (*l) || l[1] != END_OF_INSN)
|
||
&& current_templates
|
||
&& (current_templates->start->opcode_modifier & IsPrefix))
|
||
{
|
||
/* If we are in 16-bit mode, do not allow addr16 or data16.
|
||
Similarly, in 32-bit mode, do not allow addr32 or data32. */
|
||
if ((current_templates->start->opcode_modifier & (Size16 | Size32))
|
||
&& (((current_templates->start->opcode_modifier & Size32) != 0)
|
||
^ flag_16bit_code))
|
||
{
|
||
as_bad (_("redundant %s prefix"),
|
||
current_templates->start->name);
|
||
return;
|
||
}
|
||
/* Add prefix, checking for repeated prefixes. */
|
||
switch (add_prefix (current_templates->start->base_opcode))
|
||
{
|
||
case 0:
|
||
return;
|
||
case 2:
|
||
expecting_string_instruction =
|
||
current_templates->start->name;
|
||
break;
|
||
}
|
||
/* Skip past PREFIX_SEPARATOR and reset token_start. */
|
||
token_start = ++l;
|
||
}
|
||
else
|
||
break;
|
||
}
|
||
|
||
if (!current_templates)
|
||
{
|
||
/* See if we can get a match by trimming off a suffix. */
|
||
switch (opp[-1])
|
||
{
|
||
case DWORD_OPCODE_SUFFIX:
|
||
case WORD_OPCODE_SUFFIX:
|
||
case BYTE_OPCODE_SUFFIX:
|
||
case SHORT_OPCODE_SUFFIX:
|
||
#if LONG_OPCODE_SUFFIX != DWORD_OPCODE_SUFFIX
|
||
case LONG_OPCODE_SUFFIX:
|
||
#endif
|
||
i.suffix = opp[-1];
|
||
opp[-1] = '\0';
|
||
current_templates = hash_find (op_hash, opcode);
|
||
}
|
||
if (!current_templates)
|
||
{
|
||
as_bad (_("no such 386 instruction: `%s'"), token_start);
|
||
return;
|
||
}
|
||
}
|
||
|
||
/* check for rep/repne without a string instruction */
|
||
if (expecting_string_instruction
|
||
&& !(current_templates->start->opcode_modifier & IsString))
|
||
{
|
||
as_bad (_("expecting string instruction after `%s'"),
|
||
expecting_string_instruction);
|
||
return;
|
||
}
|
||
|
||
/* There may be operands to parse. */
|
||
if (*l != END_OF_INSN)
|
||
{
|
||
/* parse operands */
|
||
|
||
/* 1 if operand is pending after ','. */
|
||
unsigned int expecting_operand = 0;
|
||
|
||
/* Non-zero if operand parens not balanced. */
|
||
unsigned int paren_not_balanced;
|
||
|
||
do
|
||
{
|
||
/* skip optional white space before operand */
|
||
if (is_space_char (*l))
|
||
++l;
|
||
if (!is_operand_char (*l) && *l != END_OF_INSN)
|
||
{
|
||
as_bad (_("invalid character %s before operand %d"),
|
||
output_invalid (*l),
|
||
i.operands + 1);
|
||
return;
|
||
}
|
||
token_start = l; /* after white space */
|
||
paren_not_balanced = 0;
|
||
while (paren_not_balanced || *l != ',')
|
||
{
|
||
if (*l == END_OF_INSN)
|
||
{
|
||
if (paren_not_balanced)
|
||
{
|
||
as_bad (_("unbalanced parenthesis in operand %d."),
|
||
i.operands + 1);
|
||
return;
|
||
}
|
||
else
|
||
break; /* we are done */
|
||
}
|
||
else if (!is_operand_char (*l) && !is_space_char (*l))
|
||
{
|
||
as_bad (_("invalid character %s in operand %d"),
|
||
output_invalid (*l),
|
||
i.operands + 1);
|
||
return;
|
||
}
|
||
if (*l == '(')
|
||
++paren_not_balanced;
|
||
if (*l == ')')
|
||
--paren_not_balanced;
|
||
l++;
|
||
}
|
||
if (l != token_start)
|
||
{ /* yes, we've read in another operand */
|
||
unsigned int operand_ok;
|
||
this_operand = i.operands++;
|
||
if (i.operands > MAX_OPERANDS)
|
||
{
|
||
as_bad (_("spurious operands; (%d operands/instruction max)"),
|
||
MAX_OPERANDS);
|
||
return;
|
||
}
|
||
/* now parse operand adding info to 'i' as we go along */
|
||
END_STRING_AND_SAVE (l);
|
||
operand_ok = i386_operand (token_start);
|
||
RESTORE_END_STRING (l); /* restore old contents */
|
||
if (!operand_ok)
|
||
return;
|
||
}
|
||
else
|
||
{
|
||
if (expecting_operand)
|
||
{
|
||
expecting_operand_after_comma:
|
||
as_bad (_("expecting operand after ','; got nothing"));
|
||
return;
|
||
}
|
||
if (*l == ',')
|
||
{
|
||
as_bad (_("expecting operand before ','; got nothing"));
|
||
return;
|
||
}
|
||
}
|
||
|
||
/* now *l must be either ',' or END_OF_INSN */
|
||
if (*l == ',')
|
||
{
|
||
if (*++l == END_OF_INSN)
|
||
{ /* just skip it, if it's \n complain */
|
||
goto expecting_operand_after_comma;
|
||
}
|
||
expecting_operand = 1;
|
||
}
|
||
}
|
||
while (*l != END_OF_INSN); /* until we get end of insn */
|
||
}
|
||
}
|
||
|
||
/* Now we've parsed the opcode into a set of templates, and have the
|
||
operands at hand.
|
||
|
||
Next, we find a template that matches the given insn,
|
||
making sure the overlap of the given operands types is consistent
|
||
with the template operand types. */
|
||
|
||
#define MATCH(overlap, given, template) \
|
||
((overlap) \
|
||
&& ((given) & BaseIndex) == ((overlap) & BaseIndex) \
|
||
&& ((given) & JumpAbsolute) == ((template) & JumpAbsolute))
|
||
|
||
/* If given types r0 and r1 are registers they must be of the same type
|
||
unless the expected operand type register overlap is null.
|
||
Note that Acc in a template matches every size of reg. */
|
||
#define CONSISTENT_REGISTER_MATCH(m0, g0, t0, m1, g1, t1) \
|
||
( ((g0) & Reg) == 0 || ((g1) & Reg) == 0 || \
|
||
((g0) & Reg) == ((g1) & Reg) || \
|
||
((((m0) & Acc) ? Reg : (t0)) & (((m1) & Acc) ? Reg : (t1)) & Reg) == 0 )
|
||
|
||
{
|
||
register unsigned int overlap0, overlap1;
|
||
expressionS *exp;
|
||
unsigned int overlap2;
|
||
unsigned int found_reverse_match;
|
||
int suffix_check;
|
||
|
||
overlap0 = 0;
|
||
overlap1 = 0;
|
||
overlap2 = 0;
|
||
found_reverse_match = 0;
|
||
suffix_check = (i.suffix == BYTE_OPCODE_SUFFIX
|
||
? No_bSuf
|
||
: (i.suffix == WORD_OPCODE_SUFFIX
|
||
? No_wSuf
|
||
: (i.suffix == SHORT_OPCODE_SUFFIX
|
||
? No_sSuf
|
||
: (i.suffix == LONG_OPCODE_SUFFIX ? No_lSuf : 0))));
|
||
|
||
for (t = current_templates->start;
|
||
t < current_templates->end;
|
||
t++)
|
||
{
|
||
/* Must have right number of operands, and must not have
|
||
disallowed suffix. */
|
||
if (i.operands != t->operands || (t->opcode_modifier & suffix_check))
|
||
continue;
|
||
else if (!t->operands)
|
||
break; /* 0 operands always matches */
|
||
|
||
overlap0 = i.types[0] & t->operand_types[0];
|
||
switch (t->operands)
|
||
{
|
||
case 1:
|
||
if (!MATCH (overlap0, i.types[0], t->operand_types[0]))
|
||
continue;
|
||
break;
|
||
case 2:
|
||
case 3:
|
||
overlap1 = i.types[1] & t->operand_types[1];
|
||
if (!MATCH (overlap0, i.types[0], t->operand_types[0])
|
||
|| !MATCH (overlap1, i.types[1], t->operand_types[1])
|
||
|| !CONSISTENT_REGISTER_MATCH (overlap0, i.types[0],
|
||
t->operand_types[0],
|
||
overlap1, i.types[1],
|
||
t->operand_types[1]))
|
||
{
|
||
|
||
/* check if other direction is valid ... */
|
||
if ((t->opcode_modifier & (D|FloatD)) == 0)
|
||
continue;
|
||
|
||
/* try reversing direction of operands */
|
||
overlap0 = i.types[0] & t->operand_types[1];
|
||
overlap1 = i.types[1] & t->operand_types[0];
|
||
if (!MATCH (overlap0, i.types[0], t->operand_types[1])
|
||
|| !MATCH (overlap1, i.types[1], t->operand_types[0])
|
||
|| !CONSISTENT_REGISTER_MATCH (overlap0, i.types[0],
|
||
t->operand_types[1],
|
||
overlap1, i.types[1],
|
||
t->operand_types[0]))
|
||
{
|
||
/* does not match either direction */
|
||
continue;
|
||
}
|
||
/* found_reverse_match holds which of D or FloatDR
|
||
we've found. */
|
||
found_reverse_match = t->opcode_modifier & (D|FloatDR);
|
||
break;
|
||
}
|
||
/* found a forward 2 operand match here */
|
||
if (t->operands == 3)
|
||
{
|
||
/* Here we make use of the fact that there are no
|
||
reverse match 3 operand instructions, and all 3
|
||
operand instructions only need to be checked for
|
||
register consistency between operands 2 and 3. */
|
||
overlap2 = i.types[2] & t->operand_types[2];
|
||
if (!MATCH (overlap2, i.types[2], t->operand_types[2])
|
||
|| !CONSISTENT_REGISTER_MATCH (overlap1, i.types[1],
|
||
t->operand_types[1],
|
||
overlap2, i.types[2],
|
||
t->operand_types[2]))
|
||
continue;
|
||
}
|
||
/* found either forward/reverse 2 or 3 operand match here:
|
||
slip through to break */
|
||
}
|
||
break; /* we've found a match; break out of loop */
|
||
} /* for (t = ... */
|
||
if (t == current_templates->end)
|
||
{ /* we found no match */
|
||
as_bad (_("suffix or operands invalid for `%s'"),
|
||
current_templates->start->name);
|
||
return;
|
||
}
|
||
|
||
if ((t->opcode_modifier & (IsPrefix|IgnoreSize)) == (IsPrefix|IgnoreSize))
|
||
{
|
||
/* Warn them that a data or address size prefix doesn't affect
|
||
assembly of the next line of code. */
|
||
as_warn (_("stand-alone `%s' prefix"), t->name);
|
||
}
|
||
|
||
/* Copy the template we found. */
|
||
i.tm = *t;
|
||
if (found_reverse_match)
|
||
{
|
||
i.tm.operand_types[0] = t->operand_types[1];
|
||
i.tm.operand_types[1] = t->operand_types[0];
|
||
}
|
||
|
||
if (i.tm.opcode_modifier & FWait)
|
||
if (! add_prefix (FWAIT_OPCODE))
|
||
return;
|
||
|
||
/* Check string instruction segment overrides */
|
||
if ((i.tm.opcode_modifier & IsString) != 0 && i.mem_operands != 0)
|
||
{
|
||
int mem_op = (i.types[0] & AnyMem) ? 0 : 1;
|
||
if ((i.tm.operand_types[mem_op] & EsSeg) != 0)
|
||
{
|
||
if (i.seg[0] != NULL && i.seg[0] != &es)
|
||
{
|
||
as_bad (_("`%s' operand %d must use `%%es' segment"),
|
||
i.tm.name,
|
||
mem_op + 1);
|
||
return;
|
||
}
|
||
/* There's only ever one segment override allowed per instruction.
