old-cross-binutils/gdb/mips-linux-tdep.c
Andrew Cagney 627003499d 2003-09-17 Andrew Cagney <cagney@redhat.com>
* gdbarch.sh (DEPRECATED_REGISTER_BYTE): Rename REGISTER_BYTE.
	* gdbarch.h, gdbarch.c: Regenerate.
	* arm-linux-tdep.c, core-sol2.c, cris-tdep.c: Update.
	* d10v-tdep.c, frame.c: Update.
	* hppa-tdep.c, hppab-nat.c, hppah-nat.c, hppam3-nat.c: Update.
	* hpux-thread.c, i386gnu-nat.c, ia64-aix-nat.c: Update.
	* ia64-linux-nat.c, irix5-nat.c, lynx-nat.c, m68knbsd-nat.c: Update.
	* mcore-tdep.c, mips-linux-tdep.c, mips-tdep.c: Update.
	* mipsv4-nat.c, mn10300-tdep.c, ns32k-tdep.c: Update.
	* ns32knbsd-nat.c, ppc-bdm.c, regcache.c, remote-sds.c: Update.
	* remote-vx68.c, remote-vxmips.c, remote-vxsparc.c: Update.
	* remote.c, rs6000-tdep.c, s390-tdep.c, sh64-tdep.c: Update.
	* sparc-nat.c, sparc-tdep.c, sun3-nat.c, v850-tdep.c: Update.
	* v850ice.c, vax-tdep.c, xstormy16-tdep.c: Update.
	* config/m68k/tm-cisco.h, config/m68k/tm-delta68.h: Update.
	* config/pa/nm-hppah.h: Update.

2003-09-17  Andrew Cagney  <cagney@redhat.com>

	* mi/mi-main.c: Rename REGISTER_BYTE to DEPRECATED_REGISTER_BYTE.
2003-09-17 14:24:31 +00:00

730 lines
19 KiB
C

/* Target-dependent code for GNU/Linux on MIPS processors.
Copyright 2001, 2002 Free Software Foundation, Inc.
This file is part of GDB.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA. */
#include "defs.h"
#include "gdbcore.h"
#include "target.h"
#include "solib-svr4.h"
#include "osabi.h"
#include "mips-tdep.h"
#include "gdb_string.h"
#include "gdb_assert.h"
/* Copied from <asm/elf.h>. */
#define ELF_NGREG 45
#define ELF_NFPREG 33
typedef unsigned char elf_greg_t[4];
typedef elf_greg_t elf_gregset_t[ELF_NGREG];
typedef unsigned char elf_fpreg_t[8];
typedef elf_fpreg_t elf_fpregset_t[ELF_NFPREG];
/* 0 - 31 are integer registers, 32 - 63 are fp registers. */
#define FPR_BASE 32
#define PC 64
#define CAUSE 65
#define BADVADDR 66
#define MMHI 67
#define MMLO 68
#define FPC_CSR 69
#define FPC_EIR 70
#define EF_REG0 6
#define EF_REG31 37
#define EF_LO 38
#define EF_HI 39
#define EF_CP0_EPC 40
#define EF_CP0_BADVADDR 41
#define EF_CP0_STATUS 42
#define EF_CP0_CAUSE 43
#define EF_SIZE 180
/* Figure out where the longjmp will land.