|
||
This instruction possibly has a legal segment override on the
|
||
second operand, so copy the segment to where non-string
|
||
instructions store it, allowing common code. */
|
||
i.seg[0] = i.seg[1];
|
||
}
|
||
else if ((i.tm.operand_types[mem_op + 1] & EsSeg) != 0)
|
||
{
|
||
if (i.seg[1] != NULL && i.seg[1] != &es)
|
||
{
|
||
as_bad (_("`%s' operand %d must use `%%es' segment"),
|
||
i.tm.name,
|
||
mem_op + 2);
|
||
return;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* If matched instruction specifies an explicit opcode suffix, use
|
||
it. */
|
||
if (i.tm.opcode_modifier & (Size16 | Size32))
|
||
{
|
||
if (i.tm.opcode_modifier & Size16)
|
||
i.suffix = WORD_OPCODE_SUFFIX;
|
||
else
|
||
i.suffix = DWORD_OPCODE_SUFFIX;
|
||
}
|
||
else if (i.reg_operands)
|
||
{
|
||
/* If there's no opcode suffix we try to invent one based on
|
||
register operands. */
|
||
if (!i.suffix)
|
||
{
|
||
/* We take i.suffix from the last register operand specified,
|
||
Destination register type is more significant than source
|
||
register type. */
|
||
int op;
|
||
for (op = i.operands; --op >= 0; )
|
||
if (i.types[op] & Reg)
|
||
{
|
||
i.suffix = ((i.types[op] & Reg8) ? BYTE_OPCODE_SUFFIX :
|
||
(i.types[op] & Reg16) ? WORD_OPCODE_SUFFIX :
|
||
DWORD_OPCODE_SUFFIX);
|
||
break;
|
||
}
|
||
}
|
||
else if (i.suffix == BYTE_OPCODE_SUFFIX)
|
||
{
|
||
int op;
|
||
for (op = i.operands; --op >= 0; )
|
||
{
|
||
/* If this is an eight bit register, it's OK. If it's
|
||
the 16 or 32 bit version of an eight bit register,
|
||
we will just use the low portion, and that's OK too. */
|
||
if (i.types[op] & Reg8)
|
||
continue;
|
||
if ((i.types[op] & WordReg) && i.regs[op]->reg_num < 4
|
||
#if 0
|
||
/* Check that the template allows eight bit regs
|
||
This kills insns such as `orb $1,%edx', which
|
||
maybe should be allowed. */
|
||
&& (i.tm.operand_types[op] & (Reg8|InOutPortReg))
|
||
#endif
|
||
)
|
||
{
|
||
#if REGISTER_WARNINGS
|
||
if ((i.tm.operand_types[op] & InOutPortReg) == 0)
|
||
as_warn (_("using `%%%s' instead of `%%%s' due to `%c' suffix"),
|
||
(i.regs[op] - (i.types[op] & Reg16 ? 8 : 16))->reg_name,
|
||
i.regs[op]->reg_name,
|
||
i.suffix);
|
||
#endif
|
||
continue;
|
||
}
|
||
/* Any other register is bad */
|
||
if (i.types[op] & (Reg | RegMMX | Control | Debug | Test
|
||
| FloatReg | FloatAcc | SReg2 | SReg3))
|
||
{
|
||
as_bad (_("`%%%s' not allowed with `%s%c'"),
|
||
i.regs[op]->reg_name,
|
||
i.tm.name,
|
||
i.suffix);
|
||
return;
|
||
}
|
||
}
|
||
}
|
||
else if (i.suffix == DWORD_OPCODE_SUFFIX)
|
||
{
|
||
int op;
|
||
for (op = i.operands; --op >= 0; )
|
||
/* Reject eight bit registers, except where the template
|
||
requires them. (eg. movzb) */
|
||
if ((i.types[op] & Reg8) != 0
|
||
&& (i.tm.operand_types[op] & (Reg16|Reg32|Acc)) != 0)
|
||
{
|
||
as_bad (_("`%%%s' not allowed with `%s%c'"),
|
||
i.regs[op]->reg_name,
|
||
i.tm.name,
|
||
i.suffix);
|
||
return;
|
||
}
|
||
#if REGISTER_WARNINGS
|
||
/* Warn if the e prefix on a general reg is missing. */
|
||
else if ((i.types[op] & Reg16) != 0
|
||
&& (i.tm.operand_types[op] & (Reg32|Acc)) != 0)
|
||
{
|
||
as_warn (_("using `%%%s' instead of `%%%s' due to `%c' suffix"),
|
||
(i.regs[op] + 8)->reg_name,
|
||
i.regs[op]->reg_name,
|
||
i.suffix);
|
||
}
|
||
#endif
|
||
}
|
||
else if (i.suffix == WORD_OPCODE_SUFFIX)
|
||
{
|
||
int op;
|
||
for (op = i.operands; --op >= 0; )
|
||
/* Reject eight bit registers, except where the template
|
||
requires them. (eg. movzb) */
|
||
if ((i.types[op] & Reg8) != 0
|
||
&& (i.tm.operand_types[op] & (Reg16|Reg32|Acc)) != 0)
|
||
{
|
||
as_bad (_("`%%%s' not allowed with `%s%c'"),
|
||
i.regs[op]->reg_name,
|
||
i.tm.name,
|
||
i.suffix);
|
||
return;
|
||
}
|
||
#if REGISTER_WARNINGS
|
||
/* Warn if the e prefix on a general reg is present. */
|
||
else if ((i.types[op] & Reg32) != 0
|
||
&& (i.tm.operand_types[op] & (Reg16|Acc)) != 0)
|
||
{
|
||
as_warn (_("using `%%%s' instead of `%%%s' due to `%c' suffix"),
|
||
(i.regs[op] - 8)->reg_name,
|
||
i.regs[op]->reg_name,
|
||
i.suffix);
|
||
}
|
||
#endif
|
||
}
|
||
else
|
||
abort();
|
||
}
|
||
|
||
/* Make still unresolved immediate matches conform to size of immediate
|
||
given in i.suffix. Note: overlap2 cannot be an immediate! */
|
||
if ((overlap0 & (Imm8 | Imm8S | Imm16 | Imm32))
|
||
&& overlap0 != Imm8 && overlap0 != Imm8S
|
||
&& overlap0 != Imm16 && overlap0 != Imm32)
|
||
{
|
||
if (i.suffix)
|
||
{
|
||
overlap0 &= (i.suffix == BYTE_OPCODE_SUFFIX ? (Imm8 | Imm8S) :
|
||
(i.suffix == WORD_OPCODE_SUFFIX ? Imm16 : Imm32));
|
||
}
|
||
else if (overlap0 == (Imm16 | Imm32))
|
||
{
|
||
overlap0 =
|
||
(flag_16bit_code ^ (i.prefix[DATA_PREFIX] != 0)) ? Imm16 : Imm32;
|
||
}
|
||
else
|
||
{
|
||
as_bad (_("no opcode suffix given; can't determine immediate size"));
|
||
return;
|
||
}
|
||
}
|
||
if ((overlap1 & (Imm8 | Imm8S | Imm16 | Imm32))
|
||
&& overlap1 != Imm8 && overlap1 != Imm8S
|
||
&& overlap1 != Imm16 && overlap1 != Imm32)
|
||
{
|
||
if (i.suffix)
|
||
{
|
||
overlap1 &= (i.suffix == BYTE_OPCODE_SUFFIX ? (Imm8 | Imm8S) :
|
||
(i.suffix == WORD_OPCODE_SUFFIX ? Imm16 : Imm32));
|
||
}
|
||
else if (overlap1 == (Imm16 | Imm32))
|
||
{
|
||
overlap1 =
|
||
(flag_16bit_code ^ (i.prefix[DATA_PREFIX] != 0)) ? Imm16 : Imm32;
|
||
}
|
||
else
|
||
{
|
||
as_bad (_("no opcode suffix given; can't determine immediate size"));
|
||
return;
|
||
}
|
||
}
|
||
assert ((overlap2 & Imm) == 0);
|
||
|
||
i.types[0] = overlap0;
|
||
if (overlap0 & ImplicitRegister)
|
||
i.reg_operands--;
|
||
if (overlap0 & Imm1)
|
||
i.imm_operands = 0; /* kludge for shift insns */
|
||
|
||
i.types[1] = overlap1;
|
||
if (overlap1 & ImplicitRegister)
|
||
i.reg_operands--;
|
||
|
||
i.types[2] = overlap2;
|
||
if (overlap2 & ImplicitRegister)
|
||
i.reg_operands--;
|
||
|
||
/* Finalize opcode. First, we change the opcode based on the operand
|
||
size given by i.suffix: we never have to change things for byte insns,
|
||
or when no opcode suffix is need to size the operands. */
|
||
|
||
if (!i.suffix && (i.tm.opcode_modifier & W))
|
||
{
|
||
as_bad (_("no opcode suffix given and no register operands; can't size instruction"));
|
||
return;
|
||
}
|
||
|
||
if (i.suffix && i.suffix != BYTE_OPCODE_SUFFIX)
|
||
{
|
||
/* Select between byte and word/dword operations. */
|
||
if (i.tm.opcode_modifier & W)
|
||
{
|
||
if (i.tm.opcode_modifier & ShortForm)
|
||
i.tm.base_opcode |= 8;
|
||
else
|
||
i.tm.base_opcode |= 1;
|
||
}
|
||
/* Now select between word & dword operations via the operand
|
||
size prefix, except for instructions that will ignore this
|
||
prefix anyway. */
|
||
if ((i.suffix == DWORD_OPCODE_SUFFIX
|
||
|| i.suffix == LONG_OPCODE_SUFFIX) == flag_16bit_code
|
||
&& !(i.tm.opcode_modifier & IgnoreSize))
|
||
{
|
||
unsigned int prefix = DATA_PREFIX_OPCODE;
|
||
if (i.tm.opcode_modifier & JumpByte) /* jcxz, loop */
|
||
prefix = ADDR_PREFIX_OPCODE;
|
||
|
||
if (! add_prefix (prefix))
|
||
return;
|
||
}
|
||
/* Size floating point instruction. */
|
||
if (i.suffix == LONG_OPCODE_SUFFIX)
|
||
{
|
||
if (i.tm.opcode_modifier & FloatMF)
|
||
i.tm.base_opcode ^= 4;
|
||
}
|
||
}
|
||
|
||
/* For insns with operands there are more diddles to do to the opcode. */
|
||
if (i.operands)
|
||
{
|
||
/* Default segment register this instruction will use
|
||
for memory accesses. 0 means unknown.
|
||
This is only for optimizing out unnecessary segment overrides. */
|
||
const seg_entry *default_seg = 0;
|
||
|
||
/* If we found a reverse match we must alter the opcode
|
||
direction bit. found_reverse_match holds bits to change
|
||
(different for int & float insns). */
|
||
|
||
i.tm.base_opcode ^= found_reverse_match;
|
||
|
||
/* The imul $imm, %reg instruction is converted into
|
||
imul $imm, %reg, %reg, and the clr %reg instruction
|
||
is converted into xor %reg, %reg. */
|
||
if (i.tm.opcode_modifier & regKludge)
|
||
{
|
||
unsigned int first_reg_op = (i.types[0] & Reg) ? 0 : 1;
|
||
/* Pretend we saw the extra register operand. */
|
||
i.regs[first_reg_op+1] = i.regs[first_reg_op];
|
||
i.reg_operands = 2;
|
||
}
|
||
|
||
if (i.tm.opcode_modifier & ShortForm)
|
||
{
|
||
/* The register or float register operand is in operand 0 or 1. */
|
||
unsigned int op = (i.types[0] & (Reg | FloatReg)) ? 0 : 1;
|
||
/* Register goes in low 3 bits of opcode. */
|
||
i.tm.base_opcode |= i.regs[op]->reg_num;
|
||
if ((i.tm.opcode_modifier & Ugh) != 0)
|
||
{
|
||
/* Warn about some common errors, but press on regardless.
|
||
The first case can be generated by gcc (<= 2.8.1). */
|
||
if (i.operands == 2)
|
||
{
|
||
/* reversed arguments on faddp, fsubp, etc. */
|
||
as_warn (_("translating to `%s %%%s,%%%s'"), i.tm.name,
|
||
i.regs[1]->reg_name,
|
||
i.regs[0]->reg_name);
|
||
}
|
||
else
|
||
{
|
||
/* extraneous `l' suffix on fp insn */
|
||
as_warn (_("translating to `%s %%%s'"), i.tm.name,
|
||
i.regs[0]->reg_name);
|
||
}
|
||
}
|
||
}
|
||
else if (i.tm.opcode_modifier & Modrm)
|
||
{
|
||
/* The opcode is completed (modulo i.tm.extension_opcode which
|
||
must be put into the modrm byte).
|
||
Now, we make the modrm & index base bytes based on all the
|
||
info we've collected. */
|
||
|
||
/* i.reg_operands MUST be the number of real register operands;
|
||
implicit registers do not count. */
|
||
if (i.reg_operands == 2)
|
||
{
|
||
unsigned int source, dest;
|
||
source = ((i.types[0]
|
||
& (Reg
|
||
| SReg2
|
||
| SReg3
|
||
| Control
|
||
| Debug
|
||
| Test
|
||
| RegMMX))
|
||
? 0 : 1);
|
||
dest = source + 1;
|
||
|
||
/* Certain instructions expect the destination to be
|
||
in the i.rm.reg field. This is by far the
|
||
exceptional case. For these instructions, if the
|
||
source operand is a register, we must reverse the
|
||
i.rm.reg and i.rm.regmem fields. We accomplish
|
||
this by pretending that the two register operands
|
||
were given in the reverse order. */
|
||
if (i.tm.opcode_modifier & ReverseRegRegmem)
|
||
{
|
||
const reg_entry *tmp = i.regs[source];
|
||
i.regs[source] = i.regs[dest];
|
||
i.regs[dest] = tmp;
|
||
}
|
||
|
||
i.rm.mode = 3;
|
||
/* We must be careful to make sure that all
|
||
segment/control/test/debug/MMX registers go into
|
||
the i.rm.reg field (despite whether they are
|
||
source or destination operands). */
|
||
if (i.regs[dest]->reg_type
|
||
& (SReg2 | SReg3 | Control | Debug | Test | RegMMX))
|
||
{
|
||
i.rm.reg = i.regs[dest]->reg_num;
|
||
i.rm.regmem = i.regs[source]->reg_num;
|
||
}
|
||
else
|
||
{
|
||
i.rm.reg = i.regs[source]->reg_num;
|
||
i.rm.regmem = i.regs[dest]->reg_num;
|
||
}
|
||
}
|
||
else
|
||
{ /* if it's not 2 reg operands... */
|
||
if (i.mem_operands)
|
||
{
|
||
unsigned int fake_zero_displacement = 0;
|
||
unsigned int op = ((i.types[0] & AnyMem)
|
||
? 0
|
||
: (i.types[1] & AnyMem) ? 1 : 2);
|
||
|
||
default_seg = &ds;
|
||
|
||
if (! i.base_reg)
|
||
{
|
||
i.rm.mode = 0;
|
||
if (! i.disp_operands)
|
||
fake_zero_displacement = 1;
|
||
if (! i.index_reg)
|
||
{
|
||
/* Operand is just <disp> */
|
||
if (flag_16bit_code ^ (i.prefix[ADDR_PREFIX] != 0))
|
||
{
|
||
i.rm.regmem = NO_BASE_REGISTER_16;
|
||
i.types[op] &= ~Disp;
|
||
i.types[op] |= Disp16;
|
||
}
|
||
else
|
||
{
|
||
i.rm.regmem = NO_BASE_REGISTER;
|
||
i.types[op] &= ~Disp;
|
||
i.types[op] |= Disp32;
|
||
}
|
||
}
|
||
else /* ! i.base_reg && i.index_reg */
|
||
{
|
||
i.sib.index = i.index_reg->reg_num;
|
||
i.sib.base = NO_BASE_REGISTER;
|
||
i.sib.scale = i.log2_scale_factor;
|
||
i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
|
||
i.types[op] &= ~Disp;
|
||
i.types[op] |= Disp32; /* Must be 32 bit */
|
||
}
|
||
}
|
||
else if (i.base_reg->reg_type & Reg16)
|
||
{
|
||
switch (i.base_reg->reg_num)
|
||
{
|
||
case 3: /* (%bx) */
|
||
if (! i.index_reg)
|
||
i.rm.regmem = 7;
|
||
else /* (%bx,%si) -> 0, or (%bx,%di) -> 1 */
|
||
i.rm.regmem = i.index_reg->reg_num - 6;
|
||
break;
|
||
case 5: /* (%bp) */
|
||
default_seg = &ss;
|
||
if (! i.index_reg)
|
||
{
|
||
i.rm.regmem = 6;
|
||
if ((i.types[op] & Disp) == 0)
|
||
{
|
||
/* fake (%bp) into 0(%bp) */
|
||
i.types[op] |= Disp8;
|
||
fake_zero_displacement = 1;
|
||
}
|
||
}
|
||
else /* (%bp,%si) -> 2, or (%bp,%di) -> 3 */
|
||
i.rm.regmem = i.index_reg->reg_num - 6 + 2;
|
||
break;
|
||
default: /* (%si) -> 4 or (%di) -> 5 */
|
||
i.rm.regmem = i.base_reg->reg_num - 6 + 4;
|
||
}
|
||
i.rm.mode = mode_from_disp_size (i.types[op]);
|
||
}
|
||
else /* i.base_reg and 32 bit mode */
|
||
{
|
||
i.rm.regmem = i.base_reg->reg_num;
|
||
i.sib.base = i.base_reg->reg_num;
|
||
if (i.base_reg->reg_num == EBP_REG_NUM)
|
||
{
|
||
default_seg = &ss;
|
||
if (i.disp_operands == 0)
|
||
{
|
||
fake_zero_displacement = 1;
|
||
i.types[op] |= Disp8;
|
||
}
|
||
}
|
||
else if (i.base_reg->reg_num == ESP_REG_NUM)
|
||
{
|
||
default_seg = &ss;
|
||
}
|
||
i.sib.scale = i.log2_scale_factor;
|
||
if (! i.index_reg)
|
||
{
|
||
/* <disp>(%esp) becomes two byte modrm
|
||
with no index register. We've already
|
||
stored the code for esp in i.rm.regmem
|
||
ie. ESCAPE_TO_TWO_BYTE_ADDRESSING. Any
|
||
base register besides %esp will not use
|
||
the extra modrm byte. */
|
||
i.sib.index = NO_INDEX_REGISTER;
|
||
#if ! SCALE1_WHEN_NO_INDEX
|
||
/* Another case where we force the second
|
||
modrm byte. */
|
||
if (i.log2_scale_factor)
|
||
i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
|
||
#endif
|
||
}
|
||
else
|
||
{
|
||
i.sib.index = i.index_reg->reg_num;
|
||
i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
|
||
}
|
||
i.rm.mode = mode_from_disp_size (i.types[op]);
|
||
}
|
||
|
||
if (fake_zero_displacement)
|
||
{
|
||
/* Fakes a zero displacement assuming that i.types[op]
|
||
holds the correct displacement size. */
|
||
exp = &disp_expressions[i.disp_operands++];
|
||
i.disps[op] = exp;
|
||
exp->X_op = O_constant;
|
||
exp->X_add_number = 0;
|
||
exp->X_add_symbol = (symbolS *) 0;
|
||
exp->X_op_symbol = (symbolS *) 0;
|
||
}
|
||
}
|
||
|
||
/* Fill in i.rm.reg or i.rm.regmem field with register
|
||
operand (if any) based on i.tm.extension_opcode.
|
||
Again, we must be careful to make sure that
|
||
segment/control/debug/test/MMX registers are coded
|
||
into the i.rm.reg field. */
|
||
if (i.reg_operands)
|
||
{
|
||
unsigned int op =
|
||
((i.types[0]
|
||
& (Reg | SReg2 | SReg3 | Control | Debug
|
||
| Test | RegMMX))
|
||
? 0
|
||
: ((i.types[1]
|
||
& (Reg | SReg2 | SReg3 | Control | Debug
|
||
| Test | RegMMX))
|
||
? 1
|
||
: 2));
|
||
/* If there is an extension opcode to put here, the
|
||
register number must be put into the regmem field. */
|
||
if (i.tm.extension_opcode != None)
|
||
i.rm.regmem = i.regs[op]->reg_num;
|
||
else
|
||
i.rm.reg = i.regs[op]->reg_num;
|
||
|
||
/* Now, if no memory operand has set i.rm.mode = 0, 1, 2
|
||
we must set it to 3 to indicate this is a register
|
||
operand in the regmem field. */
|
||
if (!i.mem_operands)
|
||
i.rm.mode = 3;
|
||
}
|
||
|
||
/* Fill in i.rm.reg field with extension opcode (if any). */
|
||
if (i.tm.extension_opcode != None)
|
||
i.rm.reg = i.tm.extension_opcode;
|
||
}
|
||
}
|
||
else if (i.tm.opcode_modifier & (Seg2ShortForm | Seg3ShortForm))
|
||
{
|
||
if (i.tm.base_opcode == POP_SEG_SHORT && i.regs[0]->reg_num == 1)
|
||
{
|
||
as_bad (_("you can't `pop %%cs'"));
|
||
return;
|
||
}
|
||
i.tm.base_opcode |= (i.regs[0]->reg_num << 3);
|
||
}
|
||
else if ((i.tm.base_opcode & ~(D|W)) == MOV_AX_DISP32)
|
||
{
|
||
default_seg = &ds;
|
||
}
|
||
else if ((i.tm.opcode_modifier & IsString) != 0)
|
||
{
|
||
/* For the string instructions that allow a segment override
|
||
on one of their operands, the default segment is ds. */
|
||
default_seg = &ds;
|
||
}
|
||
|
||
/* If a segment was explicitly specified,
|
||
and the specified segment is not the default,
|
||
use an opcode prefix to select it.
|
||
If we never figured out what the default segment is,
|
||
then default_seg will be zero at this point,
|
||
and the specified segment prefix will always be used. */
|
||
if ((i.seg[0]) && (i.seg[0] != default_seg))
|
||
{
|
||
if (! add_prefix (i.seg[0]->seg_prefix))
|
||
return;
|
||
}
|
||
}
|
||
else if ((i.tm.opcode_modifier & Ugh) != 0)
|
||
{
|
||
/* UnixWare fsub no args is alias for fsubp, fadd -> faddp, etc */
|
||
as_warn (_("translating to `%sp'"), i.tm.name);
|
||
}
|
||
}
|
||
|
||
/* Handle conversion of 'int $3' --> special int3 insn. */
|
||
if (i.tm.base_opcode == INT_OPCODE && i.imms[0]->X_add_number == 3)
|
||
{
|
||
i.tm.base_opcode = INT3_OPCODE;
|
||
i.imm_operands = 0;
|
||
}
|
||
|
||
/* We are ready to output the insn. */
|
||
{
|
||
register char *p;
|
||
|
||
/* Output jumps. */
|
||
if (i.tm.opcode_modifier & Jump)
|
||
{
|
||
long n = (long) i.disps[0]->X_add_number;
|
||
int prefix = (i.prefix[DATA_PREFIX] != 0);
|
||
int code16 = 0;
|
||
|
||
if (prefix)
|
||
{
|
||
i.prefixes -= 1;
|
||
code16 = CODE16;
|
||
}
|
||
if (flag_16bit_code)
|
||
code16 ^= CODE16;
|
||
|
||
if (i.prefixes != 0)
|
||
as_warn (_("skipping prefixes on this instruction"));
|
||
|
||
if (i.disps[0]->X_op == O_constant)
|
||
{
|
||
if (fits_in_signed_byte (n))
|
||
{
|
||
insn_size += 2;
|
||
p = frag_more (2);
|
||
p[0] = i.tm.base_opcode;
|
||
p[1] = n;
|
||
}
|
||
else
|
||
{
|
||
/* Use 16-bit jumps only for 16-bit code,
|
||
because text segments are limited to 64K anyway;
|
||
Use 32-bit jumps for 32-bit code, because they're faster,
|
||
and a 16-bit jump will clear the top 16 bits of %eip. */
|
||
int jmp_size = code16 ? 2 : 4;
|
||
if (code16 && !fits_in_signed_word (n))
|
||
{
|
||
as_bad (_("16-bit jump out of range"));
|
||
return;
|
||
}
|
||
|
||
if (i.tm.base_opcode == JUMP_PC_RELATIVE)
|
||
{ /* pace */
|
||
/* unconditional jump */
|
||
insn_size += prefix + 1 + jmp_size;
|
||
p = frag_more (prefix + 1 + jmp_size);
|
||
if (prefix)
|
||
*p++ = DATA_PREFIX_OPCODE;
|
||
*p++ = (char) 0xe9;
|
||
md_number_to_chars (p, (valueT) n, jmp_size);
|
||
}
|
||
else
|
||
{
|
||
/* conditional jump */
|
||
insn_size += prefix + 2 + jmp_size;
|
||
p = frag_more (prefix + 2 + jmp_size);
|
||
if (prefix)
|
||
*p++ = DATA_PREFIX_OPCODE;
|
||
*p++ = TWO_BYTE_OPCODE_ESCAPE;
|
||
*p++ = i.tm.base_opcode + 0x10;
|
||
md_number_to_chars (p, (valueT) n, jmp_size);
|
||
}
|
||
}
|
||
}
|
||
else
|
||
{
|
||
int size = code16 ? 2 : 4;
|
||
|
||
/* It's a symbol; end frag & setup for relax.