We expect the first arg to be a pointer to the jmp_buf structure from
which we extract the pc (MIPS_LINUX_JB_PC) that we will land at. The pc
is copied into PC. This routine returns 1 on success. */
#define MIPS_LINUX_JB_ELEMENT_SIZE 4
#define MIPS_LINUX_JB_PC 0
static int
mips_linux_get_longjmp_target (CORE_ADDR *pc)
{
CORE_ADDR jb_addr;
char buf[TARGET_PTR_BIT / TARGET_CHAR_BIT];
jb_addr = read_register (A0_REGNUM);
if (target_read_memory (jb_addr
+ MIPS_LINUX_JB_PC * MIPS_LINUX_JB_ELEMENT_SIZE,
buf, TARGET_PTR_BIT / TARGET_CHAR_BIT))
return 0;
*pc = extract_unsigned_integer (buf, TARGET_PTR_BIT / TARGET_CHAR_BIT);
return 1;
}
/* Transform the bits comprising a 32-bit register to the right
size for supply_register(). This is needed when MIPS_REGSIZE is 8. */
static void
supply_32bit_reg (int regnum, const void *addr)
{
char buf[MAX_REGISTER_SIZE];
store_signed_integer (buf, REGISTER_RAW_SIZE (regnum),
extract_signed_integer (addr, 4));
supply_register (regnum, buf);
}
/* Unpack an elf_gregset_t into GDB's register cache. */
void
supply_gregset (elf_gregset_t *gregsetp)
{
int regi;
elf_greg_t *regp = *gregsetp;
char zerobuf[MAX_REGISTER_SIZE];
memset (zerobuf, 0, MAX_REGISTER_SIZE);
for (regi = EF_REG0; regi <= EF_REG31; regi++)
supply_32bit_reg ((regi - EF_REG0), (char *)(regp + regi));
supply_32bit_reg (LO_REGNUM, (char *)(regp + EF_LO));
supply_32bit_reg (HI_REGNUM, (char *)(regp + EF_HI));
supply_32bit_reg (PC_REGNUM, (char *)(regp + EF_CP0_EPC));
supply_32bit_reg (BADVADDR_REGNUM, (char *)(regp + EF_CP0_BADVADDR));
supply_32bit_reg (PS_REGNUM, (char *)(regp + EF_CP0_STATUS));
supply_32bit_reg (CAUSE_REGNUM, (char *)(regp + EF_CP0_CAUSE));
/* Fill inaccessible registers with zero. */
supply_register (UNUSED_REGNUM, zerobuf);
for (regi = FIRST_EMBED_REGNUM; regi < LAST_EMBED_REGNUM; regi++)
supply_register (regi, zerobuf);
}
/* Pack our registers (or one register) into an elf_gregset_t. */
void
fill_gregset (elf_gregset_t *gregsetp, int regno)
{
int regaddr, regi;
elf_greg_t *regp = *gregsetp;
void *dst;
if (regno == -1)
{
memset (regp, 0, sizeof (elf_gregset_t));
for (regi = 0; regi < 32; regi++)
fill_gregset (gregsetp, regi);
fill_gregset (gregsetp, LO_REGNUM);
fill_gregset (gregsetp, HI_REGNUM);
fill_gregset (gregsetp, PC_REGNUM);
fill_gregset (gregsetp, BADVADDR_REGNUM);
fill_gregset (gregsetp, PS_REGNUM);
fill_gregset (gregsetp, CAUSE_REGNUM);
return;
}
if (regno < 32)
{
dst = regp + regno + EF_REG0;
regcache_collect (regno, dst);
return;
}
regaddr = -1;
switch (regno)
{
case LO_REGNUM:
regaddr = EF_LO;
break;
case HI_REGNUM:
regaddr = EF_HI;
break;
case PC_REGNUM:
regaddr = EF_CP0_EPC;
break;
case BADVADDR_REGNUM:
regaddr = EF_CP0_BADVADDR;
break;
case PS_REGNUM:
regaddr = EF_CP0_STATUS;
break;
case CAUSE_REGNUM:
regaddr = EF_CP0_CAUSE;
break;
}
if (regaddr != -1)
{
dst = regp + regaddr;
regcache_collect (regno, dst);
}
}
/* Likewise, unpack an elf_fpregset_t. */
void
supply_fpregset (elf_fpregset_t *fpregsetp)
{
int regi;
char zerobuf[MAX_REGISTER_SIZE];
memset (zerobuf, 0, MAX_REGISTER_SIZE);
for (regi = 0; regi < 32; regi++)
supply_register (FP0_REGNUM + regi,
(char *)(*fpregsetp + regi));
supply_register (FCRCS_REGNUM, (char *)(*fpregsetp + 32));
/* FIXME: how can we supply FCRIR_REGNUM? The ABI doesn't tell us. */
supply_register (FCRIR_REGNUM, zerobuf);
}
/* Likewise, pack one or all floating point registers into an
elf_fpregset_t. */
void
fill_fpregset (elf_fpregset_t *fpregsetp, int regno)
{
char *from, *to;
if ((regno >= FP0_REGNUM) && (regno < FP0_REGNUM + 32))
{
from = (char *) &deprecated_registers[DEPRECATED_REGISTER_BYTE (regno)];
to = (char *) (*fpregsetp + regno - FP0_REGNUM);
memcpy (to, from, REGISTER_RAW_SIZE (regno - FP0_REGNUM));
}
else if (regno == FCRCS_REGNUM)
{
from = (char *) &deprecated_registers[DEPRECATED_REGISTER_BYTE (regno)];
to = (char *) (*fpregsetp + 32);
memcpy (to, from, REGISTER_RAW_SIZE (regno));
}
else if (regno == -1)
{
int regi;
for (regi = 0; regi < 32; regi++)
fill_fpregset (fpregsetp, FP0_REGNUM + regi);
fill_fpregset(fpregsetp, FCRCS_REGNUM);
}
}
/* Map gdb internal register number to ptrace ``address''.