|
||
Make sure there are more than 6 chars left in the current frag;
|
||
if not we'll have to start a new one. */
|
||
frag_grow (prefix + 1 + 2 + size);
|
||
insn_size += 1 + prefix;
|
||
p = frag_more (1 + prefix);
|
||
if (prefix)
|
||
*p++ = DATA_PREFIX_OPCODE;
|
||
*p = i.tm.base_opcode;
|
||
frag_var (rs_machine_dependent,
|
||
prefix + 2 + size, /* 2 opcode/prefix + displacement */
|
||
1,
|
||
((unsigned char) *p == JUMP_PC_RELATIVE
|
||
? ENCODE_RELAX_STATE (UNCOND_JUMP, SMALL) | code16
|
||
: ENCODE_RELAX_STATE (COND_JUMP, SMALL) | code16),
|
||
i.disps[0]->X_add_symbol,
|
||
(offsetT) n, p);
|
||
}
|
||
}
|
||
else if (i.tm.opcode_modifier & (JumpByte | JumpDword))
|
||
{
|
||
int size = (i.tm.opcode_modifier & JumpByte) ? 1 : 4;
|
||
long n = (long) i.disps[0]->X_add_number;
|
||
|
||
if (size == 1) /* then this is a loop or jecxz type instruction */
|
||
{
|
||
if (i.prefix[ADDR_PREFIX])
|
||
{
|
||
insn_size += 1;
|
||
FRAG_APPEND_1_CHAR (ADDR_PREFIX_OPCODE);
|
||
i.prefixes -= 1;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
int code16 = 0;
|
||
|
||
if (i.prefix[DATA_PREFIX])
|
||
{
|
||
insn_size += 1;
|
||
FRAG_APPEND_1_CHAR (DATA_PREFIX_OPCODE);
|
||
i.prefixes -= 1;
|
||
code16 = CODE16;
|
||
}
|
||
if (flag_16bit_code)
|
||
code16 ^= CODE16;
|
||
|
||
if (code16)
|
||
size = 2;
|
||
}
|
||
|
||
if (i.prefixes != 0)
|
||
as_warn (_("skipping prefixes on this instruction"));
|
||
|
||
if (fits_in_unsigned_byte (i.tm.base_opcode))
|
||
{
|
||
insn_size += 1 + size;
|
||
p = frag_more (1 + size);
|
||
}
|
||
else
|
||
{
|
||
insn_size += 2 + size; /* opcode can be at most two bytes */
|
||
p = frag_more (2 + size);
|
||
*p++ = (i.tm.base_opcode >> 8) & 0xff;
|
||
}
|
||
*p++ = i.tm.base_opcode & 0xff;
|
||
|
||
if (i.disps[0]->X_op == O_constant)
|
||
{
|
||
if (size == 1 && !fits_in_signed_byte (n))
|
||
{
|
||
as_bad (_("`%s' only takes byte displacement; %ld shortened to %d"),
|
||
i.tm.name, n, *p);
|
||
}
|
||
else if (size == 2 && !fits_in_signed_word (n))
|
||
{
|
||
as_bad (_("16-bit jump out of range"));
|
||
return;
|
||
}
|
||
md_number_to_chars (p, (valueT) n, size);
|
||
}
|
||
else
|
||
{
|
||
fix_new_exp (frag_now, p - frag_now->fr_literal, size,
|
||
i.disps[0], 1, reloc (size, 1, i.disp_reloc[0]));
|
||
|
||
}
|
||
}
|
||
else if (i.tm.opcode_modifier & JumpInterSegment)
|
||
{
|
||
int size;
|
||
int reloc_type;
|
||
int prefix = i.prefix[DATA_PREFIX] != 0;
|
||
int code16 = 0;
|
||
|
||
if (prefix)
|
||
{
|
||
code16 = CODE16;
|
||
i.prefixes -= 1;
|
||
}
|
||
if (flag_16bit_code)
|
||
code16 ^= CODE16;
|
||
|
||
size = 4;
|
||
reloc_type = BFD_RELOC_32;
|
||
if (code16)
|
||
{
|
||
size = 2;
|
||
reloc_type = BFD_RELOC_16;
|
||
}
|
||
|
||
if (i.prefixes != 0)
|
||
as_warn (_("skipping prefixes on this instruction"));
|
||
|
||
insn_size += prefix + 1 + 2 + size; /* 1 opcode; 2 segment; offset */
|
||
p = frag_more (prefix + 1 + 2 + size);
|
||
if (prefix)
|
||
*p++ = DATA_PREFIX_OPCODE;
|
||
*p++ = i.tm.base_opcode;
|
||
if (i.imms[1]->X_op == O_constant)
|
||
{
|
||
long n = (long) i.imms[1]->X_add_number;
|
||
|
||
if (size == 2 && !fits_in_unsigned_word (n))
|
||
{
|
||
as_bad (_("16-bit jump out of range"));
|
||
return;
|
||
}
|
||
md_number_to_chars (p, (valueT) n, size);
|
||
}
|
||
else
|
||
fix_new_exp (frag_now, p - frag_now->fr_literal, size,
|
||
i.imms[1], 0, reloc_type);
|
||
if (i.imms[0]->X_op != O_constant)
|
||
as_bad (_("can't handle non absolute segment in `%s'"),
|
||
i.tm.name);
|
||
md_number_to_chars (p + size, (valueT) i.imms[0]->X_add_number, 2);
|
||
}
|
||
else
|
||
{
|
||
/* Output normal instructions here. */
|
||
unsigned char *q;
|
||
|
||
/* The prefix bytes. */
|
||
for (q = i.prefix;
|
||
q < i.prefix + sizeof (i.prefix) / sizeof (i.prefix[0]);
|
||
q++)
|
||
{
|
||
if (*q)
|
||
{
|
||
insn_size += 1;
|
||
p = frag_more (1);
|
||
md_number_to_chars (p, (valueT) *q, 1);
|
||
}
|
||
}
|
||
|
||
/* Now the opcode; be careful about word order here! */
|
||
if (fits_in_unsigned_byte (i.tm.base_opcode))
|
||
{
|
||
insn_size += 1;
|
||
FRAG_APPEND_1_CHAR (i.tm.base_opcode);
|
||
}
|
||
else if (fits_in_unsigned_word (i.tm.base_opcode))
|
||
{
|
||
insn_size += 2;
|
||
p = frag_more (2);
|
||
/* put out high byte first: can't use md_number_to_chars! */
|
||
*p++ = (i.tm.base_opcode >> 8) & 0xff;
|
||
*p = i.tm.base_opcode & 0xff;
|
||
}
|
||
else
|
||
{ /* opcode is either 3 or 4 bytes */
|
||
if (i.tm.base_opcode & 0xff000000)
|
||
{
|
||
insn_size += 4;
|
||
p = frag_more (4);
|
||
*p++ = (i.tm.base_opcode >> 24) & 0xff;
|
||
}
|
||
else
|
||
{
|
||
insn_size += 3;
|
||
p = frag_more (3);
|
||
}
|
||
*p++ = (i.tm.base_opcode >> 16) & 0xff;
|
||
*p++ = (i.tm.base_opcode >> 8) & 0xff;
|
||
*p = (i.tm.base_opcode) & 0xff;
|
||
}
|
||
|
||
/* Now the modrm byte and sib byte (if present). */
|
||
if (i.tm.opcode_modifier & Modrm)
|
||
{
|
||
insn_size += 1;
|
||
p = frag_more (1);
|
||
md_number_to_chars (p,
|
||
(valueT) (i.rm.regmem << 0
|
||
| i.rm.reg << 3
|
||
| i.rm.mode << 6),
|
||
1);
|
||
/* If i.rm.regmem == ESP (4)
|
||
&& i.rm.mode != (Register mode)
|
||
&& not 16 bit
|
||
==> need second modrm byte. */
|
||
if (i.rm.regmem == ESCAPE_TO_TWO_BYTE_ADDRESSING
|
||
&& i.rm.mode != 3
|
||
&& !(i.base_reg && (i.base_reg->reg_type & Reg16) != 0))
|
||
{
|
||
insn_size += 1;
|
||
p = frag_more (1);
|
||
md_number_to_chars (p,
|
||
(valueT) (i.sib.base << 0
|
||
| i.sib.index << 3
|
||
| i.sib.scale << 6),
|
||
1);
|
||
}
|
||
}
|
||
|
||
if (i.disp_operands)
|
||
{
|
||
register unsigned int n;
|
||
|
||
for (n = 0; n < i.operands; n++)
|
||
{
|
||
if (i.disps[n])
|
||
{
|
||
if (i.disps[n]->X_op == O_constant)
|
||
{
|
||
if (i.types[n] & Disp8)
|
||
{
|
||
insn_size += 1;
|
||
p = frag_more (1);
|
||
md_number_to_chars (p,
|
||
(valueT) i.disps[n]->X_add_number,
|
||
1);
|
||
}
|
||
else if (i.types[n] & Disp16)
|
||
{
|
||
insn_size += 2;
|
||
p = frag_more (2);
|
||
md_number_to_chars (p,
|
||
(valueT) i.disps[n]->X_add_number,
|
||
2);
|
||
}
|
||
else
|
||
{ /* Disp32 */
|
||
insn_size += 4;
|
||
p = frag_more (4);
|
||
md_number_to_chars (p,
|
||
(valueT) i.disps[n]->X_add_number,
|
||
4);
|
||
}
|
||
}
|
||
else if (i.types[n] & Disp32)
|
||
{
|
||
insn_size += 4;
|
||
p = frag_more (4);
|
||
fix_new_exp (frag_now, p - frag_now->fr_literal, 4,
|
||
i.disps[n], 0,
|
||
TC_RELOC (i.disp_reloc[n], BFD_RELOC_32));
|
||
}
|
||
else
|
||
{ /* must be Disp16 */
|
||
insn_size += 2;
|
||
p = frag_more (2);
|
||
fix_new_exp (frag_now, p - frag_now->fr_literal, 2,
|
||
i.disps[n], 0,
|
||
TC_RELOC (i.disp_reloc[n], BFD_RELOC_16));
|
||
}
|
||
}
|
||
}
|
||
} /* end displacement output */
|
||
|
||
/* output immediate */
|
||
if (i.imm_operands)
|
||
{
|
||
register unsigned int n;
|
||
|
||
for (n = 0; n < i.operands; n++)
|
||
{
|
||
if (i.imms[n])
|
||
{
|
||
if (i.imms[n]->X_op == O_constant)
|
||
{
|
||
if (i.types[n] & (Imm8 | Imm8S))
|
||
{
|
||
insn_size += 1;
|
||
p = frag_more (1);
|
||
md_number_to_chars (p,
|
||
(valueT) i.imms[n]->X_add_number,
|
||
1);
|
||
}
|
||
else if (i.types[n] & Imm16)
|
||
{
|
||
insn_size += 2;
|
||
p = frag_more (2);
|
||
md_number_to_chars (p,
|
||
(valueT) i.imms[n]->X_add_number,
|
||
2);
|
||
}
|
||
else
|
||
{
|
||
insn_size += 4;
|
||
p = frag_more (4);
|
||
md_number_to_chars (p,
|
||
(valueT) i.imms[n]->X_add_number,
|
||
4);
|
||
}
|
||
}
|
||
else
|
||
{ /* not absolute_section */
|
||
/* Need a 32-bit fixup (don't support 8bit
|
||
non-absolute ims). Try to support other
|
||
sizes ... */
|
||
int r_type;
|
||
int size;
|
||
int pcrel = 0;
|
||
|
||
if (i.types[n] & (Imm8 | Imm8S))
|
||
size = 1;
|
||
else if (i.types[n] & Imm16)
|
||
size = 2;
|
||
else
|
||
size = 4;
|
||
insn_size += size;
|
||
p = frag_more (size);
|
||
r_type = reloc (size, 0, i.disp_reloc[0]);
|
||
#ifdef BFD_ASSEMBLER
|
||
if (r_type == BFD_RELOC_32
|
||
&& GOT_symbol
|
||
&& GOT_symbol == i.imms[n]->X_add_symbol
|
||
&& (i.imms[n]->X_op == O_symbol
|
||
|| (i.imms[n]->X_op == O_add
|
||
&& (i.imms[n]->X_op_symbol->sy_value.X_op
|
||
== O_subtract))))
|
||
{
|
||
r_type = BFD_RELOC_386_GOTPC;
|
||
i.imms[n]->X_add_number += 3;
|
||
}
|
||
#endif
|
||
fix_new_exp (frag_now, p - frag_now->fr_literal, size,
|
||
i.imms[n], pcrel, r_type);
|
||
}
|
||
}
|
||
}
|
||
} /* end immediate output */
|
||
}
|
||
|
||
#ifdef DEBUG386
|
||
if (flag_debug)
|
||
{
|
||
pi (line, &i);
|
||
}
|
||
#endif /* DEBUG386 */
|
||
}
|
||
}
|
||
|
||
/* Parse OPERAND_STRING into the i386_insn structure I. Returns non-zero
|
||
on error. */
|
||
|
||
static int
|
||
i386_operand (operand_string)
|
||
char *operand_string;
|
||
{
|
||
register char *op_string = operand_string;
|
||
|
||
/* We check for an absolute prefix (differentiating,
|
||
for example, 'jmp pc_relative_label' from 'jmp *absolute_label'. */
|
||
if (*op_string == ABSOLUTE_PREFIX)
|
||
{
|
||
++op_string;
|
||
if (is_space_char (*op_string))
|
||
++op_string;
|
||
i.types[this_operand] |= JumpAbsolute;
|
||
}
|
||
|
||
/* Check if operand is a register. */
|
||
if (*op_string == REGISTER_PREFIX)
|
||
{
|
||
register const reg_entry *r;
|
||
char *end_op;
|
||
|
||
r = parse_register (op_string, &end_op);
|
||
if (r == NULL)
|
||
return 0;
|
||
/* Check for a segment override by searching for ':' after a
|
||
segment register. */
|
||
op_string = end_op;
|
||
if (is_space_char (*op_string))
|
||
++op_string;
|
||
if ((r->reg_type & (SReg2 | SReg3)) && *op_string == ':')
|
||
{
|
||
switch (r->reg_num)
|
||
{
|
||
case 0:
|
||
i.seg[i.mem_operands] = &es;
|
||
break;
|
||
case 1:
|
||
i.seg[i.mem_operands] = &cs;
|
||
break;
|
||
case 2:
|
||
i.seg[i.mem_operands] = &ss;
|
||
break;
|
||
case 3:
|
||
i.seg[i.mem_operands] = &ds;
|
||
break;
|
||
case 4:
|
||
i.seg[i.mem_operands] = &fs;
|
||
break;
|
||
case 5:
|
||
i.seg[i.mem_operands] = &gs;
|
||
break;
|
||
}
|
||
|
||
/* Skip the ':' and whitespace. */
|
||
++op_string;
|
||
if (is_space_char (*op_string))
|
||
++op_string;
|
||
|
||
operand_string = op_string; /* Pretend given string starts here. */
|
||
if (!is_digit_char (*op_string) && !is_identifier_char (*op_string)
|
||
&& *op_string != '(' && *op_string != ABSOLUTE_PREFIX)
|
||
{
|
||
as_bad (_("bad memory operand `%s'"), op_string);
|
||
return 0;
|
||
}
|
||
/* Handle case of %es:*foo. */
|
||
if (*op_string == ABSOLUTE_PREFIX)
|
||
{
|
||
++op_string;
|
||
if (is_space_char (*op_string))
|
||
++op_string;
|
||
i.types[this_operand] |= JumpAbsolute;
|
||
}
|
||
goto do_memory_reference;
|
||
}
|
||
i.types[this_operand] |= r->reg_type & ~BaseIndex;
|
||
i.regs[this_operand] = r;
|
||
i.reg_operands++;
|
||
}
|
||
else if (*op_string == IMMEDIATE_PREFIX)
|
||
{ /* ... or an immediate */
|
||
char *save_input_line_pointer;
|
||
segT exp_seg = 0;
|
||
expressionS *exp;
|
||
|
||
if (i.imm_operands == MAX_IMMEDIATE_OPERANDS)
|
||
{
|
||
as_bad (_("only 1 or 2 immediate operands are allowed"));
|
||
return 0;
|
||
}
|
||
|
||
exp = &im_expressions[i.imm_operands++];
|
||
i.imms[this_operand] = exp;
|
||
|
||
++op_string;
|
||
if (is_space_char (*op_string))
|
||
++op_string;
|
||
|
||
save_input_line_pointer = input_line_pointer;
|
||
input_line_pointer = op_string;
|
||
exp_seg = expression (exp);
|
||
if (*input_line_pointer != '\0')
|
||
{
|
||
/* This should be as_bad, but some versions of gcc, up to
|
||
about 2.8 and egcs 1.01, generate a bogus @GOTOFF(%ebx)
|
||
in certain cases. Oddly, the code in question turns out
|
||
to work correctly anyhow, so we make this just a warning
|
||
until those versions of gcc are obsolete. */
|
||
as_warn (_("unrecognized characters `%s' in expression"),
|
||
input_line_pointer);
|
||
}
|
||
input_line_pointer = save_input_line_pointer;
|
||
|
||
if (exp->X_op == O_absent)
|
||
{
|
||
/* missing or bad expr becomes absolute 0 */
|
||
as_bad (_("missing or invalid immediate expression `%s' taken as 0"),
|
||
operand_string);
|
||
exp->X_op = O_constant;
|
||
exp->X_add_number = 0;
|
||
exp->X_add_symbol = (symbolS *) 0;
|
||
exp->X_op_symbol = (symbolS *) 0;
|
||
i.types[this_operand] |= Imm;
|
||
}
|
||
else if (exp->X_op == O_constant)
|
||
{
|
||
i.types[this_operand] |=
|
||
smallest_imm_type ((long) exp->X_add_number);
|
||
|
||
/* If a suffix is given, this operand may be shortened. */
|
||
switch (i.suffix)
|
||
{
|
||
case WORD_OPCODE_SUFFIX:
|
||
i.types[this_operand] |= Imm16;
|
||
break;
|
||
case BYTE_OPCODE_SUFFIX:
|
||
i.types[this_operand] |= Imm16 | Imm8 | Imm8S;
|
||
break;
|
||
}
|
||
}
|
||
#ifdef OBJ_AOUT
|
||
else if (exp_seg != text_section
|
||
&& exp_seg != data_section
|
||
&& exp_seg != bss_section
|
||
&& exp_seg != undefined_section
|
||
#ifdef BFD_ASSEMBLER
|
||
&& ! bfd_is_com_section (exp_seg)
|
||
#endif
|
||
)
|
||
{
|
||
seg_unimplemented:
|
||
as_bad (_("Unimplemented segment type %d in operand"), exp_seg);
|
||
return 0;
|
||
}
|
||
#endif
|
||
else
|
||
{
|
||
/* This is an address. The size of the address will be
|
||
determined later, depending on destination register,
|
||
suffix, or the default for the section. We exclude
|
||
Imm8S here so that `push $foo' and other instructions
|
||
with an Imm8S form will use Imm16 or Imm32. */
|
||
i.types[this_operand] |= (Imm8 | Imm16 | Imm32);
|
||
}
|
||
}
|
||
else if (is_digit_char (*op_string) || is_identifier_char (*op_string)
|
||
|| *op_string == '(')
|
||
{
|
||
/* This is a memory reference of some sort. */
|
||
char *end_of_operand_string;
|
||
register char *base_string;
|
||
int found_base_index_form;
|
||
|
||
/* Start and end of displacement string expression (if found). */
|
||
char *displacement_string_start;
|
||
char *displacement_string_end;
|
||
|
||
do_memory_reference:
|
||
if ((i.mem_operands == 1
|
||
&& (current_templates->start->opcode_modifier & IsString) == 0)
|
||
|| i.mem_operands == 2)
|
||
{
|
||
as_bad (_("too many memory references for `%s'"),
|
||
current_templates->start->name);
|
||
return 0;
|
||
}
|
||
|
||
/* Check for base index form. We detect the base index form by
|
||
looking for an ')' at the end of the operand, searching
|
||
for the '(' matching it, and finding a REGISTER_PREFIX or ','
|
||
after the '('. */
|
||
found_base_index_form = 0;
|
||
end_of_operand_string = op_string + strlen (op_string);
|
||
|
||
--end_of_operand_string;
|
||
if (is_space_char (*end_of_operand_string))
|
||
--end_of_operand_string;
|
||
|
||
base_string = end_of_operand_string;
|
||
if (*base_string == ')')
|
||
{
|
||
unsigned int parens_balanced = 1;
|
||
/* We've already checked that the number of left & right ()'s are
|
||
equal, so this loop will not be infinite. */
|
||
do
|
||
{
|
||
base_string--;
|
||
if (*base_string == ')')
|
||
parens_balanced++;
|
||
if (*base_string == '(')
|
||
parens_balanced--;
|
||
}
|
||
while (parens_balanced);
|
||
|
||
/* If there is a displacement set-up for it to be parsed later. */
|
||
displacement_string_start = op_string;
|
||
displacement_string_end = base_string;
|
||
|
||
/* Skip past '(' and whitespace. */
|
||
++base_string;
|
||
if (is_space_char (*base_string))
|
||
++base_string;
|
||
|
||
if (*base_string == REGISTER_PREFIX || *base_string == ',')
|
||
found_base_index_form = 1;
|
||
}
|
||
|
||
/* If we can't parse a base index register expression, we've found
|
||
a pure displacement expression. We set up displacement_string_start
|
||
and displacement_string_end for the code below. */
|
||
if (!found_base_index_form)
|
||
{
|
||
displacement_string_start = op_string;
|
||
displacement_string_end = end_of_operand_string + 1;
|
||
}
|
||
else
|
||
{
|
||
i.types[this_operand] |= BaseIndex;
|
||
|
||
/* Find base register (if any). */
|
||
if (*base_string != ',')
|
||
{
|
||
char *end_op;
|
||
|
||
/* Trim off the closing ')' so that parse_register won't
|
||
see it. */
|
||
END_STRING_AND_SAVE (end_of_operand_string);
|
||
i.base_reg = parse_register (base_string, &end_op);
|
||
RESTORE_END_STRING (end_of_operand_string);
|
||
|
||
if (i.base_reg == NULL)
|
||
return 0;
|
||
|
||
base_string = end_op;
|
||
if (is_space_char (*base_string))
|
||
++base_string;
|
||
}
|
||
|
||
/* There may be an index reg or scale factor here. */
|
||
if (*base_string == ',')
|
||
{
|
||
++base_string;
|
||
if (is_space_char (*base_string))
|
||
++base_string;
|
||
|
||
if (*base_string == REGISTER_PREFIX)
|
||
{
|
||
char *end_op;
|
||
|
||
END_STRING_AND_SAVE (end_of_operand_string);
|
||
i.index_reg = parse_register (base_string, &end_op);
|
||
RESTORE_END_STRING (end_of_operand_string);
|
||
|
||
if (i.index_reg == NULL)
|
||
return 0;
|
||
|
||
base_string = end_op;
|
||
if (is_space_char (*base_string))
|
||
++base_string;
|
||
if (*base_string == ',')
|
||
{
|
||
++base_string;
|
||
if (is_space_char (*base_string))
|
||
++base_string;
|
||
}
|
||
else if (*base_string != ')')
|
||
{
|
||
as_bad (_("expecting `,' or `)' after index register in `%s'"),
|
||
operand_string);
|
||
return 0;
|
||
}
|
||
}
|
||
|
||
/* Check for scale factor. */
|
||
if (isdigit ((unsigned char) *base_string))
|
||
{
|
||
if (isdigit ((unsigned char) base_string[1]))
|
||
goto bad_scale; /* must be 1 digit scale */
|
||
switch (*base_string)
|
||
{
|
||
case '1':
|
||
i.log2_scale_factor = 0;
|
||
break;
|
||
case '2':
|
||
i.log2_scale_factor = 1;
|
||
break;
|
||
case '4':
|
||
i.log2_scale_factor = 2;
|
||
break;
|
||
case '8':
|
||
i.log2_scale_factor = 3;
|
||
break;
|
||
default:
|
||
bad_scale:
|
||
as_bad (_("expecting scale factor of 1, 2, 4 or 8; got `%s'"),
|
||
base_string);
|
||
return 0;
|
||
}
|
||
|
||
++base_string;
|
||
if (is_space_char (*base_string))
|
||
++base_string;
|
||
if (*base_string != ')')
|
||
{
|
||
as_bad (_("expecting `)' after scale factor in `%s'"),
|
||
operand_string);
|
||
return 0;
|
||
}
|
||
if (i.log2_scale_factor != 0 && ! i.index_reg)
|
||
{
|
||
as_warn (_("scale factor of %d without an index register"),
|
||
1 << i.log2_scale_factor);
|
||
#if SCALE1_WHEN_NO_INDEX
|
||
i.log2_scale_factor = 0;
|
||
#endif
|
||
}
|
||
}
|
||
else if (!i.index_reg)
|
||
{
|
||
as_bad (_("expecting index register or scale factor after `,'; got '%c'"),
|
||
*base_string);
|
||
return 0;
|
||
}
|
||
}
|
||
else if (*base_string != ')')
|
||
{
|
||
as_bad (_("expecting `,' or `)' after base register in `%s'"),
|
||
operand_string);
|
||
return 0;
|
||
}
|
||
}
|
||
|
||
/* If there's an expression begining the operand, parse it,
|
||
assuming displacement_string_start and
|
||
displacement_string_end are meaningful. */
|
||
if (displacement_string_start != displacement_string_end)
|
||
{
|
||
register expressionS *exp;
|
||
segT exp_seg = 0;
|
||
char *save_input_line_pointer;
|
||
int bigdisp = Disp32;
|
||
|
||
if (flag_16bit_code ^ (i.prefix[ADDR_PREFIX] != 0))
|
||
bigdisp = Disp16;
|
||
i.types[this_operand] |= bigdisp;
|
||
|
||
exp = &disp_expressions[i.disp_operands];
|
||
i.disps[this_operand] = exp;
|
||
i.disp_reloc[this_operand] = NO_RELOC;
|
||
i.disp_operands++;
|
||
save_input_line_pointer = input_line_pointer;
|
||
input_line_pointer = displacement_string_start;
|
||
END_STRING_AND_SAVE (displacement_string_end);
|
||
#ifndef GCC_ASM_O_HACK
|
||
#define GCC_ASM_O_HACK 0
|
||
#endif
|
||
#if GCC_ASM_O_HACK
|
||
END_STRING_AND_SAVE (displacement_string_end + 1);
|
||
if ((i.types[this_operand] & BaseIndex) != 0
|
||
&& displacement_string_end[-1] == '+')
|
||
{
|
||
/* This hack is to avoid a warning when using the "o"
|
||
constraint within gcc asm statements.