These ``addresses'' are normally defined in <asm/ptrace.h>. */
static CORE_ADDR
mips_linux_register_addr (int regno, CORE_ADDR blockend)
{
int regaddr;
if (regno < 0 || regno >= NUM_REGS)
error ("Bogon register number %d.", regno);
if (regno < 32)
regaddr = regno;
else if ((regno >= FP0_REGNUM) && (regno < FP0_REGNUM + 32))
regaddr = FPR_BASE + (regno - FP0_REGNUM);
else if (regno == PC_REGNUM)
regaddr = PC;
else if (regno == CAUSE_REGNUM)
regaddr = CAUSE;
else if (regno == BADVADDR_REGNUM)
regaddr = BADVADDR;
else if (regno == LO_REGNUM)
regaddr = MMLO;
else if (regno == HI_REGNUM)
regaddr = MMHI;
else if (regno == FCRCS_REGNUM)
regaddr = FPC_CSR;
else if (regno == FCRIR_REGNUM)
regaddr = FPC_EIR;
else
error ("Unknowable register number %d.", regno);
return regaddr;
}
/* Fetch (and possibly build) an appropriate link_map_offsets
structure for native GNU/Linux MIPS targets using the struct offsets
defined in link.h (but without actual reference to that file).
This makes it possible to access GNU/Linux MIPS shared libraries from a
GDB that was built on a different host platform (for cross debugging). */
static struct link_map_offsets *
mips_linux_svr4_fetch_link_map_offsets (void)
{
static struct link_map_offsets lmo;
static struct link_map_offsets *lmp = NULL;
if (lmp == NULL)
{
lmp = &lmo;
lmo.r_debug_size = 8; /* The actual size is 20 bytes, but
this is all we need. */
lmo.r_map_offset = 4;
lmo.r_map_size = 4;
lmo.link_map_size = 20;
lmo.l_addr_offset = 0;
lmo.l_addr_size = 4;
lmo.l_name_offset = 4;
lmo.l_name_size = 4;
lmo.l_next_offset = 12;
lmo.l_next_size = 4;
lmo.l_prev_offset = 16;
lmo.l_prev_size = 4;
}
return lmp;
}
/* Support for 64-bit ABIs. */
/* Copied from <asm/elf.h>. */
#define MIPS64_ELF_NGREG 45
#define MIPS64_ELF_NFPREG 33
typedef unsigned char mips64_elf_greg_t[8];
typedef mips64_elf_greg_t mips64_elf_gregset_t[MIPS64_ELF_NGREG];
typedef unsigned char mips64_elf_fpreg_t[8];
typedef mips64_elf_fpreg_t mips64_elf_fpregset_t[MIPS64_ELF_NFPREG];
/* 0 - 31 are integer registers, 32 - 63 are fp registers. */
#define MIPS64_FPR_BASE 32
#define MIPS64_PC 64
#define MIPS64_CAUSE 65
#define MIPS64_BADVADDR 66
#define MIPS64_MMHI 67
#define MIPS64_MMLO 68
#define MIPS64_FPC_CSR 69
#define MIPS64_FPC_EIR 70
#define MIPS64_EF_REG0 0
#define MIPS64_EF_REG31 31
#define MIPS64_EF_LO 32
#define MIPS64_EF_HI 33
#define MIPS64_EF_CP0_EPC 34
#define MIPS64_EF_CP0_BADVADDR 35
#define MIPS64_EF_CP0_STATUS 36
#define MIPS64_EF_CP0_CAUSE 37
#define MIPS64_EF_SIZE 304
/* Figure out where the longjmp will land.