|
||
For instance:
|
||
|
||
#define _set_tssldt_desc(n,addr,limit,type) \
|
||
__asm__ __volatile__ ( \
|
||
"movw %w2,%0\n\t" \
|
||
"movw %w1,2+%0\n\t" \
|
||
"rorl $16,%1\n\t" \
|
||
"movb %b1,4+%0\n\t" \
|
||
"movb %4,5+%0\n\t" \
|
||
"movb $0,6+%0\n\t" \
|
||
"movb %h1,7+%0\n\t" \
|
||
"rorl $16,%1" \
|
||
: "=o"(*(n)) : "q" (addr), "ri"(limit), "i"(type))
|
||
|
||
This works great except that the output assembler ends
|
||
up looking a bit weird if it turns out that there is
|
||
no offset. You end up producing code that looks like:
|
||
|
||
#APP
|
||
movw $235,(%eax)
|
||
movw %dx,2+(%eax)
|
||
rorl $16,%edx
|
||
movb %dl,4+(%eax)
|
||
movb $137,5+(%eax)
|
||
movb $0,6+(%eax)
|
||
movb %dh,7+(%eax)
|
||
rorl $16,%edx
|
||
#NO_APP
|
||
|
||
So here we provide the missing zero.
|
||
*/
|
||
|
||
*displacement_string_end = '0';
|
||
}
|
||
#endif
|
||
#ifndef LEX_AT
|
||
{
|
||
/*
|
||
* We can have operands of the form
|
||
* <symbol>@GOTOFF+<nnn>
|
||
* Take the easy way out here and copy everything
|
||
* into a temporary buffer...
|
||
*/
|
||
register char *cp;
|
||
|
||
cp = strchr (input_line_pointer, '@');
|
||
if (cp != NULL)
|
||
{
|
||
char *tmpbuf;
|
||
|
||
if (GOT_symbol == NULL)
|
||
GOT_symbol = symbol_find_or_make (GLOBAL_OFFSET_TABLE_NAME);
|
||
|
||
tmpbuf = (char *) alloca ((cp - input_line_pointer) + 20);
|
||
|
||
if (strncmp (cp + 1, "PLT", 3) == 0)
|
||
{
|
||
i.disp_reloc[this_operand] = BFD_RELOC_386_PLT32;
|
||
*cp = '\0';
|
||
strcpy (tmpbuf, input_line_pointer);
|
||
strcat (tmpbuf, cp + 1 + 3);
|
||
*cp = '@';
|
||
}
|
||
else if (strncmp (cp + 1, "GOTOFF", 6) == 0)
|
||
{
|
||
i.disp_reloc[this_operand] = BFD_RELOC_386_GOTOFF;
|
||
*cp = '\0';
|
||
strcpy (tmpbuf, input_line_pointer);
|
||
strcat (tmpbuf, cp + 1 + 6);
|
||
*cp = '@';
|
||
}
|
||
else if (strncmp (cp + 1, "GOT", 3) == 0)
|
||
{
|
||
i.disp_reloc[this_operand] = BFD_RELOC_386_GOT32;
|
||
*cp = '\0';
|
||
strcpy (tmpbuf, input_line_pointer);
|
||
strcat (tmpbuf, cp + 1 + 3);
|
||
*cp = '@';
|
||
}
|
||
else
|
||
as_bad (_("Bad reloc specifier `%s' in expression"), cp + 1);
|
||
|
||
/* GOT relocations are not supported in 16 bit mode */
|
||
if (flag_16bit_code)
|
||
as_bad (_("GOT relocations not supported in 16 bit mode"));
|
||
|
||
input_line_pointer = tmpbuf;
|
||
}
|
||
}
|
||
#endif
|
||
|
||
exp_seg = expression (exp);
|
||
|
||
#ifdef BFD_ASSEMBLER
|
||
/* We do this to make sure that the section symbol is in
|
||
the symbol table. We will ultimately change the relocation
|
||
to be relative to the beginning of the section */
|
||
if (i.disp_reloc[this_operand] == BFD_RELOC_386_GOTOFF)
|
||
{
|
||
if (S_IS_LOCAL(exp->X_add_symbol)
|
||
&& S_GET_SEGMENT (exp->X_add_symbol) != undefined_section)
|
||
section_symbol(exp->X_add_symbol->bsym->section);
|
||
assert (exp->X_op == O_symbol);
|
||
exp->X_op = O_subtract;
|
||
exp->X_op_symbol = GOT_symbol;
|
||
i.disp_reloc[this_operand] = BFD_RELOC_32;
|
||
}
|
||
#endif
|
||
|
||
if (*input_line_pointer)
|
||
as_bad (_("Ignoring junk `%s' after expression"),
|
||
input_line_pointer);
|
||
#if GCC_ASM_O_HACK
|
||
RESTORE_END_STRING (displacement_string_end + 1);
|
||
#endif
|
||
RESTORE_END_STRING (displacement_string_end);
|
||
input_line_pointer = save_input_line_pointer;
|
||
|
||
#if 0 /* this is handled in expr. */
|
||
if (exp->X_op == O_absent)
|
||
{
|
||
/* missing expr becomes absolute 0 */
|
||
as_bad (_("missing or invalid displacement `%s' taken as 0"),
|
||
operand_string);
|
||
exp->X_op = O_constant;
|
||
exp->X_add_number = 0;
|
||
exp->X_add_symbol = (symbolS *) 0;
|
||
exp->X_op_symbol = (symbolS *) 0;
|
||
i.types[this_operand] |= Disp8;
|
||
}
|
||
else
|
||
#endif
|
||
if (exp->X_op == O_constant)
|
||
{
|
||
if (fits_in_signed_byte (exp->X_add_number))
|
||
i.types[this_operand] |= Disp8;
|
||
}
|
||
#ifdef OBJ_AOUT
|
||
else if (exp_seg != text_section
|
||
&& exp_seg != data_section
|
||
&& exp_seg != bss_section
|
||
&& exp_seg != undefined_section)
|
||
{
|
||
goto seg_unimplemented;
|
||
}
|
||
#endif
|
||
}
|
||
|
||
/* Special case for (%dx) while doing input/output op. */
|
||
if (i.base_reg
|
||
&& i.base_reg->reg_type == (Reg16 | InOutPortReg)
|
||
&& i.index_reg == 0
|
||
&& i.log2_scale_factor == 0
|
||
&& i.seg[i.mem_operands] == 0
|
||
&& (i.types[this_operand] & Disp) == 0)
|
||
{
|
||
i.types[this_operand] = InOutPortReg;
|
||
return 1;
|
||
}
|
||
/* Make sure the memory operand we've been dealt is valid. */
|
||
if (flag_16bit_code ^ (i.prefix[ADDR_PREFIX] != 0))
|
||
{
|
||
if ((i.base_reg
|
||
&& ((i.base_reg->reg_type & (Reg16|BaseIndex))
|
||
!= (Reg16|BaseIndex)))
|
||
|| (i.index_reg
|
||
&& (((i.index_reg->reg_type & (Reg16|BaseIndex))
|
||
!= (Reg16|BaseIndex))
|
||
|| ! (i.base_reg
|
||
&& i.base_reg->reg_num < 6
|
||
&& i.index_reg->reg_num >= 6
|
||
&& i.log2_scale_factor == 0))))
|
||
{
|
||
as_bad (_("`%s' is not a valid %s bit base/index expression"),
|
||
operand_string, "16");
|
||
return 0;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
if ((i.base_reg
|
||
&& (i.base_reg->reg_type & Reg32) == 0)
|
||
|| (i.index_reg
|
||
&& ((i.index_reg->reg_type & (Reg32|BaseIndex))
|
||
!= (Reg32|BaseIndex))))
|
||
{
|
||
as_bad (_("`%s' is not a valid %s bit base/index expression"),
|
||
operand_string, "32");
|
||
return 0;
|
||
}
|
||
}
|
||
i.mem_operands++;
|
||
}
|
||
else
|
||
{ /* it's not a memory operand; argh! */
|
||
as_bad (_("invalid char %s begining operand %d `%s'"),
|
||
output_invalid (*op_string),
|
||
this_operand + 1,
|
||
op_string);
|
||
return 0;
|
||
}
|
||
return 1; /* normal return */
|
||
}
|
||
|
||
/*
|
||
* md_estimate_size_before_relax()
|
||
*
|
||
* Called just before relax().
|
||
* Any symbol that is now undefined will not become defined.
|
||
* Return the correct fr_subtype in the frag.
|
||
* Return the initial "guess for fr_var" to caller.
|
||
* The guess for fr_var is ACTUALLY the growth beyond fr_fix.
|
||
* Whatever we do to grow fr_fix or fr_var contributes to our returned value.
|
||
* Although it may not be explicit in the frag, pretend fr_var starts with a
|
||
* 0 value.
|
||
*/
|
||
int
|
||
md_estimate_size_before_relax (fragP, segment)
|
||
register fragS *fragP;
|
||
register segT segment;
|
||
{
|
||
register unsigned char *opcode;
|
||
register int old_fr_fix;
|
||
|
||
old_fr_fix = fragP->fr_fix;
|
||
opcode = (unsigned char *) fragP->fr_opcode;
|
||
/* We've already got fragP->fr_subtype right; all we have to do is
|
||
check for un-relaxable symbols. */
|
||
if (S_GET_SEGMENT (fragP->fr_symbol) != segment)
|
||
{
|
||
/* symbol is undefined in this segment */
|
||
int code16 = fragP->fr_subtype & CODE16;
|
||
int size = code16 ? 2 : 4;
|
||
int pcrel_reloc = code16 ? BFD_RELOC_16_PCREL : BFD_RELOC_32_PCREL;
|
||
|
||
switch (opcode[0])
|
||
{
|
||
case JUMP_PC_RELATIVE: /* make jmp (0xeb) a dword displacement jump */
|
||
opcode[0] = 0xe9; /* dword disp jmp */
|
||
fragP->fr_fix += size;
|
||
fix_new (fragP, old_fr_fix, size,
|
||
fragP->fr_symbol,
|
||
fragP->fr_offset, 1,
|
||
(GOT_symbol && /* Not quite right - we should switch on
|
||
presence of @PLT, but I cannot see how
|
||
to get to that from here. We should have
|
||
done this in md_assemble to really
|
||
get it right all of the time, but I
|
||
think it does not matter that much, as
|
||
this will be right most of the time. ERY*/
|
||
S_GET_SEGMENT(fragP->fr_symbol) == undefined_section)
|
||
? BFD_RELOC_386_PLT32 : pcrel_reloc);
|
||
break;
|
||
|
||
default:
|
||
/* This changes the byte-displacement jump 0x7N -->
|
||
the dword-displacement jump 0x0f8N */
|
||
opcode[1] = opcode[0] + 0x10;
|
||
opcode[0] = TWO_BYTE_OPCODE_ESCAPE; /* two-byte escape */
|
||
fragP->fr_fix += 1 + size; /* we've added an opcode byte */
|
||
fix_new (fragP, old_fr_fix + 1, size,
|
||
fragP->fr_symbol,
|
||
fragP->fr_offset, 1,
|
||
(GOT_symbol && /* Not quite right - we should switch on
|
||
presence of @PLT, but I cannot see how
|
||
to get to that from here. ERY */
|
||
S_GET_SEGMENT(fragP->fr_symbol) == undefined_section)
|
||
? BFD_RELOC_386_PLT32 : pcrel_reloc);
|
||
break;
|
||
}
|
||
frag_wane (fragP);
|
||
}
|
||
return (fragP->fr_var + fragP->fr_fix - old_fr_fix);
|
||
} /* md_estimate_size_before_relax() */
|
||
|
||
/*
|
||
* md_convert_frag();
|
||
*
|
||
* Called after relax() is finished.
|
||
* In: Address of frag.
|
||
* fr_type == rs_machine_dependent.
|
||
* fr_subtype is what the address relaxed to.
|
||
*
|
||
* Out: Any fixSs and constants are set up.
|
||
* Caller will turn frag into a ".space 0".
|
||
*/
|
||
#ifndef BFD_ASSEMBLER
|
||
void
|
||
md_convert_frag (headers, sec, fragP)
|
||
object_headers *headers;
|
||
segT sec;
|
||
register fragS *fragP;
|
||
#else
|
||
void
|
||
md_convert_frag (abfd, sec, fragP)
|
||
bfd *abfd;
|
||
segT sec;
|
||
register fragS *fragP;
|
||
#endif
|
||
{
|
||
register unsigned char *opcode;
|
||
unsigned char *where_to_put_displacement = NULL;
|
||
unsigned int target_address;
|
||
unsigned int opcode_address;
|
||
unsigned int extension = 0;
|
||
int displacement_from_opcode_start;
|
||
|
||
opcode = (unsigned char *) fragP->fr_opcode;
|
||
|
||
/* Address we want to reach in file space. */
|
||
target_address = S_GET_VALUE (fragP->fr_symbol) + fragP->fr_offset;
|
||
#ifdef BFD_ASSEMBLER /* not needed otherwise? */
|
||
target_address += fragP->fr_symbol->sy_frag->fr_address;
|
||
#endif
|
||
|
||
/* Address opcode resides at in file space. */
|
||
opcode_address = fragP->fr_address + fragP->fr_fix;
|
||
|
||
/* Displacement from opcode start to fill into instruction. */
|
||
displacement_from_opcode_start = target_address - opcode_address;
|
||
|
||
switch (fragP->fr_subtype)
|
||
{
|
||
case ENCODE_RELAX_STATE (COND_JUMP, SMALL):
|
||
case ENCODE_RELAX_STATE (COND_JUMP, SMALL16):
|
||
case ENCODE_RELAX_STATE (UNCOND_JUMP, SMALL):
|
||
case ENCODE_RELAX_STATE (UNCOND_JUMP, SMALL16):
|
||
/* don't have to change opcode */
|
||
extension = 1; /* 1 opcode + 1 displacement */
|
||
where_to_put_displacement = &opcode[1];
|
||
break;
|
||
|
||
case ENCODE_RELAX_STATE (COND_JUMP, BIG):
|
||
extension = 5; /* 2 opcode + 4 displacement */
|
||
opcode[1] = opcode[0] + 0x10;
|
||
opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
|
||
where_to_put_displacement = &opcode[2];
|
||
break;
|
||
|
||
case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG):
|
||
extension = 4; /* 1 opcode + 4 displacement */
|
||
opcode[0] = 0xe9;
|
||
where_to_put_displacement = &opcode[1];
|
||
break;
|
||
|
||
case ENCODE_RELAX_STATE (COND_JUMP, BIG16):
|
||
extension = 3; /* 2 opcode + 2 displacement */
|
||
opcode[1] = opcode[0] + 0x10;
|
||
opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
|
||
where_to_put_displacement = &opcode[2];
|
||
break;
|
||
|
||
case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16):
|
||
extension = 2; /* 1 opcode + 2 displacement */
|
||
opcode[0] = 0xe9;
|
||
where_to_put_displacement = &opcode[1];
|
||
break;
|
||
|
||
default:
|
||
BAD_CASE (fragP->fr_subtype);
|
||
break;
|
||
}
|
||
/* now put displacement after opcode */
|
||
md_number_to_chars ((char *) where_to_put_displacement,
|
||
(valueT) (displacement_from_opcode_start - extension),
|
||
SIZE_FROM_RELAX_STATE (fragP->fr_subtype));
|
||
fragP->fr_fix += extension;
|
||
}
|
||
|
||
|
||
int md_short_jump_size = 2; /* size of byte displacement jmp */
|
||
int md_long_jump_size = 5; /* size of dword displacement jmp */
|
||
const int md_reloc_size = 8; /* Size of relocation record */
|
||
|
||
void
|
||
md_create_short_jump (ptr, from_addr, to_addr, frag, to_symbol)
|
||
char *ptr;
|
||
addressT from_addr, to_addr;
|
||
fragS *frag;
|
||
symbolS *to_symbol;
|
||
{
|
||
long offset;
|
||
|
||
offset = to_addr - (from_addr + 2);
|
||
md_number_to_chars (ptr, (valueT) 0xeb, 1); /* opcode for byte-disp jump */
|
||
md_number_to_chars (ptr + 1, (valueT) offset, 1);
|
||
}
|
||
|
||
void
|
||
md_create_long_jump (ptr, from_addr, to_addr, frag, to_symbol)
|
||
char *ptr;
|
||
addressT from_addr, to_addr;
|
||
fragS *frag;
|
||
symbolS *to_symbol;
|
||
{
|
||
long offset;
|
||
|
||
if (flag_do_long_jump)
|
||
{
|
||
offset = to_addr - S_GET_VALUE (to_symbol);
|
||
md_number_to_chars (ptr, (valueT) 0xe9, 1);/* opcode for long jmp */
|
||
md_number_to_chars (ptr + 1, (valueT) offset, 4);
|
||
fix_new (frag, (ptr + 1) - frag->fr_literal, 4,
|
||
to_symbol, (offsetT) 0, 0, BFD_RELOC_32);
|
||
}
|
||
else
|
||
{
|
||
offset = to_addr - (from_addr + 5);
|
||
md_number_to_chars (ptr, (valueT) 0xe9, 1);
|
||
md_number_to_chars (ptr + 1, (valueT) offset, 4);
|
||
}
|
||
}
|
||
|
||
/* Apply a fixup (fixS) to segment data, once it has been determined
|
||
by our caller that we have all the info we need to fix it up.
|
||
|
||
On the 386, immediates, displacements, and data pointers are all in
|
||
the same (little-endian) format, so we don't need to care about which
|
||
we are handling. */
|
||
|
||
int
|
||
md_apply_fix3 (fixP, valp, seg)
|
||
fixS *fixP; /* The fix we're to put in. */
|
||
valueT *valp; /* Pointer to the value of the bits. */
|
||
segT seg; /* Segment fix is from. */
|
||
{
|
||
register char *p = fixP->fx_where + fixP->fx_frag->fr_literal;
|
||
valueT value = *valp;
|
||
|
||
if (fixP->fx_r_type == BFD_RELOC_32 && fixP->fx_pcrel)
|
||
fixP->fx_r_type = BFD_RELOC_32_PCREL;
|
||
|
||
#if defined (BFD_ASSEMBLER) && !defined (TE_Mach)
|
||
/*
|
||
* This is a hack. There should be a better way to
|
||
* handle this.
|
||
*/
|
||
if (fixP->fx_r_type == BFD_RELOC_32_PCREL && fixP->fx_addsy)
|
||
{
|
||
#ifndef OBJ_AOUT
|
||
if (OUTPUT_FLAVOR == bfd_target_elf_flavour
|
||
|| OUTPUT_FLAVOR == bfd_target_coff_flavour)
|
||
value += fixP->fx_where + fixP->fx_frag->fr_address;
|
||
#endif
|
||
#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
|
||
if (OUTPUT_FLAVOR == bfd_target_elf_flavour
|
||
&& (S_GET_SEGMENT (fixP->fx_addsy) == seg
|
||
|| (fixP->fx_addsy->bsym->flags & BSF_SECTION_SYM) != 0)
|
||
&& ! S_IS_EXTERNAL (fixP->fx_addsy)
|
||
&& ! S_IS_WEAK (fixP->fx_addsy)
|
||
&& S_IS_DEFINED (fixP->fx_addsy)
|
||
&& ! S_IS_COMMON (fixP->fx_addsy))
|
||
{
|
||
/* Yes, we add the values in twice. This is because
|
||
bfd_perform_relocation subtracts them out again. I think
|
||
bfd_perform_relocation is broken, but I don't dare change
|
||
it. FIXME. */
|
||
value += fixP->fx_where + fixP->fx_frag->fr_address;
|
||
}
|
||
#endif
|
||
#if defined (OBJ_COFF) && defined (TE_PE)
|
||
/* For some reason, the PE format does not store a section
|
||
address offset for a PC relative symbol. */
|
||
if (S_GET_SEGMENT (fixP->fx_addsy) != seg)
|
||
value += md_pcrel_from (fixP);
|
||
#endif
|
||
}
|
||
|
||
/* Fix a few things - the dynamic linker expects certain values here,
|
||
and we must not dissappoint it. */
|
||
#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
|
||
if (OUTPUT_FLAVOR == bfd_target_elf_flavour
|
||
&& fixP->fx_addsy)
|
||
switch (fixP->fx_r_type) {
|
||
case BFD_RELOC_386_PLT32:
|
||
/* Make the jump instruction point to the address of the operand. At
|
||
runtime we merely add the offset to the actual PLT entry. */
|
||
value = 0xfffffffc;
|
||
break;
|
||
case BFD_RELOC_386_GOTPC:
|
||
/*
|
||
* This is tough to explain. We end up with this one if we have
|
||
* operands that look like "_GLOBAL_OFFSET_TABLE_+[.-.L284]". The goal
|
||
* here is to obtain the absolute address of the GOT, and it is strongly
|
||
* preferable from a performance point of view to avoid using a runtime
|
||
* relocation for this. The actual sequence of instructions often look
|
||
* something like:
|
||
*
|
||
* call .L66
|
||
* .L66:
|
||
* popl %ebx
|
||
* addl $_GLOBAL_OFFSET_TABLE_+[.-.L66],%ebx
|
||
*
|
||
* The call and pop essentially return the absolute address of
|
||
* the label .L66 and store it in %ebx. The linker itself will
|
||
* ultimately change the first operand of the addl so that %ebx points to
|
||
* the GOT, but to keep things simple, the .o file must have this operand
|
||
* set so that it generates not the absolute address of .L66, but the
|
||
* absolute address of itself. This allows the linker itself simply
|
||
* treat a GOTPC relocation as asking for a pcrel offset to the GOT to be
|
||
* added in, and the addend of the relocation is stored in the operand
|
||
* field for the instruction itself.
|
||
*
|
||
* Our job here is to fix the operand so that it would add the correct
|
||
* offset so that %ebx would point to itself. The thing that is tricky is
|
||
* that .-.L66 will point to the beginning of the instruction, so we need
|
||
* to further modify the operand so that it will point to itself.
|
||
* There are other cases where you have something like:
|
||
*
|
||
* .long $_GLOBAL_OFFSET_TABLE_+[.-.L66]
|
||
*
|
||
* and here no correction would be required. Internally in the assembler
|
||
* we treat operands of this form as not being pcrel since the '.' is
|
||
* explicitly mentioned, and I wonder whether it would simplify matters
|
||
* to do it this way. Who knows. In earlier versions of the PIC patches,
|
||
* the pcrel_adjust field was used to store the correction, but since the
|
||
* expression is not pcrel, I felt it would be confusing to do it this way.