We expect the first arg to be a pointer to the jmp_buf structure from
which we extract the pc (MIPS_LINUX_JB_PC) that we will land at. The pc
is copied into PC. This routine returns 1 on success. */
/* Details about jmp_buf. */
#define MIPS64_LINUX_JB_PC 0
static int
mips64_linux_get_longjmp_target (CORE_ADDR *pc)
{
CORE_ADDR jb_addr;
void *buf = alloca (TARGET_PTR_BIT / TARGET_CHAR_BIT);
int element_size = TARGET_PTR_BIT == 32 ? 4 : 8;
jb_addr = read_register (A0_REGNUM);
if (target_read_memory (jb_addr + MIPS64_LINUX_JB_PC * element_size,
buf, TARGET_PTR_BIT / TARGET_CHAR_BIT))
return 0;
*pc = extract_unsigned_integer (buf, TARGET_PTR_BIT / TARGET_CHAR_BIT);
return 1;
}
/* Unpack an elf_gregset_t into GDB's register cache. */
static void
mips64_supply_gregset (mips64_elf_gregset_t *gregsetp)
{
int regi;
mips64_elf_greg_t *regp = *gregsetp;
char zerobuf[MAX_REGISTER_SIZE];
memset (zerobuf, 0, MAX_REGISTER_SIZE);
for (regi = MIPS64_EF_REG0; regi <= MIPS64_EF_REG31; regi++)
supply_register ((regi - MIPS64_EF_REG0), (char *)(regp + regi));
supply_register (LO_REGNUM, (char *)(regp + MIPS64_EF_LO));
supply_register (HI_REGNUM, (char *)(regp + MIPS64_EF_HI));
supply_register (PC_REGNUM, (char *)(regp + MIPS64_EF_CP0_EPC));
supply_register (BADVADDR_REGNUM, (char *)(regp + MIPS64_EF_CP0_BADVADDR));
supply_register (PS_REGNUM, (char *)(regp + MIPS64_EF_CP0_STATUS));
supply_register (CAUSE_REGNUM, (char *)(regp + MIPS64_EF_CP0_CAUSE));
/* Fill inaccessible registers with zero. */
supply_register (UNUSED_REGNUM, zerobuf);
for (regi = FIRST_EMBED_REGNUM; regi < LAST_EMBED_REGNUM; regi++)
supply_register (regi, zerobuf);
}
/* Pack our registers (or one register) into an elf_gregset_t. */
static void
mips64_fill_gregset (mips64_elf_gregset_t *gregsetp, int regno)
{
int regaddr, regi;
mips64_elf_greg_t *regp = *gregsetp;
void *src, *dst;
if (regno == -1)
{
memset (regp, 0, sizeof (mips64_elf_gregset_t));
for (regi = 0; regi < 32; regi++)
mips64_fill_gregset (gregsetp, regi);
mips64_fill_gregset (gregsetp, LO_REGNUM);
mips64_fill_gregset (gregsetp, HI_REGNUM);
mips64_fill_gregset (gregsetp, PC_REGNUM);
mips64_fill_gregset (gregsetp, BADVADDR_REGNUM);
mips64_fill_gregset (gregsetp, PS_REGNUM);
mips64_fill_gregset (gregsetp, CAUSE_REGNUM);
return;
}
if (regno < 32)
{
dst = regp + regno + MIPS64_EF_REG0;
regcache_collect (regno, dst);
return;
}
regaddr = -1;
switch (regno)
{
case LO_REGNUM:
regaddr = MIPS64_EF_LO;
break;
case HI_REGNUM:
regaddr = MIPS64_EF_HI;
break;
case PC_REGNUM:
regaddr = MIPS64_EF_CP0_EPC;
break;
case BADVADDR_REGNUM:
regaddr = MIPS64_EF_CP0_BADVADDR;
break;
case PS_REGNUM:
regaddr = MIPS64_EF_CP0_STATUS;
break;
case CAUSE_REGNUM:
regaddr = MIPS64_EF_CP0_CAUSE;
break;
}
if (regaddr != -1)
{
dst = regp + regaddr;
regcache_collect (regno, dst);
}
}
/* Likewise, unpack an elf_fpregset_t. */
static void
mips64_supply_fpregset (mips64_elf_fpregset_t *fpregsetp)
{
int regi;
char zerobuf[MAX_REGISTER_SIZE];
memset (zerobuf, 0, MAX_REGISTER_SIZE);
for (regi = 0; regi < 32; regi++)
supply_register (FP0_REGNUM + regi,
(char *)(*fpregsetp + regi));
supply_register (FCRCS_REGNUM, (char *)(*fpregsetp + 32));
/* FIXME: how can we supply FCRIR_REGNUM? The ABI doesn't tell us. */
supply_register (FCRIR_REGNUM, zerobuf);
}
/* Likewise, pack one or all floating point registers into an
elf_fpregset_t. */
static void
mips64_fill_fpregset (mips64_elf_fpregset_t *fpregsetp, int regno)
{
char *from, *to;
if ((regno >= FP0_REGNUM) && (regno < FP0_REGNUM + 32))
{
from = (char *) &deprecated_registers[DEPRECATED_REGISTER_BYTE (regno)];
to = (char *) (*fpregsetp + regno - FP0_REGNUM);
memcpy (to, from, REGISTER_RAW_SIZE (regno - FP0_REGNUM));
}
else if (regno == FCRCS_REGNUM)
{
from = (char *) &deprecated_registers[DEPRECATED_REGISTER_BYTE (regno)];
to = (char *) (*fpregsetp + 32);
memcpy (to, from, REGISTER_RAW_SIZE (regno));
}
else if (regno == -1)
{
int regi;
for (regi = 0; regi < 32; regi++)
mips64_fill_fpregset (fpregsetp, FP0_REGNUM + regi);
mips64_fill_fpregset(fpregsetp, FCRCS_REGNUM);
}
}
/* Map gdb internal register number to ptrace ``address''.
These ``addresses'' are normally defined in <asm/ptrace.h>. */
static CORE_ADDR
mips64_linux_register_addr (int regno, CORE_ADDR blockend)
{
int regaddr;
if (regno < 0 || regno >= NUM_REGS)
error ("Bogon register number %d.", regno);
if (regno < 32)
regaddr = regno;
else if ((regno >= FP0_REGNUM) && (regno < FP0_REGNUM + 32))
regaddr = MIPS64_FPR_BASE + (regno - FP0_REGNUM);
else if (regno == PC_REGNUM)
regaddr = MIPS64_PC;
else if (regno == CAUSE_REGNUM)
regaddr = MIPS64_CAUSE;
else if (regno == BADVADDR_REGNUM)
regaddr = MIPS64_BADVADDR;
else if (regno == LO_REGNUM)
regaddr = MIPS64_MMLO;
else if (regno == HI_REGNUM)
regaddr = MIPS64_MMHI;
else if (regno == FCRCS_REGNUM)
regaddr = MIPS64_FPC_CSR;
else if (regno == FCRIR_REGNUM)
regaddr = MIPS64_FPC_EIR;
else
error ("Unknowable register number %d.", regno);
return regaddr;
}
/* Use a local version of this function to get the correct types for
regsets, until multi-arch core support is ready. */
static void
fetch_core_registers (char *core_reg_sect, unsigned core_reg_size,
int which, CORE_ADDR reg_addr)
{
elf_gregset_t gregset;
elf_fpregset_t fpregset;
mips64_elf_gregset_t gregset64;
mips64_elf_fpregset_t fpregset64;
if (which == 0)
{
if (core_reg_size == sizeof (gregset))
{
memcpy ((char *) &gregset, core_reg_sect, sizeof (gregset));
supply_gregset (&gregset);
}
else if (core_reg_size == sizeof (gregset64))
{
memcpy ((char *) &gregset64, core_reg_sect, sizeof (gregset64));
mips64_supply_gregset (&gregset64);
}
else
{
warning ("wrong size gregset struct in core file");
}
}
else if (which == 2)
{
if (core_reg_size == sizeof (fpregset))
{
memcpy ((char *) &fpregset, core_reg_sect, sizeof (fpregset));
supply_fpregset (&fpregset);
}
else if (core_reg_size == sizeof (fpregset64))
{
memcpy ((char *) &fpregset64, core_reg_sect, sizeof (fpregset64));
mips64_supply_fpregset (&fpregset64);
}
else
{
warning ("wrong size fpregset struct in core file");
}
}
}
/* Register that we are able to handle ELF file formats using standard
procfs "regset" structures. */
static struct core_fns regset_core_fns =
{
bfd_target_elf_flavour, /* core_flavour */
default_check_format, /* check_format */
default_core_sniffer, /* core_sniffer */
fetch_core_registers, /* core_read_registers */
NULL /* next */
};
/* Fetch (and possibly build) an appropriate link_map_offsets
structure for native GNU/Linux MIPS targets using the struct offsets
defined in link.h (but without actual reference to that file).