|
||
*/
|
||
value -= 1;
|
||
break;
|
||
case BFD_RELOC_386_GOT32:
|
||
value = 0; /* Fully resolved at runtime. No addend. */
|
||
break;
|
||
case BFD_RELOC_386_GOTOFF:
|
||
break;
|
||
|
||
case BFD_RELOC_VTABLE_INHERIT:
|
||
case BFD_RELOC_VTABLE_ENTRY:
|
||
fixP->fx_done = 0;
|
||
return 1;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
#endif
|
||
|
||
#endif
|
||
md_number_to_chars (p, value, fixP->fx_size);
|
||
|
||
return 1;
|
||
}
|
||
|
||
#if 0
|
||
/* This is never used. */
|
||
long /* Knows about the byte order in a word. */
|
||
md_chars_to_number (con, nbytes)
|
||
unsigned char con[]; /* Low order byte 1st. */
|
||
int nbytes; /* Number of bytes in the input. */
|
||
{
|
||
long retval;
|
||
for (retval = 0, con += nbytes - 1; nbytes--; con--)
|
||
{
|
||
retval <<= BITS_PER_CHAR;
|
||
retval |= *con;
|
||
}
|
||
return retval;
|
||
}
|
||
#endif /* 0 */
|
||
|
||
|
||
#define MAX_LITTLENUMS 6
|
||
|
||
/* Turn the string pointed to by litP into a floating point constant of type
|
||
type, and emit the appropriate bytes. The number of LITTLENUMS emitted
|
||
is stored in *sizeP . An error message is returned, or NULL on OK. */
|
||
char *
|
||
md_atof (type, litP, sizeP)
|
||
char type;
|
||
char *litP;
|
||
int *sizeP;
|
||
{
|
||
int prec;
|
||
LITTLENUM_TYPE words[MAX_LITTLENUMS];
|
||
LITTLENUM_TYPE *wordP;
|
||
char *t;
|
||
|
||
switch (type)
|
||
{
|
||
case 'f':
|
||
case 'F':
|
||
prec = 2;
|
||
break;
|
||
|
||
case 'd':
|
||
case 'D':
|
||
prec = 4;
|
||
break;
|
||
|
||
case 'x':
|
||
case 'X':
|
||
prec = 5;
|
||
break;
|
||
|
||
default:
|
||
*sizeP = 0;
|
||
return _("Bad call to md_atof ()");
|
||
}
|
||
t = atof_ieee (input_line_pointer, type, words);
|
||
if (t)
|
||
input_line_pointer = t;
|
||
|
||
*sizeP = prec * sizeof (LITTLENUM_TYPE);
|
||
/* This loops outputs the LITTLENUMs in REVERSE order; in accord with
|
||
the bigendian 386. */
|
||
for (wordP = words + prec - 1; prec--;)
|
||
{
|
||
md_number_to_chars (litP, (valueT) (*wordP--), sizeof (LITTLENUM_TYPE));
|
||
litP += sizeof (LITTLENUM_TYPE);
|
||
}
|
||
return 0;
|
||
}
|
||
|
||
char output_invalid_buf[8];
|
||
|
||
static char *
|
||
output_invalid (c)
|
||
char c;
|
||
{
|
||
if (isprint (c))
|
||
sprintf (output_invalid_buf, "'%c'", c);
|
||
else
|
||
sprintf (output_invalid_buf, "(0x%x)", (unsigned) c);
|
||
return output_invalid_buf;
|
||
}
|
||
|
||
/* REG_STRING starts *before* REGISTER_PREFIX. */
|
||
|
||
static const reg_entry *
|
||
parse_register (reg_string, end_op)
|
||
char *reg_string;
|
||
char **end_op;
|
||
{
|
||
register char *s = reg_string;
|
||
register char *p;
|
||
char reg_name_given[MAX_REG_NAME_SIZE + 1];
|
||
const reg_entry *r;
|
||
|
||
/* Skip REGISTER_PREFIX and possible whitespace. */
|
||
++s;
|
||
if (is_space_char (*s))
|
||
++s;
|
||
|
||
p = reg_name_given;
|
||
while ((*p++ = register_chars[(unsigned char) *s++]) != '\0')
|
||
{
|
||
if (p >= reg_name_given + MAX_REG_NAME_SIZE)
|
||
{
|
||
*p = '\0';
|
||
as_bad (_("bad register name `%s'"), reg_name_given);
|
||
return (const reg_entry *) NULL;
|
||
}
|
||
}
|
||
|
||
*end_op = s - 1;
|
||
|
||
r = (const reg_entry *) hash_find (reg_hash, reg_name_given);
|
||
|
||
if (r == NULL)
|
||
{
|
||
as_bad (_("bad register name `%s'"), reg_name_given);
|
||
return (const reg_entry *) NULL;
|
||
}
|
||
|
||
return r;
|
||
}
|
||
|
||
#ifdef OBJ_ELF
|
||
CONST char *md_shortopts = "kmVQ:";
|
||
#else
|
||
CONST char *md_shortopts = "m";
|
||
#endif
|
||
struct option md_longopts[] = {
|
||
{NULL, no_argument, NULL, 0}
|
||
};
|
||
size_t md_longopts_size = sizeof (md_longopts);
|
||
|
||
int
|
||
md_parse_option (c, arg)
|
||
int c;
|
||
char *arg;
|
||
{
|
||
switch (c)
|
||
{
|
||
case 'm':
|
||
flag_do_long_jump = 1;
|
||
break;
|
||
|
||
#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
|
||
/* -k: Ignore for FreeBSD compatibility. */
|
||
case 'k':
|
||
break;
|
||
|
||
/* -V: SVR4 argument to print version ID. */
|
||
case 'V':
|
||
print_version_id ();
|
||
break;
|
||
|
||
/* -Qy, -Qn: SVR4 arguments controlling whether a .comment section
|
||
should be emitted or not. FIXME: Not implemented. */
|
||
case 'Q':
|
||
break;
|
||
#endif
|
||
|
||
default:
|
||
return 0;
|
||
}
|
||
return 1;
|
||
}
|
||
|
||
void
|
||
md_show_usage (stream)
|
||
FILE *stream;
|
||
{
|
||
fprintf (stream, _("\
|
||
-m do long jump\n"));
|
||
}
|
||
|
||
#ifdef BFD_ASSEMBLER
|
||
#ifdef OBJ_MAYBE_ELF
|
||
#ifdef OBJ_MAYBE_COFF
|
||
|
||
/* Pick the target format to use. */
|
||
|
||
const char *
|
||
i386_target_format ()
|
||
{
|
||
switch (OUTPUT_FLAVOR)
|
||
{
|
||
case bfd_target_coff_flavour:
|
||
return "coff-i386";
|
||
case bfd_target_elf_flavour:
|
||
return "elf32-i386";
|
||
default:
|
||
abort ();
|
||
return NULL;
|
||
}
|
||
}
|
||
|
||
#endif /* OBJ_MAYBE_COFF */
|
||
#endif /* OBJ_MAYBE_ELF */
|
||
#endif /* BFD_ASSEMBLER */
|
||
|
||
/* ARGSUSED */
|
||
symbolS *
|
||
md_undefined_symbol (name)
|
||
char *name;
|
||
{
|
||
if (*name == '_' && *(name+1) == 'G'
|
||
&& strcmp(name, GLOBAL_OFFSET_TABLE_NAME) == 0)
|
||
{
|
||
if (!GOT_symbol)
|
||
{
|
||
if (symbol_find (name))
|
||
as_bad (_("GOT already in symbol table"));
|
||
GOT_symbol = symbol_new (name, undefined_section,
|
||
(valueT) 0, &zero_address_frag);
|
||
};
|
||
return GOT_symbol;
|
||
}
|
||
return 0;
|
||
}
|
||
|
||
/* Round up a section size to the appropriate boundary. */
|
||
valueT
|
||
md_section_align (segment, size)
|
||
segT segment;
|
||
valueT size;
|
||
{
|
||
#ifdef OBJ_AOUT
|
||
#ifdef BFD_ASSEMBLER
|
||
/* For a.out, force the section size to be aligned. If we don't do
|
||
this, BFD will align it for us, but it will not write out the
|
||
final bytes of the section. This may be a bug in BFD, but it is
|
||
easier to fix it here since that is how the other a.out targets
|
||
work. */
|
||
int align;
|
||
|
||
align = bfd_get_section_alignment (stdoutput, segment);
|
||
size = ((size + (1 << align) - 1) & ((valueT) -1 << align));
|
||
#endif
|
||
#endif
|
||
|
||
return size;
|
||
}
|
||
|
||
/* On the i386, PC-relative offsets are relative to the start of the
|
||
next instruction. That is, the address of the offset, plus its
|
||
size, since the offset is always the last part of the insn. */
|
||
|
||
long
|
||
md_pcrel_from (fixP)
|
||
fixS *fixP;
|
||
{
|
||
return fixP->fx_size + fixP->fx_where + fixP->fx_frag->fr_address;
|
||
}
|
||
|
||
#ifndef I386COFF
|
||
|
||
static void
|
||
s_bss (ignore)
|
||
int ignore;
|
||
{
|
||
register int temp;
|
||
|
||
temp = get_absolute_expression ();
|
||
subseg_set (bss_section, (subsegT) temp);
|
||
demand_empty_rest_of_line ();
|
||
}
|
||
|
||
#endif
|
||
|
||
|
||
#ifdef BFD_ASSEMBLER
|
||
|
||
void
|
||
i386_validate_fix (fixp)
|
||
fixS *fixp;
|
||
{
|
||
if (fixp->fx_subsy && fixp->fx_subsy == GOT_symbol)
|
||
{
|
||
fixp->fx_r_type = BFD_RELOC_386_GOTOFF;
|
||
fixp->fx_subsy = 0;
|
||
}
|
||
}
|
||
|
||
#define F(SZ,PCREL) (((SZ) << 1) + (PCREL))
|
||
#define MAP(SZ,PCREL,TYPE) case F(SZ,PCREL): code = (TYPE); break
|
||
|
||
arelent *
|
||
tc_gen_reloc (section, fixp)
|
||
asection *section;
|
||
fixS *fixp;
|
||
{
|
||
arelent *rel;
|
||
bfd_reloc_code_real_type code;
|
||
|
||
switch (fixp->fx_r_type)
|
||
{
|
||
case BFD_RELOC_386_PLT32:
|
||
case BFD_RELOC_386_GOT32:
|
||
case BFD_RELOC_386_GOTOFF:
|
||
case BFD_RELOC_386_GOTPC:
|
||
case BFD_RELOC_RVA:
|
||
case BFD_RELOC_VTABLE_ENTRY:
|
||
case BFD_RELOC_VTABLE_INHERIT:
|
||
code = fixp->fx_r_type;
|
||
break;
|
||
default:
|
||
switch (F (fixp->fx_size, fixp->fx_pcrel))
|
||
{
|
||
MAP (1, 0, BFD_RELOC_8);
|
||
MAP (2, 0, BFD_RELOC_16);
|
||
MAP (4, 0, BFD_RELOC_32);
|
||
MAP (1, 1, BFD_RELOC_8_PCREL);
|
||
MAP (2, 1, BFD_RELOC_16_PCREL);
|
||
MAP (4, 1, BFD_RELOC_32_PCREL);
|
||
default:
|
||
if (fixp->fx_pcrel)
|
||
as_bad (_("Can not do %d byte pc-relative relocation"),
|
||
fixp->fx_size);
|
||
else
|
||
as_bad (_("Can not do %d byte relocation"), fixp->fx_size);
|
||
code = BFD_RELOC_32;
|
||
break;
|
||
}
|
||
break;
|
||
}
|
||
#undef MAP
|
||
#undef F
|
||
|
||
if (code == BFD_RELOC_32
|
||
&& GOT_symbol
|
||
&& fixp->fx_addsy == GOT_symbol)
|
||
code = BFD_RELOC_386_GOTPC;
|
||
|
||
rel = (arelent *) xmalloc (sizeof (arelent));
|
||
rel->sym_ptr_ptr = &fixp->fx_addsy->bsym;
|
||
|
||
rel->address = fixp->fx_frag->fr_address + fixp->fx_where;
|
||
/* HACK: Since i386 ELF uses Rel instead of Rela, encode the
|
||
vtable entry to be used in the relocation's section offset. */
|
||
if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
|
||
rel->address = fixp->fx_offset;
|
||
|
||
if (fixp->fx_pcrel)
|
||
rel->addend = fixp->fx_addnumber;
|
||
else
|
||
rel->addend = 0;
|
||
|
||
rel->howto = bfd_reloc_type_lookup (stdoutput, code);
|
||
if (rel->howto == NULL)
|
||
{
|
||
as_bad_where (fixp->fx_file, fixp->fx_line,
|
||
_("Cannot represent relocation type %s"),
|
||
bfd_get_reloc_code_name (code));
|
||
/* Set howto to a garbage value so that we can keep going. */
|
||
rel->howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_32);
|
||
assert (rel->howto != NULL);
|
||
}
|
||
|
||
return rel;
|
||
}
|
||
|
||
#else /* ! BFD_ASSEMBLER */
|
||
|
||
#if (defined(OBJ_AOUT) | defined(OBJ_BOUT))
|
||
void
|
||
tc_aout_fix_to_chars (where, fixP, segment_address_in_file)
|
||
char *where;
|
||
fixS *fixP;
|
||
relax_addressT segment_address_in_file;
|
||
{
|
||
/*
|
||
* In: length of relocation (or of address) in chars: 1, 2 or 4.
|
||
* Out: GNU LD relocation length code: 0, 1, or 2.
|
||
*/
|
||
|
||
static const unsigned char nbytes_r_length[] = {42, 0, 1, 42, 2};
|
||
long r_symbolnum;
|
||
|
||
know (fixP->fx_addsy != NULL);
|
||
|
||
md_number_to_chars (where,
|
||
(valueT) (fixP->fx_frag->fr_address
|
||
+ fixP->fx_where - segment_address_in_file),
|
||
4);
|
||
|
||
r_symbolnum = (S_IS_DEFINED (fixP->fx_addsy)
|
||
? S_GET_TYPE (fixP->fx_addsy)
|
||
: fixP->fx_addsy->sy_number);
|
||
|
||
where[6] = (r_symbolnum >> 16) & 0x0ff;
|
||
where[5] = (r_symbolnum >> 8) & 0x0ff;
|
||
where[4] = r_symbolnum & 0x0ff;
|
||
where[7] = ((((!S_IS_DEFINED (fixP->fx_addsy)) << 3) & 0x08)
|
||
| ((nbytes_r_length[fixP->fx_size] << 1) & 0x06)
|
||
| (((fixP->fx_pcrel << 0) & 0x01) & 0x0f));
|
||
}
|
||
|
||
#endif /* OBJ_AOUT or OBJ_BOUT */
|
||
|
||
#if defined (I386COFF)
|
||
|
||
short
|
||
tc_coff_fix2rtype (fixP)
|
||
fixS *fixP;
|
||
{
|
||
if (fixP->fx_r_type == R_IMAGEBASE)
|
||
return R_IMAGEBASE;
|
||
|
||
return (fixP->fx_pcrel ?
|
||
(fixP->fx_size == 1 ? R_PCRBYTE :
|
||
fixP->fx_size == 2 ? R_PCRWORD :
|
||
R_PCRLONG) :
|
||
(fixP->fx_size == 1 ? R_RELBYTE :
|
||
fixP->fx_size == 2 ? R_RELWORD :
|
||
R_DIR32));
|
||
}
|
||
|
||
int
|
||
tc_coff_sizemachdep (frag)
|
||
fragS *frag;
|
||
{
|
||
if (frag->fr_next)
|
||
return (frag->fr_next->fr_address - frag->fr_address);
|
||
else
|
||
return 0;
|
||
}
|
||
|
||
#endif /* I386COFF */
|
||
|
||
#endif /* BFD_ASSEMBLER? */
|
||
|
||
/* end of tc-i386.c */
|