This makes it possible to access GNU/Linux MIPS shared libraries from a
GDB that was built on a different host platform (for cross debugging). */
static struct link_map_offsets *
mips64_linux_svr4_fetch_link_map_offsets (void)
{
static struct link_map_offsets lmo;
static struct link_map_offsets *lmp = NULL;
if (lmp == NULL)
{
lmp = &lmo;
lmo.r_debug_size = 16; /* The actual size is 40 bytes, but
this is all we need. */
lmo.r_map_offset = 8;
lmo.r_map_size = 8;
lmo.link_map_size = 40;
lmo.l_addr_offset = 0;
lmo.l_addr_size = 8;
lmo.l_name_offset = 8;
lmo.l_name_size = 8;
lmo.l_next_offset = 24;
lmo.l_next_size = 8;
lmo.l_prev_offset = 32;
lmo.l_prev_size = 8;
}
return lmp;
}
/* Handle for obtaining pointer to the current register_addr() function
for a given architecture. */
static struct gdbarch_data *register_addr_data;
CORE_ADDR
register_addr (int regno, CORE_ADDR blockend)
{
CORE_ADDR (*register_addr_ptr) (int, CORE_ADDR) =
gdbarch_data (current_gdbarch, register_addr_data);
gdb_assert (register_addr_ptr != 0);
return register_addr_ptr (regno, blockend);
}
static void
set_mips_linux_register_addr (struct gdbarch *gdbarch,
CORE_ADDR (*register_addr_ptr) (int, CORE_ADDR))
{
set_gdbarch_data (gdbarch, register_addr_data, register_addr_ptr);
}
static void *
init_register_addr_data (struct gdbarch *gdbarch)
{
return 0;
}
static void
mips_linux_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
{
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
enum mips_abi abi = mips_abi (gdbarch);
switch (abi)
{
case MIPS_ABI_O32:
set_gdbarch_get_longjmp_target (gdbarch,
mips_linux_get_longjmp_target);
set_solib_svr4_fetch_link_map_offsets
(gdbarch, mips_linux_svr4_fetch_link_map_offsets);
set_mips_linux_register_addr (gdbarch, mips_linux_register_addr);
break;
case MIPS_ABI_N32:
set_gdbarch_get_longjmp_target (gdbarch,
mips_linux_get_longjmp_target);
set_solib_svr4_fetch_link_map_offsets
(gdbarch, mips_linux_svr4_fetch_link_map_offsets);
set_mips_linux_register_addr (gdbarch, mips64_linux_register_addr);
break;
case MIPS_ABI_N64:
set_gdbarch_get_longjmp_target (gdbarch,
mips64_linux_get_longjmp_target);
set_solib_svr4_fetch_link_map_offsets
(gdbarch, mips64_linux_svr4_fetch_link_map_offsets);
set_mips_linux_register_addr (gdbarch, mips64_linux_register_addr);
break;
default:
internal_error (__FILE__, __LINE__, "can't handle ABI");
break;
}
}
void
_initialize_mips_linux_tdep (void)
{
const struct bfd_arch_info *arch_info;
register_addr_data =
register_gdbarch_data (init_register_addr_data);
for (arch_info = bfd_lookup_arch (bfd_arch_mips, 0);
arch_info != NULL;
arch_info = arch_info->next)
{
gdbarch_register_osabi (bfd_arch_mips, arch_info->mach, GDB_OSABI_LINUX,
mips_linux_init_abi);
}
add_core_fns (&regset_core_fns);
}